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ABSTRACT

SOME CONTRIBUTIONS TO MODELING USAGE SENSITIVE
WARRANTY SERVICING STRATEGIES AND THEIR ANALYSES

by
Rudrani Banerjee

Providing a warranty as a part of a product’s sale is a common practice in industry.

Parameters of such warranties (e.g., its duration limits, intensity of use) must be

carefully specified to ensure their financial viability. A great deal of effort has been

accordingly devoted in attempts to reduce the costs of warranties via appropriately

designed strategies to service them. many such strategies, that aim to reduce the

total expected costs of the warrantor or / and are appealing in other ways such as

being more pragmatic to implement - have been suggested in the literature. Design,

analysis and optimization of such servicing strategies is thus a topic of great research

interest in many fields.

In this dissertation, several warranty servicing strategies in two-dimensional

warranty regimes, typically defined by a rectangle in the age-usage plane, have been

proposed, analyzed and numerically illustrated. Two different approaches of modeling

such usage sensitive warranty strategies are considered in the spirit of Jack, Iskandar

and Murthy (2009) and Iskandar (2005). An ‘Accelerated Failure Time’ (AFT)

formulation is employed to model product degradation resulting due to excessive

usage rate of consumers.

The focus of this research is on the analysis of warranty costs borne by the

manufacturer (or seller or third party warranty providers) subject to various factors

such as product’s sale price, consumer’s usage rate, types and costs of repair actions.

By taking into account the impact of the rate of use of an item on its lifetime, a central

focus of our research is on warranty cost models that are sensitive to the usage rate.

Specifically, except the model in Chapter 4 where the rate at which an item is used

is considered to be a random variable; all other warranty servicing policies that we



consider, have usage rate as a fixed parameter, and hence are policies conditional on

the rate of use. Such an approach allows us to examine the impact of a consumer’s

usage rate on the expected warranty costs. For the purpose of designing warranties,

exploring such sensitivity analysis may in fact suggest putting an upper limit on the

rate of use within the warranty contract, as for example in case of new or leased

vehicle warranties.

A Bayesian approach of modeling 2-D Pro-rated warranty (PRW) with preventive

maintenance is considered and explored in the spirit of Huang and Fang (2008). A

decision regarding the optimal PRW proportion (paid by the manufacturer to repair

failed item) and optimal warranty period that maximizes the expected profit of the

firm under different usage rates of the consumers is explored in this research. A

Bayesian updating process used in this context combines expert opinions with market

data to improve the accuracy of the parameter estimates. The expected profit model

investigated here captures the impact of juggling decision variables of 2-D pro-rated

warranty and investigates the sensitivity of the total expected profit to the extent of

mis-specification in prior information.
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CHAPTER 1

INTRODUCTION

1.1 Motivation of the Research

The interaction between producers and buyers in a market is an interesting phenome-

non in real life. Both groups try to optimize their satisfaction in terms of factors like

revenue, cost, product behavior etc. It is obvious that there is always a trade-off

between the interests of manufacturer and consumer, and setting an optimal ground

of trade is very important to maintain equilibrium in the market. The manufacturer

tries to optimize his profit which in turn implies reduction in costs (production,

marketing, maintenance etc.) and maximization of revenue. But it is also important

to maintain the standard of produce in the market, since it affects the goodwill of

the firm. On the contrary, the consumer tries to minimize his cost and optimize

his satisfaction by comparing identical products in the market on the basis of cost,

demand, post sales support facilities etc. Thus this game of setting optimal grounds

of trade between the two groups needs investigation from all possible subjects of

interest.

One such subject concerning the manufacturer is Product Warranty Analysis.

The definition of warranty goes as follows a contractual agreement that requires a

manufacturer (producer) or, seller of a product to provide an assurance of satisfactory

product performance during a specified length of time (called, the warranty period)

after purchase, by replacement or, repair of failed items within the covered period.

Clearly, it serves as a promotional tool and an important component of the product’s

marketing strategy to attract potential buyers. On the other hand, warranties not

only serve as an instrument that address the protectional needs of the buyer /

consumer (against unwelcome and unforeseen disruption of service due to product

1



2

failures), but also that of the producer, by controlling costs through appropriate

warranty servicing strategies.

Within the broad structure of a warranty framework; many variations on how

warranties are formulated are possible and have been considered. One of the overriding

concerns in all such situations is the need to adequately model realistic warranty

servicing strategies and the corresponding expected costs.

In recent times, contemporary research on warranty modeling has focused on

both the intensity of usage of the product as well as its lifetime characteristics as

important determinants of the time to product failure. Warranty policies of this type

are referred to as two-dimensional (2-D) warranties. Consumer products generally

degrade due to aging of the item as well as the rate of usage. Thus consideration of

usage level in a warranty becomes inevitable, although it increases the complexity of

the problem.

In the literature of two-dimensional warranties, there are two different approaches

to the inclusion of usage as a relevant factor in modeling warranties, one of which

considers item failures and costs conditional on the rate of usage and thus treats

the latter as a parameter specific to the buyer (user). The other approach considers

usage rate as a random variable with a distribution that reflects our beliefs about

the aggregate profile of use of the product’s target customers. In our study we have

considered both approaches; the first approach in Chapters 2, 3 and 5; and the second

approach in Chapter 4.

1.2 Introduction to Warranty Analysis

Modern manufacturing and sales are characterized by speedily developing technology,

exposure to the global market, fierce competition, well-informed and demanding

consumers. These factors have posed serious challenges to the manufacturers and

policy makers across the globe jockeying for competitive advantage. In purchase

decisions, consumers typically compare the characteristics of different products of
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competing brands. When these comparable products are similar or nearly identical,

it becomes very difficult to choose a particular brand solely based on product related

characteristics such as model specifications and other features, such as price or,

financing offered by the manufacturer. In this case, provision of post-sales support

adds to the product’s appeal, and is thus a useful marketing tool. Such support

is generally provided by the manufacturer in the form of repair/replace warranty,

maintenance servicing or, money-back guarantee. When a new product is manufac-

tured, each generation of the product often becomes more complex than previous ones.

If the consumers are not sure about the product reliability; an attractive warranty

servicing scheme signals higher product quality and provides greater assurance to

customers in the sense that the manufacturer will provide some remedial action

(repair/replace/money-back) to compensate for the failure of the item during a pre-

assigned time period.

Servicing post-sales support in the form of warranty or maintenance involves

additional costs to the manufacturer and has significance impact on the profit of the

firm. These costs, in fact, are unpredictable future costs, which typically range from

2% to as much as 15% of net sales McGuire [57]; depending on various factors such as

product reliability, usage level, warranty terms and coverage. Product reliability

is influenced by the decisions made during the design and manufacturing of the

product. Product warranties thus play an increasingly important role in consumer

and commercial transactions.

The use of warranties is extensive and they serve many purposes. These include

protection for manufacturer and buyer, signalling of product quality, an important

element of marketing strategy, assuring buyers against items which do not perform

as promised and play an important role in the dispute resolution between buyer

and manufacturer. These in turn pose serious challenges to legislators in terms of

formulating sensible warranty policy legislation that will protect the societal (buyers’

and manufacturers’) interests. Therefore, analyzing the different aspects of warranty
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has received greater attention of the researchers from many different disciplines and

the corresponding research literature is substantial and vast.

As in any real life problems of practical significance, the problem of warranties

must deal with relevant issues arising from its social, behavioral, economic, political /

legal dimensions, their mutual interactions, as well as its analytical (mathematical and

statistical) aspects. Without minimizing the importance of the social / institutional

factors, the scope of this thesis and our main concern here is necessarily with addressing

the issues of modeling and quantitative analysis of warranties that account for the

built-in risk factors such as uncertainty in product lifetime, consumers use patterns,

and severity of operating conditions of the product relative to a baseline environment.

During the warranty period, the producer guarantees the product’s correct

operation and the repair/replacement or compensation for damage resulting from

failure or poor performance by paying all or part of the resulting losses. This is the

consumer’s recourse. The post-sale functioning of the product (i.e., the capability of

the product to perform its assigned job) is influenced by a number of uncertain factors

such as the age, usage level, preventive maintenance actions etc. Thus the impact of

warranty periods and policies must be modeled and analyzed in a probabilistic way.

They must necessarily take into account the difference in operating conditions, their

variation in reliability over time and quality characteristics, together with appropriate

economic factors such as the product’s cost, cost of repair, compensation for losses

from idle time, marketing costs, etc. All these factors, along with the type of product

(see Section 1.2.1) allow for a great deal of flexibility in designing different models in

warranty analysis.

To choose an appropriate warranty period is, thus a basic concern of the producer.

This choice must balance the trade-offs between increasing adverse (cost) impact

on producers of servicing efforts with increasing warranty period and corresponding

benefits of increased market share. An extremely short warranty period may affect

the sales by repelling the consumers, while a too long one will lead to losses from
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compensation of customer claims. Even with a given value of warranty period,

warranty servicing strategies (product maintenance plans, repair-replace options and

costs) as well as uncontrolled risk factors such as consumers’ usage profile of the

product can significantly influence the total servicing costs, and must be adequately

modeled and analyzed.

1.2.1 Some Standard Terminology in Warranty Literature

In this research, the strategies proposed and discussed typically consists of different

types of rectification action at item failures. The rectification actions are either a

replacement or different types of repairs. To avoid ambiguities, we list below some

standard nomenclatures that are used in the relevant literature.

• Replacement / Perfect Repair action under warranty, refers to replacing the

failed product by an identically similar products from manufacturer’s stock of

new products. Clearly this type of rectification action is the best as it restores

the product to its initial stage. The corresponding rate of degradation of the

product resulting from a replacement is same as a new product.

• Minimal repair refers to repairs which restore the aging condition of an equip-

ment (which fail at time t, say) to its corresponding condition just prior to failure

(i.e., at time t−). In the engineering community, such repairs are often called

”bad - as - old”, while replacements are called ”good - as - new” repairs. Some

literature on minimal repairs type rectification can be found in Singpurwalla

and Balaban [92], Ascher and Feingold [2], Block et al. [13], Phelps [85], Jack

and Schouten [42] and many others.

