222 research outputs found

    Warranty Data Analysis: A Review

    Get PDF
    Warranty claims and supplementary data contain useful information about product quality and reliability. Analysing such data can therefore be of benefit to manufacturers in identifying early warnings of abnormalities in their products, providing useful information about failure modes to aid design modification, estimating product reliability for deciding on warranty policy and forecasting future warranty claims needed for preparing fiscal plans. In the last two decades, considerable research has been conducted in warranty data analysis (WDA) from several different perspectives. This article attempts to summarise and review the research and developments in WDA with emphasis on models, methods and applications. It concludes with a brief discussion on current practices and possible future trends in WDA

    Optimal Burn-in Time and Imperfect Maintenance Strategy for a Warranted Product with Bathtub Shaped Failure Rate

    Get PDF
    ‘Burn-in/preventive maintenance’ programme is an efficient approach used to minimise the warranty servicing cost of a product with bathtub shaped failure rate. Burn-in is a widely used method to improve the quality of product during its ‘infant mortality’ period and preventive maintenance is a scheduled necessary activity carried out during its ‘wear-out’ period. In this paper, an optimisation model is developed to determine the optimal burn-in time and optimal imperfect preventive maintenance strategy that minimises the total mean servicing cost of a warranted product with an age-dependent repair cost. We provide a numerical study to illustrate our results

    The safety case and the lessons learned for the reliability and maintainability case

    Get PDF
    This paper examine the safety case and the lessons learned for the reliability and maintainability case

    Stochastically ordered subpopulations and optimal burn-in procedure

    Get PDF
    Burn-in is a widely used engineering method which is adopted to eliminate defective items before they are shipped to customers or put into the field operation. In the studies of burn-in, the assumption of bathtub shaped failure rate function is usually employed and optimal burn-in procedures are investigated. In this paper, however, we assume that the population is composed of two ordered subpopulations and optimal burn-in procedures are studied in this context. Two types of risks are defined and an optimal burn-in procedure, which minimizes the weighted risks is studied. The joint optimal solutions for the optimal burn-in procedure, which minimizes the mean number of repairs during the field operation, are also investigated.

    Some contributions to modeling usage sensitive warranty servicing strategies and their analyses

    Get PDF
    Providing a warranty as a part of a product\u27s sale is a common practice in industry. Parameters of such warranties (e.g., its duration limits, intensity of use) must be carefully specified to ensure their financial viability. A great deal of effort has been accordingly devoted in attempts to reduce the costs of warranties via appropriately designed strategies to service them. many such strategies, that aim to reduce the total expected costs of the warrantor or / and are appealing in other ways such as being more pragmatic to implement - have been suggested in the literature. Design, analysis and optimization of such servicing strategies is thus a topic of great research interest in many fields. In this dissertation, several warranty servicing strategies in two-dimensional warranty regimes, typically defined by a rectangle in the age-usage plane, have been proposed, analyzed and numerically illustrated. Two different approaches of modeling such usage sensitive warranty strategies are considered in the spirit of Jack, Iskandar and Murthy (2009) and Iskandar (2005). An `Accelerated Failure Time\u27 (AFT) formulation is employed to model product degradation resulting due to excessive usage rate of consumers. The focus of this research is on the analysis of warranty costs borne by the manufacturer (or seller or third party warranty providers) subject to various factors such as product\u27s sale price, consumer\u27s usage rate, types and costs of repair actions. By taking into account the impact of the rate of use of an item on its lifetime, a central focus of our research is on warranty cost models that are sensitive to the usage rate. Specifically, except the model in Chapter 4 where the rate at which an item is used is considered to be a random variable; all other warranty servicing policies that we consider, have usage rate as a fixed parameter, and hence are policies conditional on the rate of use. Such an approach allows us to examine the impact of a consumer\u27s usage rate on the expected warranty costs. For the purpose of designing warranties, exploring such sensitivity analysis may in fact suggest putting an upper limit on the rate of use within the warranty contract, as for example in case of new or leased vehicle warranties. A Bayesian approach of modeling 2-D Pro-rated warranty (PRW) with preventive maintenance is considered and explored in the spirit of Huang and Fang (2008). A decision regarding the optimal PRW proportion (paid by the manufacturer to repair failed item) and optimal warranty period that maximizes the expected profit of the rm under different usage rates of the consumers is explored in this research. A Bayesian updating process used in this context combines expert opinions with market data to improve the accuracy of the parameter estimates. The expected profit model investigated here captures the impact of juggling decision variables of 2-D pro-rated warranty and investigates the sensitivity of the total expected profit to the extent of mis-specification in prior information

    A review on maintenance optimization

    Get PDF
    To this day, continuous developments of technical systems and increasing reliance on equipment have resulted in a growing importance of effective maintenance activities. During the last couple of decades, a substantial amount of research has been carried out on this topic. In this study we review more than two hundred papers on maintenance modeling and optimization that have appeared in the period 2001 to 2018. We begin by describing terms commonly used in the modeling process. Then, in our classification, we first distinguish single-unit and multi-unit systems. Further sub-classification follows, based on the state space of the deterioration process modeled. Other features that we discuss in this review are discrete and continuous condition monitoring, inspection, replacement, repair, and the various types of dependencies that may exist between units within systems. We end with the main developments during the review period and with potential future research directions

    Warranty menu design for a two-dimensional warranty

    Get PDF
    Fierce competitions in the commercial product market have forced manufacturers to provide customer-friendly warranties with a view to achieving higher customer satisfaction and increasing the market share. This study proposes a strategy that offers customers a two-dimensional warranty menu with a number of warranty choices, called a flexible warranty policy. We investigate the design of a flexible two-dimensional warranty policy that contains a number of rectangular regions. This warranty policy is obtained by dividing customers into several groups according to their use rates and providing each group a germane warranty region. Consumers choose a favorable one from the menu according to their usage behaviors. Evidently, this flexible warranty policy is attractive to users of different usage behaviors, and thus, it gives the manufacturer a good position in advertising the product. When consumers are unaware about their use rates upon purchase, we consider a fixed two-dimensional warranty policy with a stair-case warranty region and show that it is equivalent to the flexible policy. Such an equivalence reveals the inherent relationship between the rectangular warranty policy, the L-shape warranty policy, the step-stair warranty policy and the iso-probability of failure warranty policy that were extensively discussed in the literature

    A general inspection and opportunistic replacement policy for one-component systems of variable quality

    Get PDF
    We model the influence of opportunities in a hybrid inspection and replacement policy. The base policy has two phases: an initial inspection phase in which the system is replaced if found defective; and a later wear-out phase that terminates with replacement and during which there is no inspection. The efficacy of inspection is modelled using the delay time concept. Onto this base model, we introduce events that arise at random and offer opportunities for cost-efficient replacement, and we investigate the efficacy of additional opportunistic replacements within the policy. Furthermore, replacements are considered to be heterogeneous and of variable quality. This is a natural policy for heterogeneous systems. Our analysis suggests that a policy extension that allows opportunities to be utilised offers benefit, in terms of cost-efficiency. This benefit is significant compared to those offered by age-based inspection or preventive replacement. In addition, opportunistic replacement may simplify maintenance planning

    Optimal Burn-In under Complex Failure Processes: Some New Perspectives

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore