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Summary

This thesis investigates several practical issues in maintenance and acceler-

ated degradation testing (ADT), which are two important techniques imple-

mented in the product/system’s life cycle reliability engineering. First off,

the statistical analysis of repairable systems provides useful tools to char-

acterize and predict the system failure behaviour. In view of the widely

observed bathtub type failure rate and intensity during the system lifetime,

we propose a flexible superposed piecewise constant intensity model, which

also takes into consideration the possible substantial changes/shifts due to

rectifications/reliability growth at failures or other time epochs. Next, we

broaden the context to consider repairable production systems, and derive

an optimal bivariate maintenance policy to achieve the cost efficiency. Uti-

lizing the modern monitoring technology, the condition-based maintenance

is facilitated in recent years, we propose a competing risk model to incor-

porate both soft failure due to natural degradation and traumatic failure

due to random shocks. We then analyse the system reliability and obtain

a periodic inspection schedule with degradation-threshold based preventive

maintenance. While maintenance is normally performed when the product

is deployed to the field use, ADT is carried out in design and verification

phase before the mass production. Note that the underlying degradation

of some devices in practice cannot be well described by the existing models

in ADT literature, we propose the implementation of an inverse Gaussian

process. Optimal testing plans are derived to achieve good statistical pre-

cision in estimating the product’s important reliability index, such as the

life percentile. Finally, we pay attention to the practical ADT planning

considering the estimation bias incurred due to the heterogeneity of field

conditions.

Keywords: reliability, life cycle, maintenance, degradation, stochastic pro-

cess, testing.
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Chapter 1

INTRODUCTION

1.1 Background

Facing the intensive competition and customers’ expectation, manufactur-

ers today are under great pressures to improve the product’s reliability

during its life cycle. For example, in the design and development phase,

maximum reliability needs to be built into the product. To verify the suc-

cess of a completed design, a small number of prototypes are collected and

tested in the verification and validation phase. Once a product is deployed

into the field, a warranty usually accompanies with the product in which

appropriate maintenance operations are performed to mitigate the product

degradation and consequent failures in the field operation. On the contrary,

ignoring degradation and failures results in significant loss. For example,

1



Chapter 1. Introduction

Attardi et al. (2005) shows that the lack of reliability tests prior to product

delivery will incur a substantial amount of failures in the automobile indus-

try. In the electrical industry in US, there is 150 billion in economic losses

due to outages related to reliability issues (Rouse and Kelly, 2011). To this

end, many reliability techniques are involved and inherently related in the

above phases, such as failure mode and effect analysis (FMEA), accelerated

test, maintenance and warranty analysis, etc.

This thesis investigates maintenance and accelerated degradation tests (ADT)

under complex failure processes. In reliability theory, the lifetime distri-

bution model is adopted by most of the literature, due to the tradition

and convenience, as well as its description for items’ ageing characteristics

and fitness to the data. However, the ageing nature of the lifetime model

restricts its capability of interpreting either more essential or complicated

situations encountered in recent research and practice. Some of these situ-

ations are summarized as follows:

• The reliability requirement for products is increasingly high to meet a

sequence of specified performances. For example, an electronic prod-

uct may be viewed as a complex system that consists of many compo-

nents. To maintain high reliability for the entire system, it generally

requires that the individual components have extremely high reliabil-

ity (Lu and Meeker, 1993). Therefore, censored data may be collected

2



Chapter 1. Introduction

with very few failures. Consequently, it is generally difficult to im-

plement the lifetime model for inference.

• Products possess their own specific failure-generating mechanisms,

many of which can be traced to an underlying degradation process.

The unique failure mechanism, however, is unable to be captured by

the lifetime model. On the contrary, a degradation model based on

the product’s physics, if appropriately chosen and readily observed by

modern monitoring technology, will be more timely and informative

(Meeker et al., 1998).

• At the system level, especially for repairable systems, component fail-

ures usually result in minor rectifications of the system, and system

may experience a series of failures before it is completely overhauled.

Typically, it is inadequate to use the lifetime model to characterize

the system failure behaviour (recurrent events) during its lifetime.

To some extent, the above difficulties encountered can be readily resolved

by using stochastic process models. Stochastic processes emerge as a new

class of failure models (Singpurwalla, 1995) and receive increasing attention

in various areas of reliability engineering. In the following, we briefly in-

troduce the implementation of stochastic process models in the framework

of both maintenance and accelerated degradation tests. Issues of current

3



Chapter 1. Introduction

research are also addressed, based on which the motivations of this thesis

are highlighted.

1.2 System maintenance modelling and op-

timization

System maintenance is very common in practice. Usually the system is re-

pairable, meaning that when failing to perform its functions satisfactorily,

it can be restored to fully satisfactory performance by some method other

than replacement of the entire system. Consequently, recurrent events of

failures/rectifications are observed during system lifetime. As these events

occur randomly and inherently related to each other on some level, stochas-

tic processes appear suitable models to characterize the failure process and

determine future maintenance actions. Various models are proposed to ac-

commodate different types of systems as well as their failure time data. For

example, the renewal process, where the system is as good as new after a

repair, and non-homogeneous Poisson process (NHPP), where the system

always receives a minimal repair at failures, are two widely-used models.

Statistical analysis of failure data and maintenance planning can be found

in several studies, such as Jaturonnatee et al. (2006), Lawless et al. (2012),

Pulcini (2014) and Rigdon and Basu (2000), to name a view.

4
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Another class of models implement the stochastic process models to depict

the underlying process of system degradation toward failures. As a result,

maintenance is then performed to alleviate the degradation and prevent

failures. Usually system degradation signals in one way or another, which

can be measured directly or indirectly. With the advance of modern mea-

surement technology and sensors, the monitoring of system real-time health

becomes feasible within an increasing number of areas. For instance, the

health condition of helicopter drive train system can be monitored by col-

lecting the vibration signals from the hanger bearings, testing the electrical

insulation degradation serves as a diagnostic tool of electric motor’s health

condition. With the degradation information on hand, stochastic process

models are commonly chosen to characterize system degradation due to

their flexibility to account for the correlation of time-dependent degrada-

tion measurement. More precise estimates of system reliability and better

maintenance planning are then obtained. Optimal maintenance policies

under different stochastic degradation models have been discussed by Liao

et al. (2006), Dieulle et al. (2003a), Ye et al. (2012), Si et al. (2014), etc.

An overview of the application of gamma process in maintenance can be

found in Van Noortwijk (2009).

Although many models have been proposed on maintenance using stochas-

tic process approach, a number of deficiencies still exist. First, for modelling

the failure process of repairable systems, most of the existing models only

5



Chapter 1. Introduction

describe either reliability improvement or reliability degradation, notwith-

standing the fact of the well-known bathtub type failure intensity. In addi-

tion, possible substantial changes at failures, leading to reliability growth

in practice, are seldom considered. Last but not least, most models assume

single failure mode while this failure mode is subject to the degradation

of system exceeding certain critical threshold. Nevertheless, most systems

can fail due to a variety of failure modes or competing risks. Therefore, an

integrated framework is desired for characterizing their joint effects.

1.3 Accelerated degradation test

An important program initiated in practice to obtain the reliability metric

of developed products is to perform the tests in the earlier stage. It is

extensively conducted in both design and production phases on materials,

components and systems. However, the time duration allowed for testing

is usually much shorter than the expected operating lives of products. In

line with the modern quality philosophy for producing high-reliability prod-

ucts, most of products are designed to operate without failures for years,

decades, or longer. Therefore, testing under normal use condition is costly

and unrealistic. Accelerated tests are hence motivated to obtain timely

information in which test units are exposed to harsh conditions. Degra-

dation is accelerated and more failures occur. Reliability estimates under

6
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normal use level can be obtained by extrapolation from high level through

some physically meaningful statistical model that links the stress with unit

reliability.

In some cases, failures of sample units are rather frequently observed dur-

ing test. However, for highly reliable products, failures seldom occur even

under elevated stresses. To overcome this situation, degradation tests are

facilitated, which measure some characteristic of interest in testing units.

This characteristic represents unit’s degradation gradually, and failure oc-

curs when the degradation is not acceptable, i.e., exceeds some threshold.

For example, the carbon film resistors may exhibit a shift on the resis-

tance and fail when the shift is too large. In accelerated degradation test,

stochastic processes are widely employed to model unit’s degradation. For

example, Wiener process and gamma process models are implemented in

various ADT studies (Tang et al., 2004; Tseng et al., 2009; Lim and Yum,

2011).

Despite the wide applications of wiener process and gamma process mod-

els, there are circumstances where neither of the two models is appropriate.

Some complementation to the family of degradation models are essential,

and their applications in ADT need to be explored. For example, as a lim-

iting process of the compound Poisson process, the inverse Gaussian pro-

cesses are physically suitable to characterize the gradual growth of degra-

dation, such as wear, crack, etc. Therefore, it is important to invoke the

7
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inverse Gaussian process for ADT study when it describes the degradation

data well. Moreover, the objective of current ADT plans are focused on

the life quantiles. Other objectives of practical importance should also be

investigated, such as the fraction failings within a warranty period which

is directly related to the field return of products, and the total warranty

cost. Besides, the product’s operating condition in the field is heteroge-

neous, such as the usage rate of products varies for different customers, the

operating environment is different, etc. This may bias the estimation and

thus should be considered if possible.

1.4 Research objective and structure

As indicated in the above comprehensive review, the gaps of current re-

search in maintenance and accelerated degradation test under complex pro-

cesses can be summarized as follows:

• The characterization of failure process of repairable systems usually

implement the stochastic point processes where the failure intensity

is naturally denoted by the arrival rate. However, the existing mod-

els depict either monotone increasing or decreasing failure intensity,

ignoring the commonly observed bathtub type. Moreover, the conti-

nuity of point process implicitly assumes minimal repair or renewal

of system whenever failure occurs, which is unable to account for

8
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maintenance degree in between or substantial changes (e.g. reliabil-

ity growth) at failures or other time epochs.

• Stochastic process are widely used to describe system/component

degradation. Complex systems usually fail due to a variety of sources.

Few studies address the maintenance of degraded systems subject to

multiple failure modes.

• The selection of an appropriate candidate model is the essential step

in planning the accelerated degradation tests. Models include lin-

ear degradation path and stochastic processes are both advocated.

Within the stochastic process category, only weiner process and gamma

process are used, and it is found that some dataset of products in

practice are not adequately fitted by these two models. Therefore,

the accelerated degradation test of these products may be planned

based on a new stochastic process.

• The objective of current research on ADT is focused on the product

life quantile or D-optimality. However, since the main objective of

ADT is to predict the product reliability in the field, the heteroge-

neous field condition needs to be considered.

This thesis intends to propose some practical models to resolve the above

problems. Specifically, the objectives of this research are to:

9
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• Develop a versatile model which takes into consideration the bath-

tub failure intensity of repairable system, as well as the substantial

changes at failures or other epochs.

• Develop a bivariate optimal maintenance policy in manufacturing sys-

tems with lot sizing production and inventory.

• Develop an optimal periodic-inspection model for system mainte-

nance with multiple dependent failure modes.

• Investigate the planning of ADT under a newly developed stochastic

process model, i.e. the inverse Gaussian process.

• Develop an optimal ADT plan which incorporates the heterogeneity

of field use.

The results of this study provide some new perspectives for maintenance

and ADT under complex processes, which is helpful for the reliability de-

cision making during the product’s life cycle. Moreover, this research may

be helpful in increasing:

• The understanding of the failure process of repairable system during

its lifetime.

• The accuracy of maintenance planning for complex systems subject to

various issues, e.g. production and inventory, multiple failure modes,

etc.

10
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• The diversity of model candidates and objectives in planning ADT.

The structure of this thesis is sketched in Figure 1.1. In Chapter 2, a de-

tailed and comprehensive review of maintenance and ADT under complex

processes is presented. Chapter 3 proposes a piecewise constant intensity

model. Chapter 4 develops a bivariate maintenance policy for manufactur-

ing system. Chapter 5 considers the maintenance planning for systems with

multiple dependent failure modes. Chapter 6 investigate the inverse Gaus-

sian process in ADT planning with and without random effects. Chapter

7 proposes an optimal ADT plan which considers the heterogeneity when

product is deployed to the field. The conclusion for the whole thesis is

given in Chapter 8, along with remarks and further research topics.

Figure 1.1: The structure of the thesis.
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Chapter 2

LITERATURE REVIEW

In this chapter, we provide a detailed and comprehensive review of relevant

current development on maintenance and accelerated degradation tests in

line with the emphasis pointed out in Chapter 1. The first and second

section focus on maintenance and ADT literature separately. Then the last

section covers the joint studies on maintenance and reliability tests.

2.1 Maintenance modelling and optimization

The vast literature on maintenance study can date back to several decades

ago (Barlow and Proschan, 1965). However, driven by the development of

modern industries and management, new techniques, methodologies, ap-

proaches are continuously brought out by researchers and employed in a

12
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variety of applications (Murthy and Kobbacy, 2008). This section mainly

concentrates on recent research from the perspective of stochastic process

approach. Within this category, the first stream of research involves the

characterization and statistical analysis of failure processes of repairable

systems, while the second stream of research traces the underlying dete-

rioration of systems and components with the help of modern monitoring

technology.

2.1.1 Repairable systems

The manner that degradation and failures occur is often uncertain. The

analysis of inter-failure time is of interest to the reliability community (Tang

and Olorunniwo, 1989), as the knowledge of system’s inter-failure time

behaviour is helpful to understand the reliability growth of systems, which

facilitates subsequent maintenances and other reliability programs. The

concept and modelling of repairable systems using stochastic processes was

first proposed in Ascher (1968). A treatment of book length can be found

in Ascher and Feingold (1984) and Rigdon and Basu (2000).

Renewal process (RP) and non homogeneous Poisson process (NHPP) are

two common approaches studied in literature. RP models the as good as

new maintenance at each failure, while NHPP assumes minimal repair or as

bad as old maintenance. A widely adopted NHPP is the power law process

13
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(PLP) where the intensity function is λ(t) = β
α

(
t
α

)β−1
. For example, Rig-

don (1998) presented a statistical analysis of the failure data of repairable

systems using PLP. Gilardoni and Colosimo (2007) determined the estimate

of optimal preventive maintenance time for repairable systems when the un-

derlying process is PLP. Gaudoin et al. (2003) introduced a goodness-of-fit

test for the PLP based on the Duane plot. Besides PLP, another class of

NHPP is the log linear process (LLP) first proposed in Cox (1955), where

the intensity function is λ(t) = exp(α0 + α1t). Lee (1980) compared the

adequacy of PLP and LLP using optimal conditional tests. Coetzee (1997)

systematically addressed the application of two NHPP models in analysis

of maintenance failure data.

Some recent research extends and generalizes RP and NHPP in a number

of ways. Most of them are motivated by modelling the intermediate degree

of maintenance between as good as new and as bad as old. The modulated

power law process (MPLP) is one type of generalization of RP, where the

inter-failure cumulative intensity are gamma distribution (Muralidharan,

2002). A further extension of the MPLP assumes that the distribution is ar-

bitrary instead of gamma, which is called the trend renewal process (TRP).

A fully characterization of TRP can be found in Lindqvist et al. (2003).

Recently Yang et al. (2012) used the TRP to analyse systems with multiple

failure modes. Other classes of models that deal with situations in-between

perfect and minimal repair include the Brown-Proschan model (Brown and

14
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Proschan, 1983), the Kijima’s virtual age model (Kijima, 1989) and the

arithmetic reduction of age (ARA) and arithmetic reduction of intensity

(ARI) model (Doyen and Gaudoin, 2004) wherein a bulk of extensions can

be found respectively in the literature.

In parallel, a piecewise exponential model (PEXP) generalizes RP/HPP

by allowing the inter-failure times to be independent but not identically

distributed random variable. The PEXP was first proposed in Sen and

Bhattacharyya (1993) and Sen (1998) in view of the reliability growth in

product development phase. Since the reliability growth or other substan-

tial changes also occur with maintenance actions in both development and

production phase, Rigdon and Basu (2000) incorporated PEXP into re-

liability and maintenance studies. A recent study by Arab et al. (2012)

studied PEXP with two Bayes approaches: empirical Bayes approach and

hierarchical Bayes approach. A class of geometric process (Lam, 2007) or

quasi-renewal process (Wang and Pham, 1996) models were also addressed

in literature which assume a geometric sequence of inter-failure times.

In addition to the above generalizations, some models describe the failure

intensity focusing on its limiting behaviour. As indicated by Drenick limit

theorem, the failure intensity of the repairable system will approach a con-

stant after a sufficiently long time when the system consists of a mixture of

parts with randomized mix of ages. Pulcini (2001) proposed a bounded in-

tensity process for the repairable system and further analysed the reliability
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under various operating conditions in Pulcini (2008).

Most of the models above result in a monotonic trend of failure intensity,

ignoring the fact of bathtub behaviour that commonly observed in systems

and components. Moreover, maintenance utilizing these stochastic process

models needs to be properly scheduled when other issues are incorporated

such as production, inventory, etc.

2.1.2 Condition based maintenance

Another perspective of handling the manner of degradation and failure of

system/component is to directly characterize its degradation process before

failures. Condition based maintenance can thus be adaptively and effec-

tively planned. The underlying degradation varies from system to system,

and the captured degradation is usually more informative and provide more

precise estimate of system reliability (Meeker and Escobar, 1998). Accord-

ing to the stochastic process models adopted, the literature on condition

based maintenance of degrading systems can be classified into two types.

The first type of models utilize Markov processes and partition the sys-

tem degradation into several discrete states (from as good as new to an

absorbing state of failure). Maintenance actions are taken including mini-

mal repair, replacement etc. An optimal policy is derived to minimize the
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relevant costs in which a series of decision rules are obtained and associ-

ated with each degradation state. The procedure is typically regarded as

Markov decision process (MDP) and its special cases and variations. For

example, Chen and Trivedi (2005) first proposed a semi-Markov decision

process (SMDP) model and determined the state threshold for minimal and

major maintenance. Maillart (2006) analytically derived the optimal main-

tenance policy when system is not directly observable at every time epoch,

using a partially observed Markov decision process (POMDP). Makis and

Jardine (1992) embedded MDP into the covariate of a proportional haz-

ard model (PHM) and obtained the optimal replacement threshold. The

advantage of using MDP is that the resulting optimal maintenance policy

analytically corresponds to the system’s deterioration, which is insightful

and easy to implement. However, the obstacle is the classification of system

degradation state, which is usually arbitrary and difficult to justify.

The second type of models describe the continuous evolution of system

degradation using stochastic processes such as the Lévy process. Compared

with MDP, the class of Lévy processes may provide a closer characterization

of system degradation mechanism. For example, many degradation such as

corrosion, fatigue crack growth and physical wear can be viewed as accu-

mulations of additive and irreversible damage caused by a series of external

shocks. The arrival of shocks may be approximated as Poisson process, each

causes random and tiny wear. Then the gamma process, for instance, is a
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physically meaningful model since the gamma process is essentially the limit

of a compound Poisson process with infinite jump rate and proportional

infinitesimal jump size (Lawless and Crowder, 2004). Studies on mainte-

nance policies with gamma process can be found in Dieulle et al. (2003a)

and Liao et al. (2006). An overview of the application of gamma process in

maintenance can be found in Van Noortwijk (2009). Wiener process was

considered in Liu et al. (2012). Crowder and Lawless (2007) studied both

gamma process and wiener process and proposed a predictive maintenance

scheme. A more general situation with non-negative stationary and statisti-

cally independent degradation increments are treated in Grall et al. (2002),

Deloux et al. (2009) and Lu et al. (2007), etc. Some physics-based models

are proposed for specific problems (Wang, 2000; Peng et al., 2009). Despite

the wide implementation of Lévy process models, most of them focus on

the soft failure where system degradation crosses a critical threshold. Few

of the existing studies considered multiple failure modes for a system, even

fewer considered the dependence between different failure modes. Actually

complex systems usually fail in a variety of modes, and one mode of failure

may exacerbate another potential mode. Maintenance policy need to be

investigated under these circumstances.
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2.2 Accelerated degradation test planning

The utilization of degradation data for reliability estimates can date back

to Nelson (1990) and Lu and Meeker (1993). Later Tang and Chang (1995)

studied power supply system reliability using collected ADT data. Meeker

et al. (1998) systematically addressed the advantage of degradation data

and proposed several physically useful acceleration models together with

statistical inference procedures. These studies, however, did not consider

the planning and execution of an ADT. Although ADT is efficient in testing

reliability, it is usually expensive to conduct. In addition, even within a

same cost budget, an ADT still needs to be appropriately settled to achieve

statistical efficiency and precision in terms of reliability estimate. The

key planning variables in an ADT include test sample size, test duration,

measurement frequency, number of measurements, test stress level, etc.

Based on the degradation models used, the literature on ADT planning

can be classified into two categories: 1. degradation path (DP) models;

2. stochastic process (SP) models. The DP model assumes some specific

function of time with random coefficients and an error term, while the SP

model normally select candidates from the Lévy processes. A pioneer study

of designing an ADT experiment in the DP category was given by Boulanger

and Escobar (1994) where the selection of stress levels and sample size were

determined. Later the study was extended by Yu and Tseng (1998) and
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Tseng and Yu (1997) who incorporated a termination rule for stopping

the test (test duration). Tseng and Wen (2000) considered the change of

stress level during test and proposed a step stress ADT (SSADT) model.

In view of the destructive measurement in some applications, recently Shi

et al. (2009) obtained both statistically optimum plan and compromise plan

under the framework of accelerated destructive degradation test (ADDT).

The merit of DP model is the analytical tractability in deriving reliabil-

ity objective of interest and planning the ADT. However, the simple form

adopted in DP model limits its ability to incorporate the time-dependent

correlation in degradation measurement. Naturally, this limitation can be

readily resolved by stochastic process models such as Lévy process. Tang

et al. (2004) was among the first to plan the ADT using stochastic pro-

cesses. The wiener process was adopted and a cost-effective SSADT plan

was obtained. Later Liao and Tseng (2006) also planned an ADT using

wiener process models and determined the measurement frequency, sam-

ple size and number of measurements. Instead of SSADT, Peng and Tseng

(2010) proposed a test plan in which the stress level progressively increases.

Tseng et al. (2009) obtained a similar plan with Liao and Tseng (2006) us-

ing gamma process. Recently Tsai et al. (2012) incorporate the random

effect into gamma process and derived an optimal cost-effective test plan.

It is noted that only two classes of Lévy process are used in ADT planning,

i.e. wiener process and gamma process. Obviously they are unable to deal
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with all types of product degradation. In fact, the GaAs laser data cannot

be fit well by either of the two processes (Wang and Xu, 2010). Com-

plementary models are necessary to handle these circumstances in ADT.

Moreover, the objectives in most of the existing studies focus on the life

quantile or D-optimality. To meet the primary goal of predicting the frac-

tion failings in the field in most ADTs, other objectives need to be explored

for management.

2.3 Joint maintenance and reliability test

In the literature, most studies address maintenance and reliability test sep-

arately, as these two reliability programs are usually implemented at dif-

ferent stages within product life cycle. Maintenance is performed after

product is put into operation in the field, while most reliability tests are

done before production. However, it should be noted that apart from the

burn-in effect, the inherent reliability built in the product that undergoes

maintenance and reliability test is essentially the same. The reliability in-

formation obtained from a properly planned reliability test is valuable and

timely for manufacturers to predict the maintenance costs in the field in

the long run or within a specific period (warranty). For example, Liao

(2009) designed an accelerated life test (ALT) plan to predict the costs

under mandatory maintenance regulations in some industries (e.g.airline).
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By assuming minimal repair at each failure and random use stress across

customer population, Yang (2010) obtained an optimal compromise ALT

plan to minimize the asymptotic variance of the warranty costs. On the

other hand, in contrast to the reliability test which is usually conducted in

a static laboratory environment, practical operation of product is greatly

influenced by dynamic environment such as geographic location, customer

usage, etc. This gap may introduce bias in estimation using the in-lab ex-

periment results. Some recent studies addressed this concern and proposed

some generic models (Meeker et al., 2009; Hong and Meeker, 2010, 2013).

However, no test plan is determined in these studies.

The above papers used lifetime models to describe the reliability metrics,

which may not be appropriate for highly reliable product. The implemen-

tation of ADT is thus motivated to predict the field performance for a range

of products. Currently no study is found to study joint maintenance and

ADT planning. Moreover, proposition of new ADT models that overcome

the gaps between lab and field is essential.
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Chapter 3

A PIECEWISE CONSTANT

INTENSITY MODEL AND

RELATED OPTIMAL

MAINTENANCE

PLANNING

3.1 Introduction

As reviewed in Chapter 2, there has been considerable interests in the study

of repairable system reliability under regular maintenance. The time epochs
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of failure events during the system lifetime give rise to the failure process

which is the subject of interest in system reliability analysis (Ascher and

Feingold, 1984; Rigdon and Basu, 2000). Here the time epochs refer to the

points of time at which failures are observed.

Among the failure processes proposed in literature, the renewal process and

Poisson process are the two most commonly used models. When a renewal

process is adopted, it is assumed that the rectification performed when sys-

tem fails always results in an as good as new system and thus the system

failure process is repeated identically and periodically. However, a renewal

process is unable to model the reliability growth or reliability decay often

observed in repairable systems. For the Poisson process, a widely studied

model is the power law process (PLP) and its variations which is a par-

ticular form of the non-homogeneous Poisson process (NHPP) (Gaudoin

et al., 2003; Pulcini, 2001). The rectification under a PLP is assumed to

be minimal and the system is as bad as old after maintenance. In addition,

compromise models between renewal process and NHPP are addressed,

such as modulated PLP (Muralidharan, 2002), modulated gamma process

(Berman, 1981), trend renewal process (Lindqvist et al., 2003; Yang et al.,

2012), etc. Maintenance planning under these processes are also covered

Gilardoni and Colosimo (2007); Fuqing and Kumar (2012). While these

models are typically assumed for repairable systems analysis, they are not
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appropriate in many applications as some substantial rectifications at sys-

tem failures or other time epochs cannot be taken into consideration ex-

plicitly. As pointed out in Meeker and Escobar (1998)(p.394), “the term

’system repair’ should describe a general event of interest”, and “may be

an adjustment”. In Thompson (1988)(p.54), the author argued that “some

provision needs to be present for altering the process of failures when mod-

ifications or corrective actions are applied to the system”. With respect to

the PLP model, Sen Sen (1998) criticised that the continuity assumption

“fixed in advance all times, fails to portray the effect of fixes and design

changes applied to the system”.

In practice, rectifications and other maintenance actions may trigger level

shifts in the failure intensity function. For example, the test-analyse-and-

fix cycle during product development often leads to reliability growth (Fries

and Sen, 1996; Sen, 1998). Although the root cause for the change point

of level is usually unknown, it is typically adequate to assume a constant

value of failure intensity over a period of time between each changes. This is

because time intervals between consecutive rectifications/adjustments are

relatively short compared to system lifetime. Barring major change in the

underlying operation conditions, the failure intensity is not expected to

exhibit significant changes. To characterize the system failure process in

these circumstances, Rigdon and Basu (2000) first introduced a piecewise

exponential model (PEXP) for reliability and maintenance studies. The
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model assumes an independent exponential inter-failure time with param-

eter λj = µ
δ
j1−δ, where λj is the failure intensity, µ, δ > 0 are parameters.

Later Hamada et al. (2008) incorporated the Bayesian methods into the

PEXP model. Recently, Arab et al. Arab et al. (2012) implemented PEXP

in multiple repairable systems with two Bayesian approaches, parametric

empirical Bayes approach and hierarchical Bayes approach.

The PEXP model can only describe a monotonically decreasing or increas-

ing trend in system failure intensity. As a result, the PEXP cannot model

the system behaviour where the failure intensity does not exhibit a mono-

tonic trend. For example, some system failure intensity process often dis-

plays the well-known bathtub curve (Guida and Pulcini, 2009; Mun and

Bae, 2011), comprising three successive distinct periods; namely, a de-

creasing failure period, following a random failure period of time with a

constant failure intensity and an increasing failure period. The PEXP can

only model system behaviour within one of the three periods in a bathtub

curve. In view of this deficiency, we propose a general piecewise constant

intensity (PCI) model in this paper, which flexibly models the level shift

of the failure intensity after each rectification. This also permits a more

objective study of the related optimal maintenance plan as maintenance

actions could be taken to delay the on-set of increasing failure intensity

even as the failure intensity function is decreasing. On the other hand, if

system deterioration is indeed evident from the failure data, a cost-effective
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maintenance plan can also be derived so as to minimize system whole life

cycle costs.

In the following sections, we first introduce the model equation and describe

its parameters. We then introduce the statistical inference procedures for

the PCI model in Section 3.3. This is followed by a study of the maintenance

planning problem for systems with PCI failure intensity in Section 3.4. Two

examples are used to illustrate the proposed model in section 3.5. Finally,

Section 3.6 concludes the chapter.

3.2 Model formulation

The piecewise constant intensity (PCI) model characterizes the system’s

failure process by depicting the lifetime between failures. Specifically, if Xj

is system lifetime between the (j − 1)-th and j-th failure, the PCI states

that Xjs are independent exponential random variables with parameter

λj =
α1

δ1

j1−δ1 +
α2

δ2

j1−δ2 , j = 1, · · · , N. (3.1)

where α1, α2, δ1, δ2 > 0 are unknown parameters.

Remark : From the definition of PCI in (3.1), several special cases follow,

and their possible realizations are depicted in Figure ??.
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(1) if α1 = 0, or α2 = 0, then the PCI reduces to the PEXP as in Arab

et al. (2012);

(2) if δ1 = 1, δ2 = 1, then the PCI is the HPP;

(3) if δ1, δ2 > 1, the PCI describes the reliability improvement;

(4) if 0 < δ1, δ2 < 1, the PCI describes the reliability deterioration;

(5) if δ1 > 1, 0 < δ2 < 1, or 0 < δ1 < 1, δ2 > 1, the PCI can model

a system with a more complicated failure pattern, e.g. the bathtub

type failure intensity.

The expression in (3.1) is suitable for single system or several identical sys-

tems. More generally, however, system individual differs, either from the

manufacturing stage of the systems (e.g., the variation of raw materials), or

their non-identical working conditions. To extend the model for a collection

of heterogeneous systems, one common approach in repairable system stud-

ies is to assume different independent parameters for each system. While

this approach is intuitive, it will incur a large parameter space when the

number of systems under observation increases. One solution of this issue

is to incorporate the system-to-system random effect (Cook and Lawless,

2007). Specifically, we denote zi, i = 1, · · · , the unobservable random effect

on system i, where zis are taken to be i.i.d. with some distribution function

G(z). For system i, given zi, the time between failures (j − 1) and j is ex-

ponentially distributed with parameter λ′j = ziλj. Note that this approach
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Figure 3.1: Simulated intensity process in various special cases: (a)
monotone increasing, (b) monotone decreasing, (c) bathtub type.
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is similar to the parametric empirical Bayes model in (Rigdon and Basu,

2000).

3.3 Statistical inference

3.3.1 Identical systems

In the following, we give the likelihood function from which the parameters

in the PCI model can be estimated from observed data. Supposem detected

systems operate. Denote 0 < oi1 < · · · < oi,ni , i ≥ 1 the ni-th failure time

of the i-th system, and oi,C the time at which the i-th system is truncated.

The likelihood function relative to the data is given by

L(Θ|D) =
∏m

i=1

{
exp

[
−
(
α1

δ1
n1−δ1
i + α2

δ2
n1−δ2
i

)
(oi,C − oi,ni)

]
∏ni

j=1

(
α1

δ1
j1−δ1 + α2

δ2
j1−δ2

)
exp

[
−
(
α1

δ1
j1−δ1 + α2

δ2
j1−δ2

)
(oi,j − oi,j−1)

]}
,

(3.2)

and the log-likelihood function is

l(Θ|D) =
∑m

i=1−
(
α1

δ1
n1−δ1
i + α2

δ2
n1−δ2
i

)
(oi,C − oi,ni)

+
∑m

i=1

∑ni
j=1

[
log
(
α1

δ1
j1−δ1 + α2

δ2
j1−δ2

)
−
(
α1

δ1
j1−δ1 + α2

δ2
j1−δ2

)
(oi,j − oi,j−1)

]
.

(3.3)

For the failure truncated case, suppose a total of Ni failures are observed

for system i, denote 0 < oi1 < · · · < oi,Ni , all the failure epochs for the i-th
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system, we have

L(Θ|D) =
m∏
i=1

Ni∏
j=1

(
α1

δ1

j1−δ1 +
α2

δ2

j1−δ2
)

exp

[
−
(
α1

δ1

j1−δ1 +
α2

δ2

j1−δ2
)

(oi,j − oi,j−1)

]
,

(3.4)

and

l(Θ|D) =
m∑
i=1

Ni∑
j=1

[
log

(
α

δ1

j1−δ1 +
α2

δ2

j1−δ2
)
−
(
α1

δ1

j1−δ1 +
α2

δ2

j1−δ2
)

(oi,j − oi,j−1)

]
.

(3.5)

3.3.2 Non-identical systems

Suppose the observation on system i is terminated when totally ni failures

are observed, zi, i = 1, · · · ,m follows a gamma distribution with mean 1

and variance θ. So the shape and scale parameter in the gamma distribu-

tion is θ−1 and θ respectively. Note that when θ → 0, the zi distribution

degenerate at a single value 1, and the model reverts back to the case of

identical systems. Denote 0 < oi1 < · · · < oi,ni all the failure epochs of

system i. The parameter space is now Θ = (α1, α2, δ1, δ2, θ), the marginal

likelihood function of system i is

Li(Θ|D) =

∫ ∞
0

(
ni∏
j=1

λjzi exp[−λjzi(oi,j − oi,j−1)]

)
zθ
−1−1
i

Γ(θ−1)θθ−1 exp(−zi/θ) dzi

=

∏ni
j=1 λjΓ(θ−1 + ni)

Γ(θ−1)

(θ−1 +
∑ni

j=1 λj(oi,j − oi,j−1))−θ
−1−ni

θθ−1 (3.6)
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The total likelihood is L(Θ|D) =
∏m

i=1 Li(Θ|D). And the total log likeli-

hood is given by

l(Θ|D) =
m∑
i=1

ni∑
j=1

lnλj +
m∑
i=1

[
ln Γ(θ−1 + ni)− (θ−1 + ni) ln

(
θ−1 +

ni∑
j=1

λj(oi,j − oi,j−1)

)]
−m ln Γ(θ−1)−mθ−1 ln θ (3.7)

The maximum likelihood estimates of parameters can be readily obtained

using some numerical direct search methods. For the heterogeneous case,

the EM algorithm can be implemented by treating the random-effect as

missing data. With the gamma distribution for zi and given the observed

data D, the overall complete data log-likelihood lc can be expressed as

lc =
m∑
i=1

ni∑
j=1

(lnλj − λjzi(oi,j − oi,j−1)) +
m∑
i=1

[
(ni + θ−1 − 1) ln zi −

zi
θ
− ln θ

θ
− ln Γ(θ−1)

]
(3.8)

In the expectation step, we need to compute E(zi|D; Θ(k−1)) andE(ln zi|D; Θ(k−1)).

Note that conditional on D, the distribution of zi is still gamma, with pa-

rameters θ−1 + ni, and θ−1 +
∑ni

j=1 λj(oi,j − oi,j−1).

Therefore, we have

E(zi|D; Θ(k−1)) =
(θ−1)(k−1) + ni

(θ−1)(k−1) +
∑ni

j=1 λ
(k−1)
j (oi,j − oi,j−1)

and
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E(ln zi|D; Θ(k−1)) = ψ
(
(θ−1)(k−1) + ni

)
−ln

(
(θ−1)(k−1) +

ni∑
j=1

λ
(k−1)
j (oi,j − oi,j−1)

)
,

It can be easily shown that the maximization step is similar to the procedure

without random effect. It is noted that there are four and six parameters

in the model of identical systems and heterogeneous systems respectively.

We might expect that when the sample size is small, the information about

the model parameters is limited, especially when the number of parameters

increases. Therefore, a simulation study is carried out to estimate the

parameter and its variance under different sample sizes and failure times.

It is found that when the sample size is small, the estimate deviates from

its true value with a large variance. The precision of estimation is improved

when the simulated sample size increases. For estimation purpose of both

models, a moderate sample size can be chosen. The coverage probability

is often used to assess the effect of sample size on the estimation precision.

We present in the following the coverage probability of α1 and δ1 when m

and ni vary.

3.3.3 Confidence interval

The confidence interval of the parameters can be constructed using the

bootstrap method, which can provide better approximate results than the
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Figure 3.2: Coverage probability of asymptotic CI procedure with
varying m and ni.

traditional normal-approximation method, especially when the sample size

is not large. We consider the case of identical systems, the heterogeneous

systems case can be dealt with in a similar vein. In particular, when ML

estimates of parameters are obtained from above, i.e. Θ̂ = (α̂1, α̂2, δ̂1, δ̂2),

a parametric bootstrap percentile procedure can be developed as below

(Efron and Tibshirani, 1994).

1. Generate the pseudorandom bootstrap sample Q∗ = [Q11, Q12, · · · ,

Q1,n1 , Q21, · · · , Qm,nm ], where Qi,j, i = 1, · · · ,m, j = 1, · · · , ni is the

exponential time interval with rate parameter λ̂i,j, and λ̂i,j is the

plug-in estimate of λi,j, i.e. λ̂i,j = α̂1

δ̂1
j1−δ̂1 + α̂2

δ̂2
j1−δ̂2 ;

2. Obtain the ML estimates of parameters Θ̂∗ = (α̂∗1, α̂
∗
2, δ̂
∗
1, δ̂
∗
2) using

Q∗;
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3. Repeat step 1 to 2 B times to get Θ̂∗1, · · · , Θ̂∗B;

4. Sort the elements in Θ̂∗1, · · · , Θ̂∗B in ascending order and construct

the confidence interval using the percentile.

On the other hand, a nonparametric bootstrap procedure can also be used.

This procedure replaces step 1 of the parametric bootstrap with

1. Generate a bootstrap sample

Q∗ = [Q11, Q12, . . . , Q1,n1 , Q21, . . . , Qm,nm ], whereQi,j, i = 1, · · · ,m, j =

1, . . . , ni is obtained by randomly drawing, with replacement, from

o.j, and o.j = [o1j, o2j, . . . , omj] is the vector consisting of intervals of

j of all systems.

In the above procedures, it is assumed that the number of failures for each

system ni, i = 1, · · · ,m and the number of systems m are non-random. To

incorporate the randomness of ni and m, we can adopt a nested bootstrap

by first non-parametrically resampling with replacement from n1, · · · , nm

and 1, · · · ,m, then implement step 1 to 2.

3.3.4 Goodness-of-fit and model selection

The graphical check of goodness-of-fit can be done by assessing the fitness

of the expected mean cumulative function (EMCF) estimated from the PCI
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model, to the mean cumulative function (MCF) of observed data. More

specifically, the nonparametric estimate of MCF is evaluated according to

Nelson (1988)(p.397). The EMCF is plotted by increasing the number of

failures by 1 when the elapsed time since last failure equals the expected

inter-failure time (E(Xj)) under the PCI model. Alternatively, we may

fit the intensity plot of PCI directly to its nonparameteric estimate from

the data (Rigdon and Basu, 2000) (p.99). In addition, as indicated in Sen

(1998), the residual plot based on the exponential scores can be drawn.

Specifically, the residuals are ei = λ−1
i (oi−oi−1), i = 1, ..., n, where oi is the

time of the i-th failure and n is the sample size.

For model selection, the most straightforward way is to use the Akaike

Information Criterion (AIC) defined as AIC = 2k − 2l(Θ̂), where k = |Θ|

is the number of parameters. Based on this criterion, the model with

the minimum AIC value is selected. On the other hand, the root mean

squared prediction residual (RMSPR) can also be used. The residual is

estimated by leave-one-out cross-validation. More specifically, the system

i, i = 1, · · · ,m is routinely set aside, and the parameter Θ−i is estimated

using the remaining m−1 systems. Then the prediction error of the failure

time of system i is computed as

eij = oij − [oij|oik; k < j, Θ̂−i], j = 1, 2, · · · , ni, (3.9)
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where [oij|oik; k < j, Θ̂−i] is the predicted inter-failure time of system i

between failure j−1 and j conditional on all observations before oij as well

as on Θ̂−i. Then we can compute RMSPR =
√∑m

i=1

∑ni
j=1 e

2
ij/
∑m

i=1 ni.

3.4 Maintenance planning

For repairable systems, various maintenance policies have been proposed

to deal with deterioration as well as failures. Among them, system replace-

ment/overhaul that restores the system to as-good-as-new status is the

most common in literature and practice (Barlow et al., 1996). However, the

replacement is usually expensive, especially for large systems. Therefore,

based on the system failure process observed, planning for cost-effective

system replacement is essential. In this section, replacement decisions are

made according to the optimal control limit policies based on either events

or system age when the PCI model is used to describe the system failure

process.

3.4.1 Event Based Policy

A policy is called an “event based policy” if system replacement is per-

formed when the number of events exceeds some control N since the begin-

ning of system operation or the last replacement. The events include but

37



Chapter 3. A piecewise constant intensity model

are not limited to system failures, associated fixes and design changes, etc.

Optimal replacement policy is determined so that the average cost in the

long run is minimized, which, according to the renewal reward theorem,

is equal to the average cost within a replacement cycle. Denote W the

duration of each replacement cycle, C(N) the average cost during W . As

in the PCI model, Xj denotes the exponentially distributed random time

between event j − 1 and j. Then

C(N) =
(N − 1)cr + cp

E(W )
, (3.10)

cr is the cost of failures and associated fixes/design changes, cp is the system

replacement cost. It is assumed that cr < cp, which usually represents the

practical situation. Note that the maintenance time is usually negligible

compared to the operating time, we have W =
∑N

j=1 Xj.

The optimization procedure is carried out through marginal analysis, i.e.

incremental cost, and the optimum N∗ is defined as N∗ = min{n|C(n+1) >

C(n)}. Specifically,

C(N + 1)− C(N) =
Ncr + cp∑N+1

j=1
1

α1
δ1
j1−δ1+

α2
δ2
j1−δ2

− (N − 1)cr + cp∑N
j=1

1
α1
δ1
j1−δ1+

α2
δ2
j1−δ2

=
cr
∑N

j=1
1

α1
δ1
j1−δ1+

α2
δ2
j1−δ2

− ((N − 1)cr + cp)
1

α1
δ1

(N+1)1−δ1+
α2
δ2

(N+1)1−δ2∑N+1
j=1

1
α1
δ1
j1−δ1+

α2
δ2
j1−δ2

∑N
j=1

1
α1
δ1
j1−δ1+

α2
δ2
j1−δ2

,

(3.11)
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Next, we investigate the range of parameters of which the optimum replace-

ment exists.

Proposition 3.1. If δ1, δ2 ≥ 1, N∗ =∞; otherwise,

N∗ = min
{
N | cr

α1
δ1

+
α2
δ2

− cp
α1
δ1

21−δ1+
α2
δ2

21−δ2 +
∑N−1

j=1 (jcr + cp)
(

1
α1
δ1

(j+1)1−δ1+
α2
δ2

(j+1)1−δ2

− 1
α1
δ1

(j+2)1−δ1+
α2
δ2

(j+2)1−δ2

)
> 0
}
.

Proof: Denote P (N) the numerator of C(N+1)−C(N). When δ1, δ2 > 1,

we have

P (N) = cr
∑N

j=1
1

α1
δ1
j1−δ1+

α2
δ2
j1−δ2

− ((N − 1)cr + cp)
1

α1
δ1

(N+1)1−δ1+
α2
δ2

(N+1)1−δ2

≤ cr
∑N

j=1
1

α1
δ1

(N+1)1−δ1+
α2
δ2

(N+1)1−δ2 − ((N − 1)cr + cp)
1

α1
δ1

(N+1)1−δ1+
α2
δ2

(N+1)1−δ2

= (Ncr − ((N − 1)cr + cp))
1

α1
δ1

(N+1)1−δ1+
α2
δ2

(N+1)1−δ2

≤ 0

(3.12)

So N∗ =∞.

Otherwise, when δ1 ≥ 1 or δ2 ≥ 2, it is obtained that

P (N + 1)− P (N) = cr
1

α1
δ1

(N+1)1−δ1+
α2
δ2

(N+1)1−δ2 + ((N − 1)cr + cp)
1

α1
δ1

(N+1)1−δ1+
α2
δ2

(N+1)1−δ2

−(Ncr + cp)
1

α1
δ1

(N+2)1−δ1+
α2
δ2

(N+2)1−δ2

= (Ncr + cp)

(
1

α1
δ1

(N+1)1−δ1+
α2
δ2

(N+1)1−δ2 −
1

α1
δ1

(N+2)1−δ1+
α2
δ2

(N+2)1−δ2

)
(3.13)

When N = 1, P (1) = cr
α1
δ1

+
α2
δ2

− cp
α1
δ1

21−δ1+
α2
δ2

21−δ2 ;
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When N > 1, P (N) = P (1) +
∑N−1

j=1 (P (j + 1)− P (j)),

Therefore,

N∗ = min{N |C(N + 1)− C(N) > 0}

= min{N |P (N) > 0}

= min
{
N | cr

α1
δ1

+
α2
δ2

− cp
α1
δ1

21−δ1+
α2
δ2

21−δ2 +
∑N−1

j=1 (jcr + cp)
(

1
α1
δ1

(j+1)1−δ1+
α2
δ2

(j+1)1−δ2

− 1
α1
δ1

(j+2)1−δ1+
α2
δ2

(j+2)1−δ2

)
> 0
}
.

(3.14)

From the above statements, the argument of Proposition 3.1 is readily

obtained. �

3.4.2 Age Based Policy

In the age based policy, system replacement is performed when the elapsed

time since the last replacement exceeds some threshold T . Consequently,

the replacement cycle is W = T . The average maintenance cost within

replacement cycle, C(T ) is

C(T ) =

∑∞
i=1((i− 1)cr + cp)P (

∑i
j=1 Xj < T ≤

∑i+1
j=1Xj)

T
. (3.15)

To minimize C(T ), the following lemma is introduced here to facilitate the

subsequent analysis.
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Lemma 3.2. Ross (1996).Let (Xj), j = 0, 1, · · · , n, n ≥ 2 be independent

exponential random variables with pairwise distinct respective parameters

λj. Then the density of their sum is

fX1+X2+···+Xn(x) =

[
n∏
j=1

λj

]
n∑
k=1

exp(−λkx)
n∏
l 6=k
l=1

(λl − λk)
, x > 0 (3.16)

The proof can be found in Ross (1996) and thus omitted here. In the PCI

model, λj = α1

δ1
j1−δ1 + α2

δ2
j1−δ2 .

Note that

C(T ) =

∑∞
i=1((i− 1)cr + cp)

(
P (
∑i+1

j=1Xj ≥ T )− P (
∑i

j=1Xj ≥ T )
)

T

(3.17)

where

P (
∑i

j=1Xj ≥ T ) =
∫∞
T
fX1+X2+···+Xi(x) dx =

∫∞
T

[∏i
j=1 λj

]∑i
k=1

exp(−λkx)
i∏
l 6=k
l=1

(λl−λk)

dx

=
[∏i

j=1 λj

]∑i
k=1

1
i∏
l 6=k
l=1

(λl−λk)

1
λk

exp(−λkT )

(3.18)
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Letting Di(T ) = P (
∑i+1

j=1Xj ≥ T )− P (
∑i

j=1 Xj ≥ T ) yields

Di(T ) =
[∏i+1

j=1 λj

]∑i+1
k=1

1
i+1∏
l 6=k
l=1

(λl−λk)

1
λk

exp(−λkT )−
[∏i

j=1 λj

]∑i
k=1

1
i∏
l 6=k
l=1

(λl−λk)

1
λk

exp(−λkT )

=
∑i

k=1

[∏i
j=1 λj

]
1

i∏
l 6=k
l=1

(λl−λk)

1
λk

exp(−λkT )(λi+1
1

λi+1−λk
− 1)

+
[∏i+1

j=1 λj

]
1

i∏
l=1

(λl−λi+1)

1
λi+1

exp(−λi+1T )

=
∑i

k=1

[∏i
j=1 λj

]
1

i∏
l 6=k
l=1

(λl−λk)

1
λk

exp(−λkT )( λk
λi+1−λk

)

+
[∏i+1

j=1 λj

]
1

i∏
l=1

(λl−λi+1)

1
λi+1

exp(−λi+1T )

(3.19)

The optimum is sought by taking the first order derivative of C(T ) with

respect to T , that is

∂C(T )

∂T
=

∑∞
i=1((i− 1)cr + cp) (D′i(T )T −Di(T ))

T 2
(3.20)
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where D′i(T ) = dDi(T )/dT , and

D′i(T )T −Di(T ) =

−
{∑i

k=1

[∏i
j=1 λj

]
1

i∏
l 6=k
l=1

(λl−λk)

exp(−λkT )( λk
λi+1−λk

) +
[∏i+1

j=1 λj

]
1

i∏
l=1

(λl−λi+1)

exp(−λi+1T )
}
T

−
{∑i

k=1

[∏i
j=1 λj

]
1

i∏
l 6=k
l=1

(λl−λk)

1
λk

exp(−λkT )( λk
λi+1−λk

) +
[∏i+1

j=1 λj

]
1

i∏
l=1

(λl−λi+1)

1
λi+1

exp(−λi+1T )
}

= −
∑i

k=1

[∏i
j=1 λj

]
1

i+1∏
l6=k
l=1

(λl−λk)

exp(−λkT )(λkT + 1)

−
[∏i

j=1 λj

]
1

i∏
l=1

(λl−λi+1)

exp(−λi+1T )
(
T + 1

λi+1

)
(3.21)

It is seen that when T → 0, (3.21) approaches to some negative constant, so

∂C(T )
∂T
→ −∞; when T →∞, ∂C(T )

∂T
→ 0. Therefore, there exist two possible

scenarios: in scenario 1, there is at least a local optimum T ∗, which satisfies

∂C(T )
∂T
|T=T ∗ = 0; in scenario 2, there is no finite T ∗, i.e. T ∗ →∞.

In Section 3.3, parameters are estimated using data consisting of failure

times. However, in some circumstances the maintenance epochs may also

be recorded in the dataset (Blischke and Murthy, 2003). Suppose only

replacements are considered. Then for the system k within the fleet, denote

0 < tk1 < · · · < tkm,m ≥ 1 the replacement epochs, and tk,i−1 < oki1 <

· · · < oki,nki < tk,i, 0 ≤ i ≤ m the failure times between replacement (i− 1)
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and i. The likelihood function for the k-th system is

Lk((Θ)|D) =
m∏
i=1

{
exp (−λnki+1(tki − oki,nki))

ni∏
j=1

[λjexp (−λj(oki,j − oki,j−1))]

}
(3.22)

and the log-likelihood function is

lk(Θ|D) =
m∑
i=1

(−λnki+1(tki − oi,nki)) +
m∑
i=1

nki∑
j=1

[logλj − λj(oki,j − oki,j−1)]

(3.23)

The total log-likelihood function is thus l(Θ|D) =
∑

k lk(Θ|D). The es-

timates of the optimal replacement plans N∗ and T ∗, N̂∗ and T̂ ∗ can be

obtained by plugging in the estimate of the parameters combined with the

decision rule in Proposition 3.1 and the results in Section 4.2. Their confi-

dence intervals are constructed again using the bootstrap method.

3.5 Numerical example

3.5.1 The load-haul-dump machine data

In this section, the failure data of the load-haul-dump machine system

data is used to demonstrate the proposed model. The data listed in Table

3.1 was originally described by Kumar and Klefsjö (1992) and reported in

Hamada et al. (2008) and Arab et al. (2012). We show the adequacy of the

PCI model and perform the system replacement.
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Table 3.1: Inter-failure time data for the LHD machine.

LHD1 327,125,7,6,107,277,54,332,510,110,10,9,85,27,59,16,8,34,21
152,158,44,18

LHD3 637,40,197,36,54,53,97,63,216,118,125,25,4,101,184,167,81,46
18,32,219,405,20,248,140

LHD9 278,261,990,191,107,32,51,10,132,176,247,165,454,142,39,249
212,204,182,116,30,24,32,38,10,311,61

LHD11 353,96,49,211,82,175,79,117,26,4,5,60,39,35,258,97,59,3,37
8,245,79,49,31,259,283,150,24

LHD17 401,36,18,159,341,171,24,350,72,303,34,45,324,2,70,57,103
11,5,3,144,80,53,84,218,122

LHD20 231,20,361,260,176,16,101,293,5,119,9,80,112,10,162,90,176
360,90,15,315,32,266

We first check the goodness-of-fit of the model using the graphical approach

discussed in Section 3.3.4. The residual plot of each system is presented in

Figure 3.3 and no significant departure is found. Alternatively, using the

MCF plot, the nonparametric estimate of MCF is compared with both the

PCI model and the PEXP model in (Arab et al., 2012). The results are

presented in Figure 3.4 and it is found that the three curves tally reasonably

well, which indicates the adequacy of the PCI model.

Next we check the PCI model using the procedure in Section 3.3.4. The

nonparametric estimate of mean cumulative function (MCF) of failures

which naturally describes the system’s failure process based on the data.

The algorithm in Meeker and Escobar (1998) (pp.397) is used to compute

the MCF estimate. The results are presented in Figure 3.4 along with the

plot using the PEXP model (Arab et al., 2012). It is found that the three
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Figure 3.3: Residual plot for the LHD machine data.

curves tally reasonably well.

Figure 3.4: The nonparametric MCF, the parametric PCI model and
PEXP model based on the LHD machine data.

If the systems are assumed identical, the MLE of parameters can be ob-

tained from Section 3.1 as (α̂1, α̂2, δ̂1, δ̂2) = (0.0012, 0.0017, 0.716, 0.734),
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with a log-likelihood value of -889.7. On the other hand, if the possible het-

erogeneity across systems is considered, the method introduced in Section

3.2 is used to estimate the parameters. The results are (α̂1, α̂2, δ̂1, δ̂2, θ̂) =

(0.0014, 0.0017, 0.704, 0.714, 1.1 × 10−6), and the log-likelihood is -889.1.

Note that the small value of θ̂ corresponds to a small variance of the ran-

dom effect, which indicates the insignificance of the heterogeneity in the

LHD systems. Therefore, the consideration of heterogeneity will not be

carried over in the subsequent analysis.

It is noted that the LHD machines exhibit reliability deterioration since

δ̂1, δ̂2 < 1, consequently it is important to plan a maintenance such as an

overhaul or replacement of the whole system. To facilitate a cost effective

maintenance policy, the unit cost of maintenance, cp and cr can be esti-

mated and obtained in practice. Here for illustrative purpose, the value

configuration is adopted as cp = $10, 000, cr = $500. Then by Proposition

3.1, system replacement is planned at the N∗ = 48-th failure epoch, and

the long run average cost is C(N∗) = 6.26.

The 95% bootstrap confidence interval for α̂1, α̂2, δ̂1, δ̂2 is constructed with

the bootstrap sample size B = 1000. Based on this, the confidence interval

for the optimal maintenance policy N∗ and C(N∗) is also obtained. The

results are presented in Table 3.2.

Figure 3.5 shows the long run average cost C(N) when the maintenance
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Table 3.2: 95% confidence interval for the parameters and optimal
maintenance decisions.

Parameter α1 α2 δ1 δ2 N∗ C(N∗)

interval (0.0008,0.0024) (0.001,0.0032) (0.56 0.88) (0.57 0.89) (30,143) (5.5,6.58)

epoch N varies. The 95% confidence interval of C(N) is also plotted. It is

seen that the optimal cost is quite flat when N varies, which is in accordance

with the relatively loose 95% confidence interval of N∗.
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Figure 3.5: Long run average cost versus various maintenance epochs.

The effects of cost parameters cr, cp on the optimal maintenance policy are

depicted in Figure 3.6 by varying cr from 200 to 1000 and cp from 2000

to 20,000. It is found that the values of optimal maintenance policy is

largely dependent on the cost of each repair/fix/change and replacement.

Therefore, it is critical to forecast and estimate the cost in practice before

maintenance decisions are made.
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Figure 3.6: N∗ and C(N∗) versus combinations of cr and cp.

3.5.2 The rear dump truck data

To illustrate the superiority of PCI model over the PEXP model, we con-

sider the data of a 180 ton rear dump truck given by Coetzee (1996). The

dataset consists of 128 failure times as listed below.

Table 3.3: Failure time data for the real dump truck.

78 158 331 381 523 620 664 1805 1817 2068 3253
4489 4725 4961 5138 5200 5278 5711 6400 6444 6677 7999
8001 8489 9000 9086 10262 10817 11062 11082 11086 11122 11534
12031 12339 12733 13265 13508 13673 13780 14443 14501 14656 14906
14983 15004 15062 15072 15136 15206 15247 15700 15714 15972 16186
16284 16329 16425 16605 16723 16731 16797 16859 17090 17305 17484
17510 17511 17536 17621 17703 17809 17968 17984 18175 18443 18458
18667 18669 18701 18723 18822 18860 18922 18935 18945 18960 18961
18979 19013 19032 19034 19169 19184 19201 19416 19455 19525 19595
19601 19613 19643 19671 19713 19785 19801 19937 19990 20432 20433
20434 20698 21460 21543 21584 21602 21645 21706 21762 21867 21912
21914 21937 21938 21939 21951 21954 21982

We use PCI model and PEXP model to fit this data and the estimated

parameters and AIC values are presented in Table 3.4. Besides, we plot
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the MCF, and EMCF under both PCI and PEXP in Figure 3.7. Both the

AIC value and the plot show that the PCI model fits the MCF better than

the PEXP model. Moreover, the RMSPR for PCI and PEXP is 114.3 and

165.9 respectively, indicating a superior performance of PCI for predictive

ability.

Table 3.4: Estimated parameters of the PCI and PEXP model in
fitting the rear dump truck data

Model Estimated Parameters AIC

PCI α̂1 = 8.86× 10−7, α̂2 = 0.46, δ̂1 = 6.85× 10−4, δ̂2 = 2.45 923.7

PEXP µ̂ = 5× 10−4, δ̂ = 0.52 936.2
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Figure 3.7: The nonparametric MCF, the parametric PCI model and
PEXP model based on the real dump truck data.
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3.6 Conclusion

A new versatile model for describing the failure process of repairable sys-

tems is proposed in this chapter. It has been shown that the PCI model is

a useful alternative approach to characterize failure processes of repairable

systems, especially when the failure intensity function is non-monotone,

which is commonly seen in practice, such as infant mortality which in-

curs a significant proportion of early failures. It is also a more realistic

model compared to PLP and renewal processes in the event that there are

substantial rectifications/changes at failures or other time epochs, which

usually appears in reliability growth programs especially in military indus-

tries. This chapter studies some properties of the PCI model and presents

the statistical estimation of the model parameters. A goodness-of-fit test

and a bootstrap confidence bound for the failure intensity function are also

derived. The associate optimal maintenance plans are also investigated

and it is found that optimal plan exists for bath-tub shape failure intensity

function. The flexibility of the PCI model is illustrated using real dataset

example.
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Chapter 4

MAINTENANCE IN AN

UNRELIABLE

PRODUCTION SYSTEM

WITH IMPERFECT

PRODUCTION

4.1 Introduction

In the mass production environment, reliability of production systems is

a critical issue. As indicated in Hopp and Spearman (2008), unscheduled
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breakdowns are the single largest source of production variability in many

systems, generating problems of high inventory and late delivery. On the

other hand, manufacturers are facing increasing pressure to improve the

product quality. In the production stage, defective products may result in

additional rework costs. They can also disrupt the production process and

cause a delay, especially in a lean manufacturing environment. In the post-

sale stage, low quality products will cause high expenditure in warranty or

even the lost good-will of customers. The issues of reliability and quality in

production system have posed challenges to modern industrial engineers.

One commonly used mitigation approach for system failure(breakdown)

is maintenance. Among the numerous maintenance optimization meth-

ods in the literature, preventive maintenance(PM) and corrective mainte-

nance(CM) are two mostly implemented policies(Wang, 2002). The pioneer

study of Groenevelt et al. (1992) investigated CM actions when machine

failures occur in lot-sizing production system. When the production sys-

tem is under monitoring and its failure/maintenance history is observed,

PM is facilitated based on the statistical analysis of failure time data. Zhou

et al. (2007) proposed a joint age-based PM and reconfiguration decision for

recoverable systems. El-Ferik (2008) adopted an age-based imperfect PM

policy where the optimal PM schedule and number of production runs be-

tween two system overhauls/replacements are obtained. Liao et al. (2009)

used a periodical imperfect PM which is self-improving with a learning
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effect.

Parallel to the research on maintenance due to production system fail-

ure, another stream of research focus on rectifications of system’s defective

outputs. This is sometimes called imperfect production in the literature

(Cheng, 1991; Salameh and Jaber, 2000). To characterize the imperfect

production, one approach treats it as random shocks during the produc-

tion. When the shock occurs, the production system shifts to an out-of-

control state in which the subsequent production will incur a proportion

of defective outputs. This approach is adopted in Tsao et al. (2013), Sana

(2010) for example. In these papers, maintenance is also performed to re-

store the system to in-control state. Both perfect maintenance (Lee and

Rosenblatt, 1987; Tseng, 1996) and imperfect maintenance policies (Tseng

et al., 1998; Ben-Daya, 2002; Sheu and Chen, 2004; Wang et al., 2009) were

investigated. The second approach stems from the quality control concept

and assumes that a random proportion of system outputs are defective all

the time. This approach can be found in Wee et al. (2013) and Eroglu and

Ozdemir (2007). However, this stream of research does not consider the

system failure.

While the above research addresses reliability and quality issues separately,

some attempts have been made to jointly consider both two issues. This is

legitimate since the two issues are not isolated. In fact, as pointed out by
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Cassady et al. (2000), there is a close relationship between system mainte-

nance and product quality. In practice, production systems degrade over

time, there may be malfunction of its components when the degradation

is large. This malfunction is likely to cause the output products to devi-

ate from the standard quality and eventually become defective. Following

the preliminary investigation of Cassady et al. (2000), combination stud-

ies of stochastic process control (SPC) and maintenance are discussed by

several researchers (Yeung et al., 2007; Wang, 2012). On the other hand,

some studies view the quality issue as the consequence of system deteriora-

tion. As a result, they focus on maintenance planning to cope with system

failure while the cost of imperfect production is included in decision. For

example, Boone et al. (2000) determined the optimal production run where

both imperfect production and machine breakdowns are taken into account.

Chakraborty et al. (2009) further incorporated the inspection schedule into

maintenance policy.

The purpose of this study is to propose an integrated maintenance frame-

work that jointly considers reliability and quality issues in production sys-

tem. Different from previous studies, we use a flexible quasi-renewal pro-

cess(Wang and Pham, 2006) to characterize the system failure process, in

view of the common multi-stage production with imperfect maintenance.

This process is widely studied in reliability literature(Lam, 2009; Samatl-Pa

55



Chapter 4. Maintenance in an unreliable production system

and Taner, 2009). It is able to describe different system behaviours includ-

ing system deterioration, improvement or renewal. Besides, as indicated

in Yeh and Chan (1998), Chan et al. (2004) and Braun et al. (2005), it is

satisfactory in modelling a variety of systems. Moreover, Yeh (1992) and

Braun et al. (2005) showed that commonly used life distributions(Weibull,

normal or gamma distributions) can be naturally embodied in the process,

which greatly enhances its flexibility. In terms of product quality aspect,

we use the second approach of modelling imperfect production. We assume

that there is a random proportion of defective output in each production

run, and this random proportion propagates through each production runs

by a fixed parameter. In particular, for the i-th production run, the pro-

portion of defective products is βiB, where βi is the parameter and B is a

random variable representing the proportion of defective outputs. The pro-

posed model is easy to implement and the statistical inference procedure is

facilitated. In addition, the dependence of system reliability and product

quality can be easily imposed when necessary. One approach is to assign a

joint distribution between βi and the parameter of quasi-renewal process.

In addition, analytical results on the optimal maintenance decisions are

available based on this modelling.

The rest of the chapter is organized as follows. In Section 2, a detailed

description of the model and relevant notations are presented. Section 3

derives detailed components of the model. The analytical derivations can
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be found in Section 4. Section 5 provides numerical studies and Section 6

concludes the paper.

4.2 Model formulation

A production cycle is defined as the time interval between two replacemen-

t/overhaul of the whole production system. There are several production

runs in each production cycle. Since production ceases at maintenance, a

production run is the time interval between two PMs/CMs. In particular,

in the i -th production run, i = 1, 2, · · · , the PM time is scheduled at Ti

which is a decision variable. Therefore, if the system survives till Ti, a PM

is performed with a cost cp; if system fails before Ti, a CM is carried out

which incurs a cost cr. It is assumed that cr > cp. After either PM or CM,

if the product inventory has depleted, the system starts the next produc-

tion run immediately; otherwise,the system stays idle until the inventory

decreases to 0. During all production runs, the production rate is p and

customer demand rate is d, where p > d and p, d are both constants.

Denote Zi the random variable that represents the system lifetime in the i -

th production run, following the definition of the quasi-renewal process(Wang

and Pham, 2006), it is assumed that αi−1Zi are i.i.d random variables,

where α ≥ 0 is the parameter. Meanwhile, the system is also subject to
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imperfect production. As mentioned earlier, this means that a propor-

tion βiB of the production outputs are defective in the i -th production

run, where βi is a parameter affected by maintenance and B is a random

variable. It is assumed that all the defective units are fixed or reworked im-

mediately at a cost cd per unit and put back to the inventory. In addition

to the maintenance and imperfect production costs, a production set-up

cost k, and the inventory holding cost h per unit (including all good and

reworked units) per unit time are also included. After N production runs

which is a decision variable, system is replaced and the production cycle

ends. Therefore, two decisions are considered in this model: maintenance

time in each production run Ti, i = 1, 2, ..., N and replacement schedule N .

Our purpose is to minimize the long-run average cost. Clearly there is a

trade-off between Ti and N . Therefore, a well planned maintenance policy

needs to be investigated. In next section, we derive the related costs and

formulate the model.

4.3 Cost functions and the optimization prob-

lem formulation

According to the renewal reward theorem (Ross, 1983), the long-run average

cost is readily represented by the average cost within a replacement cycle,

as given in the equation below.
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AV C({Ti} , N) =
TC({Ti} , N)

CL({Ti} , N)

=
HC({Ti} , N) + SC({Ti} , N) +MC({Ti} , N) +DE({Ti} , N)

CL({Ti} , N)
,

(4.1)

where AV C({Ti} , N) is the long-run average cost, TC({Ti} , N) is the total

costs, CL({Ti} , N) is the cycle length, HC({Ti} , N) is the inventory hold-

ing cost, SC({Ti} , N) is the production set-up cost, MC({Ti} , N) is the

maintenance costs, DE({Ti} , N) is the rework costs of defective products.

The expressions for various costs and the cycle length are derived in the

following.

(1) Expected holding cost

The holding cost is simply given by

HC({Ti} , N) =
N∑
i=1

HCi,

where HCi is the holding cost in the i-th production run. Given Ti, the

production run may end up with regular maintenance if system is still

working at that time, or with a system breakdown before Ti. Thus for an

production lot sizing model with constant production and demand rate,
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HCi is obtained as,

HCi =
hp(p− d)

2d

(∫ Ti

0

t2fZi(t) dt+

∫ ∞
Ti

T 2
i fZi(t) dt

)
, (4.2)

where fZi(t) is the PDF of the time to break down in the i -th production

run and is given by

fZi(t) =
dFZi(t)

dt
=
dFZi(α

i−1t)

dt
=
αi−1dFZi(α

i−1t)

dαi−1t
= αi−1fZi(α

i−1t),

(4.3)

Similarly, the CDF of Zi, FZi(t) can be obtained as follows,

FZi(t) = P (Zi < t) = P (αi−1Zi < αi−1t) = P (Z1 < αi−1t) = FZ1(αi−1t),

(4.4)

(2) Expected cost of imperfect production

The cost of imperfect production is given by

DE ({Ti} , N) =
∑N

i=1DEi

= cd
∑N

i=1E [βiB · number of items produced in the i-th production run] ,

(4.5)

where E[B] is the expectation of the random variable B.
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where DEi is imperfect production cost in the i-th production run. It

is obvious that DEi is proportional to the production time of the i-th

production run. We then obtain

DE ({Ti} , N) =
N∑
i=1

DEi = pcdE [B]
N∑
i=1

[
βi

(∫ Ti

0

tfZi(t) dt+

∫ ∞
Ti

TifZi(t) dt

)]
.

(4.6)

(3) Expected cost of maintenance

Maintenance cost is associated with each production run conditional on the

operating time of system in that production run. Besides, a replacement is

incurred after N production runs. Thus,

MC ({Ti} , N) =
N∑
i=1

[
cr

∫ Ti

0

fZi(t) dt+ cp

∫ ∞
Ti

fZi(t) dt

]
+ r. (4.7)

(4) Expected set-up cost for each cycle

Each time a production run starts, it incurs a setup cost k, so the total

expected setup cost is

SC ({Ti} , N) = Nk. (4.8)

(5) Expected cycle length
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For each production run, since maintenance time is negligible, a produc-

tion cycle ends when inventory depletes to 0. For a production run with

production time t, the production run length is pt/d. Thus,

CL ({Ti} , N) =
N∑
i=1

CLi =
N∑
i=1

[∫ Ti

0

pt

d
fZi(t) dt+

∫ ∞
Ti

pTi
d
fZi(t) dt

]
.

(4.9)

The above derivations can be substituted into (4.1) to obtain the long-run

average cost.

4.4 Model analysis and optimality conditions

In this section, we study some properties and conditions of the optimal

maintenance policy under general system lifetime distributions. To begin

with, we seek the existence of Ti and N , which is given in the following

lemma.

Lemma 4.1. ∀N ∈ N, where N is the set of natural numbers, there

exists Ti > 0, i = 1, 2, ..., N which at least lead to a local minimum of

AV C({Ti} , N).

On the other hand, given Ti > 0, i = 1, 2, ..., N , denoted by N∗ that mini-

mizes AV C({Ti} , N),
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when α > 1, N∗ exists and is finite;

when α < 1, if βi, i = 1, 2, ..., N is nondecreasing, N∗ exists and is finite.

The proof is given in Appendix A.

Although for each production run, it is ideal to assign a specific scheduled

maintenance time Ti, in practice, however, it may not be efficient and ap-

propriate due to the possible difficulty of implementation and insignificance

in cost reduction. Therefore, to simplify the ({Ti} , N) maintenance policy,

one way is to assign an identical maintenance time T for every produc-

tion run. Then the decision variables become (T,N) and it is called the

(T,N) maintenance policy in this paper. As a special case of the ({Ti} , N)

maintenance policy, the (T,N) maintenance policy inherits the properties

of ({Ti} , N) policy. Besides, additional results are obtained as follows.

From the above derivations (e.g.(4.6)), it is seen that N is implicitly ex-

pressed in the cost function, i.e. in the summation function. Hence it is

not easy, if not impossible, to determine the global optimum of N. In this

study we focus on the possible local optimum of N and define it as

N∗ = min {N : AV C(T,N + 1) > AV C(T,N), N ∈ N} . (4.10)

It is shown later in the numerical example that under an appreciable range

ofN , AV C(T,N) is convex toN ,in which caseN∗ defined in (4.10) becomes
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a global optimum. Some important properties of the model are listed in the

proposition below. Note that these properties are considered in the general

({Ti} , N) policy.

Proposition 4.1. For any given N ∈ N, if p > d and FZ1(t) is IFR,

when α > 1, if βi, i = 1, 2, ..., N is nondecreasing,then the sequence of opti-

mal maintenance times T ∗i , i = 1, 2, ..., N is in nonincreasing order,i.e.T ∗1 ≥

T ∗2 ≥ · · · ≥ T ∗N ;

when α < 1, if βi, i = 1, 2, ..., N is nonincreasing,then the sequence of opti-

mal maintenance times T ∗i , i = 1, 2, ..., N is in nondecreasing order,i.e.T ∗1 ≤

T ∗2 ≤ · · · ≤ T ∗N .

The proof is given in Appendix A.

Proposition 4.2. In the long run, AV C({Ti} , N) increases with α in-

creasing.

The proof is given in Appendix A.

4.5 Numerical example

Consider a manufacturing system with production rate 180 units per year,

and the annual demand rate is flat with the value of 90 units. The im-

perfect production proportion B follows the uniform distribution over the
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interval [0,0.2]. Moreover, the system lifetime is Weibull with CDF FZ1(t) =

1 − exp(−θ2t
θ1), and θ1 = 2, θ2 = 1, βi = 1, for i = 1, 2, ..., N . Other pa-

rameters are

α = 1.2

r = $50 per replacement

cr = $12

cp = $2

cd = $0.4 per unit

k = $20 per setup

h = $0.3 per unit per unit time

Under the parameter settings, for ({Ti} , N) policy, T ∗i , i = 1, 2, ..., N and

N∗ are obtained by solving the equations of first-order derivative under def-

inition (4.10); for (T,N) policy, T ∗ and N∗ are determined by implementing

some direct search methods provided in commercial software. The result

of optimal ({Ti} , N) and (T,N) maintenance policy are listed in Table 4.1.

It is seen that N∗ under ({Ti} , N) policy is larger than that under (T,N)

policy, but AV C({Ti} , N) is smaller than AV C(T,N), which implies that

({Ti} , N) policy is superior to (T,N) policy since the latter is a special

case of the former. It is also noted that T ∗N < T ∗ < T ∗1 , which indicates

that T ∗ is a moderate tradeoff of T ∗i s.
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Table 4.1: Optimal ({Ti} , N) and (T,N) policy

policy ({Ti} , N)policy (T,N) policy

N∗ 5 4

optimal maintenance
time

T ∗1 = 1.19,T ∗2 = 1.06,T ∗3 =
0.92,T ∗4 = 0.77,T ∗5 = 0.63

T ∗ = 1.07

AV C∗ 47.51 47.63

As mentioned in the definition (4.10), AV C(T,N) tends to be convex to

both T and N . This is investigated within different ranges of (T,N) in

Figure 4.1. Although it is difficult to prove or search for all T and N , in

practice, definition (4.10) is sufficient to support a useful optimum. Nev-

ertheless, note that this observation is preserved under the condition in

Lemma 4.1. It is noted that α and βi, i = 1, 2, ..., N characterize the effect of

maintenance on machine deterioration and production quality respectively.

In the example, we assume that α > 1 and βis are identical. In practice,

however, various (α, βi) are possible and the combination may even change

with different production runs during a production cycle. Therefore, an ex-

tensive search of (α, βi) combinations and its effect on optimal AV C(T,N)

is studied and presented in Table 4.2. We investigate 3 scenarios of βi se-

quence,i.e. 1. identical βis, 2. linear increasing βis, 3. linear decreasing βi.

In some combinations, the optimal AV C may appear when N →∞, these

AV C values are denoted × here.

Figure 4.2 presents the trends of T ∗ and N∗ when α and β gradually change.

It is shown that generally N∗ first increases with α increasing and decreases
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Figure 4.1: AV C with varying T and N

after α exceeds certain value(around 1), while for T ∗, the opposite trend

applies, it first decreases when α increases and increases after α is large

enough(≥1). This observation shows that when α < 1, system tends to

favour longer scheduled maintenance time instead of more production runs,

the explanation are two folds, the first is that system is already in a healthier

status and the second is that increasing production runs will incur higher
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Table 4.2: Optimal AV C(T,N) with various (α, βi) combinations.

βi α

0.6 0.8 1 1.2 1.4

0.6 × × × 46.19 50.96
1 × × × 43.63 52.4
1.5 × × × 49.43 54.2
1 + 0.2i 35.59 36.4 41.22 49.3 53.7
1− 0.05i × × × 47.21 52.08
1− 0.2i × × × 45.77 51.1
1 + 0.4i 39.04 40.19 44.51 50.98 55
1 + 0.6i 41.8 43.16 47.12 52.65 56.3

imperfect production costs. More specifically, imperfect production cost is

the major concern in the total costs; when α is around 1, it is recommended

to perform maintenance more frequently because system is not improved

a lot after maintenance. In other words, system breakdown penalty is

comparable to imperfect production cost; when α > 1, it is better to stay

in a production run rather than maintenance frequently because system is

inferior to before after maintenance and the cost of breakdown is the major

concern.

On the other hand, N∗ tends to decrease when βi increases and T ∗ increases

with βi increasing. The intuition is that when imperfect production risk

becomes high with production run proceeding, it is better to reduce the

number of production runs and maintain infrequently.

We next investigate the (T,N) policy when Zi follow various parametric

lifetime distributions. Specifically, three distributions are studied:
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Figure 4.2: Optimal T and N with varying α.

• Weibull(λ, k), fZ1(t) = k
λ
( t
λ
)k−1exp

[
−( t

λ
)k)
]
;

• Normal(µ, σ), fZ1(t) = 1
σ
√

2π
exp

[
− (t− µ)2/2σ2

]
;

• Gamma(k, θ), fZ1(t) = 1
Γ(k)θk

tk−1exp(− t
θ
), where Γ is the gamma

function.
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The results are presented in Table 4.3∼4.5. It is seen that firstly, optimal

AV C(T,N) decreases when the mean of any distribution increases, for nor-

mal distribution, it is clearly observed that optimal AV C(T,N) increases

when variance increases, implying a more unstable system will result in

higher cost; secondly, when both mean and variance of the distributions

are close, the optimal AV C(T,N) are also close (which is labelled in italic

font in the table). This shows that the model is robust to different distri-

butions and can apply in different systems in practice.

Table 4.3: Optimal AV C(T,N) when Z1 ∼Weibull(λ, k).

λ k

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

1 60.35 57.52 54.96 52.99 51.45 50.31 49.44 48.76
2 54.87 49.44 45.72 43.22 41.43 40.15 39.18 38.44
3 52.2 46.02 42.21 39.76 38.12 36.97 36.13 35.49

Table 4.4: Optimal AV C(T,N) when Z1 ∼Normal(µ, σ).

σ µ

1 2 3 4 5 6 7 8

0.2 42.24 33.84 31.99 31.22 30.77 30.6 30.6 30.6
0.5 44.66 34.38 32.21 31.37 30.9 30.62 30.6 30.6
1 47.7 36.3 32.9 31.68 31.09 30.73 30.62 30.6

Table 4.5: Optimal AV C(T,N) when Z1 ∼Gamma(k, θ).

θ k

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

1 176.44 97.41 71.5 58.82 51.45 46.72 43.47 41.09
2 116.16 68.53 53.19 45.71 41.43 38.74 36.84 35.54
3 96.02 58.97 47.04 41.39 38.12 36.1 34.71 33.74
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4.6 Conclusion

In this chapter the problem of production lot sizing is generalized by incor-

porating quality and reliability issues and multi-period production runs. An

optimal maintenance policy is derived considering the scheduled preventive

maintenance time and the number of production runs. Analytical results

are obtained to explore the bounds of the optimal maintenance policy.

Our model complements the existing literature concerning quality and reli-

ability issues in production lot sizing problems. It helps to make decisions

under a more realistic environment and to answer questions such as how

to coordinate all the relevant issues and balance various costs related to

production and maintenance. Further research may extend the model by

covering several other aspects. For example, in our model, it is implicitly

assumed that the system is under continuous monitoring, other inspection

policies can be used (Dieulle et al., 2003b), i.e. periodic inspection, sequen-

tial inspection, etc. Besides, external shocks which often appear and cause

production interruption in real world also need to be investigated.
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Chapter 5

CONDITION BASED

MAINTENANCE FOR

SYSTEMS UNDER

DEPENDENT COMPETING

FAILURES

5.1 Introduction

Most systems are inclined to failure in one of several ways and sometimes

in more than one way at a time. Failure mechanisms may include wear,
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corrosion, shock loads, fatigue, etc. In general, it is beneficial to distinguish

between different failure modes. For instance, wear or degradation mod-

elling has attracted much attention since early 1990s (Lu and Meeker, 1993;

Singpurwalla, 1995). Shocks are also important mechanisms accounting for

product failures, they are interpreted as some intermittent, instantaneous

and potentially harmful event (Finkelstein, 2007).

In practice, maintenance is carried out to restore systems to reduce failures

and maintain high availability. As reviewed in Chapter 2, there is extensive

study on maintenance scheduling when systems are subject to degradation

or random shocks. For maintenance of systems that experience degrada-

tions, Grall et al. (2002) studied a single unit deteriorating system based on

a Gamma process. The preventive replacement threshold was determined

and inspections were scheduled to minimize maintenance cost function.

Yang et al. (2008) developed a cost-effective maintenance schedule in man-

ufacturing systems where there is degradation in equipment performance

based on genetic algorithm. For maintenance of systems suffer random

shocks, Lam and Zhang (2004) studied the maintenance problem of a re-

pairable system subject to shocks under a geometric process framework.

An optimal replacement N policy is adopted to minimize the average cost

rate. Chien et al. (2006) assumed two types of failures and developed a

hybrid age-based and replacement N maintenance policy.

Nevertheless, to better study complex systems whose failures are often the
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result of either intended operation themselves or external sources and sched-

ule maintenance activities to enhance their reliability, it is desirable to

model the system under a joint failure mechanism scheme. In fact, there

are already several papers addressing this issue. Klutke and Yang (2002)

derived an availability model for an inspected system subject to continu-

ous smooth degradation and shocks that also cause additional degradation

damage. Kharoufeh et al. (2006) derived the system lifetime distribution

and the limiting average availability for a similar failure process. Huang

and Askin (2003) worked on independent multiple catastrophic and degra-

dation failure processes and Wang and Zhang (2005) studied two random

shock processes using the extreme shock model and the δ-shock model. Li

and Pham (2005) analyzed the reliability for a multi-state degraded system

and developed an inspection-maintenance schedule. Ye et al. (2011) stud-

ied a distribution-based system under natural and traumatic failures and

presented statistical inference methods to illustrate the model adequacy.

However, little research is devoted to consider the failure modes when they

are dependent. Recently, Peng et al. (2010) proposed a multiple dependent

competing failure model where the external random shocks contribute to

the internal degradation. Huynh et al. (2011) modelled the dependency of

failure modes by assuming that the arrival rate of shocks are functions of

the degradation level. Liu (2012) considered the accelerated life test when

there are dependent competing risks.
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It is widely observed that when systems are more deteriorated, they are

more vulnerable to external shocks. Therefore, an alternative approach of

characterizing the dependency between failure modes is similar with the

hazard potential in Singpurwalla (2006), by interpreting the potential of

degradation as some unknown resource with which the system is endowed

at the time of its inception. The destructive probability of a shock de-

pends on the remaining degradation quota until a failure occurs. From this

perspective, in this chapter, we study the systems under competing de-

pendent failure modes and propose another innovative approach to model

the dependency between shocks and degradation. The rest of this chap-

ter is organized as follows. Section 5.2 lists the assumptions and analyses

system reliability. Section 5.3 presents the maintenance modelling. In Sec-

tion 6.4, a numerical example is given to illustrate the proposed model and

sensitivity analysis is also given. Finally Section 6.5 concludes the article.

5.2 Assumptions and system reliability anal-

ysis

5.2.1 Assumptions

We assume the following model in this paper:
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1. The system is subject to two dependent failure modes, i.e. natural

failure caused by degradation and traumatic failure caused by shocks.

The degradation is modeled by a stochastic process D(t) and a natural

failure occurs when the degradation characteristic exceeds the failure

threshold Df .

2. Random shocks arrive according to a Poisson process N(t), t ≥ 0,with

intensity λ. The shock arrival process is s-independent of the degra-

dation process. A traumatic failure occurs with a probability depen-

dent the degradation level. More specifically, a shock at time t either

breaks down the system with probability p(t) = exp(α(D(t)−Df )), or

has no impact on the system, where α > 0 is a regression parameter.

3. The system is periodically inspected. The periodic inspection is as-

sumed to be instantaneous, perfect and non-destructive. There is a

cost ci incurred for every inspection. If the system fails, it will remain

idle until the next scheduled inspection.

4. The system is non-repairable. If it is detected to have failed, it will

be replaced instantly with a new one and the replacement time is

negligible.
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5.2.2 System reliability analysis

The natural degradation due to continuous wear may follow one of the var-

ious degradation paths models, such as a linear degradation path with ran-

dom coefficients Christer and Wang (1992); Lu and Meeker (1993); Peng

et al. (2010), Gamma process (Liao et al., 2006) or randomized logistic

degradation path (Li and Pham, 2005), etc. For illustration, a linear degra-

dation path is used in this paper, i.e. D(t) = Bt , where B is a random

variable. Denote by Td the failure time of the natural degradation, then

P (Td < t) = P (D(t) > Df ) = P (Bt > Df ) = 1− FB

(
Df

t

)
, (5.1)

where FB(t) is the cumulative density function of B.

Let Ts be traumatic failure time. Then the hazard rate of traumatic failure

given B = β is

hs(t|B = β) = λexp(α(βt−Df )). (5.2)

Denote by T = min{Td, Ts}, the system failure time. The survival function

of T is given by

RT (t) = P (T > t) = P (Td > t, Ts > t) = P (Ts > t|Td > t)P (Td > t),

(5.3)
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where P (Td > t) is derived in (5.1), and P (Td > t, Ts > t) is derived as

follows.

P (Td > t, Ts > t) = E[exp(−
∫ t

0
hs(u|B = β) du)|B <

Df
t

]

=
∫ Df/t
−∞ exp(−

∫ t
0
λexp(α(βu−Df )) du)fB(β) dβ.

(5.4)

Therefore, the system survival function is

RT (t) =

∫ Df/t

−∞
exp(−

∫ t

0

λexp(α(βu−Df )) du)fB dβ · FB

(
Df

t

)
. (5.5)

5.3 Maintenance modelling and optimization

5.3.1 Maintenance modelling

According to the renewal theory, the long run average cost is equal to the

expected cost in a cycle divided by the expected cycle length. Therefore,

lim
t→∞

C(t)

t
=

Expected total cost in a cycle

Expected cycle length
=
E[TC]

E[CL]
. (5.6)

The total costs incurred in the model include inspection cost, maintenance

cost and system downtime cost. Then the expected total cost of a renewal

cycle is given as

E[TC] = ciE[I] + cdE[ξ] + cR, (5.7)
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where ci is the cost associated with each inspection, cd is the downtime cost

per unit time, cR is the replacement cost, I is the number of inspections

and ξ is the possible system downtime.

Let Pi be the probability that there are a total of i inspections in a cycle.

There is either a replacement or doing nothing at time iτ , where τ is the

inspection period. Obviously, we have (i− 1)τ < T ≤ iτ .

Therefore,

Pi = P ((i−1)τ < T ≤ iτ) = FT (iτ)−FT ((i−1)τ) = RT ((i−1)τ)−RT (iτ),

(5.8)

where FT (t) = 1RT (t) is the CDF of T .

Therefore,

E[I] =
∞∑
i=1

iPi =
∞∑
i=1

i[RT ((i− 1)τ)−RT (iτ)]. (5.9)

Suppose the i-th inspection reveals that the system has failed. Then the

downtime is ξ = iτ − T . Therefore, the expected downtime is given by

E[ξ] =
∞∑
i=1

Pi

∫ iτ

(i−1)τ

(iτ−t)dFT (t) =
∞∑
i=1

∫ iτ

(i−1)τ

(t−iτ)dRT (t)[RT ((i−1)τ)−RT (iτ)].

(5.10)

The length of a renewal cycle E[CL] can also be obtained similarly by

conditioning on the number of inspections. When the i-th inspection reveal
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system failure, replacement is performed and the cycle ends with length iτ .

Therefore,

E[CL] =
∞∑
i=1

Pi · iτ =
∞∑
i=1

iτ [RT ((i− 1)τ)−RT (iτ)]. (5.11)

5.3.2 Solution procedure

Based on (5.7) ∼ (5.11), the average long-run maintenance cost rate as a

function of τ , AV C(τ), is given as

AV C(τ) =

ci
∑∞
i=1 i[RT ((i−1)τ)−RT (iτ)]+cd

∑∞
i=1

∫ iτ
(i−1)τ (t−iτ)dRT (t)[RT ((i−1)τ)−RT (iτ)]+cR∑∞

i=1 iτ [RT ((i−1)τ)−RT (iτ)]
.

(5.12)

The optimization function above is a complex nonlinear function which is

not easy to obtain the optimum solution, if not impossible. Nelder-Mead

downhill simplex method (Nelder and Mead, 1965) is a very popular direct

search method to solve unconstrained optimization problems without the

calculation of derivatives. We develop an iterative algorithm based on

Nelder-Mead simplex method as follows.

The method generates (n+1) vertices for n dimensional space and each

time gets a new test position by extrapolating the behavior of the objective

function measured at each test point arranged as a simplex. The algorithm

then chooses to replace one of existing vertices with the new test point
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through reflection, expansion, and contraction operations. Specifically, the

algorithm is performed in the following steps:

Initialize: Choose (n+ 1) vertices {X1, X2, · · · , Xn+1};

Step 1: Order {X1, X2, · · · , Xn+1} according to the function values f(Xi), i =

1, · · · , n + 1 increasingly, where f(X) = AV C(τ). Specifically, f(X1) =

min{AV C(τ)} and f(Xn+1) = max{AV C(τ)};

Step 2: Calculate Xo, the center of gravity of all points except Xn+1, i.e.

Xo = (1/n)
∑n

i=1Xi;

Step 3: (Reflection) Compute reflected point: Xr = Xo+α(Xo−Xn+1). If

the reflected point is better than the second worst, but not better than the

best, i.e. f(X1) ≤ f(Xr) < f(Xn), then obtain a new simplex by replacing

the worst point Xn+1 with the reflected point Xr , and go to Step 1;

Step 4: (Expansion) If f(Xr) < f(X1), then compute the expanded point

Xe = Xo+γ(Xo−Xn+1). If the expanded point is better than the reflected

point, i.e. f(Xe) < f(Xr), then obtain a new simplex by replacing the worst

point Xn+1 with the expanded point Xe,and go to step 1. Else obtain a

new simplex by replacing the worst point Xn+1 with the reflected point Xr,

and go to Step 1;
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Step 5: (Contraction) Compute Xc = Xn+1 + ρ(Xo −Xn+1). If f(Xc) <

f(Xn+1), then replace Xn+1 with Xc, and go to Step 1;

Step 6: (Reduction) Replace the point with Xi = X1 + σ(Xi −X1) for all

i ∈ {2, 3, · · · , n+ 1} and go to Step 1;

Step 7: Check {X1, X2, · · · , Xn+1}, if
√

1/(n+ 1
∑n+1

i=1 [f(Xi − f̄)]2) <

0.01, stop; otherwise, go to Step 1. Here the values of parameters are

adopted as: α = 1, γ = 0.5 and σ = 0.5.

5.4 Numerical example

Meeker and Escobar (1998)(Example 13.5, Chapter 12) studied a degradation-

threshold-shock example of a laser device. The device degrades in terms of

increase in operating current and the threshold Df is 10 percent increase.

They suggested that the degradation path is linear with the form

D(t) = Bt,

where 1/B follows Weibull(548.8,6.612). Besides degradation, shocks may

also result in system failure. Therefore, similar to Ye et al. (2011), we

assume that shocks arrive according to a homogeneous Poisson process

with λ = 6× 10−4.
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The cost parameters are given as follows: ci = 1 unit/inspection, cd = 5

units/unit time and cR = 10 units/replacement. Besides, the regression

parameter in the destructive probability of shocks is assumed a moderate

value of 0.5.

Using this parameter setting, the reliability of laser device is shown in Fig-

ure 5.1. Table 5.1 gives the search result of the proposed Nelder-Mead algo-

rithm. It is seen that the optimal solution is (τ ∗, AV C(τ ∗)) = (6.94, 0.426).

Figure 5.2 depicts the average long-run maintenance cost rate as a function

of the inspection time interval.

Figure 5.1: Plot of reliability function R(t).

Table 5.1: Nelder-Mead algorithm result.

k X1 AV C(X1) X2 AV C(X2) Search result

0 1 1.362 100 2.615 X = 39
1 39 1.1114 1 1.362 X = 20
2 20 0.768 39 1.114 X = 10.5
3 10.5 0.464 20 0.768 X = 15.25
4 10.5 0.464 15.25 0.579 X = 5.75
5 5.75 0.442 10.5 0.464 X = 8.13
6 8.13 0.431 5.75 0.442 X = 6.94
7 6.94 0.426 8.13 0.431 stop
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Figure 5.2: Plot of long-run average maintenance cost rate versus
inspection interval .

A sensitivity analysis is also performed to analyse the effect of the model

parameters on the optimal solutions. The model parameters of interest

include the arrival rate of random shocks, λ, the natural failure threshold,

Df and the parameter in the destructive probability of shocks, α. The

effect of ±50% change of parameters is depicted in Table II. It is seen that

AVC is more sensitive to Df than λ and α., which is mainly due to the

inspection cost. Overall the model is quite robust to the parameters.

Table 5.2: Sensitivity analysis of parameters λ,Df and α within ±50%
change.

Parameters Variation τ AV C(τ) Relative bias on AVC (%)

λ +50% 6.97 0.464 9.5
-50% 6.84 0.395 -7.14

Df +50% 9.31 0.313 -26.2
-50% 4.71 0.558 30.95

α +50% 6.96 0.448 4.76
-50% 6.88 0.4 -4.75
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5.5 Conclusion

In this chapter, we propose a new model to characterize dependent com-

peting failures. Specifically, we consider natural failure due to degradation

and traumatic failure caused by random shocks. In view of the degradation

analogous to the hazard potential which appears in reliability studies, the

correlation of degradation and shocks is built. System reliability is ana-

lyzed and an optimal inspection-maintenance policy is derived to minimize

the average long-run maintenance cost rate.

For future research directions, the maintenance model developed in this

article can be extended to include preventive maintenance. Minimal re-

pairs can also be included to rectify the traumatic failures. In addition, a

non-linear degradation path can be constructed. Finally, availability max-

imization can be considered besides the cost effective model in some cir-

cumstances.
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6.1 Introduction

To assess reliability of newly designed products, engineers often resort to

accelerated tests in order to shorten the life of products or hasten the

degradation of their performance, where products are exposed to harsh

conditions, e.g., a combination of random vibration, higher temperature,

voltage, and pressure. The main purpose of such accelerated testing is to

obtain reliability information quickly so as to save time and money.

Nowadays, many new products are designed to be very reliable because (a)

rapid advances in technology, (b) increasing consumer expectations, and

(c) global competition. For example, a electronic product may be viewed

as a complex system that consists of many components. To maintaining

high reliability for the entire system, it generally requires that the indi-

vidual components have extremely high reliability (Lu and Meeker, 1993).

Traditional accelerated life test (ALT) methods are not suited for such reli-

able products as extremely long test duration is required to yield sufficient

failures. On the other hand, we often observe that failure of a product is

associated with the degradation of some quality characteristic (QC). Degra-

dation of the product accumulates over time and causes a failure when the

degradation exceeds a failure threshold. This naturally provides a linkage

between product degradation and reliability (Singpurwalla, 1995; Wang,
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2010; Ye et al., 2011). The degradation is most often hastened under se-

vere stresses. Therefore, we can use accelerated degradation tests (ADTs)

to quickly obtain the degradation information. In a simple constant-stress

ADT experiment, a number of units are allocated to several stress levels,

and the degradation levels of these units are measured, analyzed and ex-

trapolated to the failure threshold so as to estimate the life characteristics

of interest under use conditions.

ADTs are able to greatly shorten the testing duration and has attracted

much attention. There are two classes of models for ADT data. The first

class is called general path models proposed by (Lu and Meeker, 1993).

Some developments of models in this class can be found in Meeker et al.

(1998); Bae et al. (2007); Shi and Meeker (2012). On the other hand,

the other class of models uses stochastic processes to capture the time-

dependent structure of the degradation over time. Two popular models

are the Wiener process and the Gamma process. Tseng and Wen (2000)

proposed using step-stress ADT (SSADT) to assess the reliability of a light

emitting diode by using empirical regression method. Optimal ADT set-

tings were obtained by minimizing the estimated p-quantile of the product’s

lifetime distribution subject to a constraint on the total cost. Following this

striking work, some SSADT models have been developed based on the as-

sumptions of Wiener processes Tang et al. (2004); Liao and Tseng (2006);

Ge et al. (2010, 2011); Lim (2012); Lim and Yum (2011), and Gamma
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process Tseng et al. (2009); Tsai et al. (2012), respectively.

Although the Wiener process and the Gamma process have received inten-

sive applications in degradation data analysis, it is obvious that two models

cannot handle all degradation problems. For instance, Wang and Xu (Wang

and Xu, 2010) found that neither models fits the GaAs laser degradation

data (Meeker and Escobar, 1998, Example 13.5) well. Another attractive

degradation model with monotone paths is the inverse Gaussian (IG) pro-

cess proposed by Wasan (1968). Recently, Wang and Xu (2010) proposed

the IG process for degradation modeling and investigated semi-parametric

inference for this process. After that, Ye et al. (2012) systematically inves-

tigated the IG process and showed that compared with the Gamma process,

the IG process has many superb properties when dealing with covariates

and random effects. Therefore, this process can be an important family for

degradation analysis.

The purpose of this chapter is to investigate the planning of ADT exper-

iments using the IG process. We first look at the simple IG process, i.e.,

IG process without random effects. The objective of ADT planning is to

properly choose the stress levels and the number of units allocated to each

stress in order to minimize the asymptotic variance of the p-quantile under

use conditions. Parameter estimation for the simple IG process model is

discussed. based on which the asymptotic variance of the p-quantile can be

derived. Then the optimal stress levels and the allocation scheme can be
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obtained. Next, we also discuss ADT planning for a random-effects IG pro-

cess model proposed by Wang and Xu (2010). This random effects model

is called random volatility model by Ye et al. (2012). In reality, it is not

difficult to observe unit-to-unit difference within a product population due

to some unobserved factors, such as variations in the raw materials. Such

heterogeneity is often modeled by a random-effects term. Random-effects

degradation models are believed to be more realistic in modeling product

degradation, and such models have found more and more applications re-

cently, e.g., see Si et al. (2011) for an overview. Wang and Xu (2010) found

that the random volatility model provides a good fit to the laser data in

Meeker and Escobar (1998). Therefore, we believe that ADT planning for

this random-effects model is meaningful.

The rest of the chapter is organized as follows. Section 6.2 presents the

ADT settings and develops ADT planning for the simple IG process model.

ADT planning for the random-volatility IG process model are discussed in

Section 6.3. Section 6.4 demonstrates the developed methods by using

a stress-relaxation example from Yang (2007). Section 6.5 concludes the

chapter.
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6.2 ADT Planning for the Simple IG pro-

cess

Consider a product whose degradation is measurable. Let {Y (t), t ≥ 0}

with Y (0) = 0 be the degradation path of a random selected unit. Failure

of this product is defined to be the event that Y (t) crosses a pre-specified

failure threshold D, and the associated first-passage-time is denoted by TD.

6.2.1 The IG process

We assume that the degradation follows an IG process, i.e., Y (t) has inde-

pendent increments and Y (t) ∼ IG(µΛ(t), λΛ2(t)), where Λ(t) is a mono-

tone increasing function with Λ(0) = 0, and IG(a, b), a, b > 0 is the IG

distribution with probability density function (PDF)

fIG(y; a, b) =

(
b

2πy3

)1/2

exp

[
−b(y − a)2

2a2y

]
, y > 0. (6.1)

The mean and variance of Y (t) are µΛ(t) and µ3Λ(t)/λ, respectively. We

shall call this process the simple IG process because it assumes homogeneity

among the product population. IG process with random effects will be

considered in the next section. Because the path of the IG process is strictly

increasing, we can obtain the cumulative distribution function (CDF) of TD
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as

FTD(t) = P (Y (t) > D) = Φ

[√
λ

D
(Λ(t)− D

µ
)

]
−e2λΛ(t)/µΦ

[
−
√
λ

D
(Λ(t) +

D

µ
)

]
,

(6.2)

where Φ(·) is the standard normal CDF. Differentiation of FTD(t) with

respect to t yields

fTD(t) =

√
λ

D
φ

[√
λ

D
(Λ(t)− D

µ
)

]
Λ′(t)− 2

λ

µ
Λ′(t)e2λΛ(t)/µΦ

[
−
√
λ

D
(Λ(t) +

D

µ
)

]
(6.3)

+

√
λ

D
Λ′(t)e2λΛ(t)/µφ

[
−
√
λ

D
(Λ(t) +

D

µ
)

]
,

where φ(·) is the standard normal PDF and Λ′(t) = dΛ(t)/dt. Based on the

CDF (6.2), the p-quantile of the failure time distribution does not have a

closed form. Chhikara (1988) and Ye et al. (2012) noted that when λ ·Λ(t)

is large, which is often true when t is large, Y (t) is approximately normal

with mean µΛ(t) and variance µ3Λ(t)/λ. Then the CDF and PDF of TD

can be approximated as

FTD(t)
.
= 1− Φ

[
D − µΛ(t)√
µ3Λ(t)/λ

]
= Φ

[√
λ/µ ·

√
Λ(t)−

D
√
λ/µ3√

Λ(t)

]
. (6.4)

The p-quantile of TD, based on this approximation, is

ξp = Λ−1

(
µ

4λ

(
zp +

√
z2
p + 4Dλ/µ2

)2
)
, (6.5)

92



Chapter 6. Accelerated Degradation Test Planning

where zp is the standard normal p-quantile and Λ−1(·) is the inverse function

of Λ(·).

6.2.2 ADT Settings and Assumptions

Suppose a total number of N units are put into test. Let s0 and sH be

the usage stress and the maximum allowable stress, respectively. To timely

collect the degradation information, these units are allocated to J stress

levels s1 < s2 < · · · < sJ with s0 < s1 and sJ = sH . Suppose Nj units are

allocated to the j-th level, j = 1, 2, · · · , J . The stress affects the degrada-

tion of these units. We assume that the stress affects the degradation rates.

More specifically, we assume µ = h(s) and λ constant over s, where h(s) is

a link function reflecting the effects of the stress on the degradation process.

For simplicity and without loss of generality, the following assumptions are

made.

(a) The measurement time intervals τj and the number of measurements

Kj under the j-th stress level, j = 1, 2, · · · , J , are pre-determined.

(b) The link function follows one of the following acceleration relations:

• Power law relation: h(s) = ξ0 · sα;

• Arrhenius relation: h(s) = ξ0 · e−α/s;

• Exponential relation: h(s) = ξ0 · eαs.
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In many real applications, the time allowed for the test is often given by

the manager, and the times at which the units are measured are often pre-

determined because of the working time of the experimenters. Therefore,

it is reasonable to assume that τj and Kj are given. In case these two

variables can be flexibly determined, we can treat them as two decision

variables in our models developed below and optimally determined. When

the assumed stress-degradation acceleration relation, i.e., h(x), is correct,

we can use a two-stress ADT, i.e., J = 2. This plan is called the mini-

mum variance plan in the ALT literature. But the minimum variance plan

does not allow us to check the validity of the assumed stress-degradation

acceleration relationship. In this case, we can use a three-stress ADT, i.e.,

J = 3. Under our settings, the purpose of ADT planning is to optimally

determine the stress levels (sj) and the number of samples (Nj) for each

stress level, which will be investigated in the following subsections.
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6.2.3 Normalizing the Stress

Depending on the acceleration relationship of the stress on the degradation

rate, we can standardize the stress levels as follows (Lim and Yum, 2011):

xj =
lnsj − lns0

lnsH − ln s0
for the power law relation,

=
1/s0 − 1/sj
1/s0 − 1/sH

for the Arrhenius relation,

=
sj − s0
sH − s0

for the exponential relation.

From the above standardization, it is readily seen that x0 = 0, xJ = 1, and

0 < xj ≤ 1 for j = 1, 2, · · · , J . Then h(s) can be rewritten as a function of

x:

h(x) = exp(α0 + α1x) (6.6)

where

α0 = ln ξ0 − α/s0, α1 = α(1/s0 − 1/sH) for the Arrhenius function,

α0 = ln ξ0 + αlns0, α1 = α(lnsH − lns0) for the power law function,

α0 = ln ξ0 + αs0, α1 = α(sH − s0) for the exponential function.

6.2.4 Statistical Inference

Following the argument in the assumptions, suppose that the i-th unit

under the j-th stress level is measured at tijk = kτj with observations
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Yij(tijk), k = 0, 1, · · · , Kj. Let yijk = Yij(tijk)− Yij(tij,k−1) be the observed

increments and Λijk = Λ(tijk)−Λ(tij,k−1). Then the log-likelihood function,

up to a constant, can be expressed as

l(θ) =
J∑
j=1

Nj∑
i=1

Kj∑
k=1

[
lnλ

2
+ ln Λijk −

λ(yijke
−α0−α1xj − Λijk)

2

2yijk

]
. (6.7)

where θ is the parameter vector including λ, α0, α1 and the parameters

in Λ(·). This log-likelihood function can be easily maximized to obtain

the maximum likelihood estimators (MLEs). We may also take the first

derivative of l(θ) with respect to λ. Setting this partial derivative to zero

yields the estimate of λ when α0, α1 and the parameters in Λ(·) are assumed

fixed. Substituting this estimate into (6.7) gives the profile log-likelihood.

Direct maximization of the profile log-likelihood function yields the MLEs

of the remaining parameters. The MLE of σ can then be subsequently

determined.

The Fisher information matrix I(θ) can be derived once the parametric

form of Λ(·) is given. For example, if we assume a linear function for Λ(·),

i.e., Λ(t) = t, then Λ(·) does not involve unknown parameters and thus

θ = (α0, α1, λ)′. It is readily shown that the information matrix is given by
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I(θ) =

J∑
j=1

Nj∑
i=1

Kj∑
k=1

λe−α0−α1xjΛijk

J∑
j=1

Nj∑
i=1

Kj∑
k=1

λxje
−α0−α1xjΛijk 0

J∑
j=1

Nj∑
i=1

Kj∑
k=1

λx2
je
−α0−α1xjΛijk 0

1

2λ2

J∑
j=1

KjNj


,

(6.8)

On the other hand, if Λ(t) = tβ, then θ = (λ, α0, α1, β)′. The information

matrix is

I(θ) =



E

[
−∂

2l(θ)

∂λ2

]
0 0 E

[
−∂

2l(θ)

∂λ∂β

]

E

[
−∂

2l(θ)

∂α2
0

]
E

[
− ∂2l(θ)

∂α0∂α1

]
E

[
− ∂

2l(θ)

∂α0∂β

]

E

[
−∂

2l(θ)

∂α2
1

]
E

[
− ∂

2l(θ)

∂α1∂β

]

E

[
−∂

2l(θ)

∂β2

]


.

(6.9)

Detailed expressions of the elements within the matrix can be found in the

appendix.
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6.2.5 Optimization Problem

An ADT experiment is characterized by the total number of test units

available, the number of stress levels used in the test as well as the stress

value of each level, the allocation scheme of the testing units to each stress

level, the test duration, and the measurement time interval, etc. Following

the assumptions, we have assumed that the number of units, the test dura-

tion and the measurement time interval are given. Therefore, the objective

of the ADT planning is to determine the optimal stress levels as well as

the proportion of units allocated to each level based on some optimization

criterion. Usually, we are concerned with a small quantile (ξp) of the time

to failure under normal use conditions. Therefore, our objective here is to

minimize Avar(ξ̂p), the asymptotic variance of ξ̂p. When the exact distri-

bution (6.2) for TD is used, the p-quantile does not bear a closed form. But

according to (Tsai et al., 2012), the asymptotic variance can be obtained

through the delta method as

Avar(ξ̂p) =
ω′(θ)I−1(θ)ω(θ)

[fTD(ξp)]2
, (6.10)

where I−1(θ) is the inverse of the Fisher information matrix and ω(θ) is

the first derivative of FTD(t) with respect to θ, with t evaluated at ξp.
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Specifically, when Λ(t) = tβ, ω(θ) is given by

ω(θ) =

(
∂FTD(t)

∂λ
,
∂FTD(t)

∂α0

,
∂FTD(t)

∂α1

,
∂FTD(t)

∂β

)′∣∣∣∣
t=ξp

. (6.11)

It is straightforward to write down the detailed expression for each element

in ω(θ). But they turn out to be quite complicated. When the approximate

distribution (6.4) is used, the p-quantile can be specified as

ξp =

[
exp(α0)

4λ

(
zp +

√
z2
p + 4Dλ exp(−2α0)

)2
]1/β

. (6.12)

Then the asymptotic variance is (∇ξp)′I−1(θ)∇ξp, where ∇ξp is the first

derivative of ξp with respect to θ. The derivative ∇ξp is much easier to

evaluate than ω(θ). Therefore, we would recommend using (6.12) for the

planning.

With the asymptotic variance of ξ̂p on hand, the optimization problem can

be formulated as follows.

Minimize Avar(ξ̂p)

subject to 0 ≤ xj ≤ 1, j = 1, 2, · · · , J,

xM = xH and x0 ≤ xj ≤ xH , j = 1, 2, · · · , J − 1,∑J
j=1Nj = N,

0 < Nj ≤ N, j = 1, 2, · · · , J.

(6.13)
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To solve the mixed nonlinear integer programming problem, some software

packages such as Matlab can be used.

6.3 ADT Planning for the Random-Effects

Model

6.3.1 The Random Volatility Model

Random-effects models are useful when there are substantial unit-to-unit

differences due to variations in the raw materials and other factors. Wang

and Xu Wang and Xu (2010) proposed a method to incorporate ran-

dom effects in the inverse Gaussian process {Y (t); t > 0} by letting λ ∼

Gamma(δ, γ−1), δ, γ > 0, with PDF

g(λ; δ, γ) =
γδλδ−1

Γ(δ)
exp(−γλ), λ > 0, (6.14)

where Γ(δ) is the Gamma function. This model is called random volatility

model by (Ye et al., 2012). The unconditional distribution of Y(t) is given

by

fY (t)(y) =
Γ(δ + 1/2)

Γ(δ)
γδ

√
Λ2(t)

2πy3
·
[
γ +

(y − µΛ(t))2

2µ2y

]−δ−1/2

, (6.15)
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It is readily shown that the mean of Y (t) is still µΛ(t) while the variance is

given by γµ3Λ(t)/(δ − 1) when δ > 1. To compute the distribution of the

first-passage-time to the failure threshold D, we use the the normal dis-

tribution to approximate [Y (t)|λ] and then marginalize over λ. Therefore,

the CDF of TD can be approximated as

FTD(t)
.
= Ft2δ

(
δ1/2(µΛ(t)−D)

µ
√
µΛ(t)γ

)
, (6.16)

where t2δ is the student t-distribution with 2δ degrees of freedom. Then

the p-quantile of TD is given by

ξp = Λ−1

(
µγ

4δ

(
t2δ,p +

√
t22δ,p + 4δD/(γµ2)

)2
)
, (6.17)

where Λ−1(·) is again the inverse function of Λ(·), and t2δ,p is the p-quantile

of the student t-distribution with 2δ degrees of freedom.

6.3.2 Assumptions

Suppose a total number of N testing units are available. The normalized

stress x would affect the degradation process. Similar to Section 6.2, we

assume µ = h(x) = exp(α0 + α1x) while other parameters are independent

of x. This is a legitimate stress-degradation accelerated relation, as both

the mean degradation path µΛ(t) and the variation of the degradation path
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µ3γΛ(t)/(δ − 1) are increasing in x. Other assumptions about the ADT

settings in Section 6.2.2 carry over to this section. That is, the respective

observation time interval and number of measurements are τj and Kj for

units under the j-th stress level, j = 1, 2, · · · , J .

6.3.3 Statistical Inference

When the degradation data of N units under J normalized stress levels

are available, we can use maximum likelihood estimation to estimate the

parameters. The log-likelihood function, up to a constant, can be derived

as

l(θ) =
J∑
j=1

Nj∑
i=1

ln Γ(δ +Kj/2)− ln Γ(δ) + δ ln γ +

Kj∑
k=1

(
ln Λijk −

3

2
ln yijk

)
(6.18)

−(δ +
Kj

2
) ln

γ +

Kj∑
k=1

(yijk − eα0+α1xjΛijk)
2

2e2α0+2α1xjyijk

 ,

where θ is the parameter to estimate, including α0, α1, δ and γ.

While the estimation of parameters can be performed through direct max-

imization of the likelihood function. An alternative optimization method

which turns out to be efficient is through expectation maximization (EM)

algorithm. Ye and Chen (Ye et al., 2012) have developed the EM algorithm

for this random-volatility model when the testing conditions are identical.

In the presence of more than one stress level, the EM algorithm can be

102



Chapter 6. Accelerated Degradation Test Planning

developed in a similar vein. Denote λij the realization of the unobserved

random effect for the i-th unit under the j-th stress level, i = 1, 2, · · · , Nj

and j = 1, 2, · · · , J . Given the observed degradation data Y as well as the

random effects λij, the complete data log-likelihood can be expressed as

lC(θ) =
J∑
j=1

Nj∑
i=1

Kj∑
k=1

[
1

2
lnλij + ln Λijk −

λij(yijk − eα0+α1xjΛijk)
2

2µ2yijk

]
(6.19)

+
J∑
j=1

Ni∑
i=1

[δ ln γ + δ lnλij − ln Γ(δ)− γλij] .

To invoke the EM algorithm, we need to compute E[λij|Y] and E[lnλij|Y].

Note that conditional on Y, λij still follows a gamma distribution with

parameters

δ̃ij = Kj/2 + δ and γ̃ij = γ +

Kj∑
k=1

[yijk − Λijk exp(α0 + α1xj)]
2

2yijk exp(2α0 + 2α1xj)

Therefore, we have

E(λij|Y) = δ̃ij/γ̃ij and E(lnλij|Y) = ψ(δ̃ij)− ln(γ̃ij), (6.20)

where ψ(·) is the digamma function. The two expectations in (6.20) can be

used to compute the Q-function at the E-step of an EM iteration, which

is the expectation of lC(θ) conditional of Y as well as the parameter esti-

mates from the last EM iteration. Similar to (Ye et al., 2012), it is readily

shown that the Q-function can be broken down into two parts. The first
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part involves a, b and parameters in Λ(·) and the second part is a simple

Gamma log-likelihood function involving δ and γ. These two parts can be

independently optimized to obtain the parameter estimates for the next

iteration.

The Fisher information matrix for the parameters θ can be derived by

taking the expectation of the negative of the second derivative of (6.18).

Detailed expression of I(θ) depends on the parameters in Λ(·). When

Λ(t) = tβ, θ = (α0, α1, δ, γ, β)′ and the information matrix is

I(θ) =



E
[
−∂2l(θ)

∂α2
0

]
E
[
− ∂2l(θ)
∂α0∂α1

]
E
[
−∂2l(θ)
∂α0∂δ

]
E
[
− ∂2l(θ)
∂α0∂γ

]
E
[
− ∂2l(θ)
∂α0∂β

]

E
[
− ∂2l(θ)
∂α1∂α0

]
E
[
−∂2l(θ)

∂α2
1

]
E
[
−∂2l(θ)
∂α1∂δ

]
E
[
− ∂2l(θ)
∂α1∂γ

]
E
[
− ∂2l(θ)
∂α1∂β

]

E
[
−∂2l(θ)
∂δ∂α0

]
E
[
−∂2l(θ)
∂δ∂α1

]
E
[
−∂2l(θ)

∂δ2

]
E
[
−∂2l(θ)

∂δ∂γ

]
E
[
−∂2l(θ)

∂δ∂β

]

E
[
− ∂2l(θ)
∂γ∂α0

]
E
[
− ∂2l(θ)
∂γ∂α1

]
E
[
−∂2l(θ)

∂γ∂δ

]
E
[
−∂2l(θ)

∂γ2

]
E
[
− ∂2l(θ)
∂α0∂β

]

E
[
− ∂2l(θ)
∂β∂α0

]
E
[
− ∂2l(θ)
∂β∂α1

]
E
[
−∂2l(θ)

∂β∂δ

]
E
[
−∂2l(θ)

∂β∂γ

]
E
[
−∂2l(θ)

∂β2

]



.

(6.21)

The expressions for the elements in I(θ) can be found in the appendix.
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6.3.4 Optimal ADT planning

When Λ(t) = tβ, the p-quantile ξp under the use conditions can be specified

based on (6.17) as

ξp =

[
γ exp(α0)

4δ

(
t2δ,p +

√
t22δ,p + 4δD exp(−2α0)/γ

)2
]1/β

. (6.22)

The estimate of ξp can be obtained by substituting the MLE of θ into

(6.22). The asymptotic variance of ξ̂p can be obtained based on the delta

method as

Avar(ξ̂p) = (∇ξp)′I−1(θ)∇ξp (6.23)

where ∇ξp is the first derivative of ξp with respect to θ, which is given by

∇ξp =

(
∂ξp
∂α0

,
∂ξp
∂α1

,
∂ξp
∂δ

,
∂ξp
∂γ

,
∂ξp
∂β

)′
. (6.24)

The detailed expression for each of the five elements can be found in the

appendix.

With the asymptotic variance in hand, the optimization model is the same

as (7.15). We can solve the model by using some commercial software to

obtain the optimal stress levels as well as the optimal proportion of units

allocated to each level.
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6.4 Numerical example

The stress relaxation data in Yang (2007), (Example 8.7, pp.351) are used

here to illustrate the proposed procedure. The stress relaxation is the loss of

stress in a component subject to a constant strain over time. For example,

the contacts of electrical connectors often fail due to excessive stress relax-

ation. The electrical connector is said to have failed if the stress relaxation

exceeds 30%, i.e., D = 30. Data are collected under three temperature lev-

els, i.e., 65◦C, 85◦C and 100◦C. The time intervals between measurements

are tabulated in Table 6.1 in the appendix. Note that the 7-th point of the

second unit under 65◦C (labelled � in Yang (2007)) is removed to preserve

the monotonicity of the stress relaxation. Table 6.2 in the appendix lists

the measurement epochs under each temperature. The stress relaxation

data and the measurement times are tabulated as follows in Table 6.1 and

6.2.

Yang (2007) used regression to fit each degradation path and extrapolated

to the failure threshold to obtain the pseudo failure time for each unit.

He then used log-normal distribution to fit the pseudo failure times un-

der each temperature level and used the Arrhenius relationship to link

the failure time distributions. Here we consider the stochastic process ap-

proach. In keeping with Yang (2007), we assume the normal use stress
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Table 6.1: Stress relaxation data under three temperature levels.

Temperature ID Stress loss

65◦C 1 2.12, 2.7, 3.52, 4.25, 5.55, 6.12, 6.75, 7.22, 7.68, 8.46, 9.46
2 2.29 3.24, 4.16, 4.86, 5.74, 6.85, *, 7.40, 8.14, 9.25, 10.55
3 2.4 3.61, 4.35, 5.09, 5.5, 7.03, 8.24, 8.81, 9.629, 10.27, 11.11
4 2.31 3.48, 5.51, 6.2, 7.31, 7.96, 8.57, 9.07, 10.46, 11.48, 12.31
5 3.14 4.33, 5.92, 7.22, 8.14, 9.07, 9.44, 10.09, 11.2, 12.77, 13.51
6 3.59 5.55, 5.92, 7.68, 8.61, 10.37, 11.11, 12.22, 13.51, 14.16, 15

85◦C 7 2.77, 4.62, 5.83, 6.66, 8.05, 10.61, 11.2, 11.98, 13.33, 15.64
8 3.88 4.37, 6.29, 7.77, 9.16, 9.9, 10.37, 12.77, 14.72, 16.8
9 3.18 4.53, 6.94, 8.14, 8.79, 10.09, 11.11, 14.72, 16.47, 18.66
10 3.61 4.37, 6.29, 7.87, 9.35, 11.48, 12.4, 13.7, 15.37, 18.51
11 3.42 4.25, 7.31, 8.61, 10.18, 12.03, 13.7, 15.27, 17.22, 19.25
12 5.27 5.92, 8.05, 9.81, 12.4, 13.24, 15.83, 17.59, 20.09, 23.51

100◦C 13 4.25, 5.18, 8.33, 9.53, 11.48, 13.14, 15.55, 16.94, 18.05, 19.44
14 4.81 6.16, 7.68, 9.25, 10.37, 12.4, 15, 16.2, 18.24, 20.09
15 5.09 7.03, 8.33, 10.37, 12.22, 14.35, 16.11, 18.7, 19.72, 21.66
16 4.81 7.5, 9.16, 10.55, 13.51, 15.55, 16.57, 19.07, 20.27, 22.4
17 5.64 6.57, 8.61, 12.5, 14.44, 16.57, 18.7, 21.2, 22.59, 24.07
18 4.72 8.14, 10.18, 12.4, 15.09, 17.22, 19.16, 21.57, 24.35, 26.2

Table 6.2: Measurement times under three temperatures.

Temperature Measurement time epochs (in hours)

65◦C 108, 241, 534, 839, 1074, 1350, 1637, 1890, 2178, 2513, 2810

85◦C 46, 108, 212, 408, 632, 764, 1011, 1333, 1517, 2586

100◦C 46, 108, 212, 344, 446, 626, 729, 279, 1005, 1218

is s0 = 40◦C, the highest allowable stress is sH = 100◦C and the trans-

formed stress is x = (1/s0 − 1/s)(1/s0 − 1/sH). In addition, Λ(t) = tβ

and µ(x) = exp(α0 + α1x). Given this data, the approximation in (6.12)

performs well. We first use the simple IG process to fit the degradation

data. The estimated parameters are α̂0 = −1.88, α̂1 = 1.73, λ̂ = 0.653 and

β̂ = 0.449, respectively. The maximum log-likelihood value is -222. To test
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the goodness-of-fit, we compare the estimated mean degradation paths es-

timated by the simple IG process model and by directly averaging over the

samples under each stress level, as shown in Figure 6.1. The estimated mean

paths using the IG process tally with the empirical estimate by direct av-

erage, which indicates a goodness-of-fit. In addition, (Wang and Xu, 2010)

proposed using the χ2 Q-Q plot to test the goodness-of-fit. The Q-Q plot

is given in Figure 6.2(a). As can be seen from the Q-Q plot, there seems to

be one outlier in the data. Except for this outlier, the Q-Q plot tends to be

satisfactory. If we fit the data by the random-volatility model, the parame-

ter estimates are α̂0 = −2.29, α̂1 = 1.87, γ̂ = 3.76, δ̂ = 2.02, β̂ = 0.492, with

a maximum log-likelihood value of -200. The χ2
1 Q-Q plot, as suggested in

Wang and Xu (2010) is given in 6.2(b). From the maximum log-likelihood

values, the random-effects model tends to provide a better fit. But from

Figures 6.1 and 6.2 (b), we can see that the simple model is also acceptable.

In the following, we will determine the optimal ADT plans based on both

models.

Suppose 10 units are available for the ADT test, In the ADT, we set τj =

24 and Kj = 14 for all j = 1, · · · , J . This means that we measure the

degradation level once every day and the test lasts two weeks. Our planning

involves selecting the stress level (x1, x2, ..., xJ−1) and the proportion of

samples allocated to each testing level, (N1, N2, ..., NJ−1). Consider a two-

level ADT plan, i.e., J = 2. Suppose we are interested in minimizing the
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Figure 6.1: Estimated mean path under each stress level: 65◦ (left),
85◦ (middle), 100◦ (right). The dashed dotted line is based on direct
average of the observed samples, and the solid line is the estimate based

on the IG process.
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Figure 6.2: χ2
1 Q-Q plot for the residuals fitted by the simple IG

process.
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asymptotic variance of B10, the 0.1-quantile of the failure time distribution

at use conditions. Solving the optimization problem in (7.15) when J = 2

yields the optimal ADT design as shown in Table 6.3. It is interesting to

observe that the optimal lower stress is 0. We suspect that this is because

the degradation under the normal use conditions is fast enough so that the

error caused by extrapolation to the failure threshold is small.

Table 6.3: Optimal two level ADT plan using IG process models.

x1 x2 N1 N2 Std(ξ̂p)× 104

Simple IG process 0 1 8 2 1.6604

IG process with random effects 0 1 2 8 0.374

We then investigate the deviation of the optimal ADT plan under the vari-

ation of parameters. We only consider the simple model, and the results

of the random effects model are similar First, by varying α1 from 1 to 4,

the impacts of α1 on the optimal ADT plan are presented in Tables 6.4.

The optimal sample allocation differs when α1 varies. The increase of the

asymptotic variance of the life quantile is also observed when α1 increases.

On the other hand, the optimal stress level and sample allocation are insen-

sitive to α0 and λ, while the asymptotic variance of life quantile is greatly

influenced by them. Figure 6.3 displays the natural logarithm of the min-

imum asymptotic standard deviation versus α0 and λ. This figure shows

that the optimal asymptotic variance is a decreasing function of λ.
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Table 6.4: Optimal ADT plan with varying α1 for the simple IG pro-
cess.

α1 x1 x2 N1 N2 Std(ξ̂q(θ))× 104

1 0 1 9 1 1.5315

2 0 1 8 2 1.7223

3 0 1 7 3 2.0145

4 0 1 6 4 2.4506

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
5

10

15

20

a

ln
(S

td
(ξ

p))

 

 

λ=1
λ=10
λ=50

Figure 6.3: Minimized asymptotic standard deviation versus varying
α0 and λ.

The optimal plan depends on the true parameter values, i.e., θ = (α0, α1, λ, β)′

for the simple model and θ = (α0, α1, γ, δ, β) in the random effects model.

The parameter values are unknown or subject to estimation errors at the

test planning stage. So the sensitivity of the optimal ADT plan to the

estimated parameters is studied. We only conduct the sensitivity analysis

for the simple model, and the analysis for the random effects can be done

in a similar vein. In particular, suppose the estimation bias for λ, α0 and

α1 in the simple IG process are ε1, ε2 and ε3 respectively. The optimal ADT

plan is obtained under the various combinations of (1+ ε1)λ, (1+ ε2)α0 and

(1 + ε3)α1. It is found that overall speaking, the optimal ADT plan tends

to be robust to estimation biases, given that the biases are not too large.
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Table 6.5: Optimal ADT plan considering the estimation bias for λ, α0

and α1.

ε1 ε2 ε3 x1 x2 N1 N2 Std(ξ̂q(θ))× 104

+10% +10% +10% 0 1 8 2 2.2691

+10% 0 0 0 1 8 2 1.5903

+10% -10% -10% 0 1 8 2 1.1141

0 +10% 0 0 1 8 2 2.3235

0 0 -10% 0 1 8 2 1.6303

0 -10% +10% 0 1 8 2 1.2146

-10% +10% -10% 0 1 8 2 2.3942

-10% 0 +10% 0 1 8 2 1.7865

-10% -10% 0 0 1 8 2 1.2481

0 0 0 0 1 8 2 1.6635

6.5 Conclusion

This chapter has investigated the optimal constant-stress ADT plan based

on the IG process. The objective is to minimize the asymptotic variance

of the p-quantile under use conditions by properly specifying the stress

levels and the allocation of test units to each level. Both the IG process

with and without random effects were considered in this study. For both

models, we assume that the degradation rate parameter µ is an increasing

function of the stress. This is a legitimate assumption because degradation

is most often hastened under severe working conditions. We applied the IG

process model to fit the stress-relaxation data of a component and use the

methods developed here to help with the ADT planning. The sensitivity

112



Chapter 6. Accelerated Degradation Test Planning

analysis reveals that the optimal plan is quite robust to moderate departure

of presumed model parameters.

This study has considered constant-stress ADT planning. An advantage of

constant-stress ADT is that we can check the assumed stress-degradation

relationship by separately estimating the parameters under each stress

level. When the number of samples available for testing is extremely small,

SSADT can be a good choice as long as it is believed that the underlying

degradation is correct. MLEs of the model parameters and the asymptotic

variance of the p-quantile ξp can be derived similar to the procedures pre-

sented in this paper. In addition to the random volatility model considered

in this paper, Ye et al. (2012) further proposed two additional random

effects models. The optimal ADT planning for these two models can be

developed in a similar vein.
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Chapter 7

ACCELERATED

DEGRADATION TEST

PLANNING CONSIDERING

PRODUCT FIELD

HETEROGENEITY

7.1 Introduction

As reviewed earlier, accelerated life test (ALT) is one of the most common

approaches among the various accelerated test methods. Many ALT studies
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are devoted to planning optimum ALT and making statistical inferences.

Their objectives are focused on the estimation precision of some critical

reliability index (e.g., life quantile) when products are used under nominal

and homogeneous conditions, see, e.g., Nelson (2005), Tang and Liu (2010).

However, the field environment in which products actually operate is mostly

complex and heterogeneous. For example, different customers may have dif-

ferent usage behaviours on the product. Therefore, when targeting product

field performance, such as warranty costs, this discrepancy may bias the

estimation and result in unacceptable outcome for the manufacturer. To

overcome this deficiency, Liao and Elsayed (2006) generalized stress as a

stochastic process and provided relevant statistical inference procedures.

Recently Yang (2010) treated the stress (usage rate) as a normal random

variable and studied a compromise ALT to predict warranty costs. How-

ever, these models result in intractable field lifetime distributions, which

makes verification of the model assumptions very difficult.

In addition, the inference accuracy of ALT largely relies on unit failures.

When the units are highly reliable, few failures may be observed within

allowable testing time period. Nowadays an increasing number of highly

reliable products are manufactured across a diverse set of industries. For

example, a complex electronic system may consist of many components

and maintaining high reliability for the entire system generally requires

that the individual system components have extremely high reliability (Lu
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and Meeker, 1993). Within this context, ALT may be inaccurate or ineffi-

cient. On the other hand, although failures seldom occur, tested units may

experience gradual degradation in terms of certain critical quality char-

acteristic (Meeker and Escobar, 1998), which can be utilized to link with

product failures and make useful predictions (Singpurwalla, 1995; Wang,

2010; Ye et al., 2011). Consequently, accelerated degradation test (ADT)

has appeared recently and some studies can be found in Tang et al. (2004)

and Tseng and Wen (2000), to name a few.

It is noted, however, that most existing ADT studies do not explicitly

account for product reliability in the heterogeneous field conditions. Indeed,

the bulk of research on ADT mainly focus on the investigation of candidate

degradation models. Both general degradation path models (Meeker et al.,

1998; Park and Yum, 1997) and stochastic process models (Tseng et al.,

2009; Lim and Yum, 2011) are well implemented in stable and homogeneous

conditions. When products in the field return to the manufacturer for

repairs, the warranty claim data collected based on these returns suggests

a higher variability in the product’s failure times than the analysis based

on accelerated tests. This gap is mainly attributed to the uncontrollable

heterogeneous operating and use conditions in the field.

Although several studies have observed this deficiency (Pan, 2009; Meeker

et al., 2009; Wang et al., 2012), few investigations are carried out on to cope

with the ADT planning. This study investigates the ADT planning which
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utilizes both lab and filed information. In particular, we impose a tractable

random-effect term on degradation modelling to explain the discrepancy

caused by the heterogeneity in the field condition. Moreover, we focus on

two objectives in determining an ADT plan, i.e., the asymptotic variance

of the fraction failing and the life quantile. These two objectives are of

particular interest and usefulness to manufacturers to determine product

warranty.

The rest of this chapter is organized as follows. Section 7.2 presents the

model formulation and statistical inference methods. Section 7.4 describes

the optimization procedure. An application example is given in section 7.5

to illustrate the idea.

7.2 The model

In this study, we consider the situations in which the degradation/qual-

ity characteristic of the product is measurable in both lab test and the

field. We assume that the underlying degradation of the product follows

a gamma process, which is a commonly used model when the degradation

path is monotone. Nevertheless, the practical operating environment is

heterogeneous and affects the product degradation in the field. Therefore,

a frailty term is imposed on unit’s degradation to capture this uncontrol-

lable effect, which naturally links the unit degradation measurement in lab
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and its actual degradation in the field. The detailed model development is

investigated in this section.

7.2.1 Degradation in lab test

If the unit degradation is available and monotone, a gamma process is

widely implemented to describe the time-dependent degradation increments,

especially when the degradation is caused by intermittent external shocks.

The degradation of a unit in lab test is assumed to follow a gamma process

defined as follows.

Denote Y (s) the measured degradation for an individual unit at time s,

the gamma process is a stochastic process satisfying:

1. the increments ∆Y = Y (s+ ∆s)− Y (s) are independent;

2. ∆Y has a gamma distribution Ga{η∆Λ, ξ−1}, where ∆Λ = Λ(s +

∆s)− Λ(s), and Λ(s) is a given, monotone increasing function.

With the convention that Y (0) = 0 and Λ(0) = 0, the probability density

of Y (s) is g(y; η, ξ−1) = Γ(ηΛs)
−1(ξ)ηΛsyη−1exp(−ξy), where Λs = Λ(s).

Denote S the first passage time for a critical threshold D, then the CDF
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and PDF of S is give by

FS(s) = P (S < s) = P (Y (s) > D) = 1−
∫ D

0

g(y; ξ, ηΛs) dy =
Γ(ηΛs, Dξ)

Γ(ηΛs)
,

(7.1)

where Γ(p, q) =
∫∞
q
tp−1e−t dt is the incomplete gamma function.

fS(s) =
dFS(s)

ds
=

Γ′(ηΛs, Dξ)

Γ(ηΛs)
− Γ(ηΛs, Dξ)

Γ(ηΛs)
ψ(ηΛs). (7.2)

where ψ(·) is the digamma function,

Γ′(ηΛs, Dξ) = dΓ(ηΛs,Dξ)
ds

= ηΛ′s(ln(Dξ)Γ(ηΛs, Dξ)+DξT (3, ηΛs, Dξ)), where

T (3, s, x) is the Meijer G-function, i.e., T (m, s, x) = Gm,0
m−1,m(0,··· ,0

s−1,−1,··· ,−1|x).

The failure intensity function hS(s) is thus

hS(s) =
fS(s)

1− FS(s)
=

Γ′(ηΛs, Dξ)

γ(ηΛs, Dξ)
− Γ(ηΛs, Dξ)

γ(ηΛs, Dξ)
ψ(ηΛs). (7.3)

7.2.2 Field Degradation with Random Effect

While lab test is conducted in a relatively stable environment, products in

the field are usually exposed to a more complex environment where some

uncontrollable factors take effects in unobservable ways, for example, the

various usage rates across the customer population, the diverse geographical

locations of products, etc. As a result, the perceived reliability of products
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in the field is often more varied than in the lab test. In literature, the ran-

dom effect (or frailty) is proposed to account for the heterogeneities caused

by the unobservable covariates whereby a random variable is imposed on the

product hazard function (Meeker et al., 2009). For degradation modelling,

however, this approach may result in intractability since the degradation

model is much more complicated. Alternatively, the random-effect term

can be imposed directly on the degradation path. In particular, ξ is re-

placed with ξz, where z is the random effect. This is legitimate since z

affects both the mean and variance of gamma degradation process, which

is capable to account for the heterogeneity of environment to a large ex-

tent. Note that this random-effect model is commonly used in degradation

modelling and testing (Lawless and Crowder, 2004; Tsai et al., 2012). Here

we implement this model to accommodate the discrepancy caused by the

uncontrollable and heterogeneous field conditions.

With a random z, the tractability of the resulting lifetime distribution is

of vital importance to validate the model with field data, especially when

the data only consists of failure times. We find that when z belongs to

the families of uniform, exponential or gamma, the field failure time distri-

bution has a closed form. In this paper, z is assumed to follow a gamma

distribution with parameter (k, θ). Marginalizing over z, Y (t) has the CDF
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(Lawless and Crowder, 2004)

P (Y (t) < d) = F2ηΛt,2k

(
kd

θξηΛt

)
, (7.4)

where Fx,y is the distribution function of F -distribution with parameter

(x, y).

The CDF of the first passage time T is (Tsai et al., 2012)

FT (t) = P (T < t) = P (Y (t) > D) = 1−F2ηΛt,2k

(
kD

θξηΛt

)
=
B
(

D
D+θξ

; ηΛt, k
)

B(ηΛt, k)
,

(7.5)

where B(x;α0, α1) =
∫ 1

x
sα0−1(1 − s)α1−1 ds is the upper incomplete beta

function, and B(α0, α1) = B(0;α0, α1) is the complete beta function.

Denote

M(x;α0, α1) = xα0

α0B(α0,α1)

[ (
ψ(α0)− ψ(α0 + α1)− ln(x) + 1

α0

)
·2F1({α0, 1− α1}, {1 + α0};x)− x(1−α1)

(1+α0)2 3F2

·({2− α1, 1 + α0, 1 + α0}, {2 + α0, 2 + α0};x)
] ,

where mFn is the confluent hypergeometric function defined by

mFn({a1, · · · , am}, {b1, · · · , bn}) =
∑∞

i=0
(a1)i···(am)i
(b1)i···(bn)i

xi

i!
, with Pochhammer

symbol (a)i = Γ(a+ i)/Γ(a), and (a)0 = 0.
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The PDF of T is

fT (t) = ηΛ′tM

(
D

D + θξ
; ηΛt, k

)
. (7.6)

Figure 7.1 shows that fT (t) exhibits different shapes when the parameters

vary, indicating a flexibility of the random-effect model.
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Figure 7.1: fT (t) under different parameter configurations.

7.3 Statistical inference

When the product is deployed to field operation, the data can be collected

through a couple of ways, such as warranty returns, sensor devices embed-

ded in products(Hong and Meeker, 2010), etc. Consequently, this field data

can be analysed jointly with that obtained from lab test, as long as products

in both lab and the field share the same inherent underlying degradation.
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In this section, estimation procedures are developed when the field data

contains degradation or failure times.

Suppose that P1 units are put in the lab test, and the i-th unit is measured

m1 times at epochs 0 = ti1 < ti2 < · · · < tim1 , i = 1, · · · , P1, with degra-

dation measurements X1
i (ti1), X1

i (ti2), · · · , X1
i (tim1) respectively. Then the

log-likelihood function of lab data, up to a constant, is

l(ηL, ξ|Lab Data) =

P1∑
i=1

m1∑
j=1

(ηΛij − 1) lnx1
ij − lnΓ(ηΛij) + ηΛijlnξ − x1

ijξ,

(7.7)

where ηL is η in lab test, x1
ij = X1

i (tij)−X1
i (ti,j−1),Λij = Λ(tij)−Λ(ti,j−1).

7.3.1 Field degradation data

When the field information is incorporated, the obtained warranty data

may be degradation data or only the failure time data. If it is possible

to collect degradation data, and further assume that the field degradation

data of P2 units is recorded, and the i-th unit is measured at epochs 0 =

ti1 < tj2 < · · · < tim2 , with degradation X2
i (ti1), X2

i (ti2), · · · , X2
i (tim2).

For simplicity and without loss of generality, we assume tim2 = tm2 , i =

1, · · · , P2. Using the frailty model in Section 2.2, the log-likelihood function
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of field degradation data is given by

l(ηF , k, θ|Field Data) = P2klnθ + P2ln(Γ(k + ηΛm2)) +
∑P2

i=1

∑m2

j=1(Λij − 1)(lnx2
ij + k)

−
∑P2

i=1

∑m2

j=1 ln(Γ(Λij)) + P2ln(Γ(k))− (Λm2 + ξ)
∑P2

i=1 ln(x2
im2

+ θ).

(7.8)

where ηF is η in the field, x2
ij = X2

i (tij)−X2
i (ti,j−1), Λm2 = Λ(tm2).

7.3.2 Field life data

On the other hand, in some situations the measurement of product degrada-

tion cannot be implemented in the field, for example, when the data is col-

lected through the warranty returns. Instead, failure time data is obtained.

Denote the failure time X3 = (x3
1, x

3
2, · · · , x3

m3
), then x3

i , i = 1, · · · ,m2 has

the PDF as in (7.6), and the log-likelihood function is

l(ηF , k, θ|Field Data) =

m3∑
i=1

ln(ηΛ′(x3
i )) + ln

(
M

(
D

D + θξ
; ηΛ(x3

i ), k

))
.

(7.9)

The use of both lab and field data should be made of in statistical inference.

Note that if the frailty model holds, the shape parameter η in lab and in the

field are expected to be the same. This equality can be examined through

likelihood ratio test or score test with null hypothesis H0 : ηL = ηF versus

alternative hypothesis Ha : ηL 6= ηF . If H0 is accepted, both the lab and
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field data can be utilized through the following total log-likelihood function

l(η, ξ, k, θ|All Data) = l(η, ξ|Lab Data) + l(η, ξ, k, θ|Field Data). (7.10)

The MLE of parameters can be computed by either some direct search

methods or the EM algorithm. The detailed procedure of EM algorithm is

given in the appendix.

7.4 The ADT planning

Following the estimation of product reliability using both lab and field data,

as well as other evaluations, some refinement procedures may be performed

by the manufacturer and lead to a new design of products. Consequently,

an ADT needs to be implemented to quickly obtain the reliability infor-

mation of the new generation. It is most likely that new products do not

inherit the same underlying degradation process. However, it is believed

that the operating condition in the field is much less deviated for similar

products. In other words, the new product has the same frailty Z as the

old generation. With this fact, an optimal ADT plan can be developed.

Suppose the degradation of new products in lab test follows the gamma pro-

cess specified in Section 2.1. Denote C0 the nominal stress of new products,

CM the maximum stress level allowed, and C a variable level between C0
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and CM . In line with the convention of ADT design using gamma process

(e.g.Tseng et al. (2009)), we assume that the shape parameter η depends

on the variable stress level,

η = exp(r0 + r1β), (7.11)

where β is the standardized stress given by

β = lnC − lnC0
lnCM − lnC0

for the power law relation,

=
1/C0 − 1/C

1/C0 − 1/CM
for the Arrhenius relation,

= C − C0
CM − C0

for the exponential relation.

Note that the standardized nominal stress and maximum stress is β0 = 0

and βM = 1 respectively.

7.4.1 The Fraction Failing

A two-level plan is considered in this ADT, and the variables to be optimally

determined are the stress levels (β1, β2) and sample allocation (π1, π2). Usu-

ally the higher stress level is specified as the highest allowable level, i.e.

β2 = βM . Besides, π1 + π2 = 1. Therefore, the plan involves determining

β1 and π1. It is noted that this type of plan is uncovered in previous ADT
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studies using gamma process. In addition, when the heterogeneity of field

operation is incorporated, the plan needs to be further revised.

One of the main objectives of ADT is to predict product reliability in the

field. Since most products are under warranty, if the warranty period w

is given, the manufacturer is usually concerned with the fraction failings

during the warranty period. Denote pw the failure probability within w,

then from (7.5), it is obtained that pw = FT (w).

The asymptotic variance of pw can be obtained by the delta method, i.e.

AV (p̂w) = (∇pw)′I−1∇pw, where ∇pw is the first derivative of pw with

respect to (r0, r1, ξ) under the nominal stress, I−1 is the inverse of Fisher

information matrix. The details of ∇pw is given as follows.

∂pw
∂r0

= ΛwM
(

D
D+θξ

; exp(r0)Λw, k
)
,

∂pw
∂r1

= 0,

∂pw
∂ξ

= D
θ2ξ2B(k,ηΛw)

(
θξ

D+θξ

)k+2

·
[ (

D+θξ
θξ 2F1

(
{k, 1− ηΛw}, {1 + k}; θξ

D+θξ

))
+1−ηΛw

1+k 2F1

(
{1 + k, 2− ηΛw}, {2 + k}; θξ

D+θξ

) ]

(7.12)
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The Fisher information is given by

I =



E
[
− ∂2l
∂r2

0

]
E
[
− ∂2l
∂r0∂r1

]
E
[
− ∂2l
∂r0∂ξ

]

E
[
− ∂2l
∂r2

1

]
E
[
− ∂2l
∂r1∂ξ

]

E
[
− ∂2l
∂ξ2

]


. (7.13)

where l is the log-likelihood function conducted in lab ADT under various

stress levels. In particular, suppose that the i-th unit under the j-th stress

level is measured at tijk = kτj with observations Yij(tijk), k = 0, 1, · · · , Kj.

Let yijk = Yij(tijk) − Yij(tij,k−1) be the observed increments and Λijk =

Λ(tijk)−Λ(tij,k−1). Then the log-likelihood function, up to a constant, can

be expressed as

l =
∑J

j=1

∑Nj
i=1

∑Kj
k=1(ηjΛijk − 1)lnyijk − ln(Γ(ηjΛijk)) + ηjΛijklnξ − yijkξ

(7.14)

where ηj = exp(r0 + r1βj).

The detailed derivation of elements in I can be found in the appendix.
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Based on the above results, the optimization problem of ADT planning can

be formulated as,

Minimize AV(p̂w(β1, π1))

subject to 0 ≤ β1 < 1,

0 ≤ π1 < 1.

(7.15)

7.4.2 The p-th life quantile

The life quantile of product reliability is another important quantity. It is

used to help the manufacturer to determine the warranty length. Thus the

precision of life quantile estimate is of interest in many ADT studies, where

the objective is focused on minimizing the asymptotic variance (standard

deviation) of p-th life quantile, i.e. tp.

Avar(t̂p) =
g′θI

−1(θ)gθ
N(fTD(tp(θ)))2

(7.16)

whereN is the sample size of test, g′θ =
(
∂FT (t)
∂α0

, ∂FT (t)
∂α1

, ∂FT (t)
∂η

)
. The detailed

derivations are given in the appendix. The planning procedure is the same

as (7.15).
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7.5 Numerical example

7.5.1 Model goodness-of-fit and parameter estima-

tion

The carbon film resistor in is usually subject to accelerated degradation

test in lab during its design and production phase. Rather than failures,

only the degradation of quality characteristic is observed during the allow-

able testing time. The degradation behaves in terms of the increase of its

resistance, and the resistor fails when the increase exceeds a critical thresh-

old. Consequently, inference procedures can be derived to estimate the

product’s reliability, which is addressed in previous studies, such as Park

and Padgett (2005), Padgett and Tomlinson (2004).

We first check the adequacy of the gamma process model for the lab test

data. The lab data is generated by simulation under a similar parame-

ter configuration as in Tseng et al. (2009), which recently studied a cost-

effective ADT plan for the carbon film resistor in the lab environment. In

particular, the parameter values are

(r0, r1, ξ) = (−8.3907, 3.6622, 0.0625). (7.17)

Note that this value is obtained after standardization based on the result
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in Tseng et al. (2009). The standardization is carried out as in (7.4) with

C0 = 50◦C and CM = 183◦C. Besides, Λ(t) = t. We then generate 10

samples of degradation using (7.17) as shown in Figure 7.2.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5
Y(t)

t

Figure 7.2: Simulated degradation paths of carbon film resistors.

The adequacy of gamma process model is examined using graphical quantile-

quantile (Q-Q) plot. As mentioned in Wang and Xu (2010), for gamma

process, 3
√

∆x/(ξη∆Λ) is approximately normally distributed with mean

1− 1/(9η∆Λ) and variance 1/(9η∆Λ). From the Q-Q plot depicted in Fig-

ure 7.3, we find that the gamma process fit the lab test data quite well.

On the other hand, when the carbon film resistor is put in field operation,

its degradation is affected by the heterogeneous environment. The gamma

process above may no longer provide a good description. As such, the

frailty model proposed in this study may be a better choice. To illustrate

this, we take the degradation data of carbon film resistor in Meeker and
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Figure 7.3: Q-Q plot for the simulated data versus the normal quantile.

Escobar (1998) as the field data and compare the fitness of gamma process

and the frailty model. Specifically, the distribution functions of threshold-

failure time based on both models are examined and fit to its nonparametric

estimate which utilizes the pseudo failure times by extrapolating from the

degradation data. The failure threshold D is assumed 8%. The comparison

under 83◦C and 133◦C is shown in Figure 7.4. As can be seen, the frailty

model appears a superior choice to the gamma process.

The estimated parameters of the frailty model under 83◦C and 133◦C are

r̂0 = −8.05, r̂1 = 3.94, k̂ = 12.9, θ̂ = 0.449. The maximum log-likelihood

value is 49.68. When the gamma process model is fit to the data, the

maximum log-likelihood value is 43.57. Alternatively, if we use the Akaike

information criterion (AIC) to compare the two models, the respective AIC

values for the gamma process model and the frailty model are -81.14 and

-91.36. With a smaller AIC value, the frailty model has a better fit.
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Figure 7.4: Comparison of distribution functions of threshold failure
time under different models.

As seen from (7.17) and the estimated parameters for the frailty model,

r0 and r1 are close respectively in both models, indicating the equality of

ηL and ηF . The likelihood ratio method is used to test the null hypoth-

esis H0 : ηL = ηF against the alternative hypothesis Ha : ηL 6= ηF . The

likelihood ratio statistic value is 2.7286 with a p-value 0.2556. Therefore,

there is no strong reason to reject the null hypothesis, and the frailty model

is appropriate to account for the heterogeneity caused in operating envi-

ronment. Consequently, both the lab and field data can be utilized as in

(7.10). The estimation result is r̂0 = −8.2388, r̂1 = 3.5599, k̂ = 15.713, θ̂ =

0.8308, ξ̂ = 0.1554. With these updated parameters, the fitness of model

to the data in lab and the field can be checked and the result is depicted

in Figure 7.5.
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(a) Lab data
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(b) Field data

Figure 7.5: Q-Q plot fit to the lab data and CDF fit to the field data
using the updated parameters.

7.5.2 Optimal ADT planing

In this ADT planning, we focus on the new generation of products that

comes out with a number of changes to the old generation by the manu-

facturer. However, when sold to the customer, the new generation should

operate under the same field environment subject to similar heterogeneous

effects. Consequently, we assume that the heterogeneity can still be mod-

elled by the frailty Z which is gamma distributed with parameter (k, θ) =
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(15.713, 0.83). Suppose that the management is interested in knowing the

fraction failings and one-dimensional warranty cost of products within a

two year warranty. The available testing sample size is 20, and the mea-

surement is performed in every 240 hours with totally 20 measurements for

each unit. Since the units are tested in the lab, their degradation follows

the gamma process under the nominal stress condition, and the planning

values are assumed r0 = −8.24, r1 = 3.56, ξ = 0.155.

Under the above settings, the optimal ADT plan can be obtained which

determines the sample allocation and the lower stress level. Specifically,

if the objective is the fraction failings, the optimal test plan is (π∗1, β
∗
1) =

(0.5062, 0.1459). On the other hand, if the life quantile is of interest with

p = 10, the optimal test plan is (π∗1, β
∗
1) = (0.6328, 0.1197). Figure 7.6

shows the contour plot of the fraction failing with respect to π1 and β1.
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Figure 7.6: Contour plot of the asymptotic variance of fraction failings.
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Chapter 8

CONCLUSION AND

FUTURE WORK

Motivated by several practical problems, this thesis studies planning and

optimization of maintenance and accelerated degradation test under com-

plex failure processes. The proposed models facilitate some in-depth discus-

sions for implementing the two important reliability programs in product’s

life cycle. In the following, we first summarize the main findings of this

thesis. Then we conclude the thesis by elaborating some future research

topics.
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8.1 Main findings

In this thesis, we first investigate the failure behaviour of repairable systems

and the subsequent maintenance planning in Chapter 3. In view of the non

monotonic behaviour of system failure intensity in practice, we discuss the

most commonly observed bathtub shape. In addition, we consider the reli-

ability growth which may trigger a substantial change of failure intensity at

system maintenance or other time epochs. To incorporate the heterogene-

ity within a fleet of systems, we introduce a random effect term imposed on

failure intensity. Statistical inference procedures are addressed, and opti-

mal maintenance planning is investigated. We then illustrate the proposed

model using real dataset and reveal the model superiority in fitting some

practical dataset by comparison with existing model in the literature.

In Chapter 4 we study a repairable manufacturing system and develop a

bivariate maintenance policy. The manufacturing system adopts the eco-

nomic production lot sizing principle and introduce new cost factors such

as production set-up and inventory. The developed cost-effective mainte-

nance policy aims at balancing a variety of costs incurred for production

set-up, inventory and maintenance in the long run. Our model indicates a

necessity of well planned maintenance in the real applications.

For some systems whose operation can be monitored, condition-based main-

tenance emerges as a more dynamic and adaptive technique compared with
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data driven or experience based approaches. Equipped with proper degra-

dation model, Chapter 5 investigate the maintenance inspection policy for

systems with multiple dependent failure modes. An alternative perspec-

tive is provided in modelling the dependency between failure modes. Then

the system reliability is analysed followed by the cost-effective maintenance

policy in which the inspection period is determined. The determination of

inspection period is especially useful when the inspection cost is high. The

regression nature of the proposed model enables its flexibility in fitting a

number of dataset.

Chapter 6 studies the planning of accelerated degradation test using the

inverse gaussian process model. With clear physical interpretation, the in-

verse gaussian process serves as an important class of models within the

Lévy process family. When planning the test, we consider the heterogene-

ity that may be observed among test units by incorporating a random

effect term. The optimal test stress levels are determined to minimize the

asymptotic life quantile. The adequacy of model fitness to real dataset is

illustrated with statistical test methods.

We then explore the accelerated degradation test considering field hetero-

geneity in Chapter 7. This study address the important application of

accelerated degradation test to predict the field performance of products.

We propose statistical inference methods that jointly utilizes both lab test

and field use information. Then an optimization problem is formulated to
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minimize both the fractional failings and the p-th life quantile of the prod-

uct. The proposed model is helpful for practical management decisions.

8.2 Future research topics

The current work can be extended in several directions:

1. For the non monotonic behaviour of failure intensity of repairable sys-

tems, Chapter 3 covers the bathtub type. Other types of non mono-

tonicity can be investigated, such as upside down bathtub, roller-

coaster type, etc. Dataset in real applications should be identified

accordingly to illustrate the models.

2. As studied in Chapter 4, the maintenance is age based driven by

statistical analysis of failure data. While the manufacturing system

is usually safety critical, its real time health monitoring should be

enabled. Then a cost-effective condition based maintenance can be

implemented.

3. Chapter 5 determines the inspection frequency in maintenance plan-

ning given the degradation threshold and dependency of failure mode.

An important extension would be to implement preventive mainte-

nance wherein the system failure can be avoided to a large extent.
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4. A constant stress ADT is planned in Chapter 6. When sample size

of test units is relatively small, step stress ADT will be a good al-

ternative provided the correct depiction of underlying degradation

path.

5. As indicated in Chapter 7, the gap between in-lab reliability test and

product dynamic operating environment needs to be investigated. So

far we only consider a generic frailty model. Other issues such as new

failure modes can also be incurred.

Overall, the future research direction on maintenance and degradation test

is increasingly focused on data-driven modelling, with the enrichment of

large-scale data acquisition and storage technologies (Meeker and Hong,

2014). Morever, the proposed models can be fully evaluated by the test

data available.
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Appendix A

Proofs of Lemma 4.1,

Propoition 4.1, 4.2.

A.1 Proof of Lemma 4.1:

From Eq.(4.1),we obtain

HCi = hp(p−d)
2d

(∫ Ti
0
t2fZi(t) dt+

∫∞
Ti
T 2
i fZi(t) dt

)
= hp(p−d)

2d

(
t2FZi(t)|

Ti
0 −

∫ Ti
0

2tFZi(t) dt+ T 2
i FZi(t)|∞Ti

)
= hp(p−d)

2d

(
T 2
i −

∫ Ti
0

2tFZi(t) dt
)

= hp(p−d)
d

∫ Ti
0
t (1− FZi(t)) dt

= hp(p−d)
d

∫ Ti
0
tFZi(t) dt

= hp(p−d)
d

∫ Ti
0
tFZ1(αi−1t) dt
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Similarly, we have DE = pcdE[B]
∑N

i=1 βi
∫ Ti

0
FZ1(αi−1t) dt,

MC =
∑N

i=1 [(cr − cp)FZ1 (αi−1Ti) + cp] + r,

CL = p
d

∑N
i=1

∫ Ti
0
FZ1(αi−1t) dt.

So when N = 1, AV C can be simplified as

AV C(T1, 1) =
hp(p−d)

d

∫ T1

0
tFZ1(t) dt+ (cr − cp)FZ1(T ) + k + cp + r

p
d

∫ T1

0
FZ1(t) dt

+pcddβ1E[B]

(A.1)

and is finite.

When N →∞,

AV C(T,∞) = limN→∞
1

p
d

∑N
i=1

∫ Ti
0 FZ1

(αi−1t) dt

[
hp(p−d)

d

∑N
i=1

∫ Ti
0
tFZ1(αi−1t) dt

+pcdE[B]
∑N

i=1 βi
∫ Ti

0
FZ1(αi−1t) dt+

∑N
i=1 (cr − cp)FZ1 (αi−1Ti) +N(k + cp) + r

]

For the dominator, it is seen that
∫ Ti

0
FZ1(αi−1t) dt = 0, for α > 1, when i

is sufficiently large. So p
d

∑N
i=1

∫ Ti
0
FZ1(αi−1t) dt approaches some constant.

But the numerator is greater than N(k + cp) which approaches infinity

when N → ∞ and AV C(T,∞) → ∞. Therefore, the optimal number of

production runs N∗ is finite, i.e. N∗ <∞.
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For α < 1, if βi, i = 1, 2, ..., N is nondecreasing,

AV C(T,∞) > limN→∞
pcdE[B]

∑N
i=1 βi

∫ Ti
0 FZ1

(αi−1t) dt
p
d

∑N
i=1

∫ Ti
0 FZ1

(αi−1t) dt

> limN→∞
pcdE[B]

∑N
i=1 β1

∫ Ti
0 FZ1

(αi−1t) dt∑N
i=1

∫ Ti
0 FZ1

(αi−1t) dt
= pcdE[B]Nβ1 →∞

Therefore, N∗ is also finite.

To prove the existence of optimal Tis, taking derivative of AV C({Ti} , N)

with respect to Ti, one gets

∂AV C({Ti},N)
∂Ti

= 1
p
d
CL2({Ti},N)

{[
hp(p−d)

d
TiFZ1(αi−1Ti) + (cr − cp)αi−1fZ1(αi−1Ti)

+pcdβiE[B]FZ1(αi−1Ti)

]∑N
i=1

∫ Ti
0
FZ1(αi−1t) dt−

[
hp(p−d)

d

∑N
i=1

∫ Ti
0
tFZ1(αi−1t) dt

+pcdE[B]
∑N

i=1 βi
∫ Ti

0
FZi(α

i−1t) dt+
∑N

i=1 (cr − cp)FZ1 (αi−1Ti) +N(k + cp) + r

]

F̄Z1 (αi−1Ti)

}

When Ti → 0, the numerator approaches−(Ncr+Nk+r),because
∫ Ti

0
FZ1(αi−1t) dt

and
∫ Ti

0
tFZ1(αi−1t) dt both approach 0, for 1 ≤ i ≤ N . Hence, we have

∂AV C({Ti},N)
∂Ti

→ −(Ncr+Nk+r)
p
d
CL2({Ti},N)

< 0.
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When Ti →∞, both fZ1(αi−1Ti) and FZ1(αi−1Ti) approach 0, for 1 ≤ i ≤

N , so the numerator approaches

hp(p−d)
d

TiFZ1(αi−1Ti)
∑N

i=1

∫ Ti
0
FZ1(αi−1t) dt

+ (cr − cp) fZ1(αi−1Ti)
∫ Ti

0
FZ1(αi−1t) dt

−hp(p−d)
d

FZ1(αi−1Ti)
∑N

i=1

∫ Ti
0
tFZ1(αi−1t) dtFZ1(αi−1Ti)

= hp(p−d)
d

FZ1(αi−1Ti)
∑N

i=1

∫ Ti
0

(Ti − t)FZ1(αi−1t) dt

+ (cr − cp) fZ1(αi−1Ti)
∫ Ti

0
tFZ1(αi−1t) dt

So ∂AV C({Ti},N)
∂Ti

> 0,when Ti →∞.

Since the functions are continuous and differentiable, there exists Ti =

T ∗i , i = 1, 2, ..., N , such that
∂AV C({T ∗i },N)

∂T ∗i
= 0. Thus the proof is completed.�

A.2 Proof of Proposition 4.1:

When Ti = T ∗i , i = 1, 2, ..., N ,∂AV C({Ti},N)
∂Ti

|Ti=T ∗i = 0.

∂AV C({Ti},N)
∂Ti

=
∂TC({Ti},N)

∂Ti
CL({Ti},N)− ∂CL({Ti},N)

∂Ti
TC({Ti}),N

CL2({Ti},N)

=
∂TC({Ti},N)

∂Ti
− ∂CL({Ti},N)

∂Ti
AV C({Ti}),N)

CL({Ti},N)
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Since CL({Ti} , N) > 0, we have

∂TC({Ti} , N)

∂Ti
−∂CL({Ti} , N)

∂Ti
AV C({Ti}), N)|Ti=T ∗i = 0, for i = 1, 2, ..., N

(A.7)

Substituting (4.2),(4.6),(4.7),(4.8),(4.9) into (A.7) and after simplifications,

the following equation set is obtained,

hp(p−d)
d

Ti + pcdβiE[B] + (cr − cp)λZi(Ti) = p
d
AV C({Ti} , N), for i = 1, 2, ..., N.

(A.8)

Note that the RHS of (A.8) is constant for 1 ≤ i ≤ N .

When α > 1, if βi, i = 1, 2, ..., N is nondecreasing, the LHS does not

decrease when i increases because the first term is constant with i, the

second term is nondecreasing function of i because βi, i = 1, 2, ..., N is

nondecreasing and third term is nondecreasing functions of i, because from

(4.3) and (4.4), λZi(Ti) = αi−1λZi(α
i−1Ti), when α > 1, it is noncreasing

function of i. On the other hand, the LHS is an increasing function of Ti.

Therefore, to keep the value consistent to the RHS, when i increases, Ti

must decrease.

When α < 1, if βi, i = 1, 2, ..., N is nonincreasing, the LHS does not increase

when i increases because the first term is constant with i, the second term

is nonincreasing function of i because βi, i = 1, 2, ..., N is nonincreasing and

third term is nonincreasing functions of i, because when α < 1, λZi(Ti) =
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αi−1λZi(α
i−1Ti) is nonincreasing function of i. On the other hand, the LHS

is an increasing function of Ti. Therefore, to keep the value consistent to the

RHS, when i increases, Ti must increase. Thus proof is thus completed.�

A.3 Proof of Proposition 4.2:

From the above derivations, it is obtained that

AV C({Ti} , N) = 1
p
d

∑N
i=1

∫ Ti
0 FZ1

(αi−1t) dt

[
hp(p−d)

d

∑N
i=1

∫ Ti
0
tFZ1(αi−1t) dt

+pcdE[B]
∑N

i=1 βi
∫ Ti

0
FZi(t) dt+

∑N
i=1 (cr − cp)FZ1 (αi−1Ti) +N(k + cp) + r

]
(A.9)

Since FZ1(αi−1t) ≤ 1, for i ≤ i ≤ N , it is found that

AV C({Ti} , N) ≤
hp(p−d)

d

∑N
i=1

∫ Ti
0 t dt+pcdE[B]

∑N
i=1 βiTi+

∑N
i=1(cr−cp)+N(k+cp)+r

p
d

∑N
i=1

∫ Ti
0 FZ1

(αi−1t) dt

=
hp(p−d)

2d
NT 2

i +pcdE[B]
∑N
i=1 βiTi+N(cr+k)+r

p
d

∑N
i=1

∫ Ti
0 FZ1

(αi−1t) dt

(A.10)

The RHS of (A.11) is an increasing function of α.

On the other hand, since FZ1(αi−1t) ≥ 0,

AV C({Ti} , N) ≥ N(cp + k) + r
p
d

∑N
i=1

∫ Ti
0
FZ1(αi−1t) dt

(A.11)

The RHS of (A.11) is also an increasing function of α. Therefore, bounded

by two increasing functions of α, the claim of Proposition 4.2 is obtained.�
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Derivations of (6.9),(6.21) and

(6.24)

The elements of I(θ) in (6.9) are derived as follows,

E

[
−∂

2l(θ)

∂λ2

]
=

∑J
j=1NjKj

2λ2
, (B.1)

Since E[yijk] = µΛijk = eα0+α1xjΛijk,

E

[
−∂

2l(θ)

∂α2
0

]
=

J∑
j=1

Nj∑
i=1

Kj∑
k=1

λe−α0−α1xj(2E[yijk]e
−α0−α1xj − Λijk)

=
J∑
j=1

Nj∑
i=1

Kj∑
k=1

λe−α0−α1xjΛijk,

(B.2)
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E

[
−∂

2l(θ)

∂α2
1

]
=

J∑
j=1

Nj∑
i=1

Kj∑
k=1

λx2
je
−α0−α1xj(2E[yijk]e

−α0−α1xj − Λijk)

=
J∑
j=1

Nj∑
i=1

Kj∑
k=1

λx2
je
−α0−α1xjΛijk,

(B.3)

E

[
−∂

2l(θ)

∂λ∂α0

]
=

J∑
j=1

Nj∑
i=1

Kj∑
k=1

e−α0−α1xj(Λijk − E[yijk]e
−α0−α1xj) = 0,

(B.4)

E

[
−∂

2l(θ)

∂λ∂α1

]
=

J∑
j=1

Nj∑
i=1

Kj∑
k=1

xje
−α0−α1xj(Λijk − E[yijk]e

−α0−α1xj) = 0,

(B.5)

E

[
− ∂2l(θ)

∂α0∂α1

]
=

J∑
j=1

Nj∑
i=1

Kj∑
k=1

λxje
−α0−α1xj(2E[yijk]e

−α0−α1xj − Λijk)

=
J∑
j=1

Nj∑
i=1

Kj∑
k=1

λxje
−α0−α1xjΛijk,

(B.6)

When Λ(t) = tβ, Λijk = tβijk − t
β
ij,k−1 = (kτ)β − ((k − 1)τ)β. Then

∂Λijk

∂β
= β

[
(kτ)β−1 − ((k − 1)τ)β−1

]
, (B.7)

and

∂2Λijk

∂β2
=
[
(kτ)β−1 − ((k − 1)τ)β−1

]
+β(β−1)

[(
(kτ)β−2 − ((k − 1)τ)β−2

)]
.

(B.8)

Therefore,
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∂l(θ)

∂β
=

J∑
j=1

Nj∑
i=1

Kj∑
k=1

∂Λijk

∂β

(
1

Λijk

+
λ

yijk
(yijke

−α0−α0xi − Λijk)

)
, (B.9)

∂2l(θ)

∂λ∂β
=
∂2l(θ)

∂β∂λ
=

J∑
j=1

Nj∑
i=1

Kj∑
k=1

∂Λijk

∂β

yijke
−α0−α1xj − Λijk

yijk
. (B.10)

∂2l(θ)

∂α0∂β
=
∂2l(θ)

∂β∂α0

=
J∑
j=1

Nj∑
i=1

Kj∑
k=1

∂Λijk

∂β
(−λe−α0−α1xj). (B.11)

∂2l(θ)

∂α1∂β
=
∂2l(θ)

∂β∂α1

=
J∑
j=1

Nj∑
i=1

Kj∑
k=1

∂Λijk

∂β
(−λxje−α0−α1xj). (B.12)

∂2l(θ)

∂β2
=
∑J

j=1

∑Nj
i=1

∑Kj
k=1− 1

Λ2
ijk

(
∂Λijk
∂β

)2

+ 1
Λijk

∂2Λijk
∂β2 + λ

e−α0−α1xj ∂
2Λijk
∂β2 − λ

yijk

[(
∂Λijk
∂β

)2

+ Λijk
∂2Λijk
∂β2

]
(B.13)

Taking expectation yields,

E

[
−∂

2l(θ)

∂λ∂β

]
= E

[
−∂

2l(θ)

∂β∂λ

]
=

J∑
j=1

Nj∑
i=1

Kj∑
k=1

−∂Λijk

∂β

(
e−α0−α1xj − ΛijkE

(
1

yijk

))

=
J∑
j=1

Nj∑
i=1

Kj∑
k=1

∂Λijk

∂β

1

λΛijk

.

(B.14)
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where we substitute into the fact that E
(

1
yijk

)
= 1

λΛ2
ijk

+ 1
µΛijk

.

E

[
− ∂

2l(θ)

∂α0∂β

]
= E

[
− ∂

2l(θ)

∂β∂α0

]
=

J∑
j=1

Nj∑
i=1

Kj∑
k=1

∂Λijk

∂β
λe−α0−α1xj . (B.15)

E

[
− ∂

2l(θ)

∂α0∂β

]
= E

[
− ∂

2l(θ)

∂β∂α1

]
=

J∑
j=1

Nj∑
i=1

Kj∑
k=1

∂Λijk

∂β
λxje

−α0−α1xj . (B.16)

E

[
−∂

2l(θ)

∂β2

]
=

J∑
j=1

Nj∑
i=1

Kj∑
k=1

1

Λ2
ijk

(
∂Λijk

∂β

)2

− 1

Λijk

∂2Λijk

∂β2
− λe−α0−α1xj

∂2Λijk

∂β2

+λ

(
1

λΛ2
ijk

+
exp(−α0 − α1xj)

Λijk

)[(
∂Λijk

∂β

)2

+ Λijk
∂2Λijk

∂β2

]

=
J∑
j=1

Nj∑
i=1

Kj∑
k=1

(
2

Λ2
ijk

+
λexp(−α0 − α1xj)

Λijk

)(
∂Λijk

∂β

)2

(B.17)

For the random volatility model, the derivations of elements I(θ) in (6.21)

is as below.
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The log-likelihood function in (6.18) is written below,

l(θ) =
J∑
j=1

Nj∑
i=1

{
lnΓ(δ +

Kj

2
)− lnΓ(δ) + δlnγ +

Kj∑
k=1

(
lnΛijk −

3

2
lnyijk

)

−(δ +
Kj

2
)ln

γ +

Kj∑
k=1

(yijkµ
−1
j − Λijk)

2

2yijk

}
(B.18)

where µj = exp(α0 + α1xj).

The first derivatives of l(θ) with respect to the parameters are obtained as

follows,

First, note that the following equations hold for α0 and α1,

∂l(θ)

∂α0

=
J∑
j=1

exp(α0 + α1xj)
∂l(θ)

∂µj
, (B.19)

and

∂l(θ)

∂α1

=
J∑
j=1

xjexp(α0 + α1xj)
∂l(θ)

∂µj
(B.20)

where

∂l(θ)

∂µj
=

Nj∑
i=1

(δ +
Kj

2
)

∑Kj
k=1

yijkµ
−1
j −Λijk

2µ2
j

γ +
∑Kj

k=1

(yijkµ
−1
j −Λijk)2

2yijk

. (B.21)

∂l(θ)

∂δ
=

J∑
j=1

Nj∑
i=1

ψ(δ +
Kj

2
)− ψ(δ) + lnγ − ln

γ +

Kj∑
k=1

(yijkµ
−1
j − Λijk)

2

2yijk

 .
(B.22)
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∂l(θ)

∂γ
=

J∑
j=1

Nj∑
i=1

δ

γ
− (δ +

Kj

2
)

1[
γ +

∑Kj
k=1

(yijkµ
−1
j −Λijk)2

2yijk

] . (B.23)

∂l(θ)

∂β
=

J∑
j=1

Nj∑
i=1

 Kj∑
k=1

1

Λijk

∂Λijk

∂β
+ (δ +

Kj

2
)

∑Kj
k=1

yijkµ
−1
j −Λijk

yijk

∂Λijk
∂β

γ +
∑Kj

k=1

(yijkµ
−1
j −Λijk)2

2yijk

 .

(B.24)

where
∂Λijk

∂β
is as derived in (??).

The second derivatives of l(θ) are now readily derived as follows,

∂2l(θ)

∂µj∂β
=

Nj∑
i=1

(δ +
Kj

2
)

∑Kj
k=1− 1

2µ2
j

∂Λijk
∂β

(
γ +

∑Kj
k=1

(yijkµ
−1
j −Λijk)2

2yijk

)
(
γ +

∑Kj
k=1

(yijkµ
−1
j −Λijk)2

2yijk

)2

−
∑Kj

k=1

yijkµ
−1
j −Λijk

2µ2
j

∑Kj
k=1

yijkµ
−1
j −Λijk

yijk

∂Λijk
∂β

(B.25)

Therefore,

∂2l(θ)

∂α0∂β
=

J∑
j=1

exp(α0 + α1xj)
∂2l(θ)

∂µj∂β
, (B.26)

∂2l(θ)

∂α1∂β
=

J∑
j=1

xjexp(α0 + α1xj)
∂2l(θ)

∂µj∂β
, (B.27)
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∂2l(θ)

∂µ2
j

=

Nj∑
i=1

(δ +
Kj

2
)

∑Kj
k=1

yijk−2µjΛijk
2µ4
j

(
γ +

∑Kj
k=1

(yijkµ
−1
j −Λijk)2

2yijk

)
−
(∑Kj

k=1

yijkµ
−1
j −Λijk

2µ2
j

)2

(
γ +

∑Kj
k=1

(yijkµ
−1
j −Λijk)2

2yijk

)2 .

(B.28)

∂2l(θ)

∂α2
0

=
J∑
j=1

exp(α0 + α1xj)(
∂l(θ)

∂µj
+
∂2l(θ)

∂µ2
j

) (B.29)

∂2l(θ)

∂α0∂α1

=
J∑
j=1

xjexp(α0 + α1xj)(
∂l(θ)

∂µj
+
∂2l(θ)

∂µ2
j

) (B.30)

∂2l(θ)

∂α2
1

=
J∑
j=1

x2
jexp(α0 + α1xj)(

∂l(θ)

∂µj
+
∂2l(θ)

∂µ2
j

) (B.31)

∂2l(θ)

∂δ2
=

J∑
j=1

Nj∑
i=1

ψ1(δ +
Kj

2
)− ψ1(δ). (B.32)

∂2l(θ)

∂γ2
=

J∑
j=1

Nj∑
i=1

− δ

γ2
+ (δ +

Kj

2
)

1[
γ +

∑Kj
k=1

(yijkµ
−1
j −Λijk)2

2yijk

]2 . (B.33)

∂2l(θ)

∂δ∂µj
=

Nj∑
i=1

−

∑Kj
k=1

yijkµ
−1
j −Λijk

2µ2
j

γ +
∑Kj

k=1

(yijkµ
−1
j −Λijk)2

2yijk

. (B.34)
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∂2l(θ)

∂δ∂α0

=
J∑
j=1

exp(α0 + α1xj)
∂2l(θ)

∂δ∂µj
(B.35)

∂2l(θ)

∂δ∂α1

=
J∑
j=1

xjexp(α0 + α1xj)
∂2l(θ)

∂δ∂µj
(B.36)

∂2l(θ)

∂δ∂γ
=

J∑
j=1

Nj∑
i=1

1

γ
− 1[

γ +
∑Kj

k=1

(yijkµ
−1
j −Λijk)2

2yijk

] . (B.37)

∂2l(θ)

∂γ∂µj
=

Nj∑
i=1

(δ +
Kj

2
)

∑Kj
k=1

yijkµ
−1
j −Λijk

2µ2
j(

γ +
∑Kj

k=1

(yijkµ
−1
j −Λijk)2

2yijk

)2 (B.38)

∂2l(θ)

∂γ∂α0

=
J∑
j=1

exp(α0 + α1xj)
∂2l(θ)

∂γ∂µj
(B.39)

∂2l(θ)

∂γ∂α1

=
J∑
j=1

xjexp(α0 + α1xj)
∂2l(θ)

∂γ∂µj
(B.40)

∂2l(θ)

∂β2
=

J∑
j=1

Nj∑
i=1

(
Kj∑
k=1

− 1

Λ2
ijk

(
∂Λijk

∂β

)2

+
1

Λijk

∂2Λijk

∂β2

+(δ +
Kj

2
)

∑Kj
k=1

(
−1
yijk

(
∂Λijk
∂β

)2 +
yijkµ

−1
j −Λijk

yijk

∂2Λijk
∂β2

)
γ +

∑Kj
k=1

(yijkµ
−1
j −Λijk)2

2yijk

−

(∑Kj
k=1

yijkµ
−1
j
−Λijk

yijk

∂Λijk
∂β

)2

(
γ+
∑Kj
k=1

(yijkµ
−1
j
−Λijk)2

2yijk

)2

)
.

(B.41)

154



Appendix B. Derivations of (6.9),(6.21)and (6.24)

Due to the complex form of the above second derivatives, their expectations

can be evaluated numerically by using the RS sums method proposed in

(?).

The detailed expressions of ∇ξp in (6.24) are derived as follows.

∂ξp
∂α0

=
1

2β

(
1

4

(√
exp(α0)γ

δ
t2δ,p +

√
exp(α0)γ

δ
t22δ,p +

4D

exp(α0)

))2/β−1

·

[
1

2

√
exp(α0)γ

δ
t2δ,p +

1

2

(
exp(α0)γ

δ
t22δ,p +

4D

exp(α0)

)−1/2

(
exp(α0)γ

δ
t22δ,p − 4D

exp(α0)

)
(B.42)

∂ξp
∂α1

= 0 (B.43)

∂ξp
∂δ

=
1

2β

(
1

4

(√
exp(α0)γ

δ
t2δ,p +

√
exp(α0)γ

δ
t22δ,p +

4D

exp(α0)

))2/β−1

·

[
−1

2

√
exp(α0)γ

δ3/2
t2δ,p +

1

2

(
exp(α0)γ

δ
t22δ,p +

4D

exp(α0)

)−1/2

(
− exp(α0)γ

δ2 t22δ,p

)

(B.45)

(B.46)
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∂ξp
∂γ

=
1

2β

(
1

4

(√
exp(α0)γ

δ
t2δ,p +

√
exp(α0)γ

δ
t22δ,p +

4D

exp(α0)

))2/β−1

·

[
1

2

√
exp(α0)

δγ
F t2δ,p +

1

2

(
exp(α0)γ

δ
t22δ,p +

4D

exp(α0)

)−1/2
exp(α0)

δ
t22δ,p

]
(B.47)

∂ξp
∂β

= − 2

β2
ln

(
1

4

(√
exp(a)γ

δ
t2δ,p +

√
exp(a)γ

δ
t22δ,p +

4D

exp(a)

))

·

(
1

4

(√
exp(a)γ

δ
t2δ,p +

√
exp(a)γ

δ
t22δ,p +

4D

exp(a)

))2/β

(B.48)
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Appendix C

Derivations of elements in

(7.13) and statistical inference

using EM algorithm

The derivation of elements in (7.13) is as follows,

∂l

∂r0

=
J∑
j=1

Nj∑
i=1

Kj∑
k=1

ηjΛijklnyijk − ηjΛijkψ0(ηjΛijk) + ηjΛijklnξ,

∂l

∂r1

=
J∑
j=1

Nj∑
i=1

Kj∑
k=1

βjηjΛijklnyijk − βjηjΛijkψ0(ηjΛijk) + βjηjΛijklnξ,

∂l

∂ξ
=

J∑
j=1

Nj∑
i=1

Kj∑
k=1

ηjΛijk

ξ
− yijk,
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∂2l

∂r2
0

=
J∑
j=1

Nj∑
i=1

Kj∑
k=1

ηjΛijklnyijk − (ηjΛijk)
2ψ1(ηjΛijk) − ηjΛijkψ0(ηjΛijk) +

ηjΛijklnξ,

∂2l

∂r0∂r1

=
J∑
j=1

Nj∑
i=1

Kj∑
k=1

βjηjΛijklnyijk−βj(ηjΛijk)
2ψ1(ηjΛijk)−βjηjΛijkψ0(ηjΛijk)+

βjηjΛijklnξ,

∂2l

∂r0∂ξ
=

J∑
j=1

Nj∑
i=1

Kj∑
k=1

ηjΛijk

ξ
,

∂2l

∂r2
1

=
J∑
j=1

Nj∑
i=1

Kj∑
k=1

β2
j ηjΛijklnyijk−β2

j (ηjΛijk)
2ψ1(ηjΛijk)−β2

j ηjΛijkψ0(ηjΛijk)+

β2
j ηjΛijklnξ,

∂2l

∂r1∂ξ
=

J∑
j=1

Nj∑
i=1

Kj∑
k=1

βjηjΛijk

ξ
,

∂2l

∂ξ2
=

J∑
j=1

Nj∑
i=1

Kj∑
k=1

−ηjΛijk

ξ2
.

where ψ0(·) is the digamma function, ψ1(·) is the trigamma function.

Since E(yijk) = ηjΛijk/ξ, E(ln(yijk)) = ψ0(ηjΛijk)− lnξ, it is obtained that

E[− ∂
2l

∂r2
0

] =
J∑
j=1

Nj∑
i=1

Kj∑
k=1

(ηjΛijk)
2ψ1(ηjΛijk),

E[− ∂2l

∂r0∂r1

] =
J∑
j=1

Nj∑
i=1

Kj∑
k=1

βj(ηjΛijk)
2ψ1(ηjΛijk),
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E[− ∂2l

∂r0∂ξ
] =

J∑
j=1

Nj∑
i=1

Kj∑
k=1

−ηjΛijk

ξ
,

E[− ∂
2l

∂r2
1

] =
J∑
j=1

Nj∑
i=1

Kj∑
k=1

β2
j (ηjΛijk)

2ψ1(ηjΛijk),

E[− ∂2l

∂r1∂ξ
] =

J∑
j=1

Nj∑
i=1

Kj∑
k=1

−βjηjΛijk

ξ
,

E[− ∂
2l

∂ξ2
] =

J∑
j=1

Nj∑
i=1

Kj∑
k=1

ηjΛijk

ξ2
.

The EM algorithm procedure is given below,

When the degradation data of J stress levels with Nj units at each level

are available, the log-likelihood function, up to a constant, can be derived

as,

lr =
J∏
j=1

Nj∏
i=1

 Kj∏
k=1

y
ηΛijk−1

ijk ξηΛijk

Γ(ηΛijk)
· Γ(η

∑Kj
k=1 Λijk + k)θk

(ξ
∑Kj

k=1 yijk + θ)(η
∑Kj
k=1 Λijk+k)Γ(k)

 .

Tsai et al. (2012) has developed the EM algorithm when the stress level is

identical. In the presence of more than one stress level, the EM algorithm

can be developed as follows.

Denote ξij the realization of the frailty for the i-th unit under the j-th stress

level, i = 1, 2, · · · , Nj, and j = 1, 2, · · · , J . Given the observed degradation

data Y and the frailty ξij, the complete data log-likelihood can be expressed
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as

lc =
∑J

j=1

∑Nj
i=1

∑Kj
k=1 [(ηjΛijk − 1)lnyijk − ln(Γ(ηjΛijk)) + ηjΛijklnξij − yijkξij]

+
∑J

j=1

∑Nj
i=1 [klnθ + (k − 1)lnξij − lnΓ(k)− θξij]

E-step:

To compute E[ξij|Y] and E[lnξij|Y], note that conditional on Y, ξij still

follows a gamma distribution with parameters

k̃ij = ηj
∑Kj

k=1 Λijk + k and θ̃ij =
∑Kj

k=1 yijk + θ.

Therefore, we have

E[ξij|Y] = k̃ij/θ̃ij and E[lnξij|Y] = ψ(k̃ij)− ln(θ̃ij).

The above two expectations can be used to compute the Q-function at the

E-step of an EM iteration. Maximization step can be realized by solving

two separate equations which involve (r0, r1) and (k, θ) respectively. In

particular, the following M-step is performed.

M-Step: From the expression of lc, the first term depends on r0 and r1 only

and the second term depends on k and θ only. So in the maximization

step we can optimize the updated parameters r
(u+1)
0 , r

(u+1)
1 , k(u+1), θ(u+1)
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separately. Specifically, r
(u+1)
0 , r

(u+1)
1 is obtained by solving

{ ∑J
j=1

∑Nj
i=1

∑Kj
k=1 [ηjΛijklnyijk − ηjΛijkψ(ηjΛijk) + ηjΛijklnξij] = 0,∑J

j=1

∑Nj
i=1

∑Kj
k=1 βj [ηjΛijklnyijk − ηjΛijkψ(ηjΛijk) + ηjΛijklnξij] = 0.

(C.1)

and k(u+1), θ(u+1) is obtained by solving:

{ ∑J
j=1

∑Nj
i=1 [lnθ + lnξij − ψ(k)] = 0,∑J

j=1

∑Nj
i=1 [k/θ − ξij] = 0.

(C.2)
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