• Imperfect repair on the other hand, refers generically to repairs which restore

a failed equipment to a condition intermediate between that achieved by a

minimal repair and a replacement. The notion of an imperfect repair is not

unique from a technical viewpoint, and has been specified in different ways by
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different authors. Some of them are ‘degree of repair’ (Kijima [50], Yun and

Kang [105], Varnosafaderani and Chukova [98]), ‘randomized repair’ (Brown

and Proschan [15]), ‘age-dependent minimal repair’ (Block et. al. [13]) and

others.

• Free Replacement Warranty (FRW) [9] refers to warranty policies in which the

entire cost of servicing (which can be a replacement by a new item or sort

type of repair) of warranted items at failures, are borne by the manufacturer or

seller (i.e., free to consumer). This type of warranty policies are thus ‘consumer

friendly’.

• Pro-rated Warranty (PRW) [9] refers to warranty policies in which the cost

of servicing of failed items under warranty is shared between the manufacturer

and the consumer. Such warranty policies charge a fixed percentage of warranty

costs to the consumers and the remaining percentage is incurred by the warranty

provider. Pro-rated warranties are therefore relatively more ‘manufacturer

friendly’.

1.2.2 Classification of Products

The demand of products in the market vary among groups of consumers. It is

very important for the firm to identify their target consumer population since it

provides an insight about the quantity and frequency of product demand, and in turn

helps to maintain the availability of products in the market. The target population

varies according to the variety of items sold. A classification of products into groups

describes the market of buyers and a clear image of product demand, as follows.

1. Consumer durables: (e.g., household appliances, cars) these are bought by

individual households.
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2. Industrial and commercial products: (e.g., equipment used in a hospital to

provide medical care, aircrafts used by airline operators) these are bought in

lots by businesses for the production of services or products.

3. Government acquisitions: (e.g., new fleet of tanks or jet fighters) these are often

technologically advanced equipments required (in lots or singles) for purposes

of security related issues.

1.2.3 Role of Warranties

Trade is a crucial part of society. Hence, issues related to trade including warranties

have different roles in the market (and broadly in the society). The utility of warranties

are different for the buyers and the producers and can be summarized as

1. From a Buyer’s point of view, the main role of a warranty is protectional,

it provides a means of rectification if the item, when properly used, fails to

perform as intended or as specified by the seller. A second role is informational.

Many buyers infer or, perceive that a product with a relatively longer warranty

period to be more reliable and long lasting than one with a shorter warranty

period.

2. From a Producer’s view-point, warranties play a protectional as well as a

promotional role. Warranty terms may, and often do, specify the use and

conditions of use for which the product is intended and provide for limited

coverage or no coverage at all in the event of misuse of the product. Thus

they protect a manufacturer/service provider/reseller against unjustified claims

of warranty coverage. The promotional aspect of warranties is exemplified by

their role as an instrument of advertisement. Since buyers often infer a more

reliable product when a long warranty is offered, this has been used as an

effective advertising tool. This is often particularly important when marketing
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new and innovative products, which may be viewed with a degree of uncertainty

by many potential consumers.

1.2.4 Types of Warranty Policies

The schematic in Figure 1.1 depicts the basic classification of warranties as described

by Blischke and Murthy in ‘Warranty Cost Analysis’ (WCA) [9], a standard reference

work on the subject.

Figure 1.1 Taxonomy for warranty policies from Warranty Cost Analysis [9].
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1.2.5 Review of Warranty Models

To review the literature in warranty modeling and analysis, we have referred to several

textbooks ([9], [10], [11]), articles and review articles ([70], [8], [67], [68], [18], [42],

[34]). Information regarding the development of this research topic, included in this

chapter are presented following these articles and classical textbooks. One of the

earliest formal work on warranty modeling known to us is by Barlow and Hunter [4].

Blischke [7] authored the first review paper on warranties, focusing on mathematical

models for warranty cost analysis. The three-part review paper (Product Warranty

Management - I, II, III; Blischke and Murthy [8], Murthy and Blischke [67],[68])

proposed a taxonomy for new product warranties and discussed various issues. Since

then the literature on warranties (for both new and used products) has grown consid-

erably with two review papers, three books and many journals and conference papers.

The review papers by Chukova et al. [18], Thomas and Rao [97], discussed some

warranty management issues and suggested topics for future research. Murthy and

Djamaludin [70] reviewed the literature that has appeared over the period 1990 to

2002. It builds on the review papers by Murthy and Blischke ([67],[68]) and Thomas

and Rao [97]. Their review looks at different aspects of warranties for new products.

The main thrust is on issues that are of high relevance to manufacturer from a product

life cycle perspective.

Details of different policies, which can be grouped into three categories (types

A, B and C) can be found in Blischke and Murthy ([9], Chapter 2). The type A

policies (single item sale, not involving product development) can be divided into one-

dimensional (1-D) and two-dimensional (2-D) policies. In two-dimensional policies,

the warranty is characterized by a region in the two-dimensional plane representing

age and usage. Blischke and Murthy [8],[9] defined four different shapes for such

warranty regions. Singpurwalla and Wilson [94] suggested many other shapes based

on sellers’ and consumers’ preferences.
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Under a non-renewing warranty, the terms of the warranty do not change during

the warranty period. As a result, if an item fails during warranty, it is rectified by

the seller and returned to the buyer without any changes to the original warranty

terms. Under a renewing warranty, the warranty terms can change, for example,

after failure, the item is returned with a new warranty either identical to, or different

from, the original warranty terms. Each of these can be further subdivided into two

groups : simple policies and combination policies. Two simple policies that have been

investigated by different authors are free replacement warranty (FRW) and pro-rata

warranty (PRW). Combination warranties involve different FRW or PRW terms over

different periods of warranty.

The manufacturer of a product incurs additional costs resulting from servicing

of claims under warranty. Warranty claims occur due to item failures. An item is

said to have failed when it is unable to perform its function in a satisfactory manner.

Item functioning is influenced by several factors. These include engineering decisions

during product designing and manufacturing, customer’s usage intensity, operating

environment, maintenance effort expended by users etc., each of which have an impact

on the inherent reliability of the product. Blischke and Murthy [9] have defined several

costs of interest to manufacturers and buyers. They include:

• Warranty cost per unit sale.

• Warranty cost over the lifetime of an item (Life cycle cost LCC-I): This is

buyer oriented and includes elements such as purchase cost, maintenance and

repair costs following expiration of the warranty coverage, operating costs and

disposal costs.

• Warranty costs over the product life cycle (Life cycle cost LCC-II): This is

dependent on the interval over which buyers purchase the product. This life

cycle begins with the launch of the product in the marketplace and ends with

its withdrawal.
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• Cost per unit time: This is useful for managing warranty servicing resources

such as parts inventories, labor and costs over time with dynamic sales.

The costs are clearly different for buyers and manufacturers. They are random

variables, since claims under warranty and the cost to service claims are uncertain.

The warranty cost per unit sale is important in the context of pricing the product. The

sale price must exceed the total of the manufacturing and warranty costs, otherwise

the manufacturer incurs a loss. On an average, the warranty cost per item decreases

as product reliability increases. The life cycle cost of a product is of relevance to both

buyer and manufacturer in the context of complex and expensive products.

1.2.6 One-dimensional Warranty

The first type of warranty policies to exist in the market are One-dimensional (1-

D). Such a warranty is characterized by the aging profile of the product i.e., the

degradation of the item is modeled as a function of age only. Due to simplicity of

modeling, 1-D warranty has gathered lot of attention from many researchers. Analysis

of a warranty policy can be done from different view-points. Some of the references

are given in this section.

1.2.6.1 Modeling Failures. Failures over the warranty period can be modeled

either at the component level or at the product (or item) level. In component level

modeling, the item is characterized in terms of its components and failure of each

component modeled separately. The modeling of first failure needs to be treated

different from that for subsequent failures. The latter depends on whether the

component is repairable or not, the type of repair action used in the case of repairable

item and, the type of item (used or new) used in the case of replacement of a failed

item. The time to first failure is typically modeled by the lifetime distribution of a

new product, while the type of formulation needed for modeling subsequent failures,

as stated earlier depends on the nature of rectification (repair or replace) action.



12

When every failure results in a replacement by a new item and the replacement times

are negligible, then the point process of failures is a renewal process. If all failures

are minimally repaired and the repair times are negligible then the failure process

is a suitable point process formulation with specified intensity function (Blischke

and Murthy ([9], Chapter 2) or Murthy ([10], Chapter 3). When the rectification can

involve either minimal repair or replacement by new components, then the formulation

needed is complicated and is given by the G-Renewal process (see, Kijima and Sumita

[51]).

In the system (product) level modeling, the item state is modeled as a binary

variable (working or failed) and failures over time is a non-homogeneous Poisson

process (NHPP) with mean value function Λ(t), that equals the cumulative hazard

function of a new equipment’s lifetime distribution.

1.2.6.2 Cost analysis. The cost of each rectification is comprised of several cost

elements (handling, material, labor, facilities, etc). Often it is modeled by a single

variable which is the aggregate of the different costs. In general, the aggregate cost

is a random variable and needs to be modeled by a probability distribution function.

Most of the cost analyzes are based on the following simplifying assumptions:

i) All buyers are alike in their usage.

ii) All items are statistically similar and independent.

iii) All failures, result in immediate claims.

iv) All claims are valid (no fraudulent claims).

v) The manufacturer has the logistic support (spares and facilities) needed to carry

out the rectification actions without any delays.
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vi) The time to rectify a failed item (either through repair or replacement) is

sufficiently small relative to the mean time between failures, so that repairs

can be assumed to be effectively instantaneous.

