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SUMMARY 

It is well-known that most semi-conductor devices suffer from infant mortality, resulting in 

billions of warranty losses due to early field failures. Burn-in is an important engineering 

procedure used to identify defective units by subjecting all units to a screening test with a 

certain duration. Optimal determination of the burn-in settings is of particular importance, as 

it enhances field performance of a product and saves field operation costs up to the hilt. 

Motivated by some practical problems with complex failure processes, this thesis is aimed at 

developing some practical burn-in models to help determine the optimal burn-in settings.  

We first propose a burn-in scheme based on change points of the p-percentile function of the 

residual life function. This scheme is able to simultaneously yield the optimal burn-in 

duration and the optimal warranty period, which is important for products whose warranty 

coverage is yet to be determined. We also identify severe infant mortality faced by products 

sold with two-dimensional warranties, and subsequently propose two novel burn-in models. 

In view of the fact that modern manufacturing technique has led to what is commonly known 

as highly reliable products, this thesis advocates degradation-based burn-in approaches that 

base the screening decision on a product’s degradation level after burn-in. We first develop 

two degradation-based joint burn-in and preventive maintenance models for products whose 

degradation is measurable. Then, we recognize the fact that product failures are much more 

complex, and thus propose a degradation-based burn-in framework under competing risks. In 

addition, we propose a bi-objective burn-in framework that simultaneously takes the cost and 

field performance of a burnt-in unit into consideration. These proposed models are 

successfully applied to solve a number of real problems, which shows the significant practical 

contributions of this thesis. 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

To meet a sequence of performance specifications, the design reliability of most products is 

often very high. During the post-development stage, however, actual reliability usually differs 

from the designed one due to quality variations. These variations include non-conforming 

components/materials, design defects and manufacturing defects, which result in a 

subpopulation of defective units in the product population. These defectives lead to 

significant number of early failures in field use, commonly known as infant mortalities. 

Infant mortalities are not uncommon in practice. Analyses of automobile warranty data by 

Attardi et al. (2005), Majeske (2003, 2007) and Rai and Singh (2006) indicated that 

automobiles suffer from infant mortality, accounting for as high as 5.6% of the total failures. 

Kececioglu and Sun (1994) analyzed some CMOS data and find that the infant mortality rate 

reaches 6.7%. More remarkably, the infant mortalities can be even as high as 10% in a new 

and unproven technology (Kececioglu and Sun 1997). These undesirable early failures 

degrade performance of the product and significantly increase field operation costs. 

To alleviate the impact of early failures, engineers often resort to burn-in testing. In fact, 

burn-in has been an important manufacturing screening operation. It is often conducted under 

harsh environments that simulate the severest working conditions, such as a combination of 

random vibration, thermal cycling and shock, for a certain duration. After a moderate 

duration of burn-in, defective units can be identified and eliminated, and reliability of the 

product can be greatly enhanced. However, excessive burn-in will shorten the useful lifetimes 

of the normal units and prolong time-to-market of the product. Therefore, efficient burn-in 

models are imperative in deciding on optimal burn-in settings. 

Burn-in models are often built jointly with warranty decisions or preventive maintenance 
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decisions. A bulk of literature focuses on the benefits of burn-in on products sold with 

warranties. Previous burn-in models were often built given a specific warranty policy. But 

considering the fact that more and more warranty policies, e.g., the two-dimensional warranty 

provided by most car suppliers and airplane manufacturers, have received successful 

applications recently, it calls for the development of new burn-in models for products sold 

with these warrantees. On the other hand, some researchers proposed burn-in models for 

products under preventive maintenance. These models are based on traditional burn-in 

approaches that intend to fail short-lived units (Nelson 1990, Chap. 5.5). In a traditional burn-

in test, only units that survive the test are put into field use. However, there are many modern 

products that are so well designed and manufactured that they are highly reliable. It may take 

a very long time for a defective unit to fail even under highly accelerated stress. In addition, 

failure mechanisms for modern reliable products are increasingly more complex. In practice, 

some quality characteristic of a product closely related to lifetime of the product usually 

degrades over time and causes a product failure when the degradation level of such quality 

characteristic exceeds a certain threshold, which is often stipulated by the industrial standards. 

If the quality characteristic of a defective unit degrades faster than a normal one, this unit can 

be effectively identified through degradation-based burn-in. Nevertheless, degradation-based 

burn-in models are rare in the literature and need further investigation.  

The remainder of this chapter briefly introduces how burn-in is implemented in practice, after 

which a review of burn-in literature will be presented. This review will address issues of 

current research and highlight necessity of work in this thesis. 

 

1.2 Burn-In Modeling 

Burn-in is beneficial as it is able to decrease the possibility of field failures. Therefore, burn-

in models are often built jointly with certain field operation. Based on two kinds of field 
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operations, i.e., warranty and preventive maintenance, this thesis thus classifies existing burn-

in models into two categories for ease of exposition. The first category focuses on effects of 

burn-in on performance of products sold with warranties, while the second category models 

the joint decisions of burn-in and preventive maintenance. These two categories of models 

are briefly reviewed in this section.  

1.2.1 Joint Burn-In and Warranty Models 

In our modern commercial society, products are becoming more and more complex with each 

new generation to meet the growing needs and expectations of customers. Due to this 

complexity, more defects may be introduced into such products, leading to a significant 

number of early failures. Therefore, customers need assurance that the product will perform 

satisfactorily. A warranty provides such an assurance. Nevertheless, offering warranty implies 

additional costs to a manufacturer due to servicing of claims. These claims also impact sales 

as well as the manufacturer’s reputation. The effect of early failures on warranty costs 

provides strong motivation for conducting a burn-in test, as burn-in has been proven to be 

effective in removing early failures before the products are sold to customers.  

Burn-in models for products sold with warranties can be broadly classified into two classes 

based on the objective function of burn-in. The first class tries to optimize certain 

performance index given a warranty period. A widely accepted burn-in criterion is the 

probability of failure within the warranty period, as this probability represents the proportion 

of field returns, which, in turn, is related to warranty cost. Typically, the optimal burn-in 

duration is determined by minimizing the probability of failure within a given warranty 

period, if there is an established norm for this period. This criterion has been investigated by 

many studies, including Mi (1994b , 2003), Kim and Kuo (2003, 2005, 2009) and Cha and 

Finkelstein (2010b).  
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The second class is the cost-based burn-in models that seek to achieve an optimal balance 

between burn-in costs and warranty costs. Different warranty policies and different lifetime 

distributions of products lead to various cost models. Optimal burn-in decisions under 

different warranty policies have been discussed by Mi (1999), Sheu and Chien (2005), Wu et 

al. (2007), etc. As for the lifetime distributions, Chou and Tang (1992), Mi (1997) and Cha et 

al. (2008) formulated cost-based burn-in warranty models under a mixture of Weibull 

distributions, distributions with BTFRs, and distributions with eventually increasing FRs, 

respectively.  

Although many burn-in warranty models have been proposed and studied, there are still a 

number of deficiencies. First of all, all models assumed a predetermined warranty period, 

notwithstanding the fact that manufacturers may also be interested in determining an optimal 

warranty period, especially when there is not a norm for this period. In addition, all models 

assumed single failure mode while this mode is subject to infant mortality. However, most 

products can fail due to one of a series of failure modes, or competing risks. Last but not least, 

no model has dealt with burn-in for products sold with two-dimensional warranty, a very 

important warranty policy for expensive products such as cars. 

1.2.2 Joint Burn-In and Maintenance Models 

Obviously, not all products are sold with warranty, especially when a product is cheap, or is a 

component to a complex system. For this kind of product, preventive maintenance is often 

applied to improve field performance. Therefore, the other category of burn-in models deals 

with joint burn-in and preventive maintenance decisions. Mi (1994a) systematically studied 

this joint decision problem under the bathtub failure rate assumption. The models in Mi 

(1994a) were further extended by Cha (2001, 2003, 2005) and Cha and Mi (2007). A detailed 

review of these models will be provided in Chapter 2. But as noted by Cha and Finkelstein 

(2010a), the bathtub failure rate describes only up to 15% of applications. As opposed to the 
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bathtub failure rate assumption, some authors investigated this problem by assuming a 

bimodal distribution, e.g., Drapella and Kosznik (2002) and Jiang and Jardine (2007) to name 

a few. For excellent overviews on joint burn-in and maintenance modeling, readers are 

referred to Liu and Mazzuchi (2008) and Cha (2011).  

Basically, the above-mentioned models considered binary system states, either failed or 

working. It is generally believed that this kind of models is not efficient for reliable products. 

If the degradation of some quality characteristic is observable, degradation-based burn-in 

would be much more efficient. However, degradation-based burn-in maintenance models are 

not found in literature.  

 

1.3 Research Objectives 

The comprehensive review above has revealed that current research on burn-in models is still 

far from perfection. As products are becoming more sophisticated, their failure mechanisms 

are much more complex. The purpose of this thesis is to develop practical burn-in models for 

these products from some new perspectives. More specifically, this thesis is to: 

 Investigate a performance-based burn-in scheme for achieving the maximum 

allowable warranty period with a prespecified field-return probability. This is done by 

exploiting properties of the p-percentile function of the residual life when a 

distribution exhibits a bathtub shape failure rate. 

 Develop a burn-in planning framework for products with independent multiple failure 

modes. This framework would be potentially very important, as a complex product 

often has a couple of failure modes. 

 Develop both performance and cost-based burn-in models for products sold with two-

dimensional warranty. 
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 Develop degradation-based burn-in models for products with preventive maintenance. 

Two maintenance options, i.e., age-based maintenance and block-based maintenance 

are considered.  

All the models in this thesis are motivated by practical problems, and thus may be potentially 

very useful for burn-in practitioners to achieve more cost-effective burn-in decisions. These 

practical problems will also shed some light on the focuses of future research on burn-in 

problems. On the other hand, the modeling methodologies developed in this thesis, e.g., 

isolating defect failures from normal failures, taking into account the parameter uncertainty 

on the optimal burn-in decision, etc. may open up a new avenue for burn-in analysis. This 

thesis advocates uses of degradation signals for burn-in decision-making, and thus has a 

direct link to the important area of prognostics and health management, in which the future 

performance of a product is predicted by detection of early signs of wear and aging.  

The remainder of this thesis is organized as follows. Chapter 2 provides a comprehensive 

review of the burn-in literature. Chapter 3 proposes a burn-in scheme based on percentile of 

the residual life. Chapter 4 builds two burn-in models for products sold with two-dimensional 

warranties. Chapter 5 investigates degradation-based joint burn-in and preventive 

maintenance problems. Chapter 6 proposes a burn-in framework for products with competing 

risks. Chapter 7 deals with a bi-objective burn-in framework. Chapter 8 concludes the whole 

thesis and points out possible topics for future research.  
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CHAPTER 2 LITERATURE REVIEW  

Burn-in testing has become an important engineering practice to deal with infant mortalities. 

To help decide on the optimal burn-in settings, many burn-in models have been proposed in 

the literature. Based on the objective functions of burn-in, most of these models can be 

classified into two categories, i.e., joint burn-in and warranty models and joint burn-in and 

maintenance models. Some models do not belong to these two categories. They are classified 

into the third category, and will be reviewed in Section 2.3. 

 

2.1 Joint Burn-In and Warranty Models 

Lifetimes of many commercial products exhibit a bathtub-shaped failure rate (BTFR) which 

consists of a short infant mortality period with a decreasing failure rate (FR), followed by a 

useful life period with relatively constant and low FR, and then a wear-out period that 

exhibits an increasing FR. Customers need assurance, most often in the form of a warranty 

contract, to protect against possible early failures. However, the warranty obligation 

engenders additional cost to the manufacturers due to service of warranty claims. Burn-in is 

an effective method used to reduce the number of early failures and cut down the warranty 

costs. A number of burn-in models for products sold with warranties have been developed in 

the literature. These models can be classified into two classes, i.e., cost-based and 

performance-based. 

The first work on cost-based burn-in modeling for products sold with a warranty dates back 

to Nguyen and Murthy (1982), who examined the optimal burn-in time to achieve a trade-off 

between reduction in the warranty cost and increase in the manufacturing cost, as burn-in is 

viewed as part of the manufacturing process. Following this ground-breaking work, many 

burn-in models for products sold with warranty have been proposed and studied subsequently. 
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Chou and Tang (1992) extended the models of Nguyen and Murthy (1982) by using a mixture 

of exponential distribution and a Weibull hyperexponential distribution with shape parameter 

less than one. On the other hand, Mi (1997) extended the models of Nguyen and Murthy 

(1982) under the assumption of bathtub failure rate. He then showed that the optimal burn-in 

duration that minimizes the total burn-in warranty cost function never exceeds the first 

change point of the failure-rate function. Mi (1997)’s model was extended by Cha et al. (2008) 

to the eventually increasing failure rate case. On the other hand, Chang (2000) examined the 

optimal burn-in problem under the unimodal failure rate assumption. Mi (1999) examined the 

expected burn-in warranty cost under different warranty policies, including replacement-free 

warranty, renewable warranty, and pro-rata warranty. Yun et al. (2002) studied the burn-in 

problems under the cumulative free replacement warranty policy. Sheu and Chien (2005) 

considered burn-in tests for general repairable products and examined different warranty 

policies. Ulusoy et al. (2011) proposed a Bayes method to compute the burn-in warranty cost 

and to determine the optimal burn-in time.  

The second class of models is performance-based burn-in models. Most models in this class 

aimed at minimizing the probability of failure within a given warranty period, as this 

probability represents the proportion of field returns, which, in turn, is related to warranty 

cost. An early study dating back to Mi (1994b) considered this criterion under the assumption 

of bathtub failure rate. Mi (2003) extended the model to the case of eventually increasing 

failure rate. Instead of considering the overall failure rate, Kim and Kuo (2003) built a model 

by analyzing a system at component level to trace back sources of the assembly defects. Their 

model was further extended to different types of time-to-defect-failure distributions by Kim 

and Kuo (2005), and Kim and Kuo (2009). Besides the probability of failure, another 

performance index that is closely related to the warranty cost is the mean number of failures 

within warranty. This criterion was investigated by Mi (1994b) who assumed minimal repair 
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and bathtub failure rate. Cha and Finkelstein (2010b) revisited this criterion under the 

assumption of minimal repair and bimodal distribution. 

The above models were built by assuming a pre-specified warranty period. However, in 

addition to the burn-in duration, a manufacturer may also be interested in determining an 

optimal warranty period. This is especially true for newly developed products for which a 

norm for the warranty period has yet to be determined, or for second-hand products for which 

the warranty coverage is quite flexible and depends partly on other considerations of the 

manufacturer. Another scenario is when the designed-in reliability of a product has been 

greatly improved to the extent that a longer warranty period may be considered to provide a 

competitive advantage. In the literature, Kar and Nachlas (1997) treated burn-in and warranty 

strategies together and examined the possible benefits from this coordinated strategy. Wu et 

al. (2007) developed a cost model to determine the optimal burn-in time and warranty length 

for non-repairable products under the fully renewing combination free replacement and pro-

rata warranty policy. These two models are all cost-based. A problem associated with these 

models is that it is hard to determine the marginal benefit of prolonging the warranty period. 

Therefore, performance-based models that can be used to simultaneously determine the 

optimal burn-in duration and the optimal warranty period are desired.  

Moreover, all the above models have been restricted to the case of one-dimensional 

warranties, under which only the age is restricted. In contrast, not any effort has been found 

with regard to burn-in modeling under two-dimensional warranties (Ye et al. 2012b). Unlike 

the one-dimensional warranty, a two-dimensional warranty is characterized by a region in 

two dimensions with one axis representing age and the other usage. Such a warranty policy 

has received successful applications in many industries including automobile, locomotive 

traction motor, aircrafts and printers. Many products sold with two-dimensional warranties do 

have infant mortality, as well. For example, analyses of automobile warranty data by Attardi 
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et al. (2005), Rai and Singh (2006) and Majeske (2007) revealed that automobiles suffer from 

infant mortality, accounting for as high as 5.6% of the total failures. These reports justify the 

necessities and importance of burn-in for products sold with two-dimensional warranties. 

In addition, existing burn-in models commonly assumes single failure mode while this mode 

is subject to infant mortality. However, most products can fail due to one of a series of failure 

modes, or competing risks. A good real life example can be found in Meeker et al. (2009), 

where a newly designed product has 12 failure modes. Making use of the failure mode 

information is able to improve accuracy of both estimation and prediction (Hong and Meeker 

2010, pp. 150), and thus is important. In fact, there has been a bulk of literature on the 

research of competing risks. Suzuki et al. (2010) reported two competing failure modes, i.e., 

internal and surface cracks, in a load bending test for brittle materials. Liu and Tang (2010) 

developed accelerate life test (ALT) plans for products with independent competing risks. Ye 

et al. (2011b) proposed a system reliability model under dependent competing risks. Crowder 

(2001) provided a book-length treatment on competing risk modeling and estimation. 

 

2.2 Joint Burn-In and Preventive Maintenance Models 

When items with burn-in are put into field use, some rational preventive replacement (PM) 

strategies are often adopted to further improve the system availability and cut down field 

failure costs (Chen et al. 2011). For reviews of the literature on maintenance, see Wang (2002) 

and van Noortwijk (2009). Compared with making isolated burn-in and maintenance 

decisions, joint modeling of the burn-in procedure and the PM decision would be more cost-

effective, and thus has attracted many attentions. The first study on joint burn-in and 

maintenance modeling dates back to Mi (1994a). More specifically, he considered two 

scenarios, i.e., age replacement with complete repair upon failure, and block replacement 
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with minimal repair upon failure. Under these two scenarios, he proved that with the BTFR 

assumption, the optimal burn-in time is smaller than the first change point of the BTFR, 

while the optimal maintenance time is larger than the second change point of the BTFR. Cha 

(2000) showed that under age replacement, minimal repair is always economical than 

complete repair. Moreover, with age replacement and minimal repair, the optimal burn-in 

time is again smaller than the first change point while the optimal maintenance is again larger 

than the second change point of the BTFR. Cha  (2001, 2003) further extended the joint burn-

in and age replacement model to include two types of failures, i.e., Type I failure that can be 

minimally repaired and Type II failure that has to be completely repaired. Cha and Mi (2007) 

extended the models to the assumption of eventually increasing failure rate. 

All the above models focused on the overall failure rate of a product. On the other hand, 

some researchers built joint burn-in maintenance models based on the assumption that the 

population consists of two sub-populations, i.e., normal and weak. Drapella and Kosznik 

(2002) developed a software package to solve the optimal burn-in duration and maintenance 

intervals. Jiang and Jardine (2007) assumed two subpopulations and perfect repair, i.e., 

replacement upon failure, and derived the total costs of joint burn-in and maintenance under 

age replacement policy.  

It is noted that a common feature of these models is that they are all distribution-based in the 

sense that only the binary system state, i.e. working and failure, is observable. On the other 

hand, the rapid development of modern technology and the increasing efforts on process 

quality management have led to what is commonly referred to as highly reliable products. In 

fact, many devices are so well designed that it may need a long burn-in duration to fail a 

freaky unit even under highly accelerated environment, e.g., a light emitting diode (LED) 

product (Tseng and Peng 2004) and electronic devices (Ye et al. 2012e). The traditional 

failure-based burn-in approach is thus not effective. Compounded by the need to shorten the 



 

12 

time-to-market, engineers are faced with a difficult task of making the screening decision for 

a reliable product within an acceptable time frame. For these reliable products, there is often 

some quality characteristic that degrades over time and causes product failure when the 

degradation level exceeds some threshold. Cumulative degradations can often be measured 

through modern real-time diagnostic techniques. Moreover, the quality characteristic of a 

defective unit often degrades faster than a normal one, and thus can be effectively identified 

through degradation-based burn-in. These are some degradation-based burn-in models in the 

literature, e.g., Tseng and Tang (2001), Tseng et al. (2003), Tseng and Peng (2004) and Tsai et 

al. (2011). These models will be reviewed in the next section. However, degradation-based 

joint burn-in and preventive maintenance models are not found in literature and needs further 

investigation (Ye et al. 2012c). 

 

2.3 Other Burn-In Models 

Some other burn-in models do not belong to the above two categories. Objective functions of 

these models include maximizing the mean residual life (MRL) of a burnt-in unit, and 

minimizing the misclassification cost.  

The MRL is an important index in the literature of reliability engineering. The first paper on 

burn-in modeling owes to Watson and Wells (1961). This ground-breaking paper examined a 

couple of well-known distributions and found the conditions under which the MRL is greater 

than the original mean life. Following this idea, Lawrence (1966) derived sharp upper and 

lower bounds on the burn-in time to achieve a specified MRL, given that the product has 

decreasing failure rate. Mi (1993) considered the case of discrete failure. Mi (1995) showed 

that when a distribution has BTFR, the resultant MRL has an upside-down BTFR. Xie et al. 

(2004) further examined the associated relationship between change points of the failure rate 
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function and the MRL function. But none of these studies took the cost into account, 

notwithstanding the fact that burn-in is an expensive procedure. This motivates Weiss and 

Dishon (1971) to introduce a cost-based burn-in model by considering burn-in cost and gain 

due to improvement in the MRL. Mi (1996) further develop a similar model under the 

assumption of bathtub failure rate. Mi (1996)’s model was extended by a number of studies, 

including Cha (2005), Sheu and Chien (2004) and Cha and Finkelstein (2010b).  

Some other burn-in studies try to minimize the misclassification cost of a burn-in test. Tseng 

and Tang (2001) introduced a degradation-based burn-in model with the purpose of 

minimizing the burn-in cost plus the misspecification cost. The optimal cut-off degradation 

levels were determined. This model is further extended by Tseng et al. (2003) and Tseng and 

Peng (2004) based on variants of the Wiener process. On the other hand, based on the gamma 

process, Tsai et al. (2011) developed similar cost models and determined the optimal cut-off 

levels. Wu and Xie (2007) also developed a burn-in model to minimize the misspecification 

cost by means of the ROC curve.  
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CHAPTER 3 A BURN-IN SCHEME BASED ON 

PERCENTILES OF THE RESIDUAL LIFE  

3.1 Introduction 

As reviewed in Section 2.1, the optimal burn-in duration is often determined by minimizing 

the probability of failure within a given warranty period if there is an established norm for 

this period. On the other hand, a manufacturer might prefer to control the percentage of 

warranty return to make full use of the service facilities and personnel, as the investment in 

the after-sales service department has high fixed costs (e.g. purchase of the repair machine 

and employment of the after-sales personnel). But this percentage should not be so large that 

it exceeds the capacity of the after-sales service department. These examples emphasize the 

need for burn-in models that are able to simultaneously determine the optimal burn-in 

duration and an optimal warranty period during which the probability of failure can be 

controlled.  

In this chapter, we investigate a performance-based burn-in scheme for achieving the 

maximum allowable warranty period with a pre-specified field return probability. This is 

done by exploiting properties of the p-percentile function of the residual life (PRL-p function) 

when distributions exhibit a bathtub shape failure rate (BTFR). Block et al. (1999) showed 

that the PRL-p function may be an upside-down bathtub shape when the distribution has a 

BTFR. Therefore, given the percentile 100p, the change point at which the PRL-p function 

attains its maximum can be adopted as the burn-in duration. The associated PRL-p is the 

longest warranty period that fulfills a pre-specified reliability target.  

It is also noted that another commonly used measure in describing the lifetime of items is the 

mean residual life (MRL). However, this measure, although closely related to other 

performance measures, should not be directly used in a burn-in warranty problem. This is 
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because it is possible for a product to have a high MRL, while having some substantial subset 

of the population fail very early (cf. Coit and Smith 2002), e.g. if the lifetime distribution has 

heavy-tail property. Therefore, a high MRL does not necessarily imply low warranty claims 

and may not be a good criterion for risk-averse users.  

In the following, we define the PRL-p and outline some salient features of the change point 

of the PRL-p function in Section 3.2. The maximum likelihood estimators (MLEs) of the 

change points and the corresponding PRL-p, as well as their asymptotic distributions, are 

then derived in Section 3.3. Section 3.4 focuses on PRL-p functions of some generalized 

Weibull distributions with BTFRs and present the inference procedure for the modified 

Weibull extension proposed by Xie et al. (2002). Section 3.5 provides a numerical example to 

illustrate the estimation of jointly optimal burn-in duration and warranty period proposed in 

this study. The last section concludes the chapter.  

 

3.2 The p-Percentile Function of the Residual Life 

According to Joe and Proschan (1984), the p-percentile of the residual life (PRL-p)  pT t  is 

the 100pth percentile of the residual life given survival up to time t, which can be expressed as 

         inf 0 : 1pT t u R t u p R t     , (3.1) 

where R(∙) is the reliability function. When p = 0.5, the PRL-0.5 is the median residual life; 

while Tp(0) is exactly the percentile life of the product.  

Properties of the PRL-p have been explored in a number of studies, e.g. see Csörgö and 

Csörgö (1987), Jung et al. (2009) and Franco-Pereira et al. (2011) among others. The median 

residual life as a special case of the PRL-p has also received much attention, e.g. see Jeong et 

al. (2008) and Ma and Yin (2011), to name a few.  

Consider a continuous random variable. Denote by h(∙) and H(∙) the FR and cumulative 
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failure rate (CFR) functions, respectively. The reliability function R(∙) has a simple relation 

with the FR and CFR: 

        0
exp exp

t

R t H t h u du    . (3.2) 

When a distribution has a positive FR within its support, u in (3.1) achieves its minimum 

when the expression in the brackets is an equality. It follows that (3.1) can be simplified as  

       ln 1pH T t t H t p     . (3.3) 

When a distribution has BTFR, its PRL-p function turns out to be upside-down bathtub 

shaped in many cases. In the following, we focus on distributions with BTFR and discuss the 

conditions for the existence and the uniqueness of the change point of the PRL-p function. 

 

Proposition 3.1. Consider a distribution with continuous BTFR function  h t  and a PRL-p 

function  pT t . Let  1 0c h  and  2c h  .  

(a) If 1 2c c , then for any 0 1p  ,   * *,p p pt T t  is the unique solution of the following 

system of equations. 

 
      

    

ln 1p

p

H T t t H t p

h T t t h t

    

 
. (3.4) 

(b) If 1 2c c   , denote   1 1inf :t t h t c  . When   10 1 expp H t    ,   * *,p p pt T t  

is the unique solution of Equation (3.4); when   11 exp 1H t p    ,  pT t  is 

decreasing over  0, . 

Proof: We shall prove (b), as (a) can be deduced in a similar way.  

Suppose 1 2c c   . When   11 exp 1H t p    , if we can prove that     ph T t t h t   
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for any 0t  , then substituting this relation into Equation (3.8) yields 

  
 

  
1 0p

p

h td
T t

dt h t T t
  


.  

That is,  pT t  is decreasing over  0, , and thus the change point is 0. In the following, we 

shall show that   11 exp 1H t p     implies     ph T t t h t  .  

(i) Let  arg min h t  . From the definition of 1t , we have 1t  . This means that  h t  is 

increasing over  1,t  . Therefore,     ph T t t h t   when 1t t .  

(ii) When 1t t , the definition of t1 implies    1h t h t . The following relation 

 
      

           

1 1

1 1

1 exp 1 log 1

p p

H t p p H t

H T t t H t H t H T t t H t

       

      
  (3.5) 

implies that   1pT t t t  . Since 1t  , it follows that     1ph T t t h t  . This inequality, 

along with    1h t h t  when 1t t , yields the result that     ph T t t h t   when 1t t . 

Combining (i) and (ii) yields the desired result. 

When   10 1 expp H t    , by setting 
*

0

p

p

t t

dT

dt


 , we find that,   * *,p p pt T t  also 

satisfies  

     * * *

p p p ph T t t h t  . (3.6) 

Therefore,   * *,p p pt T t  is the solution of Equation (3.4).  

Uniqueness: Suppose   , pb T b  is another solution for this system of equations that differs 

from   * *,p p pt T t . Without loss of generality, suppose 
*

pb t . Since 
*

pt   (Block et al. 1999), 
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it follows from the definition of τ that    *

ph b h t . It then follows from the second equation 

of Equation (3.4) that      * *

p p p ph T b b h T t t   . Due to the fact that  h t  is decreasing 

over  0, , it is not possible to find an u,  ,u b  , such that    h b h u . Therefore, the 

second equation of Equation (3.4) also implies that both  pT b b  and  * *

p p pT t t  should be 

greater than  . Therefore,    * *

p p p pT b b T t t   . However, 

    

                 

      

* * * * * *

* * * ln 1

p

p p p p p p p p p

p p p p

H T b b H b

H T b b H T t t H T t t H t H t H b

H T t t H t p

 

        

     

.  

This results in a contradiction. A similar argument applies if we assume 
*

pb t . Thus, 

  * *,p p pt T t  is the unique solution of Equation (3.4).  

■ 

Essentially, Proposition 3.1 implies that when the FR function has a bathtub shape, there must 

be some p such that the corresponding PRL-p function has an upside-down bathtub shape. If 

the manufacturer allows for few warranty claims, i.e., a small p, a moderate duration of burn-

in would lead to a longer maximum allowable warranty period, as the PRL-p function is of 

upside-down bathtub shape. On the other hand if the manufacturer allows for more field 

return, burn-in is effective and economical only when the failure rate during infant mortality 

period is higher than that of the wear-out period.  

 

Proposition 3.2. Continue with Proposition 3.1. Both 
*

pt  and  *

p pT t  are continuous in p. 

Moreover, 
*

pt  is decreasing in p while  *

p pT t  is increasing in p.  
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Proof: Consider the case when 1 2c c   . From the definition of t2 we can see that 2 0t  . 

Suppose   
1

* *

1 1, pb T b  and   
2

* *

2 2, pb T b  are the change points and the corresponding PRL-p 

for 1p  and 2p , where 1 2p p .  

(i) When   1 1 21 exp 1H t p p     , Proposition 3.1(b) states that 
* *

1 2 0b b   and 

   
1 2

0 0p pT T . 

(ii) When   1 1 21 exp 1p H t p     , 
* *

2 10 b b  . Moreover, Equation (3.6) implies 

 
1

* *

1 1 1pT b b t  , while Equation (3.5) implies  
2 10pT t . Therefore,    

1 2

*

1 0p pT b T .  

(iii) When   1 2 10 1 expp p H t     , we have 

             
1 2

* * * * * *

1 1 1 1 2 2 2 2ln 1 ln 1p pp H T b b H b H T b b H b p           ,  

          
2 1

* * * * * *

2 2 2 1 1 1p ph T b b h b h b h T b b     .  

Because 
* *

1 2,b b   and    
2 1

* * * *

2 2 1 1,p pT b b T b b    , it follows that 
* *

1 2b b  and 

   
2 1

* * * *

2 2 1 1p pT b b T b b   . Thus,    
1 2

* *

1 2p pT b T b .  

For all the above cases, the continuity of  h  implies that when 1 2p p , 
* *

1 2b b  and 

   
1 2

* *

1 2p pT b T b . The scenario where 1 2c c  can be proven in a similar way. This 

establishes the proposition. 

■ 

Proposition 3.2 describes how the maximum PRL-p value  *

p pT t  and the corresponding 

change point 
*

pt  behave when p varies. Since 
*

pt  is decreasing in p while  *

p pT t  is increasing 

in p, it implies that as p decreases, the optimal burn-in duration increases. This is because 

more latent defects must be precipitated during burn-in to achieve a higher reliability; so a 
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longer burn-in duration is needed to improve the screening strength. On the other hand, if one 

allows for more field returns, the maximum allowable warranty period increases; i.e. 

 *

p pT t is an increasing function of p. This presents the trade-off between choice of the 

reliability target, the burn-in duration and the duration of warranty period. Further 

development of a product may be considered if, after some testing, the result indicates that 

the maximum allowable warranty period is too short for a pre-specified risk level. This 

motivates the next section that deals with parametric estimation. 

 

3.3 Parametric Inference and the Limiting Distribution 

Statistical inferences for this change point were first presented by Launer (1993), in which he 

proposed a graphical technique to compute the change point of the PRL-p function based on 

nonparametric estimate of the FR function. However, the proposed graphical method in 

Launer (1993), though intuitive, has some drawbacks: 

 There is no well-developed statistical theory for determining the small sample or 

asymptotic properties (Murthy et al. 2004).  

 For moderate data size, the nonparametric estimate of the FR function may not be 

stable enough to exhibit a bathtub shape, under which the graphical approach would 

fail.  

In adopting PRL-p as a burn-in criterion in the face of limited burn-in data, parametric 

inferences for change points of their PRL-p functions are essential to provide better estimates 

and to quantify the associated sampling risk. In view of the availability of a wide range of 

distributions with BTFRs, e.g. some generalized Weibull distributions reviewed by Murthy et 

al. (2004) and Pham and Lai (2007), we give the point and interval estimates for the change 

point and the associated maximum PRL-p, assuming that some of these distributions provide 
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a good fit to the test data. 

 

3.3.1 MLE for the Change Points 

Denote k  as the parameter space of the parametric BTFR distribution family F. The 

expression for the PRL-p function can be obtained by solving (3.3). We shall begin with the 

MLE ˆ
n  of the parameter vector  , where n is the sample size. By the invariance 

property of MLEs, we can substitute the estimated parameters ˆ
n  into the corresponding 

PRL-p function and then optimize the PRL-p function to obtain the MLE of 
*

pt .  

  * *

,
ˆˆ ˆ arg max ,n p n p n

t

t t T t   . (3.7) 

Substituting 
*

n̂t  and ˆ
n  into the PRL-p function yields the MLE of  *ˆ ˆ,p n nT t .  

 

3.3.2 Asymptotic Distributions 

After obtaining the MLEs 
*

n̂t  and  *ˆ ˆ,p n nT t for the change point and the associated 

maximum PRL-p, it is a common practice to construct a confidence interval for 
*

pt  and 

 *

p pT t . When the sample size is relatively large, the desired confidence intervals can be 

constructed via the asymptotic distribution of 
* *

n̂ pt t  and    * *ˆ ˆ,p n n p pT t T t  . The asymptotic 

results require that Tp(t) is differentiable. Checking the differentiability of Tp(t) is somewhat 

complicated. We find that this problem can be simplified to that of checking the continuity 

and differentiability of the FR function. Previously, some authors assumed both the continuity 

of h(t) and the differentiability of Tp(t), e.g. Theorem 3 in Joe and Proschan (1984) and 

Theorem 1 in Launer (1993). Here, we show in the following lemma that continuity of h(t) 
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implies differentially of the PRL-p function Tp(t).  

 

Lemma 3.1. Consider a distribution with support  0,W , 0 W  . When its FR  h   

exists and greater than 0  0,t W  , the PRL-p function  pT   is continuous within the 

support. Moreover, if  h   is continuous over  0,W ,  pT   is differentiable with derivative  

  
 

  
1p

p

h td
T t

dt h t T t
 


. (3.8) 

Proof: When  h t  exists and is greater than 0,  R   is continuous and is strictly decreasing 

over  0,W . Therefore,  1R   is also continuous and strictly decreasing over  0,W . By 

applying these results and re-writing Equation (3.3) as  

       1 1pT t R p R t t   , (3.9) 

the continuity of  pT   can be readily obtained. 

If, in addition,  h t  is continuous, then  R t  is differentiable and its derivative  f t  is not 

equal to 0. Therefore,  1R t
 is differentiable at t, and thus  pT t . Differentiating Equation 

(3.9) w.r.t. t yields 

 
   

     
     

         1 11

1 1
1 1

1 11
p

p f t p h t R td
T t

dt h R p R t R R p R tf R p R t
 

 
   

         
.  

Since   1R R u u   and       1 pp R t R T t t   , the above equation can be simplified to 

Equation (3.8). 

 ■ 

Equation (3.8) has also been derived by Joe and Proschan (1984), but we derive it in a 

different way and under milder conditions. More importantly, Our results also indicate that 
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the differentiability of Tp(t) w.r.t. t depends only on the continuity of h(t), while the existence 

of its (n+1)st order derivative depends on the nth order differentiability of h(t). This result is 

very useful in checking the conditions in the asymptotic theorem. The conditions for 

Theorem 3.1 are stated as follows. 

Conditions 

(1) The MLE ˆ
n  is a best asymptotically normal (BAN) estimator of Θ, i.e. 

    1ˆ 0,L

nn N I     , where  I   is the Fisher information matrix. 

(2)  ,pT t  is upside-down bathtub-shaped and  * * 0p pt t   . 

(3) The first three order partial derivatives of  ,pT t  w.r.t. t, denoted by 

       
2

2
, , , , ,p pg t T t g t T t

t t

 
     

 
 and    

3

3
, ,pg t T t

t


   


 exist. In 

addition,  ,g t   is continuous in Θ. 

(4) The partial derivative of  ,g t  w.r.t. Θ, denoted by    , ,C t g t


  


, is 

continuous in t. 

BAN properties of ˆ
n  for BTFR distributions, although not the focus of this chapter, have 

been well established in theory or by simulation, e.g. see Gupta and Kundu (2001) for the 

exponentiated Weibull, Tang et al. (2003) for the modified Weibull extension and Bebbington 

et al. (2008) for the modified Weibull distribution. For the BTFR distributions reviewed by 

Pham and Lai (2007), we can verify that the differentiability of  ,g t  is also reasonable. 

Moreover, by applying Lemma 3.1, checking the differentiability of  ,g t  simplifies to 

verifying differentiability of the FR function. These results justify Conditions (1), (3) and (4). 

The asymptotic distributions are given in the following theorem. 
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Theorem 3.1. Suppose that conditions (1)-(4) hold. 

 The asymptotic distribution of  * *

n̂ pn t t , as n , is normal with mean zero and 

variance 
     

 

* 1 *

2
*

, ,

,

T

p p

p

C t I C t

g t

  

  
 

, i.e. 

  
     

 

* 1 *

* *

2
*

, ,
ˆ 0,

,

T

p pL

n p

p

C t I C t
n t t N

g t

 
    

    
  

. (3.10) 

 Denote  
 ,

,
pT t

B t
 

 


. The asymptotic distribution of 

   * *ˆ ˆ, ,p p p n nn T t T t   
 

 is normal with mean zero and variance 

     * 1 *, ,T

p pB t I B t   , i.e. 

           * * * 1 *ˆ ˆ, , 0, , ,L T

p n n p p p pn T t T t N B t I B t       
 

 (3.11) 

Proof: Note that  

   * max , , 0p pt T t t    and   * ˆˆ max , , 0n p nt T t t   .  

Based on Condition (2), we know that for sufficiently large n, 

  *, 0pg t  , 
* 0pt   and  *ˆ ˆ, 0n ng t  , 

*ˆ 0nt  .  

The first order Taylor series expansion with Cauchy form for the remainder is as follows. 

               * * * * * * * * * *

2
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ0 , , , , , ,n n n p n n n p n p n p n p n pg t g t g t g t g t g t t t R t t                  

    

Note that for some  , 
* * *ˆ
p n pt t t    , 2R  satisfies  

         * * * * * *

2

1 1ˆ ˆ ˆˆ ˆ, sup , , :
2 2

n p n n n p n pR t t g g u g t u t t             .  
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Re-arranging this equation yields 

        * * * * * *

2
ˆ ˆ ˆ ˆ, ,n p n p n p n png t g t n t t R n t t         .  

We shall look at each term in this equation. 

The existence of the partial derivative of  ,g t  w.r.t.   indicates that  ,g t  is 

continuous in Θ. Therefore, 

            * * * * 1 *ˆ ˆ, , , 0, , ,L T

n n p p p png t n g t g t N C t I C t         
 

.  

Condition (3) implies that 

           * * * * *ˆ ˆ, , , , ,p

n p p n p p pg t g t g t g t g t             .  

Because  ,g t   exists,  ,g t   is a continuous function of t. We have  

     * * * *ˆ ˆ ˆsup , , : 0p

n n p p n pg u g t u t t t        .  

By Slutsky’s theorem, we therefore have the following asymptotic property 

           * * * * 1 *ˆ, 0, , ,L T

p n p p pg t n t t N C t I C t        .  

Re-arranging this asymptotic equation yields Equation (3.10). 

To prove Equation (3.11), rewrite    * *ˆ ˆ, ,p p p n nn T t T t   
 

 as follows. 

           * * * * * *ˆ ˆˆ ˆ ˆ ˆ, , , , , ,p p p n n p p p n p n p n nn T t T t n T t T t n T t T t              
      (a6) 

We shall examine each term in the right-hand side. Condition (4) ensures that  ,B t  exists 

and is continuous in t. Writing in the first order Taylor series expansion with Peano’s 

remainder term and using the fact that 
*

n̂t  is a consistent estimator, we have 
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* * *

* 1 *

ˆ ˆ ˆˆ ˆ ˆ, , ,

                                           0, , ,

p n p n n n n n

L T

p p

n T t T t B t n o n

N B t I B t

        
 

   
.  

On the other hand, from Equation (3.10) and the Slutsky’s theorem, we have 

          * * * * * * *ˆ ˆ ˆ, , , 0p

p p p n p p n p nn T t T t g t n t t o n t t           
    .  

Substituting these results into Equation (a6) yields Equation (3.11). 

■ 

Since 
*

n̂t , ˆ
n  and the observed information matrix  ˆ

obs nI   are respectively consistent 

estimators of 
*

pt ,   and  n I  , we can substitute them into the asymptotic variances to 

obtain the “observed variances”. The asymptotic results based on these observed variances 

still hold because based on Conditions (3) and (4), g  and C are continuous in neighborhoods 

of their supports, respectively. The observed variances simplify computation of the 

confidence intervals, and often there are also theoretical reasons to prefer them (e.g. Lindsay 

and Li 1997).  

Given Θ and p, the exact values of  *

p pT t  and 
*

pt  can be computed and used as the warranty 

period and the burn-in duration, respectively. In practice, Θ is estimated from test data. To 

account for the sampling risk, the one-sided lower confidence limit of  *

p pT t  can be used for 

the warranty period to ensure that the average warranty return is not higher than a given 

probability, while the upper confidence limit of 
*

pt  is suggested as the burn-in duration to 

protect against insufficient screening strength. When the sample size is extremely small, 

confidence intervals based on large sample normal approximation may not work well. Under 

this scenario, the bootstrap method is recommended by some authors (e.g., Efron and 

Tibshirani 1993). 
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The expressions of the asymptotic distributions (3.10) and (3.11) depend on specific forms of 

the BTFR distributions. In the next section, we investigate the PRL-p functions of some 

generalized Weibull distributions, and derive the corresponding asymptotic distributions for 

the modified Weibull extension based on Theorem 3.1. 

 

3.4 Application to Some Generalized Weibull Models with BTFR 

In the last two decades, many simple but yet useful distributions with BTFR functions have 

been proposed and studied in-depth in the literature, e.g. the exponentiated Weibull 

(Mudholkar et al. 1995), the modified Weibull extension (Xie et al. 2002) and the modified 

Weibull distribution (Lai et al. 2003). The PRL-p functions for these distributions have closed 

form expressions.  

 

3.4.1 PRL-p Functions for Some Generalized Weibull Models 

Table 3.1 lists the PRL-p functions of some generalized Weibull distributions. The conditions 

under which these distributions have BTFR can be found from Pham and Lai (2007) or from 

papers cited in the first column of Table 3.1. The change points of these PRL-p functions can 

be readily computed through simple search algorithms. Note that Ψ(∙) for the Modified 

Weibull distribution denotes the Lambert-W function, which is the inverse function of  

    expg x x x .  

Based on Equation (3.8), it is straightforward, although tedious, to verify that the required 

conditions (2)-(4) are satisfied for these distributions when their PRL-p functions have 

upside-down bathtub shapes. Nevertheless, the methods developed in this study are also 

applicable to other BTFR distributions if we can verify that Condition (1)-(4) are met. To 

demonstrate the applicability of Theorem 3.1, we analyze the modified Weibull extension in-
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depth. Other distributions can be analyzed in a similar way. 

 

Table 3.1. PRL-p functions for some generalized Weibull models 

Distributions Reliability function PRL-p function 
Exponential power model 

(Smith and Bain 1975)  exp 1 exp t        
1/

ln exp ln 1t p
t






       
  

 

Modified Weibull 

distribution (Lai et al. 2003) 
  exp expbat t  

1/
ln(1 )

exp( )

b

bb b p
t t t

a


 

  
       

 

Two-parameter model 

(Chen 2000)   exp exp 1t   
 

 
 

 
1/

ln 1
ln exp

p
t t







   
   

   

 

Modified Weibull extension 

(Xie et al. 2002) exp exp 1
t






     
            

  
1/

ln 1
ln exp

pt
t





 

      
            

 

Generalized power Weibull 

(Bagdonavicius and Nikulin 

2002) 

  exp 1 / 1t





  
      

 

    

1/
1/

1 / ln 1 1t p t





 
   

         
 

Exponentiated Weibull 

(Mudholkar et al. 1995)   1 1 exp /t



   

 
      

1/
1/

ln 1 1 1 exp /p t p t





 
     
         

     

 

 

 

3.4.2 The Case of The Modified Weibull Extension 

The PDF and the FR function of the modified Weibull extension are 

      
1

/ exp / exp exp 1
t

f t t t


 

   



                     

, (3.12) 

 
1

exp
t t

h t

 


 

     
     

     
. 

When β < 1, this distribution has a BTFR (Xie et al. 2002). Therefore, 

  , , : , 0;  0 1          . Figure 3.1 depicts some FR functions and the 

corresponding PRL-0.01 functions for λ = 0.05, β = 0.5 and  = 1, 2, 3.  
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Figure 3.1. Typical PRL-p (upside-down bathtub) and FR (bathtub) curves with extreme points for 

modified Weibull extension distribution (λ = 0.05, β = 0.5, p = 0.01) 

 

Define 

 ln 1
exp

pt


 

   
       

. 

From Table 3.1, the PRL-p function is given by 

   
1/

, lnpT t t


    . 

In order to obtain the asymptotic variances of    * *ˆ ˆ, ,p n n p pn T t T t   
 

 and  * *

n̂ pn t t , 

we need to derive explicit expressions for  ,B t ,  ,C t ,  ,g t ,  ,g t   and the Fisher 

information matrix  I   in Equations (3.10) and (3.11). The Fisher information matrix for 
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this distribution has been derived in Tang et al. (2003) under general Type-II censoring. 

Define x
x


 


 and 

2

xy
x y

 
 

 
, where x and y can be either α, β, λ or t. The formulas for 

x  and xy  can be directly computed. Expressions for the first order derivatives are given by 

 

 

1

2

2

exp

ln 1
exp

exp ln

ln 1

t

t t

p t t

t t t

p

 

 



 







  



   

  

 

     
           

     
            

      
               


 

. 

Based on the first order derivatives, the second order derivatives can be readily obtained. 

 

 

2 21

2

2 12 1 2

1 2

1 1

1
exp exp

exp exp

ln /
exp

tt
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2 1

exp ln

0t
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Then,  ,g t  and  ,g t   can be obtained as 

    
1/ 1

, ln 1tg t





   


,  

    
 

 
2 2

1/ 1 1/ 2

2 2 2

1
, ln lntt t tg t

  

 

   
     

 
.  

We write    , , ,B t B B B    , where the entries are given by 
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1/ 1/ 1

ln lnB
 








   


,   

  
 

 
1/ 1 1/

2

ln ln
ln lnB

 



 

 

 
   


,  

  
1/ 1

lnB









 


.  

Similarly, we can derive the expressions for    , , ,C t C C C     as  

  
 

 
1/ 1 1/ 2

2 2 2

1
ln ln

tt t tC
  



  

 

       
   

 
,  

 
   

     1/ 1 1/ 2

2 2 2

1 ln ln ln
ln ln

t t tC
   



   

  

          
     

   
,  

  
 

 
1/ 1 1/ 2

2 2 2

1
ln ln

tt tC
  



 

 

     
   

 
.  

After ˆ
n  and 

*

n̂t  are estimated, substituting the above results into Equations (3.10) and (3.11) 

yields the observed variances. Note that  ,B t  and  ,g t  are gradients of  ,pT t , while 

 ,g t   and  ,C t  are gradients of  ,g t . Alternatively, their numerical values can be 

easily computed from some software packages, e.g. the GRADIENT function in Matlab®. 

 

3.5 An Illustrative Example 

To illustrate some of the above results, the car engine failure data from Xie and Lai (1996) 

are used for demonstration. A motor company developed a new engine for its cars. To assess 

the reliability of this engine, 311 units are subject to test during a unit testing phase. Failures 

of the units are intermittently inspected until all units are failed. The time scale used 

throughout this example is the accumulated mileage in thousands of kilometers (×103 km). 

For confidentiality reasons, the data have been scaled. The group censoring data are given in 
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Table 3.2.  

 

Table 3.2. Lifetime data for a group of 311 units of a new engine 

Time interval 1 2 3 4 5 6 7 8 9 

No. of failures 53 29 29 36 13 25 22 16 18 

Time interval 10 11 12 13 14 15 16 17 18 

No. of failures 8 22 11 13 5 5 4 1 1 

 

As can be seen from Table 3.2, there are a substantial number of early failures for this product. 

This is why in practice, most engines should go through a diagnostic test after assembly. Xie 

and Lai (1996) had shown that the estimated FR is bathtub-shaped. However, due to the 

problem of limited data, standard errors for the estimated FRs are rather large. Analysis based 

on the estimated FRs should be tentative. Therefore, large estimation error is expected when 

applying the graphical method proposed by Launer (1993). In this section, we shall use 

parametric methods to analyze this dataset and estimate the change points of the PRL-p 

functions. 

In order to specify a best-fit distribution for this dataset, we apply the Kaplan-Meier (KM) 

method, the modified Weibull distribution (MWD), the modified Weibull extension (MWE) 

and the generalized power Weibull (GPW) to fit the data. The reliability functions of these 

distributions can be found in Table 3.1. The estimated CDF by using these methods are 

compared in Figure 3.2.  
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Figure 3.2. The estimated CDF by the Kaplan-Meier (KM) method, the modified Weibull distribution 

(MWD), the modified Weibull extension (MWE) and the generalized power Weibull (GPW) 

 

It is clear from Figure 3.2 that all three models fit the data well. For illustrative purpose, the 

modified Weibull extension is chosen in the following analysis. The distribution of the 

modified Weibull extension is given by (3.12). MLEs of the parameters and the associated 

standard error are respectively given by 

 ̂  = 2.412 (2.48), ̂  =0.593 (0.16), ̂  = 0.0835 (0.009).  

To demonstrate the goodness of fit, the empirical FR and the estimated FR are depicted in 

Figure 3.3. It can be seen that these two FR curves tally reasonably well. 

 

 

Figure 3.3. The empirical failure rate and the estimated failure rate by using the modified Weibull 

extension 
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MLEs for change points of the PRL-p function and the corresponding PRL-p can be readily 

computed. The confidence intervals for the change points and the corresponding PRL-p can 

be constructed based on the asymptotic distributions (3.10) and (3.11) or using the 

parametric/nonparametric bootstrap methods. The asymptotic variances can be computed 

based on the results in the previous section. Numerical value of the hessian matrix, which is 

the inverse of the fisher information matrix for these parameters, is directly provided by the 

software, and is used for computing these asymptotic variances. For the parametric bootstrap, 

1,000 bootstrap samples are generated. The results are visualized in Figure 3.4.  

 

 

Figure 3.4. The MLE and 90% confidence bands for 
*

pt  and  *,p pT t  under different values of p: 

The bold line is for point estimation, the dash lines are for the parametric bootstrap confidence band 

and the lines with circles are for confidence band based on asymptotic distributions. 

 

Figure 3.4 shows the estimated change points of the PRL-p function for different values of p 

and the 90% confidence bands using the asymptotic result given by Equations (3.10) and 

(3.11), as well as the confidence bands using parametric bootstrapping method. We can see 

that the estimated 
*

,
ˆ

p nt  is decreasing in p, while the corresponding maximum PRL-p is 

increasing in p, which is concordant with Proposition 3.2. The confidence bands based on 

these two approaches agree quite well, although the asymptotic method tends to yield a 
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slightly narrower band. This is reasonable as the asymptotic variances are expected to be 

lower bounds for variances of the estimators. This example indicates that the asymptotic 

distribution in Theorem 3.1 is accurate enough for constructing the confidence intervals. 

Construction of confidence intervals based on the asymptotic method requires much less 

computation time compared with the bootstrapping method, and is thus recommended. 

With the previous results, various combinations of   * *,p p pt T t  versus different values of p 

are calculated and presented in Table 3.3. Here we choose *

pt  to be the 90% upper confidence 

limit of 
*

,
ˆ

p nt  and  *

p pT t  be the 90% lower limit of  *

,
ˆ ˆ,p n p nT t . 

 

Table 3.3. The estimated change points and the corresponding RPL-p for different values of p 

p  0.01 0.05 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.2 

 *

p pT t  
 
0.070 0.36 0.51 0.58 0.66 0.73 0.81 0.89 0.97 1.05 1.23 1.54 

*

pt   
1.46 1.32 1.25 1.22 1.19 1.16 1.12 1.09 1.06 1.03 1.00 0.85 

 

The combinations of   * *,p p pt T t  in Table 3.3 provide the manufacturers with a number of 

choices, which is not possible if the burn-in criteria were solely based on probability of 

failure or mean number of failures. When the estimated maximum PRL-p is used as the 

maximum allowable warranty period, the proportion of field returns is known, and thus the 

users’ risk is controllable. After the related costs are estimated, the manufacturer may choose 

the preferred combination of the conservative burn-in duration *

pt  and the warranty period 

 *

p pT t  from Table 3.3. Note that even though the burn-in duration provided by Table 3.3 

appears to be quite long, in practice, the operational burn-in duration could be shortened 

under accelerated test environments. 
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3.6 Conclusions 

Motivated by the need for simultaneous determination of burn-in duration and warranty 

period, this chapter investigated a burn-in criterion based on the PRL-p function. It was 

shown that the PRL-p function is either decreasing or upside-down bathtub shaped for 

distributions having BTFRs. This gives rise to a natural way to control the proportion of 

warranty claims when the burn-in duration is set to the change point of the PRL-p function, 

as it attains the maximum value corresponding to the maximum allowable warranty period. 

Such an approach has advantages over the conventional ones as it provides a set of choices 

for the warranty period and the associated burn-in duration by varying the pre-specified 

proportion of warranty returns. The conditions under which the change point exists and the 

properties of this change point were investigated in depth. Notably, the change point is 

decreasing in p while the associated PRL-p is increasing in p, which indicates a trade-off 

between screening strength of the burn-in process, the reliability target and the warranty 

duration. Asymptotic distributions for MLEs of the change point of the PRL-p function and 

its corresponding maximum were established. The results were applied to some generalized 

Weibull models with BTFRs, and a numerical example was given for the modified Weibull 

extension.  
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CHAPTER 4 BURN-IN FOR PRODUCTS WITH A 

TWO-DIMENSIONAL WARRANTY  

4.1 Introduction 

As reviewed in the Chapter 2, the literature of burn-in modeling has focused on failures 

indexed by a single time scale. Generally speaking, these models can be classified into three 

classes. The first one is due to Kim and Kuo (2003, 2005, 2009, 2011), who analyzed a 

system at the component level and traced back all defects, i.e., component defects, 

component connection defects and series connection defects. The second class models the 

overall failure process with a bathtub failure rate assumption (e.g., Mi 1996, Cha 2001, Sheu 

and Chien 2005) or an eventually increasing failure rate assumption (e.g., Mi 2003, Cha 

2006). The third class uses the bimodal distribution (e.g., Tseng and Peng 2004, Jiang and 

Jardine 2007, Cha and Finkelstein 2010b), which is more appropriate for non-repairable 

systems. The first class may not be suitable for complex systems sold with two-dimensional 

warranties, because a complex system, e.g., a car, contains thousands of different components. 

The defect rate for each component is almost impossible to estimate. The second class is also 

not appropriate for complex systems, because a complex system with infant mortality has at 

least two failure modes, i.e., aging failures and defect failures, each having different 

accelerated coefficients (c.f. Hong et al. 2009). In addition, all the existing burn-in models 

did not take the heterogeneous customer usage behavior into account. It is not uncommon to 

observe that for products sold with a one-dimensional warranty, e.g., laptops, cell phones, 

washing machines, etc., different users would have different usage rates. Ignorance of this 

fact will lead to an inferior burn-in decision and inaccurate cost estimation. More importantly, 

all these models did not deal with failures indexed by two time scales. For products sold with 

a two-dimensional warranty, failures need to be modeled as points in a two-dimensional plane 
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with the two-axis representing age and usage. In terms of the ways that failure rate of an item 

is modeled, three different approaches have been used to model the two-dimensional failure 

processes (Jack et al. 2009), i.e., one-dimensional approach, two-dimensional approach and 

composite scale approach. These approaches differ from the current burn-in modeling 

techniques that focused on a single time scale. 

This chapter thus introduces a new modeling approach by focusing on two types of failures. 

The normal failures are inherent due to product aging. By assuming minimal repair with 

repair time insignificant, normal failures are modeled as a non-homogeneous Poisson process 

(NHPP). The second type is defect failures due to latent defects such as cavities in the 

welding spots, electrostatic discharge in some components, component defects due to 

assembly errors, faults in the software, incompatibility issues, etc. When these kinds of 

defects surface as failures, it is reasonable to assume that they would be perfectly removed 

with some rectification efforts. Parallel to the research in software reliability (Xie 1991), the 

number of latent defects is modeled as a random variable. This modeling approach can be 

regarded as a compromise between the approach developed by Kim and Kuo (2003, 2005, 

2009, 2011) and the bathtub failure rate approach, and has a number of merits. 

 Many organizations adopt a modular approach to reuse proven modules in subsequent 

products (Turner 2010). Infant mortality rates for these modules, rather than a single 

component or the new product, are available from past experiences and data. 

 Normal failures and defect failures have different accelerated relationship with respect 

to the usage rate, which can be easily reflected in our modeling approach. 

 It can be extended to distinguish between different sources of latent defects, e.g. 

defects from software and hardware. 

 Most previous models cannot yield the screening strength, which is a widely-used 
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index in industrial burn-in procedure. However, this index can be easily determined in 

our formulation. 

Effects of usage rate on both failures are modeled by the accelerated failure time (AFT) 

model with different accelerated relationships. Based on these settings, the mean number of 

warranty claims and the expected total cost per burnt-in item can be computed by taking the 

consumer usage heterogeneity into consideration, after which both performance and cost-

based burn-in models can be developed. In both models, there are two decision variables, i.e., 

burn-in duration and burn-in usage rate. It should be noted that the burn-in usage rate need 

not be always as high as possible, because the usage rate affects the burn-in costs, and it has 

different effects on the normal failure process and the defect failures.  

In this chapter, necessary conditions under which the optimal burn-in usage rate should be as 

high as possible are investigated. The remainder of the chapter is organized as follows. 

Section 4.2 states the problem and presents the notations and model formulation. In Section 

4.3, two burn-in models are developed and analyzed in detail. A numerical example is used to 

demonstrate our results in Section 4.4. Section 4.5 concludes the chapter. 

 

4.2 Model Formulation 

4.2.1 Modeling Customer Usage Rates and Product Failures 

To model the failure, we use the one-dimensional approach where the usage rate is treated as 

a covariate, conditioning on which the two-dimensional failure process is effectively reduced 

to a one-dimensional one. To apply this approach, an assumption adopted here is that usage 

rate over time is constant for each customer and it varies across the customer population. Let 

Z be the random usage rate, Ψ(z) be the cumulative distribution function (CDF) of Z, and z be 

a realization of Z. Further assume the manufacturer knows this distribution, either through 
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information of previous vintages of products, or from a customer survey.  

Two types of failures are considered. When there are no defects or faults, failures in a system 

are inherent, occurring over time due to aging, and are determined by the design decisions, 

which are called normal failures here. The other type is defect failures due to defects in 

hardware and faults in software. The number of defects in the system is modeled by a random 

variable M with probability mass function    . All defect failure times are assumed to be 

statistically independent and identical. For an item designed for some nominal usage rate z0, 

the normal failure has a non-decreasing failure rate  0

n t ; while for a specific defect, the 

time till it surfaces is denoted by 0

dT  with CDF  0

dF t . It is assumed that during both burn-in 

and field use, all normal failures are minimally repaired and all defect failures are perfectly 

repaired. As such, normal failures occur according to a non-homogeneous Poisson process 

(NHPP) with rate of occurrence of failure (ROCOF)  0

n t ; while a defect failure is perfectly 

removed through rectification action, resulting in the number of defects remaining getting 

reduced by one. 

When the item is sold to a customer with usage rate Z = z, the normal failure has ROCOF 

 n

z t  whilst the time till a defect surfaces is 
d

zT . The effects of usage rate on both types of 

failures are modeled through the accelerated failure time (AFT) approach (Nelson 1990, 

Lawless et al. 2009) as: 

       0 0 0/ /n n

z t z z t z z
 

    and  0 0 /d d

zT T z z


, (4.1) 

where γ and η are two accelerated coefficients.  

 

4.2.2 Burn-In 

In practice, burn-in should be carried out at some usage rate zb. In addition, the duration τ of 
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burn-in is another decision variable. Both these two decision variables would affect costs, 

normal failures and defect failures, and thus should be included in the models and optimally 

determined. 

Total burn-in costs per unit  ,b bC z  include fixed set-up cost cf, burn-in operational cost 

 ,op bc z  and cost of repair. The operational cost  ,op bc z  should be proportional to the 

burn-in duration τ whilst increasing in zb. This cost can be expressed as  

    0,op b bc z c z   , (4.2) 

where c0 is a coefficient and  bz  is an increasing function of zb. The costs of repairing 

defect and usage related failures are often different. However, comparing with the additional 

costs of servicing a warranty claim, the difference may be ignored. We assume that the repair 

cost for each failure during burn-in is cr regardless of the types of failures. 

Burn-in has significant effects on both types of failures. For an item that just finishes burn-in, 

we introduce the virtual age 0

n  under the nominal rate z0 for the normal failure process and 

the virtual age 0

d  for a remaining defect (see Huang and Yen 2009 for this concept). It means 

that running the normal failure process under rate zb with duration b is equivalent to running 

it under rate z0 with duration 0

n , and the same for the defect failures. The number of 

remaining defects after burn-in is denoted by K. The purpose of burn-in is to make K as small 

as possible. 

If a burnt-in item is used at nominal rate z0, to simplify the notation, we use  0

nG t  for the 

CDF of first normal failure during field use and  0

n t  the failure rate associated with  0

nG t , 

where t = 0 at the outset of field operation. If it is sold to a user with rate z, the CDF and 

failure rate for the first field failure are given by  n

zG t  and  n

z t , respectively. Because 
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minimal repair has been assumed for normal failures, normal failures under field operation 

occur according to an NHPP with ROCOF given by  n

z t . Similarly, distribution for the 

time to detect a remaining defect is given by  0

dG t  if used under z0. If used at usage rate z 

the distribution is given by  d

zG t .  

 

4.2.3 Warranty Policy and Burn-In Criteria 

There are some different types of two-dimensional warranty policies and different shapes for 

the warranty region in the literature, e.g. the triangle, the rectangle, the L-shape, etc. (Murthy 

and Blischke 2006). The non-renewing free repair warranty (FRW) policy is considered here, 

as it is suitable for expensive items, which is usually indeed so for items sold with two-

dimensional warranty. In addition, we confine to the rectangular warranty region, as most 

two-dimensional warranties are of this shape. Let W and U be respectively the age and usage 

limits. Then the warranty period Wz conditional on rate z is given by 

,         / ;

/ ,     / .
z

W z U W
W

U z z U W


 


 

Under this warranty policy, the number of warranty claims  ,w bN z  for a burnt-in unit sold 

to a random user is a random variable. It depends on the number of remaining defects, the 

normal failures and the usage rate distribution of customers. It is perceived as a signal of 

product quality by consumers, and thus the first criterion is to minimize the expected 

warranty claims given by 

    1 , ,b w bJ z E N z     , (4.3) 

subjected to the constraints  

 b bz z  and   . (4.4) 
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bz  is the upper limit for the burn-in usage rate while   is the possible time constraint 

imposed on the burn-in duration. An upper limit for the burn-in usage rate is necessary, as 

extremely high usage rate would cause some extraneous failure modes that would never 

occur at use levels (Nelson 1990, pp.38). An upper limit for τ is necessary since long burn-in 

duration prolongs the time-to-market.  

Offering such a warranty also incurs warranty costs, which depend on  ,w bN z  and the 

warranty repair cost. When a warranty failure occurs, the cost includes the regular repair cost 

cr, and an additional cost ca due to additional handling and administrative costs. Therefore, 

the total cost to rectify a warranty failure is cr+ca. The expected total costs  ,t bC z  for a 

unit include both burn-in costs and warranty costs. The expected costs tell the manufacturer 

how much money that should be put into reserve to meet the burn-in expense and the future 

claims, and is extremely important for accounting purpose. Therefore, the second criterion is 

to minimize the per unit expected total cost  

  2( , ) ,b t bJ z E C z     , (4.5) 

subjected to the constraints given by (4.4). 

 

4.3 Model Analysis and Optimization 

4.3.1 Failures during Burn-In 

Under burn-in usage rate zb and the assumption of minimal repair, the normal failures 

constitute an NHPP with ROCOF 

       0 0 0/ /n n

b b bt z z t z z 
 

  .  

Therefore, the number of normal failures during burn-in is Poisson distributed with mean 

number of occurrence  
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0

,n n

b b bE N z t du    


  . (4.6) 

Under zb, the distribution of the defect failure time 
d

bT  is linked to  0

dF t  via (4.1) as 

     0 0/d d

b bF t F t z z


.  

Consider a specific defect. The probability that it is detected within burn-in is 

    0 0

d d d

bF F  . (4.7) 

There are M identical and independent defects in the item. Failures due to defects can be 

described by a binomial process with M trials, each with success probability given by (4.7). 

Conditional on M, The number of defects detected during burn-in follows a binomial 

distribution with mean value 

    0 0, |d d d

b bE N z M M F      . (4.8) 

Here M is a random variable. Integrating it out of (4.8) yields  

      0 0,d d d

b bE N z F E M      . (4.9) 

The screening strength (SS) is defined to be the proportion of defects detected during the 

burn-in test as 

  
 

 0 0

,
, |

d

b b d d

b

N z
SS z E E M F

M

   
   

   


  . (4.10) 

This is an important index in industrial practice. A practical burn-in plan usually requires the 

screening strength to exceed some bottom line. However, it cannot be determined through 

existing burn-in models based on bathtub characterization. Our method is able to give a 

simple expression for the screening strength. 

The number of burn-in failures includes both normal and defect failures, its expected value is 

given by 



 

45 

      , , ,d n

b b b b b bE N z E N z E N z             . (4.11) 

 

4.3.2 Failures under Warranty  

Normal failures 

According to (4.1), after burn-in, the virtual age of the normal failure process under z0 is 

  0 0/n

bz z 


  . (4.12) 

Under z0, normal failures during field use constitute an NHPP due to the minimal repair 

assumption. The associated failure rate is  0 0

n nt  . In practice, the usage rate is uncertain. 

To obtain the expected number of normal failures within warranty, we use conditional 

approach by first conditional on the usage rate and then obtaining unconditioned results. 

Conditional on Z = z, the normal failure rate is given by (Nelson 1990) 

    0 0 0 0/ /n nz z t z z
 
  . The number of normal failures within the warranty region is a 

Poisson variable with mean number of occurrence 

       0 0 0 0

0

| , / /
zW

n n n

w z bE N W z z z t z z du
 

        . (4.13) 

The final mean number of normal failures is obtained by un-conditioning, i.e., by taking 

expectation of (4.13) with respect to the usage rate: 

      
0

, | ,n n

w b w z bE N z E N W z d z 


        . (4.14) 

Defect failures 

Consider a specific remaining defect under nominal rate z0. According to (4.1), virtual age of 

this remaining defect right after burn-in is  0 0/d

bz z 


  . The distribution for time to 
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detect this remaining defect is given by  

  
   

 
0 0 0 0

0

0 01

d d d d

d

d d

F t F
G t

F

 




 


.  

If used at rate z, the distribution function for this defect failure is given by  d

zG t . This 

distribution is linked to  0

dG t  through  

     0 0/d d

zG t G t z z


.  

This defect either gets detected during the warranty period or after warranty expiry. The 

probability that it would be detected during the warranty period is  

     0 0/d d

z z zG W G W z z


. (4.15) 

Totally K remaining defects are released to the user and K is a random variable. Given M, K 

follows a binomial distribution as  

     0 0| ~ ,1 d dK M Bi M F  . (4.16) 

The unconditional distribution of K can be obtained by taking expectation of (4.16) with 

respect to M. Conditional on K, the numbers of defect failures during the warranty period and 

after warranty expiry respectively follow binomial distributions as 

   , d

z zBi K G W  and   ,1 d

z zBi K G W . (4.17) 

The conditional mean number of defect failures during warranty is thus given by 

     0 0| , , /d d

w z b zE N W K z K G W z z    


 . (4.18) 

Further taking expectation of (4.18) with respect to K yields 

         0 0 0 0 0| , /d d d d d

w z b zE N W z F W z z F E M        


   . (4.19) 

The unconditional expected number of defect failures under warranty is then given by 
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0

, | ,d d

w b w z bE N z E N W z d z 


        . (4.20) 

Mean number of warranty claims 

The expected total number of warranty claims per burnt-in unit includes both normal failures 

and failures due to defects, which is given by 

      , , ,n d

w b w b w bE N z E N z E N z             , (4.21) 

where the two terms on the right-hand side are given by (4.14) and (4.20), respectively. 

 

4.3.3 Cost Analysis 

The burn-in cost includes fixed cost, operational cost and repair cost. There are  ,b bN z  

burn-in failures for an item, and thus the burn-in repair cost is  ,r b bc N z . The expected burn-

in cost can then be written down as 

      , , ,b b f op b r b bE C z c c z c E N z            , (4.22) 

where  ,b bE N z    is given by (4.11). 

When a burn-in product is sold to a user with rate z, there are  | ,w z bN W z  failures during 

the warranty period. The expected warranty cost associated with this user is  

      | , | ,w z b a r w z bE C W z c c E N W z          .  

The unconditional expected warranty cost is obtained by integrating z out of the above 

expression, which yields 

      , ,w b a r w bE C z c c E N z          , (4.23) 

where  ,w bE N z    is given by (4.21). 
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The total cost includes both burn-in cost and warranty cost. The expected total cost is given 

by 

      , , ,t b b b w bE C z E C z E C z              , (4.24) 

where the two terms on the right-hand side are given by (4.22) and (4.23), respectively. 

 

4.3.4 Two Optimization Problems 

Performance-based burn-in models 

The performance-based burn-in decision involves simultaneously selecting τ* and 
*

bz  to 

minimize the objective function (4.3) subject to the constraint (4.4). The model can be 

expressed as follows. 

 

   * *

1, arg min , ,

    . .            ,

                    .

b b w b

b b

z J z E N z

s t z z

       





  

 

  

The following theorem gives a characterization of the optimal burn-in usage rate under the 

performance-based model.  

 

THEOREM 4.1. Let  * *, bz  be the optimal burn-in setting for the performance-based burn-

in model. Suppose the normal failure rate  0

n t  is non-decreasing in t. When the accelerated 

coefficients follow the relationship η ≥ γ, if * 0  , then the optimal burn-in usage rate 

is
*

b bz z . 

Proof: Suppose that  * *, bz  is the optimal burn-in setting and * 0  . To prove 
*

b bz z , we 

use proof by contradiction. Suppose 
*

b bz z , because the distribution of 
d

bT  is a continuous 
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function of τ and zb. we can always find  , bz  with *    such that  

   * *Pr | Pr |d d

b b b bT z T z     . 

Based on the concept of virtual age, this means that  

    * *

0 0/ /b bz z z z


   . (25) 

Therefore, and  , bz , the number of defect failures within warranty under the burn-in 

setting  * *, bz is the same as that under  , bz , i.e., 

    * *, ,d d

w b w bE N z E N z        . (26) 

In addition, since we have assumed that   , so we have  

             * * * * * * *

0 0 0 0 0 0/ / / / / / / /b b b b b b b bz z z z z z z z z z z z z z
      

   


    , 

where the first equality follows from a simple rearrangement of Eqn. (25), while the 

inequality follows from the fact that 
* / 1b bz z   and 0   . This inequality means that for 

the normal failure process, the virtual age after burn-in with setting  , bz  is less than the 

virtual age with setting  * *, bz , i.e.,
*

0 0

n n   . We have assumed that  0

n t  is an non-

decreasing function of t Therefore, for any t > 0, it can be easily verified that 

   * *| , | ,n n

w z b w z bE N W z E N W z        . Integrating z out yields 

    * *, ,n n

w b w bE N z E N z         (27) 

Combining the results of Eqns. (25) and (27) yields that the mean number of warranty claims 

under the burn-in setting  * *, bz  is greater than that under  , bz , which contradicts the fact 

that  * *, bz  is the optimal burn-in setting. Therefore, we should have 
*

b bz z . This completes 

the proof. 
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■ 

There are some practical insights from this theorem. Generally speaking, latent defects are 

much more sensitive to harsher conditions (Yan and English 1997). This theorem indicates 

that under this circumstance, burn-in should be conducted at conditions as severe as possible, 

as long as no extraneous failure modes are introduced. This is because to achieve the same 

virtual age 0

d  for the defects, the virtual age 0

n  for normal failures decreases if the burn-in 

usage rate increases. This means less damage to the system as long as the designed failure 

rate  0

n t  is increasing. Therefore, this theorem justifies the practice of conducting burn-in 

under harsh environment.  

Cost-based burn-in model 

Given the objective function (4.5) and the constraint (4.4), the performance-based burn-in 

model can be expressed as follows. 

 

   * *

2, arg min , ,

    . .            ,

                    .

b b t b

b b

z J z E C z

s t z z

       





  

 

  

Similar to Theorem 4.1, we investigate the optimal burn-in usage rate for this model. The 

result is given in Theorem 4.2. 

THEOREM 4.2. Let  * *, bz  be the optimal burn-in setting for the cost-based burn-in model. 

Suppose the normal failure rate  0

n t  is a non-decreasing function of t and η ≥ γ. When 

  /b bz z  is non-increasing in zb, if 
* 0  , then the optimal burn-in usage rate is 

*

b bz z . 

Proof: Theorem 4.1 implies that for any burn-in setting  , bz  with 0   and b bz z , we 

can always find another burn-in setting  , bz   such that    , ,n n

w b w bE N z E N z        . 

This means that the warranty cost with burn-in setting  , bz  is lower than that with  , bz . 
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Furthermore, if we assume  , /op b bc z z  is decreasing in zb, then 

   
   

   0 0 0 0, ,
b bb

op b b b b b op b

b b b

z zz
C z C z C z C z C z C z

z z z
     


 

  

 
       . 

This relation implies that for any combination  , bz  with 0   and b bz z , we can find 

 , bz   that yields the same screening strength while cutting down the burn-in cost. Taken 

the warranty cost and burn-in cost together, we have that for any combination  , bz  with 

0   and b bz z , we can always find a burn-in setting  , bz   that yields a lower total cost, 

indicating that the optimal burn-in usage rate should be bz . Therefore, Theorem 4.2 follows. 

■ 

Note that the conditions in this theorem are slightly different from those in Theorem 4.1. If 

the objective is to minimize the total cost, the optimal burn-in usage rate depends on the 

trade-off between the additional burn-in costs versus the reduction in warranty costs. When 

the cost incurred by usage rate increment is not so significant, which is represented by the 

condition that   /b bz z  is decreasing in zb, the optimal decision is again to set the test 

condition as harsh as possible. 

When the conditions in the theorems are met, there is only one decision variable left. It is 

very difficult, if not impossible, to obtain analytical solutions for the optimal burn-in 

durations. But the optimum can be easily located by some efficient one-dimensional search 

methods such as the bisectional approach. 

Comparison 

To get more insights into these two models, the optimal burn-in durations derived from these 

two models are compared. 
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THEOREM 4.3. Suppose that the optimal usage rates for both the performance and the cost 

based burn-in models are bz . Then the optimal burn-in duration for the cost-based burn-in 

model is not greater than that for the performance-based model.  

Proof: Denote by  * *,p pz  and  * *,c cz  the optimal burn-in settings for the performance and 

the cost-based models, respectively. If 
* 0c  , then the result is obvious. So we consider the 

case 
* 0c   below. The condition in this theorem states that 

* *

p c bz z z  . 

Because the burn-in cost is an increasing function of time, we have that for any τ ≤ 
*

c ,  

    *, ,b b b c bE C z E C z     
  . (28) 

In addition, for any τ ≤ 
*

c , we must have 

    *, ,w b w c bE N z E N z     
   (29) 

This is because if    *, ,w b w c bE N z E N z     
  , then in conjunction with (28) we will have 

       * *, , , ,b b w b b c b w c bE C z E C z E C z E C z               
    , 

which contradicts with the fact that 
*

c  is the optimal burn-in duration. 

Because  * ,p bz  is the optimal burn-in setting for the performance-based model, we have 

   * , arg min ,p b w bz E N z     . Therefore,  

    * *, ,w p b w c bE N z E N z    
     (30) 

Eqns. (29) and (30) implies that 
* *

c p   

■ 
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Results in Theorem 4.3 can be justified as follows. Performance-based burn-in only needs to 

strike an optimal balance between the defect failures and the normal failures. Put it another 

way, the performance-based burn-in seeks to minimize the expected warranty cost, as this 

cost is linked to the expected number of warranty claims through a linear relationship (4.23). 

On the other hand, the cost-based burn-in considers the trade-off between burn-in costs and 

warranty costs due to defect and normal failures within the warranty period. It can be 

expected that the costlier the burn-in test is, the shorter the optimal burn-in duration for the 

cost-based model will be.  

 

4.4 A Numerical Example 

4.4.1 Model Structure and Parameters  

The following settings are adopted to demonstrate our burn-in models. 

 The nominal usage rate is z0 = 1. 

 Normal failures under z0 follow a power law process with  

  2 2 1

0 1 2

n t t 


    . 

 The number of defects M follows Poisson (μ). Defect failure time 0

dT  follows EXP(θ), and 

the customer usage rate follows Uniform  0, bz . 

 The burn-in operational cost  ,op bC z  is concave in zb and can be approximated by 

  0.8

0,op b bC z c z  . 

Parameter values for the above specific models and for the cost parameters are given in Table 

4.1. 

 

Table 4.1. Parameter settings 

para. bz    
W U η γ θ μ β1 β2 cf cr ca c0 
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Value 4 0.25 2 2 0.85 0.27 0.3 0.05 6 1.5 0.2 3 40 0.1 

 

4.4.2 Model Analysis 

Using (4.11), the mean number of burn-in failures is  

       2

0 0 1, 1 exp / /d n

b bE N z         



      . (4.31) 

The screening strength in (4.10) boils down to 

    0, 1 exp /d

bSS z      . (4.32) 

The unconditional distribution of K is readily obtained by taking expectation of (4.16) with 

respect to M, which yields 

   0 0Poisson 1 d dK ~ F 
 
  .  

Given z, the distributions for the numbers of defects detected during the warranty period and 

remaining after warranty expiry are also obtained by taking expectation of (4.17) with respect 

to M, which leads to two Poisson variables as 

     0 0 0 0 0Poisson /d d d d

zF W z z F  
  


    and    0 0 0Poisson 1 /d d

zF W z z  
  


  . 

The expected number of warranty claims in (4.21) is thus given by 

           
2 2

0 1 0 1 0 0 0 0 0| , / / /n n d d d d

w z b z zE N W z W F W z z F             

  
        . 

 

4.4.3 Optimal Solutions 

Performance-based model 

According to Theorem 4.1, the optimal burn-in usage rate is
* 4bz  . A simple bisectional 

search shows that the optimal burn-in duration is 0.170. Figure 4.1 illustrates the effect of 
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burn-in on the mean number of warranty claims. The optimal burn-in settings are summarized 

in the second row of Table 4.2. 

 

 

Figure 4.1. The expected number of warranty claims versus the burn-in duration: The horizontal line 

represents mean number of warranty claims without burn-in 

 

Cost-based model 

It is readily checked that   0.05/b b bz z z  is decreasing in zb. Therefore, the conditions in 

Theorem 4.2 are satisfied. The optimal burn-in usage rate is thus 
* 4bz  . The optimal burn-in 

duration is 0.149. Figure 4.2 demonstrates the effect of burn-in on the total costs. The optimal 

burn-in settings are given in the last row of Table 4.2. 
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Figure 4.2. The expected total cost versus the burn-in duration: The horizontal line represents the total 

costs without burn-in 

 

From Figure 4.2, we can see that when the burn-in duration is short, the total cost is higher 

than that without burn-in. This is due to the fixed set-up cost of burn-in. However when we 

prolong the burn-in duration, the benefits of burn-in from defect reduction quickly dominate 

the set-up cost, and thus leading to significant cost reductions. 

 

Table 4.2. Optimal settings under the two burn-in models 

Objective *

bz  
*  SS  * *,i bJ z   0,0iJ  Reduction (%) 

J1 4 0.170 0.8414 0.1204 0.1448 16.9 

J2 4 0.149 0.8008 5.5746 6.2264 10.5 

 

Comparison 

Table 4.2 suggests that both cost and performance based burn-ins are able to achieve high 

screening strengths and effectively improve the system performance in terms of mean number 

of warranty claims and expected total costs, respectively. Optimal burn-in durations from 
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these two models do not have significant discrepancy. But compared with the cost-based 

model, the performance-based burn-in requires a relatively longer burn-in duration so as to 

achieve a higher screening strength. This result tallies with Theorem 4.3. 

 

4.4.4 Defect Failures after Burn-In 

One of the most important benefits of burn-in is that it effectively reduces defects detected 

within warranty period and those remaining after warranty expiry. The first index is directly 

related to warranty cost while the second is related to the preventive maintenance costs after 

expiry of warranty, e.g. Huang and Yen (2009). Both of these two indices are directly related 

to customer satisfactions. Figure 4.3 illustrates the effects of burn-in on these two indices. 

 

 

(a)       (b) 

Figure 4.3. (a) The mean number of defect failures within warranty; and (b) The mean number of 

defects remaining after warranty expiry. 

 

Figure 4.3 indicates that most defects that do not get detected during burn-in would lead to 

failures during warranty. This is due to the fact that most latent defects will easily lead to item 
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failures in a relatively short time period. As can be seen from this figure, the mean number of 

defects detected during warranty and those remaining after warranty expiry are significantly 

reduced with burn-in. These results justify the importance of burn-in. 

 

4.4.5 Sensitivity Analysis 

The optimal burn-in schemes mainly depend on the number of defects, the distribution for 

defect failure times, and the design reliability, i.e. the normal failure process. In the case of 

cost-based burn-in, the optimal solutions also depend on the cost parameters. This subsection 

examines effect of the distribution parameters of M, 0

dT , and 0

nT  on the optimal burn-in 

decisions. Typically, the sensitivity analysis is carried out by varying μ, β1 and θ, respectively. 

The analysis is done by changing one parameter and keeping other parameters fixed. The 

results are depicted in Figures 4.4-4.6. 
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Figure 4.4. Sensitivity analysis: Optimal burn-in durations and the corresponding screening strength 

for the performance and cost-based burn-in models with μ varying.  

 

 

Figure 4.5. Sensitivity analysis: Optimal burn-in durations and the corresponding screening strength 

for the performance and cost-based burn-in models with β1 varying.  
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Figure 4.6. Sensitivity analysis: Optimal burn-in durations and the corresponding screening strength 

for the performance and cost-based burn-in models with θ varying.  

 

From these three figures, we make the following observations. 

Optimal burn-in durations for the performance-based burn-in model are always higher than 

those for the cost-based model. This result is concordant with Theorem 4.3. 

As the mean time to detect a defect increases, the optimal burn-in durations increase while 

the screening strengths decrease. When it gets harder to detect a defect, defect detection takes 

a longer time. But a longer burn-in duration would result in more damage to an item. The rate 

with which the optimal burn-in duration increases should be lower than the rate of increment 

for the mean time to detect a defect. This leads to a decreasing screening strength. 

When the mean number of defects increases, the burn-in duration should also increase to get 

more defects removed. 

When the design reliability gets higher, which is represented by a larger β1, the optimal burn-
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in duration prolongs. This is because burn-in would also introduce damage to the items. A 

high design reliability ensures that this damage has less effect on the system. This result 

implies the importance of design reliability, as a high design reliability not only ensures low 

normal failure rate, but also tolerates longer tests so as to identify more defects.  

 

4.5 Conclusions 

This chapter has developed two burn-in models for products sold with a two-dimensional 

non-renewing FRW policy by introducing a modeling technique that differentiates normal 

and defect failures, each having a different accelerated coefficient. A number of contributions 

have been achieved. We identified the important problem of infant mortality issue faced by 

expensive products sold with two-dimensional warranties and built two burn-in models which 

are able to significantly improve the product performance and cut down the warranty costs. 

As noted by Chukova and Johnston (2006), even a very small proportion of warranty cost 

reduction for cars would lead to billions of savings for a firm! We also pointed out that the 

normal and the defect failure modes have different accelerated relationships. This is a very 

important practical issue which is ignored in previous burn-in studies. By taking the 

difference in accelerated relationships into account, Theorems 4.1 and 4.2 showed that under 

realistic assumptions, burn-in should be conducted at the harshest environments, provided 

that no extraneous failure modes are introduced. These results support the engineering 

practice of accelerated burn-in testing. We also conducted a sensitivity analysis and revealed 

the importance of designed reliability from the perspective of defect detection. In addition, it 

should be noted that for most products sold with one-dimensional warranties, the customer 

usage behavior is also heterogeneous. For instance, it is not difficult to imagine that a 

businessman and a student would use their mobile phones differently. Our models subsume 

the burn-in models under a one-dimensional warranty as special cases by simply setting the 
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usage limit of the two-dimensional warranty to be infinite. Under this special one-

dimensional context, our models are expected to lead to better burn-in decisions compared 

with the existing models, because variation in customer usage rates is taken into 

consideration. 
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CHAPTER 5 DEGRADATION-BASED BURN-IN 

WITH PREVENTIVE MAINTENANCE 

5.1 Introduction 

As reviewed in Chapter 2, degradation-based joint burn-in and maintenance models are not 

found, regardless of their potential importance. For example, this chapter is motivated by the 

problems in modern Micro-Electro-Mechanical Systems (MEMSs). MEMS that emerged in 

the late 1980s have the ability to sense, actuate and control on the micro scale, and generate 

effects on the macro scale. Generally speaking, a MEMS device consists of (a) mechanical 

micro-structures, (b) micro-sensors, (c) micro-electronics and (d) micro-actuators, all 

integrated onto the same silicon chip. They have shown great potentials in many applications 

including medical, aeronautical, space and military industries. But the greatest challenge to 

the successful commercialization of this new technology is how to improve the reliability in a 

cost-effective way. As pointed out by Arney (2001), infant mortalities in MEMS devices are 

not uncommon due to the short history and the extremely small size. This leads to significant 

amount of early failures. To eliminate these early failures and improve MEMS reliability, 

packaging engineers usually resort to burn-in (Lee et al. 2003). Success of a burn-in testing 

depends on correct analysis of the failure mechanism. According to Tanner (2009), MEMSs 

are classified into four groups as follows 

 Class I – No moving parts. 

 Class II – Moving parts with no rubbing or impacting surfaces. 

 Class III – Moving parts with impacting surfaces. 

 Class IV – Moving parts with impacting and rubbing surfaces. 

The first two classes are susceptible to traumatic failures while devices in Classes III and IV 
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are more reliable and are prone to measureable wear-related failures. As such, degradation-

based burn-in for devices in Classes III and IV is more cost-effective. In effect, Hogan et al. 

(2003) have addressed the importance of degradation-based burn-in for the production of 

Digital Micro-mirror Devices.  

After a burnt-in MEMS device is put into field use, it is often preventively maintained. In the 

literature, Peng et al. (2009) developed a rudimentary maintenance model for MEMS devices. 

It is potentially very useful for improving the reliability of MEMS devices and reducing the 

field operational costs. They also mentioned the importance of burn-in for MEMS devices. 

However, the effects of burn-in and the determination of optimal burn-in settings are not 

considered by them. Obviously, simultaneous determination of both optimal burn-in duration 

and the PM interval would lead to lower costs. To address this problem, this study proposes 

two general degradation-based burn-in maintenance models under the age and block based 

maintenance policies, respectively. 

The rest of this chapter is organized as follows. In Section 5.2, we briefly introduce the 

Wiener process with linear drift and use it to model degradation of the product. The problem 

is then stated and the some assumptions are made. Section 5.3 builds two burn-in 

maintenance models and derives the corresponding average cost functions. An example is 

provided to elaborate on the benefits of our models in Section 5.4. Section 5.5 concludes the 

chapter. 

 

5.2 Problem Statement 

5.2.1 The Wiener Process for Degradation Modeling 

The Wiener process has received lots of applications in the practice of reliability engineering 

and survival analysis (Nikulin et al. 2009). In this study, we confine our attention to the 
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Wiener process with linear shift as it is sufficient to describe quality characteristics of many 

items, probably with a proper time-scale transformation (Tseng et al. 2003). A typical Wiener 

process with linear drift   ; 0Y t t   can be expressed as 

    =Y t t B t    

where β is the drift parameter, σ is the variance coefficient and  B t  is the standard 

Brownian motion. This process has independent and normally distributed increments, i.e., for 

0 ≤ u < t, Y(t) –Y(u) follows the normal distribution     2,N t u t u   . When the 

degradation level reaches a prespecified threshold Yf, which is often defined by the industrial 

standard, the product fails. For example, when the wear exceeds Yf, some quality losses may 

occur due to inaccuracy of the device. Or when the required minimal thickness to sustain a 

certain known load is reached, a sudden shock may lead to a sudden breakdown. This 

minimal thickness can be regarded as the failure threshold to prevent a catastrophic failure. 

The first passage time of this process, i.e., the time-to-failure, conforms to the famous inverse 

Gaussian distribution with probability density function (PDF) and the cumulative distribution 

function (CDF) as follows (Folks and Chhikara 1978). 
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where 
2 2= /fY   and /fY  . 

 

5.2.2 Model Assumptions 

Consider a non-repairable device whose degradation   ; 0L t t   is measurable and follows 
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the Wiener process with linear drift. Cha and Finkelstein (2010a) has pointed out that mixed 

population composed of several ordered subpopulations is not uncommon. In this study, we 

follow the convention of Jiang and Jardine (2007), Cha and Finkelstein (2010a, 2010b, 2011) 

and Tsai et al. (2011) and assume the product population consists of two subpopulations, i.e., 

the weak and the normal classes. This assumption is appropriate when assembly defects are 

possible during manufacturing. Under this circumstance, most units are normal while a small 

proportion of the product would be deteriorated due to existence of the defects, which 

contributes to the weak class. The purpose of burn-in is to identify these weak units and 

eliminate them from the main population. To make the mathematics tractable, some 

assumptions regarding burn-in are made as follows. 

(a) Degradation of units in the normal class follows a Wiener process with drift parameter 

1  and variance coefficient σ while degradation of units in the weak class follows a 

Wiener process with drift parameter 2  and variance coefficient σ, where 2 1 0   . 

A unit fails when its wear level exceeds a fixed threshold Yf. 

(b) The burn-in duration is b. Degradation of each unit is not inspected during burn-in. 

After burn-in, the degradation level of each unit is nondestructively measured. Units 

with degradations exceeding ξb are discarded. ξb is called the cut-off level (e.g. Tseng 

et al. 2003). 

(c) The per-unit burn-in costs include the manufacturing cost cs. the fixed burn-in cost 

plus the measurement cost for each burn-in unit cm, and the unit time burn-in cost c0. 

It is noted that we consider single inspection right after burn-in above. Compared with 

continuous or intermittent inspection, this method generally requires less measuring effort 

and is operationally more convenient. 

If a unit survives burn-in, it is put into field use. During the field operation, preventive 
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maintenance is adopted to further improve the reliability and reduce operational cost. By and 

large, two well-known approaches for PM are the age and the block replacements. The age 

replacement strategy involves replacement upon failure or upon reaching a predetermined age, 

whichever occurs first. The block replacement policy replaces the system at a sequence of 

scheduled time points and upon unexpected failures. A main advantage of the block 

replacement is its simplicity, as it is unnecessary to keep detailed records about the failure 

times or ages of the system. For both policies, denote τ as the scheduled replacement interval. 

If a burnt-in unit survives τ, it is replaced with a new burnt-in unit with replacement cost cr. 

Otherwise, if it fails before τ, it is replaced with a new burnt-in unit with cost ce + cr, where ce 

is the extra cost due to unexpected failure. For these two kinds of replacements, the 

replacement times are assumed negligible. 

The decision variables in this problem include the burn-in duration b, the cut-off level ξb and 

the preventive maintenance interval τ. To decide on the optimal settings of these decision 

variables, two burn-in cost models are developed based on the age and the block replacement 

policies, respectively. 

 

5.3 Two Burn-In Models Based on Life Cycle Costs 

5.3.1 Burn-In Cost 

The expected burn-in cost is computed based on the “per-item-output” point of view, 

meaning that it calculates the amount of money a manufacturer need to pay in order to obtain 

an accepted burnt-in unit (Liu and Mazzuchi 2008). To obtain this cost, imagine that there is a 

burn-in lot where units are sequentially subjected to burn-in. For each unit, the cost incurred 

is 0 s mc b c c  . Let M – 1 be the number of units scrapped until the first unit with   bL b   

is obtained. Then the expected cost until obtaining this survival unit can be calculated as 
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follows. 

      0,b b s mC b c b c c E M     . (5.3) 

Here M can be simply regarded as a geometric random variable with success probability 

  Pr bL b  . Therefore,  E M  can be computed as 

     =1/ Pr bE M L b  .  

The probability that the degradation level of a burn-in unit does not exceed ξb can be 

computed as follows. After burn-in, the wear level of a normal unit follows a normal 

distribution  2

1 ,N b b   and the wear level of a weak unit follows another normal 

distribution  2

2 ,N b b  . Therefore, the probability that a unit is accepted right after the 

burn-in test is 

    1 2
1 2Pr b b

b

b b
L b p p

b b

   


 

    
       

   
. (5.4) 

On the other hand, the main purpose of burn-in is to identify the weak units. Therefore, an 

index of interest is the screening strength of the burn-in procedure, which is defined as the 

proportion of defectives detected during the burn-in test: 

    2 2, 2, /b bSS b p p p   ,  

where 2,bp  is the proportion of remaining weak units after burn-in. Consider a unit that is 

accepted after burn-in. The probability that it belongs to the weak class can be calculated via 

the Bayes formula as  

      2
2, 2Pr weak item | / Prb

b b b

b
p L b p L b

b

 
 



 
     

 
. (5.5) 

Similarly, the probability that it belongs to the normal class is 
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      1
1, 1Pr normal item | / Prb

b b b

b
p L b p L b

b

 
 



 
     

 
. (5.6) 

Therefore, the screening strength for the burn-in test with duration b and cut-off level ξb can 

be specified as 

     2, 1 / Prb
b b

b
SS b L b

b

 
 



 
   

 
. (5.7) 

As can be seen from Equation (5.7), a longer burn-in duration or/and a lower cut-off level 

leads to a higher screening strength, indicating a more stringent burn-in criterion under which 

more units will be rejected.  

When a unit survives the burn-in procedure with duration b and cut-off level ξb, it is put into 

field operation. In next following, burn-in maintenance models will be formulated under the 

age replacement and the block replacement policies will be built, respectively. 

 

5.3.2 Age Replacement 

The age replacement strategy involves replacement upon failure or upon reaching a 

predetermined age τ, whichever occurs first. After replacement, the replacement process 

renews. Therefore, the replacement process is indeed a renewal process with each 

replacement, either scheduled or unexpected, as a renewal. The undiscounted long run 

average cost per unit time under this replacement policy can thus be computed based on the 

theory of renewal reward processes (Ross 2007, Chapter 7.4).  

We shall first compute the reliability of a burnt-in unit at time τ. To compute this reliability, 

the distribution of the remaining lifetime of a burnt-in unit is required. Denote by Ti the 

remaining lifetimes for a normal (i = 1) and a weak (i = 2) unit, respectively. Failure is 

defined to be the event that the wear crosses a fixed threshold of value Yf. Conditional on the 
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wear level at the outset of field operation, i.e.  0bL u , u < Yf, the survival probability for 

the normal and the weak units at time τ can be computed based on (5.2) as 

  
 

2

2
| , ; ,

i

ff

T i IG

i

Y uY u
F u F  

 

 
 
 
 

, (5.8) 

where  ; ,IGF t    is the survival function of an inverse Gaussian (IG) distribution given by 

   ; , 1 , ,IG IGF t F t     .  

Denote by T the remaining lifetime of a burnt-in unit. The survival function of T can be 

calculated by first conditional on the class of this unit and then conditional on the degradation 

level right after burn-in, which is given by 
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  . (5.9) 

Substituting (5.5) and (5.6) into (5.9) yields 
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  . (5.10) 

Therefore, the expected field operation cost between two replacements is 

  1 | ,e T b rc F b c     .  

Denote by Tr the time interval between two sequential replacements. If the expectation of Tr 

is known, the undiscounted long run average cost per unit time under the age replacement 

policy can be computed based on the renewal reward theory as 

  
   

 

, 1 | ,
, ,

| ,

b b e T b r

AR b

r b

C b c F b c
C b

E T b

  
 



     . (5.11) 

In the following, we shall proceed to compute  | ,r bE T b  . Before proceeding to the main 
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results, the following theorem is useful.  

 

Theorem 5.1. Consider a unit whose wear follows the Wiener process with linear drift 

    ; 0Y t t B t t    . The unit is replaced when its degradation first exceeds Yf or when 

a specified mission time τ is reached, whichever comes first. Letting Z be the time to 

replacement of this unit, we have 

 

2 2 2

2 2 2
| ; , ; ,

f f f f f f

f IG IG

Y Y Y Y Y Y
E Z Y F F 

     

   
           

   
. (5.12) 

Proof: Given a fixed threshold level Yf, the first passage time for  Y t  follows an inverse 

Gaussian distribution as  2 2~ / , /f fZ IG Y Y  . Therefore, the expected length of a cycle is 

 

2 2

2 2

0
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f f f f
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 . (5.13) 

Because    2 2 2; / , / / ;1, /IG f f IG f fF t Y Y F t Y Y     , the second term on the right-hand 

side can be rewritten as 
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Letting 1/ 2y z , we have 1/20.5dy z dz . Therefore, the above integral can be re-organized 

as  

 
  

1/2 21/2/ 22

2 2 2 2

0 0

12
; , exp

2

fY

ff f f f

IG

y YY Y Y Y
xF x dy
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  . (5.14) 

On the other hand, Shuster (1968) found that 
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 . (5.15) 

Letting t  , we can find that  
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 . (5.16) 

Substituting (5.15) and (5.16) into Equation (5.14) yields 
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The theorem follows if we substitute (5.17) to (5.13). 

  ■ 

Evidently, there are two possibilities to trigger a replacement. The first term on the right hand 

side of (5.12) depicts replacement due to reaching the mission time, while the second item 

computes the expected time to replacement due to hitting the threshold before the mission 

time.  

Denote by Tr,i the time to replace a normal (i = 1) and a weak (i = 2) unit, respectively. Based 

on Theorem 5.1, the mean time to replace a normal (i = 1) and a weak (i = 2) unit with initial 

wear level  0bL u , fu Y , is  
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. (5.18) 

Therefore, the mean value of Tr can be calculated by first conditional on the class of the unit 

and then conditional on the degradation level right after burn-in, which is given by 
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  . (5.19) 

By substituting (5.19) back to Equation (5.11), the undiscounted long run average cost per 

unit time can be readily computed. The integral can be computed by some numerical methods. 

A numerical procedure is provided here.  

To compute ,

0

|
b

i
r i f

x b
Q E T Y x d

b






 
     

 
 , the following procedure can be implemented. 

 Uniformly divide the interval 0, b ib

b

 



  
  
  

 into n subintervals. Denote by uj, j = 

1, 2, …, n the midpoint of the jth interval.  

 Compute  1 2; ,j j ix u b b   where  1 2; ,j iu b b   is the uj quantile of the 

normal distribution with mean βib and variance σ2b.  

 Approximate Q as  

,

1

1
|

n
b i

r i f j

j

b
Q E T Y x

n b

 

 

 
      

 
  

This procedure partitions unevenly the interval  , b  to give greater resolution in high 

probability density regions. It is very accurate when a reasonable large n is chosen. However, 

a large n renders a long computation time. According to our numerical trials, n = 100 is 

accurate enough while the run time is moderate. 

 

5.3.3 Block Replacement 

Under the block replacement policy, a system undergoes scheduled replacements at a 

sequence of equally spaced time points independent of the failure history. After each 

scheduled replacement, the replacement process starts anew. Therefore, the replacement 

process is again a renewal process with each scheduled replacement as a renewal, which is 
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somewhat different from the age replacement case. The length of a cycle is a constant τ. To 

compute the undiscounted long run average cost per unit time, the expected cost of each cycle 

is needed, which is derived as follows. 

Between two scheduled replacements, there may be some unexpected failures. By assuming 

negligible repair time, the mean number of unexpected failures within τ is given by 

            
0

1

| , | , | ,
n

BR b T b T T BR b

n

N b F b F F t x dN x b


     




     ,  

where 
   | ,
n

T bF t b   is the n-fold convolution of  | ,T bF t b   given by (5.10).  | ,BR bN t b   is 

the renewal function for the field replacement process with no preventive maintenance. This 

function can be efficiently computed by the Riemann-Stietjes (RS) sums method proposed in 

Xie (1989). 

Costs incurred from this policy consist of the preventive replacement cost and the 

replacement costs from unexpected failures. The expected total field operation cost within 

two schedule replacements is 

    | ,e r BR b rc c N b c   .  

Therefore, the undiscounted long run average cost per unit time under the block replacement 

policy can be specified as 

  
      , | , ,

, ,
b b e r BR b r b b

BR b

C b c c N b c C b
C b

   
 



   
 . (5.20) 

 

5.3.4 Model Optimization 

Model optimization is not a major concern in our study. Although it is very difficult to 

analytically optimize Equations (5.11) and (5.20), there are many efficient optimization 

packages that are able to numerically solve these two models. More specifically, there are 
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only three decision variables in both (5.11) and (5.20). Most optimization techniques are able 

to efficiently tackle this type of low dimensional problems. Alternatively, the genetic 

algorithm can be used Ye et al. (2010).  

 

5.4 Illustrative Example 

For illustration, the example provided by Peng et al. (2009) is revisited with some 

modifications. Consider a MEMS device equipped with a micro-engine, whose major failure 

mechanism attributes to the wear degradation threshold failure. Here, we assume that the 

population of the MEMS devices consists of a majority of normal units as well as a small 

proportion of weak class. The proportion of the normal and the weak items are p1 = 0.95 and 

p2 = 0.05, respectively. Degradation of a normal MEMS follows a Wiener process with drift 

coefficient β1 = 98.4832 10  μm3/revolution, and variance coefficient σ = 86.002 10 . On 

the other hand, a weak item degrades with the same variance coefficient but with a larger drift 

parameter β2 = 82.6875 10  μm3/revolution. A unit fails when its degradation exceeds Yf = 

51.546 10  μm3. Some degradation paths of this imaginary population are illustrated in 

Figure 5.1. 
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Figure 5.1. Simulated degradation paths 

 

As visualized in Figure 5.1, there are some non-conforming units whose degradations are 

faster than other units in the population. If these units are put into field use, substantial costs 

due to unexpected early failures would be generated. Burn-in is thus necessary to scrap these 

units. To demonstrate our models, the cost structure is assumed as follows. 

1000ec  , 50rc  , 0 0.08c  , 19sc  , and 1mc  . 

The burn-in maintenance models developed above are used to simultaneously decide the 

optimal burn-in and preventive maintenance decisions.  

 

5.4.1 Age Replacement 

By implementing the Nelder-Mead Simplex method (Lagarias et al. 1999), Equation (5.11) 

can be efficiently minimized. The optimal burn-in time is * 58.2b  , the optimal cut-off point 

is 
* 61.021 10b

  , and the optimal replacement interval is 1190. With these burn-in and 

maintenance settings, the optimal average cost rate is 0.0728 and the screening strength (5.7) 
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is 86.0%. The remaining proportion of defective units reduces to 0.70%, which is 

significantly lower than the original 5%. If burn-in is not performed, the optimal preventive 

maintenance interval is 1246 while the optimal average cost per unit time is 0.0826. Notably, 

a rational burn-in test is able to reduce the cost by 11.84%. To visualize the impact of the 

burn-in settings on the total costs, we fix the replacement interval at 1136 and plot the contour. 

The contour plot is given in Figure 5.2. The sensitivity of the total cost to the burn-in profiles 

is readily visualized in this figure. 

 

 

Figure 5.2. Impact of burn-in settings on the total costs with age replacement interval * 1190   

 

5.4.2 Block Replacement 

Similar to age replacement scenario, the optimal burn-in settings and the optimal block 

replacement period can be obtained by minimizing (5.20). The optimal settings are * 59.7b  , 

* 61.037 10b
   and * 1178  , respectively. The corresponding optimal average cost rate is 

0.0736 per unit time. Under this burn-in scheme, the screening strength (5.7) is 86.8%. 

Without burn-in, the optimal replacement interval should be 1231, while the optimal average 
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cost per unit time is 0.0855, which is much higher than the cost with moderate burn-in. This 

highlights the necessities of burn-in testing. The contour plot is given in Figure 5.3 to 

illustrate the sensitivity of the total cost to the burn-in profiles. 

 

 

Figure 5.3. Impact of burn-in settings on the total costs with block replacement interval * 1178   

 

5.4.3 Comparison 

Obviously, under both policies, burn-in is able to significantly cut down the cost. In addition, 

it is worth noting that the block replacement policy yields a slightly higher long-run average 

cost compared with that of the age replacement policy. This is because block replacement 

may replace a relatively new item if a failure occurs right before the scheduled maintenance 

time points, as this policy did not keep track of the replacement history. To reduce this 

probability and thus cutting down the replacement cost, the optimal replacement interval for 

this policy should be shorter, which is indeed so in this example. However, the increment in 

cost is not significant in our example, which is only 1.09% on average. Meanwhile, the 

optimal burn-in settings have little differences under these two maintenance policies. This can 
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be explained using the concept of screening strength. The purpose of burn-in is to achieve 

certain screening strength and reduce the defective subpopulations. However, a high 

screening strength would increase the burn-in cost. The optimal screening strength is a trade-

off between burn-in cost and field operation cost. Because the block replacement policy has a 

higher operational cost, it should have a slightly higher screening strength to further enhance 

the field reliability compared with that of the age replacement policy.  

In addition to the cost reduction, burn-in is also able to enhance performance of a field unit. 

To demonstrate this fact, the survival functions of a unit with and without burn-in are 

depicted in Figure 5.4.  

 

 

Figure 5.4. Survival functions of a unit with and without burn-in 

 

From this figure, we can see that reliability of a unit has been greatly improved with proper 

burn-in, while the effects of burn-in based on these two replacement policies are quite similar. 

Without burn-in, the reliability function decreases very fast during around t = 400 and 600. 

This is due to failures from the weak class. With moderate burn-in, most defective units will 

be eliminated from the main population, and thus the reliability only slightly decreases during 
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t = 400 and 600 due to the remaining defective units. On the other hand, Figure 5.4 indicates 

that it needs at least 400 units of time to fail a defective unit. To identify these defectives, a 

failure-based burn-in has to suggest a duration greater than 400, while the degradation-based 

burn-in only requires a duration of around 60. This further highlights the importance of 

degradation-based burn-in testing. 

 

5.4.4 Impact of the Defective Proportion  

The motivation of conducting burn-in is to cope with the weak subpopulation. Therefore, 

optimal burn-in decisions depends heavily on percentage of the weak units. To get some 

insight into the impact of the defective proportion, a sensitivity analysis is conducted. In this 

sensitivity analysis, all parameter settings are the same as those in Section 5.1, expect the 

proportion of the weak class. We vary p2 from 0.01 to 0.09 with step size 0.01, and obtain the 

optimal burn-in and maintenance settings as well as the optimal costs. The results are 

depicted in Table 5.1.  

When the proportion of the weak class is small, say 1%, burn-in is not necessary as it is 

costly compared with possible field failures. But it is interesting to observe from Table 5.1 

that as the percentage of the defective units increases, both the optimal burn-in duration and 

the associated screening strength increase. This reflects the efficacy of burn-in in dealing with 

the weak class. Moreover, the optimal preventive replacement intervals decrease with p2. This 

is because the proportion of remaining defective units is increasing with p2, although the 

screening strength increases. A shorter preventive replacement interval should be adopted to 

avoid possible failures due to the remaining weak class. 

 

Table 5.1. Optimal burn-in and maintenance settings and the associated costs 
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p2 Age replacement Block replacement 

b*  * 610b
  

τ* C* SS(%) b*  * 610b
  

τ* C* SS(%) 

0.01 0 ∞ 1223 0.0647 0 0 ∞ 1211 0.0655 0 

0.02 31.9 0.7281 1205 0.0692 60.9 33.8 0.7507 1193 0.0700 63.7 

0.03 44.4 0.8717 1198 0.0707 75.8 46.0 0.8898 1196 0.0715 77.3 

0.04 52.3 0.9581 1193 0.0719 82.3 53.8 0.9749 1181 0.0727 83.3 

0.05 58.2 1.021 1190 0.0728 85.9 59.7 1.037 1178 0.0736 86.8 

0.06 63.0 1.071 1187 0.0737 88.4 64.4 1.087 1175 0.0745 89.0 

0.07 66.9 1.112 1185 0.0744 90.1 68.4 1.128 1173 0.0753 90.6 

0.08 70.3 1.147 1184 0.0751 91.2 71.8 1.163 1171 0.0760 91.8 

0.09 73.3 1.179 1182 0.0758 92.2 74.8 1.194 1170 0.0767 92.6 

 

 

5.5 Conclusions 

In this study, two degradation-based burn-in maintenance models have been proposed. 

Optimal burn-in and maintenance settings are determined based on minimizing the average 

cost per unit time. The illustrative example shows the effectiveness of the degradation-based 

method compared with the traditional failure-based burn-in approach. These two models are 

motivated by the infant mortality in some MEMS devices, but they also have potential 

applications in laser devices (Tsai et al. 2011, Ye et al. 2012e), LED lamps (Tseng and Peng 

2004), etc. They also have important links to the active area of system health management.  
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CHAPTER 6 DEGRADATION-BASED BURN-IN 

PLANNING UNDER COMPETING RISKS  

6.1 Introduction  

Most products may fail in many different ways, known as competing risks. According to the 

failure mechanism, a failure mode can either be a degradation-threshold (DT) failure or a 

catastrophic failure. A DT failure, also called soft failure, occurs when a measurable physical 

degradation reaches a critical threshold level which is often specified by industrial standards; 

while a catastrophic failure causes instant product failure. Both kinds of failure modes may 

be subject to infant mortality. For example, failure rate of a catastrophic failure mode might 

be decreasing, indicating some units will fail very early. Thus we consider two different 

classifications of failure modes: DT failure / catastrophic failure and infant mortality failure / 

normal failure. 

To identify and eliminate units with infant mortality, engineers often resort to burn-in by 

activating all infant mortality failure modes during the test for a certain duration. Although 

products with competing risks are common in practice, current research on burn-in modeling 

for such products is far from satisfactory. All existing burn-in models pooled all failure 

modes together and resorted to the overall failure rate. However, it would be beneficial to 

differentiate different failure modes, as it improves the estimation accuracy, and allows a 

burn-in practitioner to understand the failure mechanism and to justify the necessity of burn-

in. Moreover, these models implicitly assumed that all failure modes are activated during 

burn-in. If a normal failure mode can be kept dormant during burn-in, unnecessary product 

aging due to burn-in would be mitigated. For example, we are often able to partially operate a 

complex system, say, scanning electron microscope. If only parts of the system are prone to 

bad joints during assembly, it would be desirable to burn-in the system by activating these 
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parts only. In addition, most burn-in models dealt with systems with binary states, i.e., failed 

or working, and did not make use of any degradation information. Nowadays, many modern 

products are so well designed and manufactured that they are highly reliable. It may take a 

very long time for a defective unit to fail even under highly accelerated stresses. Therefore, if 

a DT failure mode has infant mortality, degradation-based burn-in that bases the screening 

decision on the product’s degradation level after burn-in will be more effective. 

An motivating example of this study is from Huang and Askin (2003). An electronic device is 

subject to two independent failure modes, i.e., solder/Cu pad interface fracture which is 

regarded as a catastrophic failure, and light intensity degradation which is a DT failure mode. 

The light intensity degradation is measured by the percentage drop of the original light 

intensity. The device fails if the drop of light intensity exceeds 40 percent of its original value 

or if an interface fracture occurs. These two failure modes can be activated separately during 

tests. To assess these two modes, two different life tests are conducted under normal 

environmental stresses, each with 10 samples. The first test activates the fracture failure mode 

only, and all the 10 units are followed to failure; the second test activates the DT mode only, 

and each unit is inspected every 500h until 4000h. Data from these two tests are tabulated in 

Tables 6.1 and 6.2.  

 

Table 6.1. Solder/Cu pad interface fracture lifetime data 

Sample ID 1 2 3 4 5 6 7 8 9 10 

Lifetime (h) 13320 17424 18600 20256 23496 24000 25176 27408 28776 29952 

 

Table 6.2. Light intensity degradation data (in percentage relative to the original measurement) 

Sample ID 
Inspection time (hours) 

0 500 1000 1500 2000 2500 3000 3500 4000 

11 0 2.5 3.3 4.1 5 5.7 6.5 7.3 8.1 

12 0 2.1 2.9 3.7 4.4 5.2 6 6.7 7.5 

13 0 2 2.7 3.5 4.3 5 5.8 6.5 7.2 

14 0 1.7 2.4 3.2 3.9 4.6 5.4 6.1 6.8 
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15 0 0.4 1 1.7 2.3 2.9 3.5 4.1 4.7 

16 0 0 0.6 1.1 1.7 2.3 2.9 3.4 4 

17 0 0 0.5 1.1 1.7 2.2 2.8 3.3 3.9 

18 0 0 0.3 0.9 1.5 2 2.6 3.1 3.6 

19 0 0 0 0.5 1 1.5 2.1 2.6 3.1 

20 0 0 0 0.2 0.7 1.2 1.7 2.2 2.7 

 

A simple Weibull plot shows a good fit to the data in Table 6.1. The estimated shape 

parameter is greater than 1, indicating that the interface fracture is a normal failure mode. 

However, a plot of the degradation paths shows that some units exhibit unacceptably high 

degradation rates, as can be observed from Table 6.2 and Figure 6.1 (Section 6.5). Burn-in 

should be used to identify these units so as to improve field reliability. Because these two 

modes can be induced individually, we are able to activate the light intensity degradation 

without inducing the catastrophic failures during burn-in. This is desirable as inducing a 

normal failure mode incurs unnecessary damages to the product.  

However, normal failure modes may have to be activated in some other scenarios. Meeker 

and Escobar (1998) presented a GaAs laser example of this kind. Most laser devices undergo 

degradation-based burn-in test before delivered to customers (Johnson 2006). The 

degradation of a laser device manifests in an increasing operating current. The device fails 

when the degradation exceeds the threshold, or when a sudden failure occurs (Meeker and 

Escobar 1998 example 13.5). Possible reasons for the sudden failures include inadvertent 

shocks and unobserved sudden changes in its physical states. These catastrophic failures have 

to be activated at the outset of burn-in.  

The above two examples suggest that competing risks are not uncommon for products with 

infant mortality. The purpose of this chapter is to develop a burn-in planning framework for 

products with independent multiple failure modes. Based on this framework, legitimate burn-

in strategies for products in these two examples can be scheduled. Because the trauma failure 
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data are not provided in Meeker and Escobar (1998), we will focus on the electronic device 

example and build three degradation-based burn-in models. We also propose several methods 

to cope with the effect of statistical uncertainty on the optimal burn-in decisions.  

This chapter is organized as follows. Section 6.2 develops a general burn-in framework for 

products with competing risks. Based on this framework, three degradation-based burn-in 

models are built in Section 6.3. The cost functions are established and the optimal cut-off 

levels are derived. Section 6.4 discusses three methods to deal with the statistical uncertainty 

issue. In section 6.5, validity of our models is verified by the electronic device example. 

Section 6.6 concludes the chapter. 

 

6.2 A Burn-In Planning Framework under Competing Risks 

Many products are prone to multiple failure modes. We confine to the case where all the 

failure modes are independent. Behaviors of these modes can be accurately assessed through 

a carefully designed life/degradation tests (Ye et al. 2012a). Test information is collected and 

analyzed to identify sources of infant mortalities. If some infant mortality modes belong to 

the DT class, degradation-based burn-in should be considered. Otherwise, we have to 

consider traditional failure-based method. During burn-in, all infant mortality modes should 

be activated to identify weak units. On the other hand, we shall try to avoid activating normal 

failure modes, if possible, to prevent unnecessary system deterioration. Based on these 

analyses, mathematical models that quantify effects of all these failure modes can be built to 

help decide on the optimal burn-in settings. The burn-in planning framework for products 

with independent multiple failure modes is summarized as follows. 

 Specify all failure modes and classify them into the DT class and the catastrophic 

failure class. Use degradation tests to assess degradation behavior of the DT failure 
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modes. Use ALT to estimate lifetime distributions of the catastrophic failure modes.  

 Based on results of the degradation/life tests, classify these failure modes into the 

infant mortality failure class and the normal failure class. In the normal failure class, 

specify all failure modes that can be avoided during burn-in and keep them dormant 

during this test.  

 If there is any DT failure mode in the infant mortality class, consider degradation-

based burn-in approach. Otherwise, consider failure-based method. Specify the 

objective of burn-in, e.g., minimize certain cost or maximize certain performance 

index, and build the corresponding model. This model should take all normal failure 

modes into account.  

 Parameters in this model may be directly obtained from previous study or expert 

opinions, or it may have to be estimated from results of ALT and degradation test. In 

the latter scenario, if parameter uncertainty is large, it should be taken into account 

during model optimization.  

Remark 1. Although burn-in is to cope with infant mortality modes, burn-in models should 

always embrace the normal failure modes, even if they are dormant during burn-in. Ignorance 

of the normal failure modes would render inferior burn-in decisions with higher costs. 

Remark 2. When the infant mortality class includes more than one DT modes, each mode 

should be assigned a cut-off level. If a DT mode is normal, it can be treated as a catastrophic 

mode when building burn-in models. 

Remark 3. If there are more than one infant mortality modes, it is operationally more 

convenient to simultaneously activate them and assign to them a common burn-in time, even 

if they can be activated individually.  
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6.3 Degradation-Based Models under Competing Risks 

Throughout the chapter, we discuss burn-in under nominal use condition. If it is conducted 

under accelerated stresses, the time scale can be easily transformed to the nominal condition 

based on the physics of this product (Escobar and Meeker 2006). In the electronic device 

example, the DT failure, i.e., light intensity degradation, is an infant mortality mode while the 

interface fracture is normal and can be avoided during burn-in. The framework developed in 

Section 6.2 is used to help decide on the optimal burn-in settings. In addition, we also 

develop two other models to enrich the family of degradation-based burn-in models. This 

section focuses more on degradation modeling. We implicitly assume all parameters are 

known. This is true when information about these failure modes is available from previous 

studies or expert knowledge. The Gamma process with random effect introduced by Lawless 

and Crowder (2004) is found to be well-fit to the light degradation data, and thus will be 

introduced first. 

 

6.3.1 Preliminaries: Gamma Process with Random Effect 

Consider a Gamma process   , 0Y t t   with random effect Θ. Given Θ, the process has 

independent and Gamma distributed increments, i.e., for 0 ≤ u < t, Y(t) –Y(u) follows 

 Gamma ,t u    with PDF 

  
 

 
 

1

; , exp

t u

t u

y
f y y

 
 

  
 

 


 

, (6.1) 

where  t t   is a given, monotone increasing and differentiable function of t with η0 = 0. 

A mathematically tractable model results when Θ conforms to  Gamma ,k  . Unconditional 

PDF of Y(t) –Y(u) can then be obtained by integrating Θ out of (6.1), which yields 
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   2 ,2
~

t u k

t u

k Y t Y u
F



  


   

, (6.2) 

where ,m nF  is the F-distribution with degree of freedom (m, n).  

The random effect Θ is unknown but fixed for a unit. Given the degradation level   bY b y  

at time b, it can be shown that conditional distribution of the random effect   follows 

  Gamma , bb k y   . This relation implies that given   bY b y , 

 
   

   2 ,2 2
~

t b b

b

k

t b

Y t Y bk
F

Y b
  



    

  
      

. (6.3) 

For more details about this process, see Lawless and Crowder (2004). 

 

6.3.2 Problem Formulation 

Consider a non-repairable product sold with a preset mission time, e.g., a warranty period, of 

duration τ. Degradation of its key quality characteristic   , 0Y t t   follows a Gamma 

process with a Gamma distributed random effect Θ,  ~ Gamma ,k  . Yf is a fixed 

degradation threshold for this process, e.g., in the electronic device example, Yf = 40. We 

assume that this DT mode is subject to infant mortality. In addition to this mode, the product 

is also prone to a catastrophic failure with cumulative distribution function (CDF)  G   and 

survival function (SF)  G  , which is deemed to be a normal failure mode.  

The per unit burn-in cost includes set-up cost cs, the burn-in operational cost which is 

proportional to the burn-in duration with proportionality of c0, and disposal cost. 

Functionality of a burn-in unit is not monitored during burn-in. After the test with duration b, 

if a unit has failed (e.g., due to the catastrophic failure), it is scraped with cost cp. Otherwise, 

its degradation level is measured non-destructively with measurement cost cmea. If the 
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degradation level exceeds the cut-off level b , this unit is rejected with disposal cost of cd 

(e.g., reworked or sold at a lower price). An accepted unit will be put into field operation. If it 

fails within the mission time τ, some handling and administrative cost cf is incurred. 

Otherwise, a gain of K is generated. 

 

6.3.3 Degradation-Based Burn-in Model with Single Failure Mode  

To start, we shall build a model for products with single failure mode, i.e., the DT failure. The 

purpose of burn-in is simply to identify units with high degradation rates. Denote 1,b  as the 

cut-off degradation level with burn-in duration b. To determine the optimal cut-off level 
*

1,b , 

a cost function should be established first. Because there is no catastrophic failure, all units 

will not fail during burn-in and thus should be measured after the test. Therefore, the 

expected burn-in cost can be expressed as  

     0 1,Prs mea d bc b c c c Y b      ,  

where the screening probability can be obtained based on Equation (6.2) as 

    1,

1, 2 ,2Pr 1
b

b

b k

b

k
Y b F 






 
    

 
. (6.4) 

With probability   1,Pr bY b  , a burnt-in unit is accepted and put into field operation. The 

field operation cost of this unit can be expressed as 

       1,Pr |f f f bc c K Y b Y Y b       .  

The conditional probability is the probability that this unit survives the mission time τ, which 

is given by 

    
  

      
1,

1,

1, 0

1
Pr | Pr |

Pr

b

f b b f Y b

b

Y b Y Y b Y Y u Y b u f u du
Y b

       
 



 


, (6.5) 
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where    bY Y b Y b    . Based on (6.3), (6.5) can be expressed as 

    
      

1,

1, 2 ,2 2

1, 0

1
Pr |

Pr

b

b b

fb
f b k Y b

bb

Y uk
Y b Y Y b F f u du

uY b



 


 

 
 

   
             

 ,

 (6.6) 

where b b b     . Summing up the mean burn-in cost and field operation cost, the 

expected total cost  1,, bE C b  
   for a unit is given by 

 
      

         

1, 0 1,

1, 1,

, Pr

Pr Pr |

b s mea d b

b f f f b

E C b c b c c c Y b

Y b c c K Y b Y Y b

 

  

         

       
 

. (6.7) 

The optimal cut-off level 
*

1,b  can be obtained by minimizing Equation (6.7) over 1,b  with b 

fixed. It can be shown that when b is fixed,  1,, bE C b 
   is convex in 1,b . Therefore, the 

minimum of 1,b  is achieved when  1,

1,

, 0b

b

E C b


   



. The result is given in Theorem 6.1. 

To simplify the notation, define 

    /f d fc c c K    . (6.8) 

 

THEOREM 6.1. Suppose that degradation path of a product follows the Gamma process 

with random effect and the total cost function is given by (6.7). For fixed b we have the 

following. 

(a) If 0 1   , the optimal cut-off level 
*

1,b  is 

 
   

   

1

2 ,2 2*

1, 1

2 ,2 2

b b

b b

b f b k

b

b b k

k Y F

k F



 



 

  


  

 

 

  


 
, (6.9) 

where  1

2 ,2 2b b kF  



    is the percentile function of the F-distribution with degree of freedom 
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 2 ,2 2b b k   . In addition, if     is a concave function, 
*

1,b  is increasing in b. 

(b) If 0  , the optimal cut-off degradation level is 
*

1,b   . 

(c) If 1  , the optimal cut-off degradation level is 
*

1, 0b  . 

Proof: For fixed b, differentiating (6.7) with respect to 1,b  yields 

            1, 1, 1,

1,

, Pr |b b d f f f bY b

b

E C b f c c c K Y b Y Y b


              
   


 

The second term on the right hand side is increasing in 1,b . Therefore,  1,, bE C b 
   is a 

convex function of 1,b .  

The above derivative implies that for every 1, 0b  , if    / 0f d fc c c K     , we have 

 1,

1,

, 0b

b

E C b


   



. Therefore, 

*

1,b   .  

Similarly, if 1  , then  1,

1,

, 0b

b

E C b


   



 for every 1, 0b  . Therefore, 

*

1, 0b  .  

When 0 1   , the optimal cut-off point 
*

1,b  satisfies  

      *

1,Pr |f f f b dc c K Y b Y Y b c        . 

Re-organizing this equality yields 

     *

1,Pr |f bY b Y Y b      . (6.10) 

The left-hand side of (6.10) can be computed with the help of (6.3), which is given by 

   
*

1,* *

1, 1, 2 ,2 2 *

1,

Pr |
b b

f bb
b f b b k

b b

Yk
Y Y Y b F  

   
              

 


 

  
. (6.11) 

Substituting this result to (6.10) yields 
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*

1, 1

2 ,2 2*

1,
b b

f b b
k

b b

Y
F

k



 

 
 

 
 

 

  
.  

The solution of this equation is no other than (6.9).  

Let 1 bd   , 2 bd k   and 

*

1,

*

1,

f b

b

Y
a



 





. d1 and d2 are differentiable functions with respect 

to b. Then the right-hand side of (6.11) can be rewritten as  

  
 

 

11

1 2

11

1
11

*

1, 0
2 ,2 2 2 ,2 2 1 1*

111,

0

1

/

1
b b

a

a
dd

f bb
k d d

ddb b

t t dt
Yk

F F ad d

t t dt




 



   

           




 



  
.  

Next we need to verify that  
1 22 ,2 2 1/d dF ad d  is increasing in b, i.e.  

  
1 22 ,2 2 1/ 0d d

d
F ad d

db
 .  

 Based on the chain rule for composite functions, this derivative can be expressed as 

      
1 2 1 2 1 2

1 2
2 ,2 2 1 2 ,2 2 1 2 ,2 2 1

1 2

/ / /d d d d d d

dd ddd
F ad d F ad d F ad d

db d db d db

 
   
 

. (6.12) 

Because  t  is strictly increasing, we have 

 
 

2 0
d bdd

db db
 


. (6.13) 

When  t  is a concave in t,  

 
   

1 0
d b d bdd

db db db


  

  
. (6.14) 

The two partial derivatives in (6.12) can be obtained through direct calculation. 

 
           

 

2 2 2 21 1 1 1

1 2

21

1 11 1
1 1 1 11 1 1 1

0 0 0 0
2 ,2 2 1 2

1
2 11

0

ln 1 1 1 1 ln 1 1
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1

a a

a a
d d d dd d d d

d d

dd

x x x dx z z dz x x dx z z z dz

F ad d
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x x dx
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2 2 2 21 1 1 1

21

1 11 1
1 1 1 11 1 1 1

0 0

1 1

2
1

11

0

ln 1 1 1 1 ln 1

1

a a

a a
d d d dd d d d

a a

a a

dd

x x x dx z z dz x x dx z z z dz

x x dx

 
      

 



       


 

 
 

   



 

The numerator of the above expression is greater than zero because 

           2 2 2 21 1 1 1

1 11 1
1 1 1 11 1 1 1

0 0

1 1

ln 1 1 1 ln 1 1 1

a a

a a
d d d dd d d d

a a

a a

x x x dx z z dz x x x z z dzdx
 

      

 

             

         2 2 2 21 1 1 1

1 11 1
1 1 1 11 1 1 1

0 0

1 1

ln 1 1 1 1 ln 1

a a

a a
d d d dd d d d

a a

a a

z x x z z dzdx x x dx z z z dz
 

      

 

            . 

Therefore,  

  
1 22 ,2 2 1

2

/ 0d dF ad d
d





. (6.15) 

Similarly, we can prove that 

  
1 22 ,2 2 1

1

/ 0d dF ad d
d





. (6.16) 

Substituting (6.13)-(6.16) back to (6.12), we can conclude that  

 
1 22 ,2 2 1/ 0d d

d
F ad d

db
 . 

When b increases, to ensure that  
1 22 ,2 2 1/d dF ad d   , a should decrease. That is, we should 

increase 
*

1,b . In sum, when  t  is concave, 
*

1,b  is increasing in b. 

  ■ 

The condition that     is concave is necessary for 
*

1,b  to be increasing in b. For example if 

   expb b  , we find that 
*

1,b  may not be monotonically increasing in b. After 
*

1,b  is 

determined, the optimal burn-in duration *b  can be obtained by minimizing (6.7) with 1,b  
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fixed at 
*

1,b .  

It can be seen from Theorem 6.1 that optimal cut-off levels do not depend on the cost 

parameters of burn-in operation, i.e., c0, cs and cmea. This is because at the time of making the 

screening decision, the burn-in operational cost can be regarded as sunk cost. It is also 

interesting to see that Λ serves like a normalize risk measure. When it is large (e.g., a large cf 

and a small K), 
*

1,b  would be small, indicating a stringent criterion under which more units 

will be scrapped. Conversely, small Λ leads to a looser criterion.  

 

6.3.4 Two Failure Modes with Normal Failures Inactive during Burn-In 

In this model, we consider the scenario where there is a normal failure mode but only the DT 

mode is activated during burn-in. This scenario fits into the electronic device example, as the 

interface fracture is normal, and can be avoided during burn-in. Denote 2,b  as the cut-off 

degradation level with burn-in duration b. Because the normal mode is inactive during burn-

in, all units will not fail during burn-in and thus should be measured after the test. The 

expected burn-in cost is 

   0 2,Prs mea d bc b c c c Y b      .  

If   2,bY b  , a burnt-in unit is put into field use. Denote  2 ,P b   as the probability that this 

unit survives the mission time. It should be noted that the normal failure mode is active 

during field use. Therefore, this probability is given by 

         2 2,, Pr |f bP b Y b Y Y b G        .  

The expected field operation cost is  

     2 21 , ,fc P b K P b     .  
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The mean total cost  2,, bE C b  
   per unit can thus be expressed as 

 
    

       

2, 0 2,

2, 2 2

, Pr

 Pr 1 , ,

b s mea d b

b f

E C b c b c c c Y b

Y b c P b K P b

        

       

 

  
. (6.17) 

The optimal cut-off level 
*

2,b  for each burn-in time b can be obtained by minimizing (6.17) 

over 2,b  with b fixed. The result is encapsulated in Theorem 6.2.  

 

THEOREM 6.2. Suppose that in addition to the DT failure, there is a normal failure mode 

that can be avoided during burn-in. When the expected cost function is given by (6.7), we 

have the following. 

(a) If  0 G    , the optimal cut-off level with b fixed is 

 
    
    

1

2 ,2 2*

2, 1

2 ,2 2

/

/

b b

b b

b f b k

b

b b k

k Y F G

k F G



 



 

  


  

 

 

   


  
. (6.18) 

In addition, if  t  is concave in t, 
*

2,b  is increasing in b. 

(b) If 0  , the optimal cut-off degradation level is 
*

2,b   . 

(c) If  G   , the optimal cut-off degradation level is 
*

2, 0b  . 

Proof: For fixed b, differentiating (6.17) with respect to 2,b  yields 

              2, 2, 2,

2,

,  Pr |b b f d f f bY b

b

E C b f c c c K Y b Y Y b G


             
    


 

Similar to the proof of Theorem 6.1, we can show that for fixed b, (6.17) is convex in 2,b . 

For every 2, 0b  ,  



 

96 

0   implies  2,

2,

, 0b

b

E C b


   



 and 

 G   implies  2,

2,

, 0b

b

E C b


   



, 

which corresponds to the cases of 
*

2,b    and 
*

2, 0b  , respectively. When  0 G    , 

the optimal cut-off point 
*

2,b  satisfies  

        *

2,Pr |f d f f bc c c K G Y b Y Y b         . 

Solving this equation yields (6.18). 

Following the line of the proof of Theorem 6.1, we can proof that if  t  is concave in t, 
*

2,b  

is increasing in b. Therefore, the theorem follows. 

  ■ 

Similarly, the optimal cut-off level 
*

2,b  does not depend on the burn-in operational cost 

(excluding the disposal cost). When there is a normal failure mode, 
*

2,b  is smaller compared 

with 
*

1,b . This means that when the product deteriorates due to some other mechanisms, e.g., 

some normal failure modes, the only way we can enhance the reliability is to adopt a more 

stringent criterion for the infant mortality modes. 

 

6.3.5 Two Failure Modes with Normal Failures Active during Burn-In  

To provide more insight into our burn-in planning framework, we further consider the case 

where there is a normal failure mode which is catastrophic and has to be activated during 

burn-in. After burn-in with duration b, some units would fail due to catastrophic failures. The 

proportion is G(b) and thus the expected disposal cost is  pc G b . Degradation level of a 
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functioning unit is measured. With probability   3,Pr bY b  , its degradation would exceed 

the cut-off degradation level 3,b , and is rejected. Otherwise, this unit is accepted and put into 

field use with expected field operation cost  

     3 31 , ,fc P b K P b     ,  

where  3 ,P b   is the probability of fulfilling the mission 

           3 3,, Pr | /f bP b Y b Y Y b G b G b         .  

Therefore, the expected cost function  3,, bE C b  
   is given by 

 
          

        

3, 3,

3, 3

, Pr

                Pr ,

b s p mea d b

b f f

E C b c c G b c G b c G b Y b

G b Y b c c K P b

        

   
 

 

 
. (6.19) 

Similarly, we can determine 
*

3,b  through minimizing (6.19) over 3,b  with b fixed. The result 

is summarized in Theorem 6.3.  

 

THEOREM 6.3. Suppose that in addition to the DT failure, there is a normal failure mode 

that has to be activated during burn-in. When the mean cost function is given by (6.19), we 

have the following. 

(a) If    0 /G b G b    , the optimal cut-off degradation level is 

 
      
      

1

2 ,2 2*

3, 1

2 ,2 2

/

/

b b

b b

b f b k

b

b b k

k Y F G b G b

k F G b G b



 



 

   


   

 

 

   


  
. (6.20) 

(b) If 0  , the optimal cut-off degradation level is 
*

3,b   . 

(c) If    /G b G b   , the optimal cut-off degradation level is 
*

3, 0b  . 

  ■ 
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The proof is similar to those of Theorems 6.1 and 6.2, and thus is skipped here. Both the 

models in this section and in Section 6.3.4 can be readily generalized to the cases of multiple 

normal failure modes. 

 

6.4 Optimization under Parameter Uncertainty 

Sometimes, the process/distribution parameters have to be estimated from testing data, e.g., 

the electronic device example, and thus are subject to estimation uncertainties. Denote ϒ as 

the vector of parameters to estimate. A challenge faced us is how to take this risk into 

consideration.  

 

6.4.1 Naïve Approach: The Plug-In Method 

A traditional approach to cope with this issue is to simply take the maximum likelihood (ML) 

estimate ̂  and substitute it into the models in (6.7), (6.17) and (6.19). Optimal burn-in 

settings can then be determined through optimizing the cost functions by utilizing Theorems 

6.1-6.3. This approach is appropriate when sufficient data are available to ensure small 

estimation error. When the uncertainty issue is severe, however, ̂  may take values 

significantly different from ϒ, and the optimal solution found using this approach may be far 

removed from optimal. Admittedly, in the electronic device example, parameters are 

estimated from 20 samples and thus the uncertainty is significant. This method needs 

calibration to take into account parameter uncertainties, especially when the data size is small. 

 

6.4.2 Standard Approach: Resorting to Expectation 

In fact, the three models built in Section 3 rely on the mean costs, as both the degradation 
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process and the catastrophic failures are stochastic. The estimated parameters ̂  are subject 

to uncertainties and can also be treated as random variables, conditional on which the cost 

functions take the forms of (6.7), (6.17) and (6.19), respectively. In order to obtain the 

unconditional mean cost, we need to take the expectation of the cost functions over these 

distribution parameters. Denote  ˆ ,
ˆ, i bE C b 


 
  , i = 1, 2, 3, as the conditional mean cost 

per unit. It is noted that Theorems 6.1-6.3 are no longer applicable here. It is extremely 

difficult, if not impossible, to derive close form expression for the unconditional mean cost, 

as the distribution of ̂  is complicated. We recommend using bootstrapping method (Efron 

and Tibshirani 1993) to generate N sample estimates, computing the conditional mean cost 

for each estimate, and then averaging over the costs to approximate the unconditional cost. N 

= 1,000 is use in this study. The stochastic approximation algorithm (SAA) can be used to 

locate the optimal burn-in duration b* and the corresponding optimal cut-off level. The theory 

and effectiveness of the simultaneous perturbation stochastic approximation (SPSA) 

algorithm have been well established (Spall 2003). Some Matlab codes are available in the 

SPSA web site (www.jhuapl.edu/spsa). A two-dimensional contour plot is also helpful in 

visualizing the optimal settings. 

 

6.4.3 A Robust Perspective: Chance Constraint 

The expectation-based method does not possess some build-in robustness in the sense that the 

realized cost is often higher than the expected value. This is not good news for manufacturers 

because they may underestimate the total cost that should be put into reserve to meet future 

expense. A justifiable means is to use chance constraint such that upper bound of the resulting 

cost would be controllable with high probability. This method also avoids the over-

conservatism issue faced with the worst-case analysis. In this study, the chance constraint 
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model essentially minimizes the upper α quantile of the costs as follows. 

 
  

,,

ˆ ˆ ,

0

ˆsubject to Pr

minim

1

iz

,

e   
i b

i b

b

E y

y

C b



 
 



    
 

. (6.21) 

The optimal burn-in settings suggested by (6.21) give a 1 – α guarantee that the total cost will 

less than y*, the optimal value of (6.21). Since the cost function adopts a complex form and 

the distribution for ̂  is unknown, this problem cannot be solved analytically. However, 

(local) optimum can be obtained by using simulation in conjunction with optimization 

algorithms that are derivative-free or that use numerical gradients, e.g., the mesh adaptive 

direct search (MADS) algorithm (Audet and Dennis 2006). Similarly, we use N = 1,000 for 

the bootstrapping. A detail procedure to solve (6.21) is as follows. 

Procedure to Solve the Chance Constraint Problem 

 Select an appropriate N such that αN is an integer. Generate N sample estimates of ̂  

using parametric bootstrapping method. 

 For each b and ,i b , compute the approximated total cost by substituting these N 

sample estimates into the conditional cost function. Sort these costs from smallest to 

largest and use the (N – αN)th sorted sample cost as an approximation to the smallest y 

that satisfies the constraint in (14). Denote this y value as  ,
ˆ , iα bb ξy  

 Use certain optimization algorithm that does not require analytic derivative to 

minimize  ,
ˆ , iα bb ξy  as a function of b and ,i b .  

 

6.4.4 Additional Remarks 

Calibration of the naïve approach can also be done by asymptotic expansions instead of 
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simulation (Barndorff-Nielsen and Cox 1996). But due to the complexity, this method is not 

discussed here.  

When parameter uncertainly is large, the expectation approach is recommended when the 

manufacturer is risk neutral, and the chance constraint approach when risk averse. On the 

other hand, the plug-in method is applicable when the parameters are known from other 

sources (e.g., a previous study), or when enough data from burn-in and in-operation 

failure/degradation are collected after the burn-in procedure is set-up. The latter case is 

appropriate for the electronic device example. These in-operation data update the ML 

estimates, whose consistency ensures minor uncertainty with large data size.  

 

6.5 An Illustrative Example 

The cost model developed in Section 6.3.4 is applied to the electronic device example. The 

optimization approaches presented in Section 6.4 are applied to determine the optimal burn-in 

settings. In this example, the degradation threshold is Yf = 40. The following cost profile is 

adopted for illustrative purpose.  

τ = 2 years, c0 = 0.01, cs = 0.1, cmea = 0.1, cd = –40, cf = 1,000, K = 500. 

Here a negative disposal cost means that the manufacturer is able to sell a unit at a lower 

price without any penalty cost if he deems that its quality is not high enough. As we have 

discussed before, the parameters need to be estimated from test data.  

 

6.5.1 Data Analysis 

Consider the degradation data in Table 6.2. Not all units start degradation from time 0, 

meaning that there are some slow starters. This may be due to limitations in 
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measurement precision. In this analysis, when the degradation values are zero, we treat 

them as missing data. The modified degradation paths for the 10 units are depicted in 

Figure 6.1.  

 

 

Figure 6.1. The degradation path of the test units. 

 

Figure 6.1 shows that the degradation paths are approximately linear when t > 500. A 

homogeneous Gamma process with random effect may be appropriate. We assume that 

 t t  , where β is a parameter to estimate. The likelihood function have been derived in 

Ye et al. (2012c), and is briefly described here.  
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where    : : : 1i j i j i jt t      . The log-likelihood function can thus be expressed as 
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ML estimates of this process are listed in Table 6.3.  

 

Table 6.3. MLE for the degradation parameters. 

parameters β λ k 

MLE 0.00812 1.3052 9.1778 

Standard errors (0.0015) (0.8362) (5.1833) 

 

For comparison purpose, the estimated CDF for the time to threshold-defined failures from 

the method of Huang and Askin (2003) (H-A method), the Gamma process with random 

effect (Gamma method), and the Kaplan-Meier (KM) estimates are depicted in Figure 6.2. 

The KM estimation uses pseudo failure times obtained by fitting each degradation path and 

extrapolating to the threshold (Meeker and Escobar 1998, p. 339). Compared with the H-A 

method, the estimated CDF based on the Gamma method lies within the 95% pointwise 

confidence bound of the KM estimates. Therefore, the Gamma process presents an attractive 

alternative to describe the light degradation.  

 

 

Figure 6.2. Comparison of the Gamma method and the H-A method in estimating CDF of the time to 

threshold-defined failure. 
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The Weibull distribution is able to fit the traumatic failure data well. The Weibull plot is 

given in Figure 6.3. The MLE for the shape parameter is 4.4012 (1.5176), the scale parameter 

is 25023 (1898.0). Therefore, the SF for the catastrophic failure time is  

  
4.4012

exp
25023

t
G t

  
   

   
. (6.22) 

 

 

Figure 6.3. Using Weibull distribution to fit the catastrophic failure data 

 

6.5.2 The Plug-In Approach 

This device is subject to two failure modes while the catastrophic mode can be avoided 

during burn-in. Therefore, the cost model (6.17) can be applied to identify weak units. We 

first ignore the parameter uncertainties and apply the plug-in approach in Section 6.4.1. The 

optimal cut-off points for each burn-in time can be determined by (6.18), after which optimal 

burn-in duration can be determined by simple search method. The optimal burn-in scheme is 

to burn-in a unit for b* = 497h with cut-off level *

*

2,b
  = 1.25, leading to the optimal cost of –

166.6. The total cost without burn-in is –162.8. Burn-in reduces the cost by 2.32%. In 

addition, burn-in improves the field reliability. Originally, 19% of the product would 
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ultimately fail due to DT mode. This proportion reduces to 15% with burn-in. To verify the 

correctness of Theorem 6.2, Figure 6.4 gives the contour of the expected total cost with 

respect to b and 2,b . The dashed line is the optimal cut-off levels determined by (6.18).  

 

 

Figure 6.4. The expected total cost by treating the ML estimates as the true values: The dashed line is 

the optimal cut-off level determined by Theorem 6.2 and the diamond point is the optimal burn-in 

scheme. 

 

This figure shows that for each fixed b, the cut-off level on the dashed line yields the lowest 

total cost. In addition, Figure 6.4 also indicates that 
*

2,b  is increasing in b, which is 

concordant with Theorem 6.2 because  t  is linear and thus is concave. 

 

6.5.3 Resorting to Expectation 

In view of the fact that the ML estimates themselves are random variables, we can average 

over them to obtain the unconditional expected cost. To use the SPSA algorithm, we follow 

the implementation guidance provided by Spall (2003, Chap. 7.5). The optimal burn-in 

duration is 288h with optimal cut-off level 1.01. The associated optimal cost is –186.4. 

Without burn-in, the unconditional expected cost is –179.9. Again, products undergone burn-
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in enjoy a relative cost reduction of 3.61%. A contour plot is provided in Figure 6.5. This 

figure tends to suggest that this local optimal solution is indeed global optimal. 

 

 

Figure 6.5. The unconditional expected total cost by treating the ML estimates as random variables: 

The diamond point is the optimal burn-in scheme. 

 

6.5.4 Using Chance Constraint 

To make the optimal burn-in scheme more robust, the chance constraint method can be 

employed. We set α = 0.05 and apply bootstrapping in conjunction with the MADS algorithm, 

as described in Section 6.4.3, to solve (6.21). In this procedure, different starting points are 

tried. However, each time the algorithm converges to some point with a near-zero cut-off 

level and a (local) optimal cost greater than the disposal cost cd. This is due to the problem of 

limited data and the large uncertainty associated with the ML estimates. Therefore, according 

to this approach, a risk-averse manufacture may either not launch this device, or reduce the 

uncertainty and re-evaluate this product by testing more units. A simulation study is carried 

out here to examine effects of sample size on the optimal solutions.  
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In the simulation, n units are used for the light degradation test and additional n units for the 

interface fracture test. Assume that values of the ML estimates based on these 2n units are the 

same as those in Section 6.5.1. Different values of n lead to different optimal solutions, as 

depicted in Table 6.4.  

Table 6.4. Optimal solutions of the chance constraint method with different sample sizes. 

n 10 30 50 100 200 

b* n/a 760.9 668.6 636.2 574.5 

*

*

2,b
  n/a 1.15 1.16 1.28 1.27 

EC* -40 -54.5 -83.3 -100.5 -119.3 

 

Table 6.4 shows that when the sample size gets larger, the chance constraint approach would 

suggest a meaningful burn-in setting. In addition, when the sample size increases, the optimal 

solution approaches the settings suggested by the plug-in method. It is also interesting to note 

that when the uncertainty gets smaller, this approach tends to suggest a slacker burn-in policy 

(i.e., a smaller burn-in time and a higher cut-off level). This indicates some degree of 

reservation and robustness of the chance constraint approach in dealing with uncertainty.  

 

6.6 Conclusions 

This chapter develops a general burn-in planning framework for products with independent 

competing risks. This framework suggests identifying all failure modes, classifying them into 

the right classes, activating all infant mortality modes during burn-in and trying to keep the 

normal modes dormant. In addition, degradation-based burn-in approach is recommended 

when some DT modes have infant mortality. In view of the prevalence of multiple failure 

modes, this framework would furnish a good guide for burn-in practitioners. Based on this 

framework, three degradation-based burn-in models are developed, one of which is applied to 

the electronic device example. In addition, three approaches are proposed to deal with the 
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issue of parameter uncertainties.  
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CHAPTER 7 BI-OBJECTIVE BURN-IN 

OPTIMIZATION 

7.1 Introduction 

Burn-in test is a cost-intensive procedure. The total book costs for a burnt-in product include 

both burn-in costs and the tangible field failure costs, e.g. handling and administrative costs. 

Many burn-in models have been developed to help decide on the optimal burn-in duration by 

minimizing the total book costs. Nevertheless, field failures also affect customer satisfactions 

and lead to intangible cost such as losses of reputation and customer loyalty. These intangible 

losses often have more significant effects on product benefits, and even on the overall 

company benefits, as the customer royalty has great impacts on customer retentions and the 

first purchase decisions of new customers (cf. Reichheld and Teal 2001). The intangible costs 

are much more difficult to quantify compared with the book costs. These costs associate 

directly with the performance, especially reliability, of a burnt-in unit. Accordingly, many 

researchers have proposed a variety of performance-based burn-in models. Although the cost 

and the performance measures are often correlated, optimal burn-in decisions based on these 

two measures are different. Optimizing the cost measure often yields a poorer system 

performance and vice versa. Therefore, we need a unifying burn-in framework for integrating 

these two measures and then striving for the optimal trade-off. This framework allows the 

manufacturer to obtain a best-compromise burn-in strategy by specifying the relative weights 

between these two measures. Naturally, this framework is able to include most existing burn-

in models as its special cases.  