Further, the life cycle of the product LC is modeled as a deterministic variable,

although this assumption can be relaxed to treat LC as a random variable with

a specified life-distribution. All the model parameters (including costs and of the

various distributions involved) are known. Bulk of the literature deals with expected

warranty costs and few deal with higher moments or characterization through a

distribution function. Blischke ([10], Chapter 8) discusses the statistical techniques

for warranty cost analysis. A brief review of 1-D warranty cost analysis is included

here as follows.

Free replacement warranties: Blischke and Murthy ([9], Chapter 4) and Blischke

([10], Chapter 10) considered and analyzed the expected warranty costs for both

repairable and non-repairable products. Kaminsky and Krivstov [49] dealt with

the case where failures are modeled by a G-Renewal process. Sahin and Polatoglu

[88], Polatoglu and Sahin [86] and Sahin and Polatoglu [89] derived the probability

distribution for warranty cost and some related variables.

Pro-rata warranties: Blischke and Murthy ([9], Chapter 5) and Patankar and

Mitra ([10], Chapter 11) investigated the expected cost of the pro-rated warranties.

Menzefricke ([59],[60]) dealt with both the mean and variance of total pro-rated

warranty cost. Sahin and Polatoglu [88], Polatoglu and Sahin [86] and Sahin and

Polatoglu [89] also derived the probability distribution for pro-rated warranty cost

and some related variables.

Combination warranties: The expected warranty cost analysis for a variety

of combination policies can be found in Blischke and Murthy ([9], Chapter 6) and

Blischke ([10], Chapter 12). Bohoris and Young [14] deal with the warranty cost

analysis of a hybrid warranty.
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Simulation approach: The warranty cost analysis can be analytically challenging

and often requires solving complicated renewal functions. An alternate approach is

to obtain estimates of the costs through simulation. Hill et al. [30] and Murthy et al.

[71] have considered such problems.

Extended warranties: A warranty that is an integral part of product’s sale

is called the base warranty. It is offered by the manufacturer at no additional

cost and is factored into the sale price. Extended warranty provides additional

coverage over the base warranty and is obtained by the buyer by paying a premium.

Extended warranties are optional, not tied to the sale and can be either offered by

the manufacturer or a third party (for example, several credit card companies offer

extended warranties for products bought using their credit cards etc.). The expected

cost incurred by the provider of extended warranties can be computed using models

similar to base warranty costs. The cost of extended warranty is related to product

reliability and usage intensity. The reasons for purchase of extended warranties have

been analyzed extensively in the marketing literature. Padmanabhan ([10], Chapter

18) discussed the alternate theories and the design of extended warranty policies.

Padmanabhan and Rao [78] examined the extended warranty with heterogeneous

customers with different attitudes to risk, captured through a utility function. Patan-

kar and Mitra [81] considered the case where items are sold with pro-rata warranty

where the customer is given the option of renewing the initial warranty by paying a

premium, provided the product does not fail during the initial warranty period. Mitra

and Patankar [61] dealt with a model where the product is sold with a rebate policy,

and the buyer has the option to extend the warranty should the product not fail

during the initial warranty period. Yeh and Peggo [103] looked at extended warranty

policies with different options for consumers. Rinsaka and Sandoh [87] dealt with

problems related to extension of the base warranty period.

Service contracts: A service contract is similar to an extended warranty. Bulk

of the literature on service contracts is mainly qualitative. Murthy and Asgharizadeh
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[66] and Murthy [65] deal with the modeling and analysis of service contracts using

a game-theoretic approach.

Most of the literature on warranty servicing through the mid- 1990s is summari-

zed in Blischke and Murthy ([9],[10]). Another review article authored by Murthy and

Djamaludin [70] captured the recent advances in different warranty studies. Models

where repaired items are assumed to have independent and identically distri-

buted lifetimes different from that of a new item include those of Biedenweg [6] and

Nguyen and Murthy [76],[77]. Biedenweg [6] showed that the optimal strategy is to

replace with a new item at any failure occurring up to a certain time measured from

the initial purchase and then repair all other failures that occur during the remainder

of the warranty period. This technique of splitting the warranty period into distinct

intervals for replacement and repair is also used by Nguyen and Murthy [76],[77].

In Nguyen and Murthy [76], where the warranty period is partitioned into

two disjoint intervals, any item failures occurring during the second interval of the

warranty period are rectified using a stock of used items. Nguyen and Murthy [77]

extended Biedenweg’s [6] model by adding a third interval where failed items are

either replaced or repaired and a new warranty is given at each failure. The first

warranty servicing model involving minimal repair and assuming constant repair and

replacement costs is that of Nguyen [77]. As in Biedenweg [6], the warranty period

is split into a replacement interval followed by a repair interval. Under this strategy

a failed item is always replaced by a new one in the first interval, irrespective of its

age at failure. Thus, if the failure occurs close to the beginning of the warranty then

the item will be replaced at a higher cost than that of a repair and yet there will be

very little reduction in its effective age. This is the major limitation of this model

and makes the strategy clearly sub-optimal.

In a later paper, and with the same assumptions as Nguyen [77], Jack and

Schouten [42] investigated the structure of the manufacturer’s optimal servicing stra-

tegy over a warranty period [0,W ], using a dynamic programming model. It is shown
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that the repair-replacement decision on failure should be made by comparing the

item’s current age with a time-dependent control limit function h̃(x) (some typical

plots of h̃(x) versus x can be seen in [42]). The item is replaced on failure at time x

if and only if its age is greater than h̃(x).

The repair-replacement decisions under such a policy is characterized by the

three intervals I - III. In intervals I and III, the optimal strategy is to always repair

the failed item. The shape of h̃(x) in interval II then determines the number of

replacements that will occur. In this interval, if h̃(x) lies above the indicated line

L1, then at most one replacement will be carried out. In general, the shape of h̃(x)

depends on the relationship between the item’s mean time to first failure (MTTF )

and the length of the warranty period (W ), and also the cost of replacement relative

to repair. For example, if MTTF >> W , then h̃(x) has a straight line form

throughout the three intervals, and the optimal policy is ‘always repair’ during [0,W ].

Alternatively, if MTTF << W , then the lengths of intervals I and III become very

small, and the optimal policy correspondingly approaches ‘always replace’ during

[0,W ]. However, a manufacturer will not offer a long warranty when the MTTF is

small, and so this latter case is unlikely to occur. A more realistic scenario is that

the MTTF will be comparable to W , and then only a small number of replacements

will be carried out.

The optimal strategy of Jack and Schouten [42] yields the smallest expected

warranty servicing cost, but the computation of the control limit policy involve

considerable computational effort. The strategy also requires continuous monitoring

of the item’s age by the manufacturer, which is not very practical since such monitoring

may involve additional costs which in turn would compromise the optimality of

Jack-Schouten policy. A pragmatic variation of the above strategy is the new strategy

proposed by Jack et al. [40], which again involves splitting the warranty period [0,W ]

into three distinct intervals for carrying out repairs and replacements. A maximum

of one replacement is allowed in the middle interval and there is no need to monitor
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the item’s age. A fair amount of substantial work, including our work with extensions

to two-dimensional warranties reported in this thesis, derive their genesis from the

above pragmatic framework of Jack et al. [40].

1.2.7 Two-dimensional Warranty

The two-dimensional (2-D) warranties have received a lot less attention relative to the

1-D case due to analytical complexities. This type of warranty modeling takes into

account the effects of aging and usage level on the degradation profile of the product.

Such a warranty is represented by a 2-D region, where the horizontal and vertical axes

respectively represents age (x) and total usage level (u). The warranty expires at the

first instance when either the age or usage level exceeds their respectively pre-assigned

threshold values. An example of such a warranty is the so called ‘5 year-50,000 mile’

warranty for new automobiles which would provide warranty coverage for a new car

until it is 5 years old, or has been driven 50,000 miles, whichever occurs first.

1.2.7.1 Modeling failures. Two different approaches have been used to model

item failures. The first is to use a two-dimensional distribution function to describe

the joint distribution of age and usage. In this case, failures are modeled by a

two-dimensional point process formulation (see, Iskandar [35], Murthy et al. [72] and

Hunter ([10], Chapter 7]). The second approach involves modeling usage as a function

of time so that failures are effectively modeled by a one-dimensional point process

formulation. Iskandar [35] suggested a linear model for usage of the form U(x) = Y x

where Y is the random usage rate, required to model the varying usage across the

consumer population. Moskowitz and Chun [62] also used a one-dimensional approach

to capture the effects of usage and age on the failure process. They modeled the

failures by a Poisson process with intensity function as a linear function of age and

usage. Singpurwalla and Wilson [93] followed a different approach – conditional on

the total usage, the time to failure is modeled by a univariate distribution function.
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The total usage as a function of age is modeled by another univariate distribution.

Combining these two, they derived a two-dimensional distribution for failure involving

both age and usage. Singpurwalla [91] dealt with modeling the survival under multiple

time scales in dynamic environments with the usage rate changing dynamically.

Gertsbakh and Kordonsky [28] and Ahn et al. [1] reduced the usage and time to a

single scale. The former used a linear relationship and the latter a linear relationship

after log transformation.

1.2.7.2 Cost analysis. A two-dimensional warranty is characterized by a region

in a two-dimensional plane. Different shapes for the region characterize different

policies and many different shapes have been proposed (see Blischke and Murthy ([9],

Chapter 8) and Singpurwalla and Wilson [94]).

Free replacement warranties: The expected warranty costs for a variety of

policies can be found in Moskowitz and Chun ([62] and [10], Chapter 13), Singpurwalla

and Wilson [94], Blischke and Murthy ([9], Chapter 8), Murthy et al. [72] and Chun

and Tang [22]. Kim and Rao [53] dealt with the cost analysis based on a bivariate

exponential distribution.

Pro-rata warranties: The expected warranty cost analysis for a variety of policies

can be found in Iskandar [35], Blischke and Murthy ([9], Chapter 8), Wilson and

Murthy ([10], Chapter 14) and Chun and Tang [22]. Patankar and Mitra [81] and

Eliashberg et al. [25] studied some warranty reserve problem.