We then apply the framework to model a system-level burn-in problem. For a complex 

system, we may use a non-homogeneous Poisson process (NHPP), often with bathtub arrival 

rate, to model the overall failure process, e.g., see Mi (1996) and Sheu and Chien (2004) to 
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name a few. Alternatively, we can decompose the system into component level so as to trace 

sources of infant mortalities, and then model lifetime distribution of the system as a function 

of the reliability of each component position. There are a number of reasons in favor of this 

approach. One major justification is that many organizations adopt a modular approach to 

reuse proven component blocks and approaches, if possible, in subsequent products (Turner 

2010). Infant mortality rates of these blocks are available from past experiences. Some efforts 

has been found in this topic; see Reddy and Dietrich (1994), Pohl and Dietrich (1999) and 

Kim and Kuo (2005, 2009) among others. All these studies stressed the problem from the 

perspective of either cost or performance. Our bi-objective model jointly considers these two 

objectives, and is flexible and easy to quantify the penalty of unmet performance. There are 

some unsolved computational difficulties associated with this modeling approach. In this 

chapter, we propose two numerical techniques to overcome the computational difficulties. 

The remainder of the chapter is organized as follows. We start with a brief discussion of the 

background of burn-in and burn-in models in Section 7.2. Section 7.3 presents the proposed 

unifying framework that takes the book costs and field performance into consideration. Based 

on this framework, we build a system level burn-in model in Section 7.4. Section 7.5 

investigates properties of this model and proposes numerical methods to optimize the 

objective function. An algorithm combining the grid search and an approximation of 

Riemann–Stieltjes integral (RS Sum) is proposed. In addition, bounds for the reliability 

function and the delayed renewal function are derived, based on which an approximation 

method is proposed. In Section 7.6, accuracy of the RS sums method and tightness of the 

bounds are evaluated through simulation. An illustrative example is provided in Section 7.7. 

Section 7.8 deals with some concluding comments. 
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7.2 Background and Problem Formulation 

7.2.1 Quality Variations and Burn-In 

There are four potential sources of quality issues in manufactured products. The first source 

of quality variation is from non-conforming components that sneak through supplier’s 

screening. The remaining sources of quality problems are associated with the assembly 

process described as follows.  

First of all, some damages may be inflicted to components when they are installed to the 

designated positions. Moreover, connection points that link the components to the substrates 

may also be faulty; these are commonly referred as component connection defects in the 

system. Last but not least, the assembly process may also damage the substrate. Whenever 

this type of defect occurs, the system will breakdown. Therefore, this is referred to as series 

connection defect.  

These four sources of quality variations are illustrated in Figure 7.1.  

 

 

 

Figure 7.1. Sources of quality variations: (a) Non-conforming components; (b) Component defect; (c) 

Component connection defect; and (d) Series connection defect. 

 

These four sources of quality variations account for the initial high failure rate, well-known 

as the infant mortalities, of a product. Burn-in has long been proven to be effective in dealing 

(d) (c) 

(b) (a) 
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with the infant mortality, and has been widely used in the semi-conductor industries. They are 

often conducted under harsh environments such as higher temperature, humility, vibrations 

and elevated voltage. MIL-STD-883G (2006) specified 6 basic burn-in conditions for 

microelectronic devices. Latent flaws such as the material defects, software faults and 

manufacturing defects are precipitated during burn-in.  

Models are needed to quantify the effects of burn-in and help decide on the optimal burn-in 

strategy. Generally speaking, burn-in models can be classified into two groups, i.e. those of 

cost-based and performance-based. These two classes of models are briefly encapsulated 

below. 

 

7.2.2 Burn-In to Minimize Total Book Costs 

Typical costs associated with burn-in include 

 Fixed set-up cost. 

 Burn-in operational cost which is approximately linear in the burn-in duration b. 

 Disposal cost of a weak unit when the product is non-repairable, or repair cost when 

the product is repairable. 

Denote the burn-in costs to obtain a survivor by  BC b . After a burnt-in unit is put into field 

use, unexpected failure of the unit would engender some book costs, e.g. field repair cost and 

warranty losses. Most extant models consider either maintenance cost or warranty costs. We 

summarize them as follows. 

 Minimization of joint burn-in and maintenance costs, e.g. Mi (1996), Sheu and Chien 

(2004), Cha and Finkelstein (2010a). After burn-in, a legitimate preventive 

maintenance schedule is able to further reduce the total costs. Models in this class 
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seek to simultaneously determine the optimal burn-in duration and the maintenance 

intervals. 

 Minimization of joint burn-in and warranty costs, e.g. Mi (1999), Yun et al. (2002), 

Sheu and Chien (2005), Yuan and Kuo (2010) and Ye et al. (2011a). Most products 

are sold with warranty. Breakdown of a burnt-in unit within the warranty period 

causes warranty claims and transfer to warranty costs in return. We can use burn-in to 

achieve a balance between burn-in costs and warranty costs. Different warranty 

policies lead to different cost structures. 

The field operation costs are denoted as  OC b . Objective function of a cost-based model can 

be expressed as 

      1 B OJ b C b C b  . (7.1) 

The cost-based burn-in models attempt to determine the optimal burn-in scheme through 

minimizing J1(b).  

 

7.2.3 Burn-In to Optimize Field Performance 

Sometimes, the manufacturer may be more concerned with the intangible losses, such as 

reputation of the brand and the customer royalty. Unmet performance is associated with the 

user’s perceived risks and satisfaction with this product, and thus can be used to represent 

these losses. The performance objective can be either survival probability over a pre-specified 

mission time, mean residual life (MRL), or percentile of the residual life. These criteria are 

summarized and discussed as follows. 

 Minimization of the expected number of field failures over a mission time. This 

measure is directly related to repair costs and warranty costs. Minimizing this 

measure leads to low book costs. The major concern of this approach is how to model 
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subsequent failures after the first failure. 

 Maximization of the survival probability over a mission time, e.g. Mi (1994b), Kim 

and Kuo (2005, 2009). Even when a product is repairable, maximizing the survival 

probability presents an attractive alternative because it directly relates to customer 

satisfaction. In fact, this is often the target of product design (Murthy et al. 2009).  

 Maximization of the percentile functions of the residual life, e.g., Ye et al. (2011a). 

This criterion leads to the longest mission time that the product can offer given a pre-

specified proportion of failures.  

 Maximization of the mean residual life (MRL), e.g. Bebbington et al. (2007). The 

MRL is a very important performance index in the context of reliability engineering. 

If there is no scheduled preventive maintenance, this criterion results in lowest long 

term average field operation costs.  

Denote J2(b) as such objective functions. Performance-based burn-in seeks to find an optimal 

burn-in duration so as to optimize J2(b). 

 

7.3 Burn-In Decision-Making: A Bi-Objective Framework 

7.3.1 Bi-Objective Framework: A Meta Model 

In this study, we propose to treat the cost and the performance objectives as two independent 

goals. A bi-objective framework which clearly includes both cost and performance as its 

special cases can thus be built. The most straightforward approach to solving a multiple-

objective problem is to combine these objectives by using weighted sum of the multiple 

objective functions. This requires manufacturer to normalize the objective function prior to 

the construction of a specific burn-in model. 

For the cost objective, we propose using    1 0 0OJ C  as the normalized constant. Then 
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   1 11 / 0J b J  is the relative cost reduction from burn-in. On the other hand, we propose 

using  2 0J  as the normalized constant with regard to the performance objective. Then 

   2 2/ 0 1J b J   is the relative improvement of the performance through burn-in when the 

performance objective is the-larger-the-better, e.g. the MRL. When this objective is the-

smaller-the-better, the relative improvement of the performance is    2 21 / 0J b J . 

After normalization, weights are assigned to these two normalized objectives to represent 

their relative importance. Denote w1 and w2 as the weights assigned to the cost and the 

performance objectives, respectively. Here, we consider only convex combinations as it is 

always possible to normalize w1 and w2 so that w1 + w2 = 1. 

With these set-ups in place, a bi-objective framework can be constructed. The cost objective 

is the-smaller-the-better. If the performance objective is the-larger-the-better, the bi-objective 

framework is 

 
         

 

1 1 1 1 2 2min   / 0 1 / 0

. .       0,     1,2,..., .i

J w J b J w J b J

s t g b i n

    

 
 (7.2) 

where gi(b) are possible constraints imposed on the burn-in procedure. These constraints may 

include time limit on the burn-in duration and limited burn-in facilities. 

If the performance objective is the-smaller-the-better, the bi-objective framework is 

 
         

 

1 1 1 1 2 2min   / 0 1 / 0

. .       0,     1,2,..., .i

J w J b J w J b J

s t g b i n

    

 
 (7.3) 

The procedure to use this framework is visualized in Figure 7.2. 
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Figure 7.2. The procedure to construct a specific bi-objective model 

 

By varying w1, a series of optimal burn-in durations can be obtained. When w1 = 0, the model 

reduces to a purely performance-based one. On the other hand when w1 = 1, this model is 

purely cost-based, and the optimal burn-in duration achieves a balance between burn-in costs 

and costs due to field failures. When 0 < w1 < 1, there is a trade-off between performance and 

costs under the bi-objective framework, though there are some correlations between these 

two objectives.  

An alternative way to understand the framework is to treat the performance objective as a 

penalty, under which we are able to convert the bi-objective model into a purely cost-based 

one. Some other studies also take the unmet performance as a penalty. For example, Toyota 

uses a multiple of six times of the repair cost for a field failure to measure the reputation cost, 

while the Westinghouse uses a multiple of four times (Balachandran and Radhakrishnan 

2005). In effect, it is difficult to quantify the costs for such penalty. Our framework 

effectively fixes the problem by simply requiring the manufacturers to specify the weights 
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that they would like to assign to these two objectives. 

 

7.3.2 Determination of the Weights 

The weights w1 and w2 are determined according to decision maker’s preference. A weight 

can be interpreted as the relative worth of that objective when compared to the other 

objectives. The optimal solution is relative to a manufacturer’s particular preference structure. 

Therefore, the solution to a specific bi-objective model is indeed the best-compromise 

solution.  

If the manufacturer believe that these two objectives are equally important, the weights can 

be set as w1 = w2 = 0.5. However if the manufacturers are not quite sure about the relative 

importance, they can perform pair-wise comparison judgment on a set of criteria, e.g. the 

current flow, the reputation and the customer royalty, with respect to these two objectives. 

The analytic hierarchy process (AHP) can be effectively applied to determine the weights 

(Saaty 1994). The procedure is quite standard and goes beyond the scope of this work, thus is 

not discussed here. 

 

7.4 A Bi-Objective System Level Burn-In Model 

In this section, we shall use the framework to build a concrete bi-objective system-level burn-

in model. Survival probability of a burnt-in system is adopted as the performance objective as 

it directly relates to customer satisfaction. We analyze the system in the component level so 

as to trace down the origin of quality variations. The burnt-in system reliability and burn-in 

costs can be determined in terms of analyzing the component reliability. 
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7.4.1 Decompose the system to component level 

Imagine a complex piece of equipment as a large number of component positions into each of 

which there is inserted a component. A component position includes the component installed 

in it as well as the connections that connect the component to the system. As illustrated in 

Figure 7.1(a)-(c), possible defects in the component position include component defect and 

component connection defect. 

Denote by K the number of component positions in this system. A component designated to 

component position I, 1,2,...,I K is called a Type i component. A normal Type i component, 

i.e. before assembly, has CDF  iF t  and SF  iF t . After assembly, it becomes defective with 

probability pi. A defective Type i component has CDF  iH t . Therefore, the SF of the Type i 

component after assembly, denoted as  *

iF t , can be expressed as 

        * 1i i i i iF t p F t p H t   . (7.4) 

The number of series connection defects is denoted as N0. The number of connection defects 

in position I is Ni, i = 1, 2, …, k. Ni, i = 0, 1, …, k, are non-negative integer-valued r.v.s with 

Pmf  i n . Assume that the times to detect the series connection defects and the component 

connection defects are i.i.d. r.v.s with CDF  G t  and SF  G t .  

Appropriate distributions for iN , i = 0, 1, …, k, and for time to detect of a connection defect 

can be found from past experiences if some proven component blocks are reused. For 

example, a Bernoulli distribution is appropriate for Ni, i = 1, 2, …, k since we may be 

concerned with whether connection defect exists in position I or not. On the other hand, there 

can be a number of series connection defects in a system, especially when the system is large 

and complex. Therefore, the Poisson and the negative binomial distributions are plausible 

models for N0. 
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With the help of Test during Burn-in (cf. Kececioglu and Sun 1997), functionalities of all 

components in the system can be monitored through standard burn-in testing facilities so that 

any component failures and failures resulting from connection defects can be immediately 

detected, regardless of the system structure. To simplify the formulation, some more 

assumptions are made below. 

(a) Lifetimes of all components and connection defect failure times are all independent.  

(b) If a Type i component fails during burn-in, it is replaced with a normal one with SF 

 iF t , at the cost of ,r iC . When a connection defect is detected, it is perfectly 

removed with repair cost Cd. The process of failure detection, trouble location, and 

replacement is assumed to consume no appreciable time. 

(c) The unit time burn-in operational cost is a constant C0. After burn-in with duration b, 

a mission time τ is set for a burnt-in system.  

(d) Once the system fails during field operation, we assume that repair is not allowed and 

a breakdown cost of Cf is incurred.  

Remark 1: We do not further divide the normal components into the conforming and the non-

conforming ones due to the fact that lifetime of a non-conforming component is usually much 

longer than time to defect failures (Jiang and Murthy 2009). The principal purpose of system 

level burn-in is to screen the assembly defects illustrated in Figure 7.1(b)-(d). 

Remark 2: Assumption (d) is a legitimate simplification for many commercial products with a 

warranty contract, e.g. the renewing replacement free warranty. For products sold under other 

warranty policy, the probability that it fails more than two times during the warranty period is 

pretty small, e.g. see Meeker et al. (2009) for some justifications. 
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7.4.2 Burnt-In System Reliability 

Component failures at position I constitute a delayed renewal process  1 2, , ,..., ,...nY X X X  

where Y has SF  *

iF t  and Xn, n ≥ 1 have SF  iF t  (cf. Ross 1996, Chap. 3.5). When the 

system undergoes a burn-in procedure with duration b, remaining lifetime of the component 

in position I is the excess life of the delayed renewal process. Its SF  *

,i bF t  is given by the 

renewal equation as 

        * * *

,
0

b

i b i i iF t F t b F t b x dm x     , (7.5) 

where  *

im t  is the renewal function for the delayed renewal process.  

For a specific connection defect, if it is detected during the burn-in test, it is perfectly 

removed. For example, if a cavity in a weld spot results in position failure during burn-in, we 

may expect that this cavity will be perfectly rectified. The probability that this defect is not 

detected during burn-in but detected within the mission time τ is    G b G b   . Therefore, 

the probability that this defect is not detected within the mission time is    G b G b  . 

The SF of component position I can thus be expressed as 

          *

, , 0

n

I i b in
R b F G b G b n   




      . (7.6) 

If a Bernoulli distribution is assumed for Ni with  

    Pr 1 1 Pr 0i i iN N q     ,  

Equation (7.6) boils down to  

         *

, , 1I i b iR b F q G b G b         . (7.7) 

The series connection defects can be handled in a similar vein. If we assume that N0 follows a 

Poisson distribution with rate μ0, the probability that no series connection defect is detected 
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within the mission time is 

        0, 0expR b G b G b      . (7.8) 

Once the system structure is known, the system reliability can be readily derived based on 

reliabilities of all component positions and reliability of the series connections. Let   denote 

the system structure. The system reliability, denoted as  ,R b  , is a function of the burn-in 

duration b, the system structure  , the reliability of each component position  ,IR b , I=1, 

2, …, K, the number of series connection defects N0 and the mission time τ. To reflect these 

relations, we express  ,R b   as 

         , 0, 1, ,, ,..., KR b R b R b R b     . (7.9) 

 

7.4.3 Cost Formulation 

The burn-in cost includes burn-in operational cost and rectification of connection defect 

failures and component replacements. During burn-in, if a specific connection defect is 

detected, it is permanently removed with cost dC . The probability of this occurrence is  G b . 

There are Ni connection defects in position I. For each connection defect, we define a 

corresponding indicator variable Zn. Then we have a sequence of independent indicator 

variables  1 2, , ,
iNZ Z Z  such that  

      1 1 0n nP Z P Z G b     .  

All these random variables are independent of Ni. Obviously, Ni is a stopping time for the 

sequence  ; 1nZ n  . Therefore, the number of connection defects detected during burn-in in 

component position I is 
1

iN

n

n

Z


 where by convention 
1

0
iN

n

n

Z


  when 0iN  . Its mean value is 
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given by 

      
0

1

iN

i n i n in
n

M b E Z EN EZ G b n n





 
     

 
   . (7.10) 

The total number of connection defects detected is the sum of connection failures in all 

component positions as well as in the series connections. Its expected value is given by 

      
0 0

k

ii n
M b G b n n



 
   . (7.11) 

If a Type i component fails during burn-in, it is replaced with a functionally equivalent 

component with no component defect, i.e. a normal one. Let  i b  be the number of 

component replacements in position I during burn-in. The replacement cost in position I 

is  ,r i iC b . Its expected value is  *

,r i iC m b , where     *

i im b E b  is the renewal 

function of the delayed renewal process. The expected number of renewals until b can be 

expressed as 

      1* *

1

n

i i i

n

m b F F b




  , (7.12) 

where 
   1n

iF b


 is the (n-1)-fold convolution of  iF b . Therefore, the expected cost due to 

component replacements during burn-in is given by  *

,1

k

r i ii
C m b

 . The expected burn-in 

cost can thus be expressed as  

      *

, 01

k

B d r i ii
C b C M b C m b C b


    . (7.13) 

Once the system fails during field operation, a breakdown cost of Cf is incurred. This cost 

includes the warranty cost and the administrative cost. The probability that the burnt-in 

system fails in field operation is  ,1 R b  , Therefore, the total field failure cost is  

   ,1O fC C R b     .  

 It follows that the cost objective is given by 
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       1 ,1B fJ b C b C R b      . (7.14) 

Note by passing that our cost function adopts a simple form by only capturing the principal 

cost components, but yet is able to quantify the costs incurred by both burn-in and field 

operation. With the burnt-in reliability function (7.9) and the total cost function (7.14) in 

place, we are in a position to develop the bi-objective system level burn-in model. 

 

7.4.4 The Bi-Objective Model 

The reliability objective can be normalized as  , ,/R b R    , where  

       , 1 2, ,..., KR F F F       

is the system reliability without any assembly defects. Under this context, the ratio 

 , ,/R b R     can be interpreted as the screening strength. On the other hand, we normalize 

the cost objective as    1 1/ 0J b J , where  1 0J  is the total cost without burn-in. Using (7.2), 

the objective function is a convex combination of the screening strength and the normalized 

cost as 

 

 

 
 

 ,1

1 1

1 ,

  1
0

   . .     0 ,

min
b

U

R bJ b
w w

J R

s t b b

 

 

 

 

  

where bU is the maximum allowable burn-in duration that might be imposed by the 

manufacturer. When the manufacturer does not have such constraint, we can simply set bU = 

∞. When w1 = 0, this problem reduces to the performance-based model proposed by Kim and 

Kuo (2009). When w1 = 1, this problem is purely cost-based. 
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7.5 Model Analysis and Optimization 

In this section, some properties of the bi-objective system-level burn-in model are 

investigated, after which a numerical algorithm is introduced to search for the optimal burn-in 

duration. For systems consisting of a few components, and systems comprising many 

identical components, modeling and analysis using our algorithm are quite efficient. However, 

many systems comprise a large variety of different components, which may render an 

insufferably long computational time if our methodology is applied. For these complex 

systems, we derive lower and upper bounds for the burnt-in reliability functions and the 

delayed renewal functions. These bounds are used to approximate the objective function. 

Simulation studies reveal that these bounds are very tight. 

 

7.5.1 Bounds for the Optimal Burn-In Duration 

As w1 varies from 0 to 1, the optimal burn-in duration changes. Denote this optimal duration 

as 
1

*

wb . Then the optimal burn-in time that maximize the system reliability is 
*

0b  while the 

optimal burn-in time that minimize the total cost function is 
*

1b . Lower and upper bounds for 

the optimal burn-in time are desirable as they define the range of all possible choices. Some 

useful results are given in Theorem 7.1. 

 

Theorem 7.1. When 0 ≤ w1 ≤ 1, the optimal burn-in time 
1

*

wb of the bi-objective model is 

decreasing in w1. Moreover, 
1

*

wb  is not greater than 
*

0b  and is not less than 
*

1b , i.e. 

1

* * *

1 0wb b b   for any w1.  

Proof: When 1 0w  , by substituting (7.14) into the objective function of the bi-objective 

model, we can rewrite the objective function as 



 

125 

  
 

   
 1

1 ,

1 1 , 1

1
|

0 0

B f fC b C Cw
J b w R b

J w R J

  
   

  
 

 

. (7.15) 

For a specific choice of w1, its optimal burn-in time is 
1

*

wb . For any 
1

*

wb b , we have 

    
1

*

1 1| |wJ b w J b w . (7.16) 

A useful result shall be proved first. For any 
1

*

wb b , because the burn-in cost is an increasing 

function of burn-in duration, we can know  

    
1

*

B B wC b C b .  

If we suppose  

    
1

*

, , wR b R b    ,  

we have    
1

*

1 1| |wJ b w J b w  from (7.15), which contradicts with (7.16). Therefore for any 

1

*

wb b , the following relation should always hold 

    
1

*

, , wR b R b    . (7.17) 

Consider another choice 1w  with 1 1w w  ,  1|J b w  can be expressed as 

    
 ,1 1

1 1

1 1 ,

1 1
| |

R bw w
J b w J b w

w w R

  
    

 

 

 

. (7.18) 

Note that the second term on the right hand size is negative. By substituting (7.16) and (7.17) 

into (7.18), we have that for any 
1

*

wb b ,  

    
1

*

1 1| |wJ b w J b w  .  

Therefore,  

 
1 1

* *

w wb b  . (7.19) 

Inequality (7.19) implies that 
1

*

wb  is decreasing in w1. When 1 1w  , the model reduces to the 
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case of minimizing the cost function. When 1 0w  , the model reduces to the case of 

minimizing the expected number of field failures. Therefore, 
1

*

wb  is not greater than 
*

0b  and 

1

*

wb  is not less than
*

1b . Therefore, the theorem holds. 

■ 

This theorem provides meaningful insights into the burn-in problems. When w1 = 1, the 

model is purely cost-based. The optimal burn-in duration achieves a balance between the 

burn-in cost and costs due to field failures. When w1 < 1, there is a trade-off between 

reliability and costs in the bi-objective model, though there are some correlations between 

these two elements. An alternative way to understand the model is to treat the reliability 

objective as a penalty, under which we are able to convert the bi-objective model into a 

purely cost-based one. If more weight is assigned to the total costs, a relatively short burn-in 

duration can be employed since burn-in is costly. This is at the expense of a lower system 

reliability. If the reliability is important, which is embodied in a small w1, a longer burn-in 

duration is desirable to attain a higher screening strength, at the price of greater costs.  

Remark: Given the burnt-in reliability (7.9) and the total cost (7.14) as above, the optimal 

burn-in duration under the performance-based burn-in model, i.e. w1 = 0 is always greater 

than that under the cost-based burn-in model, i.e. w1 = 1. 

 

7.5.2 An Optimization Algorithm 

Kim and Kuo (2009) derived some close-form expressions of  *

,i bF t for some simple 

distributions. However, these expressions are very complicated. For general distributions, 

however,  *

,i bF t  in (7.5) and  *

im b  in (7.12) have no closed-form expressions. Therefore, it 

is almost impossible to evaluate the objective function in the bi-objective model by exact 
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methods, let along the optimal solution. An algorithm using the concept of RS sums is 

proposed in this section to numerically compute (7.5) and (7.12). Based on this method, we 

propose a new algorithm to optimize the bi-objective burn-in model. 