Combination warranties: The expected warranty cost analysis for combination

policies can be found in Iskandar et al. [37] and Wilson and Murthy ([9], Chapter

14).

Fleet warranties: These are also referred to as cumulative warranties. Berke

and Zaino [5] and Zaino and Berke [107] and Blischke and Murthy [11] dealt with the

warranty cost analysis for a variety of such policies. Yeh and Chen [104] considered
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economic order quantities for items bought in lots with a cumulative free-replacement

warranty.

1.3 Scope of the Dissertation and Research Contribution

1.3.1 Scope

In this dissertation, we have considered different servicing strategies under the 2-D

warranty regime, analyzed their cost behavior from a manufacturer’s point of view and

justified their use under appropriate circumstances. It can be observed throughout

this thesis that our focus on warranty strategies is not only concerned with reducing

their costs, but also on the realism and relative ease of implementing them. For

example, using a stochastic choice between a minimal repair or, replacement may be

more realistic with two available skill levels of repairmen than achieving any arbitrary

‘degree of repair’ in practise. It is worth mentioning at this point that the warranty

strategies analyzed here are optimal under specific assumptions, but might not be

optimal if these conditions are not fulfilled.

By taking into account the impact of the rate of use of an item on its lifetime, a

central focus of our research is on warranty cost models that are sensitive to the usage

rate. Specifically, except the model in Chapter 4 where the rate at which an item is

used is considered to be a random variable; all other warranty servicing policies that

we consider, have usage rate as a fixed parameter, and hence are policies conditional

on the rate of use. Such an approach allows us to examine how the expected warranty

cost changes as a function of the usage rate. For the purpose of designing warranties,

exploring such sensitivity analysis may in fact suggest putting an upper limit on the

rate of use within the warranty contract, as is sometimes the case. For example,

agreements on leased automobiles typically include a maximum allowable mileage

that can be driven per year during the lease.

A second overriding feature of our models and analyzes, that follow as a conse-

quence of both the age and usage rate being important factors influencing item failures
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and hence their warranty costs, is the corresponding necessity of 2-D framework to

define use-specific warranties. While different possible shapes of such 2-D warranty

regions and possible justifications thereof have been explored by Singpurwalla and

Wilson [94]; in our work here, we confine ourselves to the pragmatic rectangular

shaped warranty region as is standard in most literature (see Section 2.2.1.3).

1.3.2 Outline of the Dissertation

An outline of our research described in the subsequent chapters of this dissertation,

is as follows.

Our work in Chapters 2 through 4 investigate 2-D warranty cost models under several

different frameworks, and their corresponding analyzes as is listed below.

The cost model and corresponding optimization in Chapter 2 extends,

(1) the work of Jack et al. [40] on 2-D warranties by incorporating a ‘degree of

repair’ option and

(2) the work of Yun et al. [106] to the 2-D setup (see Sections 2.2.2 and 2.3).

In Chapter 3, a servicing strategy that allows a probabilistic choice between two

possible rectification actions (minimal repair or, replacement) for atmost one failure

during warranty is proposed. It is shown that, this enables us,

(1) to achieve a substantial reduction in total expected warranty cost compared to

‘minimal repairs only’ strategy; and

(2) provides a corresponding generalized specification of possibly age-dependent

probability p(t) of choosing a replacement at age t. This strategy reduces to

that of Jack et al. [40] when p ≡ 1.

In Chapter 4, a different approach to 2-D warranty models (Iskandar [36], Chukova

and Johnston [19], Yun and Kang [105], Chukova et al. [20], Varnosafaderani and

Chukova [98]), where the usage rate is subject to uncertainty is considered. Here we
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propose a strategy that allows randomization with a constant probability (p, 1 − p)

of (imperfect repair, minimal repair) choice for atmost two failures during warranty.

From the results it can be seen that our proposed strategy,

(1) again leads to reduction in total expected costs, relative to the ‘minimal repairs

only’ strategy, and

(2) is an extension of the Varnosafaderani-Chukova [98] cost model, which becomes

a special case of our model when p = 1.

Finally, in Chapter 5, a Bayesian approach of modeling 2-D pro-rated warranty (PRW)

strategy with preventive maintenance (PM) action is considered and explored in the

spirit of the one-dimensional research of Huang and Fang [34]. Under the Accelerated

Failure Time (AFT) formulation of item degradation process, an approach of determi-

ning optimal PRW cost proportion to be borne by the manufacturer is proposed and

investigated. The expected profit model obtained in this context, captures the impact

of juggling decision variables of 2-D PRW and investigates the sensitivity of the total

expected profit to the extent of mis-specification in prior information. A Bayesian

updating process is also employed to improve the quality of managerial decision.

It can be seen that inclusion of consumer’s usage rate in the integrated model has

significant effects on the profit, warranty cost and pro-ration proportion.

In contrast to the cost models in which usage rate is given and thus essentially

plays the role of a parameter, other frameworks that treat equipment usage as stochas-

tic are possible as suggested in a review article Singpurwalla and Wilson [94]. Such

models would account for the dependence and trade-offs between usage and failure

time via suitable joint distributions and associated counting process of failures, to

provide alternative framework for exploring 2-D warranties; but are not within the

scope of this thesis.
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1.3.3 Research Contributions

1.3.3.1 Overall Contribution. The broad dimension of our research contribution

is to highlight the importance of recognizing the impacts of use intensity on warranty

costs. This is achieved by including the rate of use as a factor in our models either as

a warranty parameter (in conditional cost models) or as a random variable (with a

distribution that specifies the use profile among all consumers of the product). Our

work thus includes two-dimensional extensions of one-dimensional warranties, as well

as new servicing strategies that are proposed and analyzed.

1.3.3.2 Specific Contribution. The notion of 2-D warranty is not new in the

market of industrial products. As we have referred in later chapters, such warranties

are available for automobiles, heavy machineries, defense equipments and many other

products. Our specific contribution in this context can be itemized as follows:

• the servicing strategy with an imperfect repair option (Chapter 2) extends the

work of Jack, Iskandar and Murthy [40] by introducing at most one imperfect

repair in the middle interval, defined by the ‘degree of repair’ in the spirit of

Yun, Murthy and Jack [106].

• to increase the realism and relative ease of implementation of the strategy in

Chapter 2, we have considered a randomized repair strategy (Chapter 3), in

which a stochastic choice between a minimal repair or, replacement is practised.

In this context we have explored the two cases where the probability of randomi-

zation is either a constant or dependent on age at item failure.

• an alternative approach of 2-D modeling with imperfect repairs, extending the

research of Varnosafaderani and Chukova [98] is also proposed (Chapter 4), that

endorses the notion of imperfect repairs [50].

• finally, an integrated model of production, sales, warranty and maintenance

is proposed in the 2-D regime, that captures the various aspects of product
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manufacturing subject to a specific customer usage rate and the interaction

between profit, warranty and costs.



CHAPTER 2

ANALYSIS OF A 2-D WARRANTY SERVICING STRATEGY WITH

AN IMPERFECT REPAIR OPTION

2.1 Background and Motivation

If a warranted product fails under warranty, the manufacturer rectifies it with a

repair or replacement. A replacement which costs the same as a new item can

increase the total warranty cost. If the rectification action is a minimal repair,

the item is restored to the state as it was just before failure and the corresponding

cost is comparatively much smaller. However, there is always a trade-off between

rectification cost and product reliability. An expensive repair will typically increase

the reliability of the item, reducing the total number of failures over the warranty

term. Conversely, less expensive restoration options, while attractive to the warranty

provider in the near term, may end up being more costly over the life of the warranty;

since cheaper repairs will not arrest future degradation as effectively as more expensive

restorations. Thus, from the point of view of equipment reliability for the unexpired

time to end of warranty, replacements appear to be the best strategy of rectification.

But a replacement only strategy will cost the manufacturer too much. One way

of controlling the warranty cost without entirely sacrificing the reliability issue is

to practise some repair action that is better than minimal repair but worse than

a replacement. Such repairs are often termed as an imperfect repairs. Under an

imperfect repair, the item is restored up to a specified degree (denoted by δ ∈ [0, 1]),

such that its reliability profile after such restoration becomes better than an old item,

but worse than that of a new one, in a well-defined sense. The cost of imperfect repair

is also bracketed between the respective costs of replacement and minimal repair.

In this chapter, we consider a 2-D warranty strategy where: if the item fails

for the first time in some interval of the warranty period, it is imperfectly repaired

24
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and all failures that occur at times preceding and following the imperfect repair

are minimally repaired. Such a warranty policy not only reduces the expected cost

compared to perfect repair strategy, but also improves the product reliability at the

end of the warranty interval, relative to the ‘minimal repairs only’ policy. The rest of

this chapter is as organized in the following way. Section 2.2 describes the set-up of

the 2-D warranty problem with failures and rectifications. Section 2.3 comprises the

proposed servicing strategy, model formulation, analysis, optimization and numerical

illustration. Finally, some concluding remarks are included in Section 2.4.

2.2 Usage Rate Based Servicing Strategies

In the case of two-dimensional warranties, there are effects of both age and usage on

the product degradation and failure needs to be modeled accordingly. The usage can

be the output (e.g., number of pages printed/scanned for a printer/scanner), distance

traveled (e.g., kilometers covered for an automobile) and the number of times or hours

the product has been used (e.g., number of times or hours used for a vacuum cleaner).

The modeling approach assumes that the usage rate Y varies from customer to

customer but is constant for a given customer. Therefore Y is a random variable that

can be modeled using a density function g(y). Conditional on Y = y, the total usage

u at age x is given by

u = yx, 0 ≤ u <∞ (2.1)

Given usage rate y, the conditional hazard (failure rate) function hy(x)(≥ 0) is

assumed to be non-decreasing in item’s age x and usage rate y. Failures over time

are modeled by a counting process. If failed items are replaced (by new ones), then

this counting process is a renewal process associated with the conditional distribution

Fy(x), which can be derived from hy(x). If failed items are repaired then the counting

process is characterized by a conditional intensity function λy(x), which is a non-



26

decreasing function of x and y. If all repairs are minimal [11] and repair times are

negligible, then λy(x) = hy(x).

2.2.1 Modeling Failures

We consider a repairable item sold with a two dimensional non-renewing free replace-

ment warranty of periodW and maximum usage level U , that requires the manufacturer

to either repair or replace the item when it fails. Failure occurs if warranty exceeds

time W or total usage exceeds U . We make the following additional assumptions:

1. All item failures are detected immediately and result in immediate claims by

the consumer.

2. All claims are valid and must be rectified by the manufacturer immediately

through repairs.

3. Repair and replacement times are small relative to the mean time between item

failures and therefore can be ignored.

4. For the duration of the warranty, no separate preventive maintenance except

those (if any), that are built in with the warranty, is carried either by the

manufacturer or by the consumer.

5. The product’s hazard rate function is monotone non-decreasing in its age and

usage rate.

A product can be considered as a system containing several interconnected

components. When the components are statistically independent, the reliability of

the product is a function of the individual component reliabilities. During the design

stage, decisions are made about component reliabilities in order to ensure that the

product has the desired reliability at some nominal usage rate y0. When the usage

rate differs from this nominal value used in the design, the reliabilities of some of the

components can be affected and this in turn affects the total product reliability. As
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the usage rate increases, the rate of degradation increases and this, in turn, accelerates

the time to failure. As a result, the product reliability decreases (increases) as the

usage rate increases (decreases).

2.2.1.1 Modeling First Failure. The effect of usage rate on degradation can

be modeled by ”Accelerated Failure Time model” (AFT) ([11],[40]). If T0 (Ty,

respectively) denotes the time to first failure under usage rate y0 (y), then the standard

AFT model postulates,

Ty
T0

=
(y0

y

)γ
, (2.2)

where γ ∈ [1,∞) is the so called acceleration parameter.

Note, for usage rates y more (less) than the nominal usage rate y0, the resulting actual

time Ty to failure is a fraction (multiple) of the nominal failure time T0. Let

F = {F (x;α) : α ∈ A} (2.3)

be a scale parameter family indexed by a scale parameter α ∈ A ⊂ (0,∞) for some

index set A. If the cumulative distribution function (CDF) of T0 is F (x;α0) ∈ F ;

then, by 2.2, the CDF of AFT Ty is

F (x;α(y)) = F0

(( y
y0

)γ
x;α0

)
(2.4)

i.e., CDF of Ty is the same as that for T0 but with scale parameter given by

α(y) =
(y0

y

)γ
α0 where γ ≥ 1. (2.5)

The hazard rate and the cumulative hazard function associated with the CDF F (x, α(y))

are given by

h(x;α(y)) =
f(x;α(y))

F (x;α(y))
(2.6)
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and

H(x;α(y)) =

∫ x

0

h(u, α(y))du (2.7)

where f(x;α(y)) and F (x;α(y)), respectively are the associated density function

(PDF) and survival function.

2.2.1.2 Modeling Subsequent Failures. The times of subsequent failures are

influenced by the type of action taken to rectify a failed item. For a non-repairable

product, the only option is to replace the failed item by a new one. In the case of a

repairable product, the subsequent failures depend on the type of repair carried out.

If it is a minimal repair, reliability of the product after repair is same as that just

before failure. If it is an imperfect repair [24], reliability after repair is better than

minimal repair but is inferior to that of a new item.

Here we confine our attention to minimal repair and assume that repair times

are negligible (relative to the mean time between failures) and so can be ignored. It

is well known that failures over time under such a minimal repairs only policy occur

according to a non-homogeneous Poisson process (NHPP) with intensity function

having the same form as the hazard rate for time to first failure. Thus, if the product

has usage rate y, the failure intensity function is

λy(x) = h(x;α(y)) (2.8)

where h(x;α(y)) is the hazard rate given by Equation (2.6).

2.2.1.3 Warranty Policy and Coverage. The product is sold with a two-

dimensional warranty with warranty region the rectangle [0,W )× [0, U), where W is

the time limit and U the usage limit. The warranty expires at the first instance when

the age of the item reaches W or its usage reaches U , whichever occurs first.
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Clearly if the usage rate y is at most U/W then the warranty expires at age

W and an estimate of the total usage is yW . When y is greater than U/W , the

warranty expires at age U/y when the usage limit U is reached. With usage rate y,

if Wy denotes the calendar time when warranty expires, then

Wy = min(W,
U

y
) =

 W, y ≤ U/W ;

U/y, y > U/W .
(2.9)

2.2.2 2-D Servicing Strategies of Jack et al. (2009) and Yun et al. (2008)

Jack et al. [40] have considered a 2-D warranty servicing strategy using minimal

repairs, except for the first failure to be ‘rectified’ (i.e., ‘repaired’) by a replacement.

Such a strategy can be described via three disjoint intervals [0, Ky), [Ky, Ly) and

[Ly,Wy) with 0 < Ky < Ly < Wy, along the age (time) scale where failures in the

initial interval [0, Ky) when the item is relatively new undergo only minimal repair;

the first failure (if any) in the middle interval [Ky, Ly) rectified by a replacement

and all subsequent failures therein, as well in the interval [Ly,Wy) when the item is

relatively old getting only quick fixes via minimal repairs. Such a strategy minimizes

what is known to be near-optimal among 1-D warranty policies (viz., Jack et al. [41],

Jiang et al. [46]).

In the 1-D replacement / repair warranty (FRW, F-free, to the consumer)

policies, Yun et al. [106] have investigated the impact of allowing ‘imperfect repair’

(IR) as a mode of rectifying the first failure in the middle interval [Ky, Ly) to restore

the unit to a working condition. They describe the degree of ’imperfect repair’ via a

parameter δ ∈ [0, 1] with δ = 0 (1, respectively) being equivalent to minimal repair

(replacement), and assume that it is possible to restore a failed equipment with any

chosen degree (δ) of repair.
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2.3 Proposed Servicing Strategy for 2-D Warranties with Imperfect

Repairs

For 2-D warranties, alternatives to ‘minimal repair’ in the middle interval [Ky, Ly) in

Jack et al. [40] approach is restricted to replacements (i.e.,‘perfect repairs’) only. We

propose and investigate a new 2-D servicing strategy. Our current work described

here, is an attempt to extend the model and analysis of 2-D warranties by allowing

imperfect repairs. For a given usage rate y the value of the parameters Ky and Ly

are selected to minimize the expected warranty servicing cost. If K∗y and L∗y denote

the optimal values then, as y varies the set of points (K∗y , L
∗
y) define a closed curve

as indicated in Figure 2.1. Let Γ denote the region enclosed by this curve.

Figure 2.1 The ideal Γ region of Jack, Iskandar, Murthy (2009), in the 2-D warranty
space where the first failure is replaced by a new item.

Our new servicing strategy:

For items sold with 2-D warranties, the first failure in the region Γ is rectified with

an imperfect repair and all other failures are repaired minimally.

The region Γ depends on the type of model used for item failures and on the

cost of minimal repair and imperfect repair. Let Cm denote the cost of a minimal

repair and Ci(δy(x), x) (> Cm) denote the cost of an imperfect repair conditioned on

y. Here, given usage rate y, the chosen degree of repair δy(x) ∈ [0, 1] denotes the



31

conditional proportional reduction factor in the hazard rate after failure at age x. We

will consider two different strategies:

i) if δy(x) is a function of both age(x) and usage(y).

ii) if δy(x)(= δy) is a function of usage rate(y) only.

2.3.1 Model Formulation

For a failed unit restored by minimal repairs, the hazard rate function of post-repair

lifetime continues uninterrupted, as if there was no failure. If repair times are small

relative to the mean time between failures (so that minimal repairs can be treated as

being instantaneous) then item failures over time follow a non-homogeneous Poisson

process (NHPP) with intensity function λy(x) = h(x;α(y)). The intensity function is

also referred to as the rate of occurrence of failures (ROCOF).

In contrast, an imperfect repair improves the items operating characteristics in

the sense that the hazard rate of item’s lifetime after such a repair is typically smaller

than before failure. This can be modeled as follows. For a given usage rate y, if the

failure occurs at age xi the conditional hazard rate just before failure is h(xi−;α(y))

and after repair, is

h(xi+;α(y)) = h(xi−;α(y))− δy(xi)(h(xi−;α(y))− h(0;α(y)))

as suggested by Yun et al. [106], where δy(xi) can take values in the interval [0, 1].

The reduction in the hazard rate is a linear function of δy(xi). δy(xi) is a decision

variable with a higher value indicating a greater improvement in the reliability after

repair.

Imperfect repairs are also assumed to be instantaneous. The concept of imperfect

repair is appropriate for a complex system containing a very large number of compo-

nents. The system hazard rate can be expressed in terms of the component hazard

rates. (For example, in the case of a series configuration, the system hazard is the
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sum of the component hazard rates.) The hazard rates are usually assumed to be

increasing functions of time (reflecting the degradation effect of age). System failure

occurs due to failure of one or more components, depending on the system’s failure

logic. Under minimal repairs, only failed components are so repaired and there is

no effect on the system hazard rate. Under imperfect repair, the failed components

and also some of the non-failed components are correspondingly repaired in order to

achieve the desired reduction in the system hazard rate. This implies that the cost

of an imperfect repair is greater than that of a minimal repair and this cost increases

as the degree of hazard rate reduction increases.

2.3.2 Model Analysis

In this section the conditional expected warranty servicing cost J(Ky, Ly,∆y(Ky, Ly))

for a given usage rate y is derived as a function of parameters Ky, Ly (subject to the

constraints 0 ≤ Ky ≤ Ly ≤ Wy) and the set of imperfect repair functions ∆y(Ky, Ly)

≡ {δy(x) : Ky ≤ x ≤ Ly}.

2.3.2.1 Conditional Expected Warranty Cost. For a given usage rate y, let

T1 denote the time of the first failure under usage rate y after age Ky. The conditional

density function (PDF) and survival function for T1 are respectively, given by

f1(t;α(y)) =
f(t;α(y))

F (Ky;α(y))
, and

F 1(t;α(y)) = 1− F1(t;α(y)) =
F (t;α(y))

F (Ky;α(y))
, t ≥ Ky,

Over [0,Ky) – all failures are minimally repaired with average cost Cm, so the failures

occur according to a NHPP with conditional intensity function λy(x) = h(x;α(y))

and the conditional expected warranty servicing cost for this interval is given by

Cm

∫ Ky

0

h(x;α(y))dx (2.10)

Over [Ky,Wy) – We need to consider the following two cases:
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(A) Ky ≤ T1 = x ≤ Ly and (B) T1 = x > Ly

Case (A) Ky ≤ T1 = x ≤ Ly

The conditional expected cost, conditional on Ky ≤ T1 = t1 ≤ Ly, is obtained as

follows. The first failure in [Ky, Ly] occurs at age t1 and is imperfectly repaired

with cost Ci(δ(t1), t1). All failures over the remaining interval (t1,Wy] are minimally

repaired. As a result, the failures over this interval occur according to an NHPP with

conditional intensity function:

λy(x) = h(x;α(y))− δy(t1)(h(t1;α(y))− h(0;α(y))), t1 ≤ x ≤ Wy.

The expected cost of servicing failures over (t1,Wy] is given by

Cm

∫ Wy

t1

[h(x;α(y))− δy(t1){h(t1;α(y))− h(0;α(y))}]dx. (2.11)

As a result, the conditional expected warranty cost for usage rate y and Ky ≤ T1 =

t1 ≤ Ly is given by

J(Ky, Ly, δy(Ky, Ly)|Ky ≤ x ≤ Ly) = Cm

∫ Ky

0

h(x;α(y))dx+ Cm

∫ Wy

t1

[
h(x;α(y))

− δy(t1){h(t1;α(y))− h(0;α(y))}
]
dx+ Ci(δ(t1), t1). (2.12)

Case (B) T1 = x > Ly

The conditional expected cost, conditional on T1 = t1 > Ly, is obtained as follows.

Note that there is no failure in [Ky, Ly] and failures over the remaining interval

(Ly,Wy] occur according to an NHPP with intensity function

λy(x) = h(x;α(y)), Ly ≤ x ≤ Wy

As a result, the conditional expected warranty cost is given by

J(Ky, Ly, δy(Ky, Ly)|x > Ly) = Cm

∫ Ky

0

h(x;α(y))dx+ Cm

∫ Wy

Ly

h(x;α(y))dx.

(2.13)
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For a given usage rate y the expected warranty cost is obtained by unconditioning on

T1 i.e.,

EJ(Ky, Ly, δy(Ky, Ly)) = E(E{J(·)|T1})

= P (T1 > Ly)E{J(·)|T1 ≡ x > Ly}+

∫ Ly

Ky

E{J(·)|T1 ≡ x}dF1(x)

equivalently,

EJ(Ky, Ly,δy(Ky, Ly)) = EJ(Ky, Ly, δy(x)|T1 ≡ x > Ly)F 1(Ly;α(y))

+

∫ Ly

Ky

EJ(Ky, Ly, δy(x)|Ky ≤ T1 ≡ x ≤ Ly)f1(x;α(y))dx. (2.14)

Using the cumulative hazard function H(t;α(y)) =
∫ t

0
h(u;α(y))du and combining

terms containing δy(Ky, Ly), Equation (2.14) can be further rewritten as

J(Ky, Ly, δy(Ky, Ly)) = Ψ(Ky, Ly) + Φ(∆(Ky, Ly), Ky, Ly), (2.15)

where

Ψ(Ky, Ly) = Cm(H(Ky;α(y))− [H(Wy;α(y))−H(Ly;α(y))]
F (Ly;α(y))

F (Ky;α(y))

+

∫ Ly

Ky

[H(Wy;α(y))−H(x;α(y))]
f(x;α(y))

F (Ky;α(y))
dx),

Φ(∆y(Ky, Ly), Ky, Ly) =

∫ Ly

Ky

[Ci(δy(x), x)− Cmδy(x){h(x;α(y))

− h(0;α(y))}(Wy − x)]
f(x;α(y))

F (Ky;α(y))
dx. (2.16)

2.3.3 Optimization of Strategy 1

The optimization problem is given by

min
Ky ,Ly ,∆y(Ky ,Ly)

J(Ky, Ly,∆y(Ky, Ly))

= min
Ky ,Ly ,∆y(Ky ,Ly)

{Ψ(Ky, Ly) + Φ(∆(Ky, Ly), Ky, Ly)}.
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Note that this involves selecting optimally the two parameters Ky and Ly for a

given y (subject to the constraints 0 ≤ Ky ≤ Ly ≤ Wy) and the function ∆y(Ky, Ly)

≡{δy(x): Ky ≤ x ≤ Ly} (subject to the constraints 0 ≤ δy(x) ≤ 1).

Let K∗y and L∗y denote the optimal solution. We obtain this using a two-stage

approach. In stage 1, for a fixed Ky and Ly, we obtain the optimal ∆∗y(Ky, Ly) that

minimizes J(Ky, Ly,∆y(Ky, Ly)). Then, in stage 2, we obtain the optimal (K∗y , L
∗
y)

by minimizing J(Ky, Ly,∆
∗
y(Ky, Ly)).

Stage 1

To determine ∆∗y(Ky, Ly) we need to focus on Φ(∆y(Ky, Ly), Ky, Ly) given by Equation

2.16 and this can be rewritten as

Φ(∆y(Ky, Ly), Ky, Ly) =

∫ Ly

Ky

[Ci(δy(x), x)− δy(x)ξy(x)]
f(x;α(y))

F (Ky;α(y))
dx

where

ξy(x) = Cm{h(x;α(y))− h(0;α(y))}(Wy − x), Ky ≤ x ≤ Ly.

Assume the baseline survival distribution F0 of the product’s lifetime is such that

ξy(x) is concave in the item’s age x. This postulate is satisfied by many parametric

lifetime models that are increasingly degrading with age. In particular, the following

is a sufficient condition for such concavity.

Proposition 2.3.1 If h(x;α0) is increasing and concave (i.e., baseline survival time

T0 with d.f. F (·;α0) is IFR with concave hazard rate), implies

g(x) = {h(x;α0)− h(0;α0)}(W − x)

is concave in {0 ≤ x ≤ W}.

Proof: Assuming h(x;α0) is twice differentiable, it can be seen that g(x) is concave

in {0 ≤ x ≤ W}. If h′′(x;α0) does not exist, then the proof follows from the general
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definition of concavity. Since

F (x;α(y)) = F ((
y

y0

)γx;α0)⇔ h(x;α(y)) = (
y

y0

)γh((
y

y0

)γx;α0), thus

ξy(x) = Cr(
y

y0

)γ{h((
y

y0

)γx;α0)− h(0;α0)}(Wy − x)

is also concave in x ∈ [0,Wy]. �

We need to determine the optimal form for δy(x) for every point x along the time

axis. The optimal δy(x) must result in [Ci(δy(x), x) − δy(x)ξy(x)] being a minimum

for each x ∈ [Ky, Ly]. As result, δ∗y(x) can be obtained by examining:

v(zy, x) = [Ci(zy, x)− ξy(x)zy]

for each x ∈ [Ky, Ly]. For a fixed x, Ci(zy, x) is an increasing function of zy as shown

in Figure 2.2. ξy(x)zy, the second term in v(zy, x), is linear in zy and so is a straight

line when plotted as a function of zy, as shown in Figure 2.2.

We need to consider the following two cases.

Case (1): The line ξy(x)zy lies below the curve Ci(zy, x). This corresponds to (a) in

Figure 2.2. In this case, δ∗y(x) = 0. This is because the cost of any imperfect repair

with δ∗y(x) > 0 is not worth the reduction in the expected warranty servicing cost

when compared with only minimal repair δ∗y(x) = 0.

Case (2): The straight line ξy(x)zy and the curve Ci(zy, x) intersect. This corresponds

to (b) in Figure 2.2 and in this case we have δ∗y(x) > 0. Since 0 ≤ δ∗y(x) ≤ 1 then

either δ∗y(x) = 1 (the boundary solution) or 0 < δ∗y(x) < 1 (an interior point solution).

In the latter case, the optimal value is obtained from the usual first order condition.

This yields δ∗y(x) = z∗y for a given y with z∗y given by

δCi(zy, x)

δzy
= ξy(x). (2.17)

Let the straight line κzy be a tangent to the curve Ci(zy, x) at zy = z̃. This is shown

by (c) in Figure 2.2 κ and z̃ are obtained by solving the simultaneous equations given
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Figure 2.2 Plots of Ci(zy, x) and ξy(x)zy vs. zy.

below:

Ci(z̃, x) = κz̃ and
δCi(zy, x)

δzy
|zy=z̃ = κ. (2.18)

where ξy(x) is a concave function as shown in Figure 2.3 with ξy(0) = 0 and ξy(Wy) =

0. Define

ξy(max) = max
0≤x≤Wy

ξy(x). (2.19)

Proposition 2.3.2 If ξy(max) < κ then δ∗y(x) = 0 for all x. If ξy(max) > κ then

δ∗y(x) > 0 for 0 ≤ τ1y ≤ x ≤ τ2y ≤ Wy where τ1y and τ2y are the solutions of the

equation ξy(x) = κ. For x outside the interval [τ1y, τ2y), δ∗y(x) = 0.

Note: This implies that δ∗y(x) has a shape as shown in Figure 2.4, and note that δ∗y(x)

does not depend on Ky and Ly.
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Figure 2.3 Plot of ξy(x) against age(x).

Figure 2.4 Plot of δ∗y(x) vs. age (x) for Strategy 1.

Stage 2

Let ∆∗y(Ky, Ly) ≡ {δ∗y(x) : 0 ≤ x ≤ Wy} which is obtained from Stage 1. K∗y

and L∗y, the optimal values for Ky and Ly, are obtained by solving the following

minimization problem

min
Ky ,Ly

J(Ky, Ly,∆
∗
y(Ky, Ly)) = min

Ky ,Ly
{Ψ(Ky, Ly) + Φ(∆∗y(Ky, Ly), Ky, Ly)}.

subject to the constraint 0 ≤ Ky ≤ Ly ≤ Wy. These can be obtained from the usual

first-order conditions:

∂

∂Ky

J(Ky, Ly,∆y(Ky, Ly)) = 0 and
∂

∂Ly
J(Ky, Ly,∆y(Ky, Ly)) = 0 (2.20)



39

if they lie inside the interval [0,Wy]. It is not possible to derive any analytical

results from these conditions and the optimal values need to be obtained using a

computational approach.

2.3.4 Optimization of Strategy 2

The optimization problem is given by

min
Ky ,Ly ,δy

J(Ky, Ly, δy) = min
Ky ,Ly ,δy

{Ψ(Ky, Ly) + Φ(δy, Ky, Ly)}.

where Ψ(Ky, Ly) is same as Equation 2.16 and

Φ(δy, Ky, Ly) =

∫ Ly

Ky

[Ci(δy)− Cmδy{h(x;α(y))− h(0;α(y))}

(Wy − x)]
f(x;α(y))

F (Ky;α(y))
dx. (2.21)

Here the cost of imperfect repair Ci(δy) will not depend on the age at failure. This

problem involves selecting optimally three parameters δy (0 ≤ δy ≤ 1), Ky and Ly

(0 ≤ Ky ≤ Ly ≤ Wy) for a given y .

We use the two-stage approach. In stage 1, given y, we fix Ky and Ly and obtain

the optimal δ∗y(Ky, Ly) that minimizes J(Ky, Ly, δy). Then in stage 2, we obtain the

optimal (K∗y , L
∗
y) by minimizing J(Ky, Ly, δ

∗
y).

Stage 1: δ∗y(Ky, Ly) is obtained by solving the following optimization problem:

min
δy |Ky ,Ly

φ(δy, Ky, Ly) = min
δy |Ky ,Ly

{φ1(Ky, Ly)Ci(δy) + φ2(Ky, Ly)δy}. (2.22)

where φ1(Ky, Ly) =

∫ Ly

Ky

f(x;α(y))dx,

and φ2(Ky, Ly) = Cm

∫ Ly

Ky

{h(x;α(y))− h(0;α(y))}(Wy − x)f(x;α(y))dx.
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δ∗y can either be an interior point or one of the end-points of the interval [0,1]. If δ∗y

is an interior point then it is obtained from the first order condition:

∂

∂δ
φ(δy, Ky, Ly) = 0, or φ1(Ky, Ly)

∂

∂δ
Ci(δy) = φ2(Ky, Ly). (2.23)

Here the optimal δ∗y will be a function of Ky and Ly.

Stage 2: K∗y and L∗y is obtained from the following optimization problem:

min
Ky ,Ly

J(Ky, Ly, δ
∗
y) = min

Ky ,Ly
{Ψ(Ky, Ly) + Φ(δ∗y , Ky, Ly)} (2.24)

subject to the constraint 0 ≤ Ky ≤ Ly ≤ Wy. We need to use computational approach

to obtain these optimal values. The optimal reduction when an imperfect repair is

carried out is given by δ∗y(K
∗
y , L

∗
y).

In the final stage, the minimal expected warranty cost J∗ ≡ J∗(Ky
∗, Ly

∗, δy
∗) is

obtained.

2.3.5 Special Case: Weibull Failure Distribution

The distribution function for the time to first failure under the nominal usage rate

y0 denoted by T0 is a Weibull distribution with scale parameter α0 > 0 and shape

parameter β > 1, so

F (x;α0) = 1− exp
(
− x

α0

)β
and F (x;α0) = exp

(
− x

α0

)β
.

Therefore, using the AFT formulation (Equation 2.2) the following functions

can be derived for Ty, the time to first failure under the usage rate y

CDF: F (x;α(y)) = 1− exp
(
− x

α(y)

)β
= 1− exp

(
−
( y
y0

)γ x
α0

)β
.

Survival function: F (x;α(y)) = exp
(
− x

α(y)

)β
= exp

(
−
( y
y0

)γ x
α0

)β
.

Hazard function: h(x;α(y)) = β
( y
y0

)γβ(xβ−1

αβ0

)
, (β > 1).

Cumulative hazard function: H(x;α(y)) =
( y
y0

)γβ(xβ
αβ0

)
.
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2.3.5.1 Strategy 1 Computations. Let Cr denote the cost of repair that achieves

100% reduction in the system hazard rate (equivalent to replacement), Cm (< Cr)

denote the cost of minimal repair. Then the cost of imperfect repair for usage rate y

is given by the expression

Ci(zy, x) = Cm + (Cr − Cm)zqy, q > 1,

where zy is the proportional reduction factor in the failure rate under fixed usage rate

y. Thus zy ∈ [0, 1] is a decision variable, with a greater value indicating a greater

improvement in the reliability of the item after repair.

From Equation 2.17, we have

ξy(x) = Cm{h(x;α(y))− h(0;α(y))}(Wy − x) = Cmβ
( y
y0

)γβ(xβ−1

αβ0

)
(Wy − x).

∂

∂x
ξy(x) = 0 gives the maximum at age x =

β − 1

β
Wy,

since ξy(x) is concave in x for each y. The maximum value of ξy(x) is

ξy(max) = max
0≤x≤Wy

ξy(x) =
Cm( y

y0
)γβ

αβ0

(β − 1

β

)β−1

W β
y .

Clearly, ξy(max) > 0 for all y.

From Equation 2.18 we have:

z̃ =
( Cm

(Cr − Cm)(q − 1)

) 1
q

and κ = (Cr − Cm)q
( Cm

(Cr − Cm)(q − 1)

) q−1
q
.

For each y, τ1y and τ2y are the solutions of the equation:

Cmβ
( y
y0

)γβ(xβ−1

αβ0

)
(Wy − x)− (Cr − Cm)q

( Cm
(Cr − Cm)(q − 1)

) q−1
q

= 0.
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The optimum δ∗y(x) for strategy 1 is

δ∗y(x) =
{( Cmβ

(Cr − Cm)q

)( y
y0

)γβ(xβ−1

αβ0

)
(Wy − x)

} 1
q−1
,

for 0 < τ1y < x < τ2y < Wy.

Here δ∗y(x) does not depend on the values of Ky and Ly. As mentioned previously,

we need to calculate the values of K∗y and L∗y using computational methods.

2.3.5.2 Strategy 2 Computations. Given y, the cost function

Ci(δ) = Cm + (Cr − Cm)δq, therefore
∂

∂δ
Ci(δ) = (Cr − Cm)qδq−1.

From the first order condition, i.e.,

∂

∂δ
φ(δ,Ky, Ly) = 0⇔ i.e.,

∂

∂δ

(φ1(Ky, Ly)Ci(δ)− φ2(Ky, Ly)δ

F (Ky, α(y))

)
= 0.

Therefore for Strategy 2,

δ∗(Ky, Ly) =
( φ2(Ky, Ly)

(Cr − Cm)pφ1(Ky, Ly)

) 1
q−1
,

where φ1(Ky, Ly) =

∫ Ly

Ky

f(x;α(y))dx

and φ2(Ky, Ly) = Cm

∫ Ly

Ky

[{h(x;α(y))− h(0;α(y))}(Wy − x)]f(x;α(y))dt.

Note: Unlike strategy 1, here the optimum reduction proportion depends on Ky and

Ly.

2.3.6 Numerical Example: Strategy 1 and 2 for Cr = 2 and β = 2

We normalize costs so that the cost of minimal repair, Cr = 1 and consider a range

of values for the cost of replacement (perfect repair), i.e., Cr varying from 2 to 10.

We assume the nominal values warranty period, W = 2, total usage limit, U = 2,

Weibull scale (baseline) parameter, α0 = 1, Weibull shape parameter, β = (2, 3),
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nominal usage rate, y0 = 1, the AFT model parameter, γ = 2 and imperfect cost

function parameter, q = 4.

The numerical results are obtained from high-performance workstations (2.3

GHz Intel Core 2 Quad Q8200 processors) in the Department of Mathematical Sciences

/ Center of Applied Mathematics and Statistics computing lab and the average

runtime for each pair (Cr,β) is approximately 850 minutes. The optimal values of

parameters and the corresponding minimal cost is demonstrated in Table 2.1. Table

2.2, presents a comparison of costs of the proposed strategies to those of Jack et al.

[40], where the figures in brackets are percentage cost savings.