RS sums method 

Consider a delayed renewal process  1 2, , ,..., ,...nY X X X  where Y has SF  *F t  and Xn, n ≥ 

1 have SF  F t . Denote W(b) as the excess life of this process at time b and  *

bF t  as the SF 

of W(b). By conditioning on the last renewal before b, we have 

        * * *

0

b

bF t F t b F t b x dm x     , (7.20) 

where m*(t) is the renewal function for the delayed renewal process. Conditional on the first 

arrival, m*(t) can be expressed as 

        * * *

0

t

m t F t F t x dm x   , (7.21) 

where m(t) is the renewal function for the renewal process  1 2, ,..., ,...nX X X  with renewal 

equation  

        
0

t

m t F t F t x dm x   . (7.22) 

Xie (1989) proposed a simple numerical method to compute m(t) based on the RS sums. To 

use this method, the interval [0, b] is uniformly divided with 0 = t0 < t1 <…< tn = b. Then 

m(tj), 1 ≤ j ≤ n can be calculated iteratively. Its expression was derived by Xie (1989) and is 

given by 

 

1

1/2 1 1/2 11

1/2

( ) ( )[ ( ) ( )] ( ) ( )
( )

1 ( )

j

j j k k k j j jk
j

j j

F t F t t m t m t F t t m t
m t

F t t



   



    


 


, (7.23) 

where m(t0) = 0 and  1/2 1

1

2
j j jt t t   . Once m(t1), m(t2), …, m(tj) are calculated, we can 
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approximate m*(tj), 1 ≤ j ≤ n based on the RS sums method, which is given by 

          * * *

1/2 11

j

j j j k k kk
m t F t F t t m t m t 

      . (7.24) 

Similarly, we can use the RS sums method to approximate  *

jtF t , 1 ≤ j ≤ n, which is given 

by 

          * * * *

1/2 11j

j

t j j k k kk
F t F t t F t t t m t m t 

        . (7.25) 

The proposed numerical algorithm 

As will be verified in Section 7.6, the RS sums method is very accurate. Technically, we can 

compute the objective function by the RS sums method and then use some optimization 

algorithms that do not require analytical gradients, e.g. the simplex search method (cf. the 

FMINSEARCH function in Matlab®), to find the optimum iteratively. However, the RS 

method itself is also an iterative algorithm. An iterative algorithm invoking another iteration 

algorithm is often time-consuming. We have noticed that there is only one decision variable 

in the bi-objective model. Grid search technique has been shown to be powerful and 

computationally effective in solving problems with a small number of variables (Lerman 

1980). By using the grid search, we only need to invoke the RS algorithm once to compute 

 *

,i b
F  , where b  is an upper bound for the burn-in duration. Then  *

, ji tF  , 1 ≤ j < n are by-

products in the course of obtaining  *

,i b
F  . The general procedure to combine the grid search 

and the RS method is as follows. 

Procedure 1. 

(i) Determine an upper bound b  for the burn-in duration. Uniformly divide the interval 

[0, b ] with points 0 = t0 < t1 <…< tn = b . 

(ii) Consider component position I. For 1 ≤ j ≤ n, compute mi(tj) by using (7.23). Then for 
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1 ≤ j ≤ n, compute  *

i jm t  in (7.12) by using (7.24). After that, for 1 ≤ j ≤ n, compute 

 *

, ji tF   of (7.5) by using (7.25).  

(iii) For 1 ≤ j ≤ n, compute the system reliability Rϕ,τ(tj) and the total cost J1(tj) by using 

the results from Step (ii).  

(iv) For a given w1, substitute Rϕ,τ(tj) and J1(tj) into the bi-objective model and determine a 

grid point tj that maximizes the objective function. A plot of the objective function 

versus the burn-in time is also helpful in the determination of the optimal burn-in time. 

■ 

When bU < ∞, we can set b  = bU. when bU = ∞, we will show how to determine b  in the 

next subsection. For computational purpose, n should not be too large. According to our 

simulations in Section 7.6, n = 1000 is accurate enough while the run time is moderate.  

When there are not too many distinct component positions in a system, the above algorithm 

requires moderate computational time, and is very accurate. If the system comprises 

multifarious components, the algorithm may not be efficient enough. In practice, duration of 

the burn-in procedure is short because (a) burn-in is costly and (b) latent defects lead to 

failures easily. When b is small, some accurate approximations for Rϕ,τ(b) and  *

im t  can be 

derived. The remainder of this section focuses on deriving such bounds. 

 

7.5.3 Bounds for Burnt-In Reliability and Delayed Renewal Function 

In the following, we shall first derive tight bounds for Rϕ,τ(b). Both the upper and the lower 

bounds, or the average of them, can be used to approximate Rϕ,τ(b). The upper limit b  in the 

new algorithm can also be determined through these bounds.  

Theorem 7.2 provides upper and lower bounds for the reliability function Rϕ,τ(b). The second 
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part of this theorem requires that the CDF Fi, i = 1, 2, …, k, for the normal components are 

new better than used (NBU). It should be noted that this is a legitimate assumption because 

without assembly defects, it is commonly believed that a conforming component exhibits a 

gradually increasing failure rate. For more discussions about properties of NBU, interested 

readers are referred to Lai and Xie (2006). In this theorem, it is implicitly assumed that the 

system has a monotonic structure, i.e. a coherent system.  

 

Theorem 7.2.  

(a)  When a system undergoes burn-in with duration b, an upper bound for the system 

reliability after burn-in is given by 

           , 0, 1, 2, ,, , ,...,U U U U

KR b R b R b R b R b      , (7.26) 

where 

                * *

, 0
/

nU

I i i i i in
R b F b F F b F b G b G b n    




            .(7.27) 

An lower bound for the system reliability after burn-in is given by 

           , 0, 1, 2, ,, , ,L L L L

KR b R b R b R b R b       (7.28) 

where  

              * *

, 0

nL

I i i i in
R b F b F b F b G b G b n    




              (7.29) 

(b) If we further know Fi is new better than used (NBU), i.e.      i i iF t b F t F b   for any t, 

b > 0, (7.27) can be further tightened by using 

              * *

, 0

nU

I i i i in
R b F b F F b G b G b n    




            . (7.30) 

Proof: Consider component position I. Let  iN b
S  denote the time of the last component 
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replacement before b. The SF of the excess life  iW b  can be obtained by conditioning on 

 iN b
S  as 

    
 

    * *

,

0

Pr
i

b

i

i b i N b

i

F b u
F F b d S u

F b u


 

 
   

 .  

It is easy to see that 

 
 

 

 

 
max : 0

i i

i i

F b u F
u b

F b u F b

    
   

  
.  

According to properties of the Riemann-Stieltjes integral (cf. Thm. 10.10 in Protter 1998),  

   
 

          
 

 
 * * * *

, Pr Pr 0 0
i i

i i

i b i i iN b N b

i i

F F
F F b S b S F b F b

F b F b

 
               .  

Therefore,  

    
 

 
 * * *

,

i

i b i i

i

F
F F b F b

F b


    , (7.31) 

and thus (7.27) follows. Most of the time, a system is assumed to have a monotone structure. 

From the definition of coherent system (Barlow and Proschan 1996), the following inequality 

follows. 

    , ,

UR b R b    .  

If we further know that Fi is NBU, We have      i i iF t b F t F b  . Then  

 
 

 
 max : 0

i

i

i

F b u
u b F

F b u




   
   

  
.  

Following the same procedure as that used in deriving (7.31), we arrive at (7.30).  

Consider Equation (7.5),  

        * * *

,
0

b

i b i i iF t F t b F t b x dm x     .  
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It is easy to see that 

     min : 0i iF b u u b F b       .  

According to properties of the Riemann-Stieltjes integral, 

        * * *

,i b i i iF F b F b m b      . (7.32) 

We have known that  

        1* * *

1

n

i i i i

n

m b F F b F b




   .  

 Substituting this result into (7.32) yields 

        * * *

,i b i i iF F b F b F b      .  

Therefore, 

    , ,

L

I IR b R b  .  

For a system with monotonic structure, the following relationship holds. 

    , ,

LR b R b      

■ 

Both the lower and the upper bounds do not involve the renewal functions and the SF of the 

excess lives for the delayed renewal processes, and thus can be easily computed.  

Moreover, these bounds can be used to determine b . By plotting the upper bound (7.26) and 

lower bound (7.28) for the burnt-in system reliability in the same figure, the upper limit b  

can be determined as follows.  

Procedure 2. 

 First, locate the maximum of the lower bound curve, which is denoted by  *

1 ,, Lb R  . 

 Draw a horizontal line traversing  *

1 ,, Lb R  . This line penetrates the upper bound curve 
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and separates it to two parts. We shall focus on the upper part of this curve and denote 

 2 3,b b  as range of the b values of this upper part. 

 Then 
*

0b  should be somewhere at  2 3,b b . Therefore, b3 can serve as the upper limit, 

as can be known from Theorem 7.1. 

In our bi-objective burn-in model, the delayed renewal function in (7.12) is also difficult to 

compute. We can use the lower bound below for this function.  

Lower Bound for the Delayed Renewed Function. When a system undergoes burn-in with 

duration b, a lower bound for the expected replacement in component position I is given by 

    * *

i im b F b . (7.33) 

■ 

This result can be easily obtained by noting that, from (7.12), we have  

        1* * *

1

n

i i i i

n

m b F F b F b




   .  

Tightness of this bound is examined in Section 7.6. 

 

7.5.4 Approximation Method for the Bi-Objective Model 

With the bounds provided in Theorems 7.2, an approximation method is proposed to 

approximate the objective function. We propose approximating the objective function by 

using 

      , , , / 2U LR b R b R b     
    ,  

where  ,

UR b   and  ,

LR b   are given by (7.26) and (7.30), respectively. The delayed renewal 

functions are approximated by using (7.33). After these approximations, the approximated 

objective function in the bi-objective model has close form expression, and can be computed 
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easily and efficiently. The optimum can be easily located by some simple but yet efficient 

one-dimensional search algorithm, e.g., the bi-sectional search algorithm. 

 

7.6 Simulation Studies 

In this section, simulation studies are carried out to verify the accuracy of the RS sums 

method, and the tightness of bounds provided in Theorem 7.2 and Equation (7.33).  

 

7.6.1 Accuracy of the RS Sums Method 

We examine the accuracy of the RS sums method by comparing (7.25) with the exact values 

of  *

bF t . In fact, closed form expressions for  *

bF t  rarely exist. Fortunately, if we assume 

that lifetime of a normal component follows  1EXP   and that lifetime of a defective 

component follows  0EXP   with defective probability p, the SF of the excess life can be 

derived as 

         * 1bF t pH t b pH b F t    . (7.34) 

where    0expH t t   and    1expF t t  . There are three parameters, i.e. λ0, λ1 and p. 

To evaluate the accuracy of the RS sums method, we examine the parameter settings in Table 

7.1, which are analogous to a 23-1 design. Values of the other parameters are τ = 1 year and b  

= 500 hours.  

 

Table 7.1. Parameter settings 

Trial 1/λ0 1/λ1 p 

1 7E-4 3E-6 0.05 

2 7E-4 1E-6 0.01 

3 3E-4 3E-6 0.01 

4 3E-4 1E-6 0.05 
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We try to plot the exact values of (7.34) and the approximations obtained from (7.25) on the 

same figure. Nevertheless, the approximation is so good that it is unable to distinguish these 

two curves. Therefore, we depict the absolute values of the difference in Figure 7.3. 
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(a)      (b) 

Figure 7.3. Absolute values of the difference between the exact values and those from the RS sums 

method: (a) n = 100 and (b) n = 1000 

 

As visualized in Figure 7.3, the absolute biases of the RS sums method are quite small, which 

indicates the accuracy of this method. Another interesting observation from this simulation is 

that the absolute biases are of order  1O n
, as can be seen from the two plots in Figure 7.3. 

Actually, n = 100 is accurate enough, as the order of magnitude of the absolute biases is about 

610 . 

 

7.6.2 Accuracy of the Burnt-In Reliability Bounds 

Consider a component position where there are no connection defects. Suppose a normal 
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component has SF F  while a defective one has SF H . The defective probability is p. To 

examine the accuracy of the bounds, we focus on the difference between the upper and the 

lower bounds. According to (7.27) and (7.29), we have 

                * * * * * /bF b F b F b F F b F F b F b           .  

That is, 

          *

1 , /b F F b F b F b        . (7.35) 

If we further know that F is NBU, the gap between the upper and the lower bounds can be 

narrowed down to 

        *

2 ,b F F b F b        . (7.36) 

We let τ = 1 year and b  = 500 hours. Several combinations of p, F  and *F  are examined, as 

listed in Table 7.2. To make the results comparable, these combinations are carefully chosen 

such that the expected lifetimes of a normal and a defective component are approximately 

52 10  and 310 , respectively. 

 

Table 7.2. Some combinations of the normal and defective components  

Comb. Normal ip  Defective 

1  52 10EXP   0.03  310EXP  

2  6Weibull 10 / 4.4,  3 *
 0.06  3Weibull 10 / 3,  1/ 3  

3  5gamma 10 ,2 **
 0.06  gamma 500,2  

4  ln 10.7,  1N  0.03  ln 6.6,  0.8N  

5  5 52 10 ,10IG   0.06  3 210 ,4 10IG   

* The SF for  Weibull ,   is   exp /t


  

** The PDF for  gamma ,   is 
 

 
1

exp /
t

t





 






 

 

The Fs in the first three combinations are NBU, (7.36) can thus be used. The gaps are 
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depicted in Figure 7.4(a). For the 4th and the 5th combinations, it is well known that their Fs 

are not NBU, (7.35) need to be used. The gaps are depicted in Figure 7.4(b).  
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Figure 7.4. Gaps between the lower and the upper bounds 

 

From Figure 7.4, we can see that the gaps between the lower and the upper bounds are very 

narrow. Therefore, they are tight enough to approximate the burnt-in reliability.  

 

7.6.3 Accuracy of the Lower Bound for the Delayed Renewal Function 

Next, we will examine the lower bound (7.33) for the delayed renewal functions. For 

illustrative purpose, we only consider Comb. 2 and 4 in Table 7.2. Because it is almost 

impossible to derive explicit expressions for the delayed renewal function, we use simulation 

to determine this function. To ensure the accuracy, we simulate each delayed renewal process 

for Nsim = 710  times. During each simulation, arrival time of each renewal is recorded. Then 

the simulated  *

im t  can be calculated as follows. 



 

138 

  * total no. of renewals before 
i

sim

t
m t

N
   

The simulated  *

im t  and the lower bound (7.33) are depicted on the same figure to compare 

the tightness of the bound, as shown in Figure 7.5.  
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Figure 7.5. Lower bound of  *

im t  and the biases compared with the simulated values: (a) for Comb. 

2; (b) for Comb. 4 

 

In Figure 7.5,  *

im t  approximated by (7.33) and computed from simulation almost overlap, 

which manifests the tightness of (7.33). This is because burn-in duration is often not too long. 

More than 1 failure in a component position is extremely rare. It should be noted that the 

biases in Figure 7.5 are not very stable, this is because we use simulated  *

im t  in lieu of the 

exact ones. 

 

7.7 An Illustrative Example 

We illustrate our methods by analyzing the parallel-series system in detail. Its structure is 

depicted in Figure 7.6. 
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Figure 7.6.Structure of the parallel-series system 

 

Suppose that the distribution for G is  3Weibull 2 10 ,0.85 ,  0 0~ Poisson 0.018N    and 

 ~ Bernoullii iN q  for i=1, 2, …, k. The system reliability function can be derived as 
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where  ,IR b , I = 1, 2, …, K, are given by (7.7). SF for each type of component and the 

values of qi are given in Table 7.3. For illustrative purpose, a mixture of exponential 

distributions is used for Type 1 component to represent the effect of imperfect inspection. The 

cost profiles are given in Table 7.4. 

 

Table 7.3. SF and qi for Type 1-5 components 

i  iF t  pi  iH t  qi 

1    5 50.99 8 10 0.01 3 10EXP EXP    0.03  24 10EXP   0.01 

2  5Weibull 5 10 ,  1.2  0 –––––– 0.006 

3  5gamma 3 10 ,3  0.05  2gamma 2 10 ,0.8  0.02 

4  ln 11.6,  1.2N  0.04  ln 6.1,  0.9N  0.015 

5  4 54 10 ,1.5 10IG    0.02  2 25 10 ,3 10IG    0.04 

 

Table 7.4. The cost configuration 

Parameters Cr,1 Cr,2 Cr,3 Cr,4 Cr,5 Cd Cf C0 

Values  $55 $48 $75 $64 $21 $5 $249 $0.03/h 

1 

4 

3 

2 

5 
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Assume that τ = 10 years, the upper limit can be obtained from Procedure 2, which is 

2283b  . Within this upper limit, the optima of the bi-objective model for different choices of 

w1 can be located by using Procedure 1. We also use the approximation method described in 

Section 7.4.4 to find the optima. Results from these two methods are depicted in Figure 7.7.  

 

 

Figure 7.7. Optimal burn-in durations determined by the new algorithm and the approximation 

method. 

 

As can be seen from Figure 7.7, optimal burn-in durations determined through the new 

algorithm and the approximation method tally very well. These two algorithms are also quite 

efficient in this example. For each choice of w1, both algorithm successfully terminate within 

2 seconds by using Matlab® in our desktop with Intel Core 2 Duo CPU E6750 @ 2.66G Hz. 

Figure 7.7 also suggests that the optimal burn-in duration is decreasing in w1, which is 

concordant with Theorem 7.1. 

Another interesting observation from Figure 7.7 is that the curve is rather flat when w1 > 0.4. 
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This means that within this interval, the optimal burn-in decision is not sensitive to the weight. 

However when w1 is relatively small, a small variation of w1 would lead to significant change 

of the decision. These results imply that if the manufacturers deem that the cost is relatively 

important, then it is not necessary to evaluate the weight accurately. But if they believe that 

the performance is more important, the relative weight should be estimated with more care. 

 

7.8 Conclusions 

Many cost-based and performance-based burn-in models have been proposed in the literature. 

Performance- and cost-based burn-in lay stress on product’s intangible losses and book costs, 

respectively. A legitimate burn-in strategy should allow the manufacturer to make a trade-off 

between these two objectives. This study bridges the gap between the cost-based and the 

performance-based burn-in models by developing a unifying framework for the determination 

of optimal burn-in durations. An intuitive way to understand this framework is to regard it as 

a cost model by treating the performance objective as a cost penalty. As such, this framework 

facilitates quantification of the intangible losses by simply requiring the relative weight of the 

performance objectives. From another point of view, this model allows for incorporation of 

manufacturers’ preferences in burn-in decision makings. 

We successfully use this framework to build a bi-objective system-level burn-in model by 

decomposing the system into component level. Many companies adopt a modular approach 

and reuse proven component blocks in new product design. Analyzing the system in 

component level enables us to reuse infant mortality data of these blocks when making burn-

in decisions for a new product. However, difficulties with regard to this approach are that 

evaluation of the bi-objective model requires dealing with the delayed renewal processes. We 

develop two numerical techniques to solve this problem. The RS approach is an iterative 

algorithm which is often time-consuming. But due to the special solution method of this 
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approach, it can be perfectly combined with the grid search technique. When the system is 

comprised of a large variety of components, we propose using approximation method. Lower 

and upper bounds for the burnt-in system reliability are derived. They are used to 

approximate the objective function. Both of these two numerical techniques are very accurate, 

as validated by our simulation and numerical example.  
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CHAPTER 8 CONCLUSIONS AND FUTURE 

RESEARCH 

Motivated by a couple of practical problems, this thesis has developed several burn-in models 

for different types of products under complex failure processes from some new perspectives. 

These models are able to furnish as theoretical as well as practical guidance for burn-in 

practitioners in dealing with optimal burn-in decisions. The contributions of this thesis are 

summarized as follows. 

Chapter 3 investigates a burn-in criterion based on change point of the PRL-p function. When 

the probability of warranty failure is pre-specified, this change point naturally gives rise to an 

optimal burn-in duration. Moreover, the maximal PRL-p represents the maximum allowable 

warranty period when the expected field return is set at p. We present some properties of this 

change point, and derive the asymptotic distribution of its parametric maximum likelihood 

estimator and that of the corresponding PRL-p. The procedure is applied to estimate a set of 

desirable burn-in duration and the corresponding warranty period. An example using the 

modified Weibull extension model is given to illustrate the procedure. The methodologies are 

then applied to the car engine problem faced by Volvo.  

Chapter 4 proposes and studies a new burn-in modeling approach for repairable products sold 

with a two-dimensional warranty. More specifically, we characterize two types of failures, i.e., 

normal and defect failures, and develop both performance and cost-based burn-in models 

under the non-renewing free repair warranty policy. Our models subsume the special cases of 

one-dimensional warranty, allow different failure modes to have distinct accelerated 

relationships, and take the consumer usage heterogeneity into consideration. Under some 

mild assumptions, it is shown that the optimal burn-in usage rate should be as high as 

possible, provided that no extraneous failure modes are introduced. Furthermore, we show 
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that the optimal burn-in duration determined from the performance-based model is not shorter 

than that from the cost-based model. Numerical examples are used to demonstrate the 

benefits of burn-in. In addition, the sensitivity analysis reveals the importance of designed 

reliability in terms of defect detection.  

Motivated by the infant mortalities in many Micro-Electro-Mechanical Systems (MEMS), 

Chapter 5 develops degradation-based burn-in maintenance models under the age and the 

block based maintenances, respectively. Both models assume that the product population 

comprises weak and normal subpopulations. Degradation of the product follows the Wiener 

processes while the weak and the normal subpopulations possess distinct drift parameters. 

The objective of joint burn-in and maintenance decisions is to minimize the long run average 

cost per unit time during field use by properly choosing the burn-in settings and the 

preventive replacement intervals. An example of the MEMS devices is used to demonstrate 

effectiveness of these two models.  

Chapter 6 develops a burn-in planning framework for products with competing risks. Existing 

burn-in approaches are confined to single failure mode based on the assumption that this 

failure mode is subject to infant mortality. Considering the prevalence of multiple modes of 

failures and the high reliability of modern products, our framework differentiates between 

normal and infant mortality failure modes and recommends degradation-based burn-in 

approaches. This framework is employed to guide the burn-in planning for an electronic 

device subject to both degradation-threshold failure, which is an infant mortality mode and 

can be modeled by a Gamma process with random effect, and a catastrophic mode, which is 

normal. Three cost-based burn-in models are built and the optimal cut-off degradation levels 

are derived. Their validity is demonstrated by the electronic device example. We also propose 

three approaches to deal uncertainties due to parameter estimation.  

Chapter 7 develops a bi-objective framework for burn-in decision makings to achieve an 
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optimal trade-off between the cost and the performance objectives. Decisions derived from 

performance-based burn-in models often yield high total book costs, but cost-based burn-in 

models often lead to relatively poorer product performance compared with the former ones. 

Under the proposed framework, a convex combination of the cost and performance objectives 

allows manufacturers to specify the relative weights and achieve a best-compromise solution. 

Based on this framework, we build a system-level burn-in model by analyzing system failures 

at the component level. We prove that the optimal burn-in duration is decreasing in the 

weight assigned to the normalized cost. To obtain the optimal burn-in duration, we develop 

an efficient numerical algorithm that combines an approximation to Riemann-Stieltjes 

Integral and the grid search technique. We also derive tight bounds for the burnt-in reliability 

function and the delayed renewal functions. These bounds are then used to approximate the 

objective function of the burn-in model.  

On the whole, a number of contributions have been achieved in this thesis. Nevertheless, 

some further research is necessary to extend our research. Some possible topics for future 

research are as follows. 

Chapter 3 focuses on the parametric inference. Further research on nonparametric estimation 

and the corresponding asymptotic behaviors of the PRL-p function may be explored in the 

future. Chapter 4 is a first step towards modeling burn-in for products sold with a two-

dimensional warranty. We have assumed that all defect failures are iid. It can be modified to 

the case where different defects have different failure distributions. It is also possible that 

some defects occur only if usage or usage rate is above some threshold. Other warranty 

policies other than the FRW, e.g. non-renewing replacement free policy and some renewing 

policies reviewed by Murthy and Blischke (2006) should be considered. Other servicing 

strategies (e.g. Murthy and Jack 2007) and shapes for the warranty region (e.g. Murthy et al. 

1995) also need further study. In addition, other objective functions including customer 
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satisfactions can be considered. It would be important to examine the effect of usage 

heterogeneity on optimal burn-in decisions under the three existing approaches summarized 

in Chapter 4.1. Chapter 5 implicitly assumes that degradation of a burnt-in unit is not 

monitored during field use. This is reasonable for small-size items, or products that are not 

very expensive. But when the product is expensive, we may also monitor its field degradation 

and make the dynamic maintenance decision. This deserves further investigation. In addition, 

sometimes, the measurement error of the degradation is not negligible. It would be interesting 

to see how burn-in decisions changes under this scenario. Chapter 6 studies optimal burn-in 

planning under independent competing risks. The case of dependent competing risks deserves 

further investigation. In this chapter, we consider the case where degradation level is 

measured only after burn-in, i.e., single inspection point. When the measurement cost is low 

and the unit time burn-in operational cost is high, it might be more cost effective to consider 

multiple inspection points, each associated with a cut-off level. In addition, products are often 

produced and shipped in batch (Huang and Ye 2010). Burn-in under such a setting will be 

different because of limited burn-in population and batch and batch variations. Burn-in 

models under this circumstance also need investigation. 
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