For computational purposes, we have developed MATLAB programs that are

appropriate for the different warranty models considered in this dissertation. The

corresponding MATLAB codes have been used to carry out all illustrative numerical

computations in this and subsequent chapters. A sample MATLAB program is

included in the Appendix A.
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Table 2.1 Optimal Warranty Parameters and Expected Servicing Costs

Strategy 1 Strategy 2

(age-dependent degree of repair) (constant degree of repair)

y Wy K∗y L∗y J(K∗y , L
∗
y, δ
∗
y) K∗y L∗y δ∗y J(K∗y , L

∗
y, δ
∗
y)

0.1 2.00 1.9004 1.9000 0.0004 1.2500 1.3100 0.0360 0.0004

0.3 2.00 1.9000 1.9000 0.0324 0.2990 1.8900 0.1440 0.0324

0.5 2.00 1.8000 1.8000 0.2500 0.2080 1.9200 0.2840 0.2460

0.7 2.00 1.4301 1.9860 0.9602 0.2380 1.9200 0.4520 0.8870

0.9 2.00 0.8048 1.977 2.1880 0.5400 1.8800 0.6560 2.1361

1.0 2.00 0.636 1.768 3.1950 0.6470 1.8470 0.7670 3.0130

1.2 1.66 0.590 1.4502 4.0250 0.6057 1.5300 0.8762 4.0210

1.4 1.42 0.5329 1.1929 5.1022 0.5690 1.3900 0.9780 5.1010

1.6 1.25 0.5029 0.9951 6.1899 0.4790 1.0120 1.0000 6.1290

1.8 1.11 0.473 0.9080 7.6135 0.4790 1.0100 1.0000 7.3985

2.0 1.00 0.447 0.7719 8.7756 0.4430 0.8740 1.0000 8.5730

2.5 0.80 0.3777 0.5542 13.2400 0.3690 0.6490 1.0000 11.4020

3.0 0.67 0.3199 0.4130 18.7374 0.3150 0.4910 1.0000 13.8050

3.5 0.57 0.3045 0.3420 21.6691 0.2750 0.4190 1.0000 15.4690

4.0 0.50 0.2717 0.3206 33.2484 0.2430 0.3420 1.0000 16.0890

4.5 0.44 0.2437 0.2650 35.8719 0.2190 0.2609 1.0000 15.3930

5.0 0.40 0.2068 0.2467 60.1243 0.1980 0.2423 1.0000 13.0792
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Table 2.2 Comparison of Costs with respect to Jack et al. (2009)

y Strategy 1 Strategy 2 Jacket.al (2009)

0.9000 2.1880 (11.11) 2.1361 (13.22) 2.4614

1.0000 3.1950 (1.12) 3.0130 (6.75) 3.2312

1.2000 4.0250 (1.78) 4.0210 (1.88) 4.0980

1.4000 5.1022 (0.02) 5.1010 (0.04) 5.1032

1.6000 6.1899 (1.42) 6.1290 (2.39) 6.2790

1.8000 7.6135 (0.03) 7.3985 (2.85) 7.6157

2.0000 8.7756 (3.77) 8.5730 (5.99) 9.1197

2.5000 13.2400 (4.05) 11.4020 (17.37) 13.7987

3.0000 18.7374 (5.32) 13.8050 (30.24) 19.7906

3.5000 21.6691 (21.69) 15.4690 (44.10) 27.6721

4.0000 33.2484 (11.21) 16.0890 (57.03) 37.4444

4.5000 35.8719 (25.67) 15.3930 (68.10) 48.2577

5.0000 60.1243 (02.51) 13.0792 (78.79) 61.6739

Note: Bracketed figures in boldface, are percentage savings in average

cost relative to Jack et al. [40] strategy of atmost one replacement.

Relative Cost Savings Percentage = 100×
(

Cost of Strategy i
Cost of Jack et al. Strategy

− 1
)

; i = 1, 2.
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Figure 2.5 (Γ region for strategies 1 and 2 when Cr = 2 and β = 2.

The two axes are total usage (u) level and age (x) respectively. The maximum

usage limit (U) is 2 (× 10000 miles) and the warranty period (W ) is 2 years. It can

be seen that the region Γ obtained from numerical computation is similar to Figure

2.1.
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Figure 2.6 The plot of δy versus y for different values of Cr and β.

As Cr increases the value of δ∗y decreases given y. Intuitively this makes sense

because if the cost of replacement(Cr) increases, the cost of imperfect repair Ci(δy, x)

which is a function of Cm, Cr and δy increases and can be controlled by reducing the

value of δy.
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Figure 2.7 Plots of (δ∗y , Cr, y) when β=2.

As usage rate y increases, the number of failures increase (due to AFT model)

resulting in higher expected cost. Thus, to reduce the item’s hazard rate (or, number

of failures) the manufacturer provides higher degree of imperfect repairs δ∗y . Also, if

replacement cost (Cr) increases, the expected cost increase and can be reduced by

choosing smaller degree of repairs δ∗y , justifying the decrease in δ∗y for higher Cr.
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2.3.7 Qualitative Interpretation of Results

1. Strategy 2 is more cost-effective compared to Strategy 1, since maintaining

a setup that can execute any degree of repair δy(x), Ky ≤ x ≤ Ly is more

expensive compared to the fixed δy case.

2. But Strategy 1 is more consumer friendly in the sense that the degree of repair

being dependant on age has a greater appeal to the customer and signals higher

reliability of the item after repair.

3. Finally, for Strategy 2, it can be seen that when y is large enough (≥ 1.6), the

optimal δ∗y is 1 (equivalent to replacement), since any repair of degree less than

1 will not result in the minimization of the total warranty cost.

4. The Gamma regions obtained in Figure 2.5 show some interesting feature of the

cost model,

• if y, is relatively high, depending on the behavior of δy(x) or, δ and the

costs Cr, Cm, the length of the middle interval [Ky
∗, Ly

∗] vary for every y.

• if age at failure in [Ky
∗, Ly

∗] is comparatively less, then the length of the

middle interval is relatively longer, since at this stage an imperfect repair

is worth the cost given the early age of the item.

• for older ages in warranty the length of the interval [Ky
∗, Ly

∗] decreases,

since there is no point of imperfect repair and a minimal repair will be an

optimal strategy.

Thus, these features contribute to the shape of the Gamma region as shown in

Figure 2.5.

2.4 Concluding Remarks

Our proposed servicing strategy extends the work of Jack et al. [40] by introducing

at most one imperfect repair in the middle interval. Since a replacement is costlier
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than a repair; the manufacturer/warranty provider has a natural incentive to do

repairs rather than a replacement. Under standard degradation assumption such as

increasing failure rate (IFR), the post repair reliability of the costliest (replacement)

option is the highest and that of the cheapest (minimal repair) option is the lowest.

However, practising an imperfect repair in the middle interval will reduce the expected

warranty cost relative to replacements without completely trading-off the reliability

of the item.

While minimal repairs only will be clearly optimal from a purely cost minimiza-

tion perspective, and a replacement only policy the costliest one, choosing an interme-

diate degree of repair optimally in a framework with a built-in provision for such

choices for the first failure if any within an intermediate age-bracket allows for a

reasonable trade-off between costs and post-repair reliability.



CHAPTER 3

ANALYSIS OF A 2-D WARRANTY SERVICING STRATEGY WITH

A BROWN-PROSCHAN TYPE REPAIR OPTION

3.1 Background and Motivation

In Chapter 2, we considered a servicing strategy with several minimal repairs and

one imperfect repair and analyzed the expected warranty cost. The concept of an

imperfect repair is tempting to the manufacturer since it reduces cost considerably.

But maintaining a servicing set up (e.g. a team of servicemen with different skill

levels) which enables any percentage of restoration to the item say 30% or 60% or

90%, is not practically feasible in most cases. Especially for small scale producers,

the servicing cost might exceed the total revenue resulting in losses to maintain such

varying facility. Therefore to reduce the hurdle of servicing and make the warranty

servicing easily conductible, we consider two easily amendable degree of restoration

i.e., 0% (minimal repair) and 100% (replacement), and probabilistically assign them

if the item fails during the warranty.

A new 2-D warranty servicing strategy in the above set up is considered. We

demonstrate the modeling, analysis and optimization of total expected costs accomp-

anied by a numerical illustration with Weibull failure model. After a brief recap

of the 2-D warranty setup and the accelerated failure time (AFT) formulation that

reflects the role of usage rate, Section 3.2 comprises the proposed servicing strategy.

In Sections 3.3, 3.4 and 3.5, we separately investigate the cases where probability of

a replacement is constant, or dependent on age; with corresponding model analysis,

optimization, numerical illustration and conclusions. The idea of randomizing the

choice of repair options between replacements and minimal repairs were originally

suggested by Brown and Proschan [15], and by Block, Borges and Savits [13], who

51



52

explored the resulting failure processes generated by such repairs, but did not investigate

them in warranty contexts.

3.1.1 The 2-D Warranty Model

We assumes that for a given customer, the usage rate Y is constant. Conditional on

Y = y, the total usage u of an unit at age x is thus

u = yx, 0 ≤ u <∞.

3.1.2 Modeling Failures

The distribution of failure time conditional on a customer’s usage rate y is the

appropriate distribution to model an unit’s failures, with corresponding conditional

hazard rate h(x; y) at age x.

3.1.2.1 Modeling First Failure. We use an ‘Accelerated Failure Time (AFT)

model’ ([74],[11]) to describe the impact of a given usage rate y on the unit’s time to

failure. If y0 (y, respectively) represent the nominal (typical, resp.) usage rate with

corresponding time to failure T0 (Ty, resp.); then the standard AFT model postulates,

Ty
T0

=
(y0

y

)γ
,

where γ ≥ 1 is the acceleration parameter. If F (·;α0) with a scale parameter α0 denote

the baseline CDF of T0, then the accelerated failure time Ty has CDF F (·;α(y)) with

scale parameter given by

α(y) =
(y0

y

)γ
α0,

and conditional hazard rate h(·;α(y)). Note α(y0) = α0.

3.1.2.2 Modeling Subsequent Failures. For a repairable product, the subse-

quent failures depend on the type of rectification action carried out. Under minimal
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repairs, failures over time occur according to a non-homogeneous Poisson process

(NHPP) with intensity function having the same form as the hazard rate function

h(x;α(y)) for time to first failure [13].

We further assume

1. All item failures are detected immediately and result in immediate claims by

the consumer.

2. All claims are valid and must be rectified by the manufacturer immediately

through repairs.

3. Repair and replacement times are small relative to the mean time between item

failures and therefore can be ignored.

4. For the duration of the warranty, no separate preventive maintenance except

those (if any), that are built in with the warranty, is carried either by the

manufacturer or by the consumer.

5. The product’s hazard rate function h(·;α(y)) is monotone non-decreasing in its

age and usage rate.

3.1.2.3 Warranty Policy and Coverage. Consider a repairable item sold with

a 2-D non-renewing free replacement warranty of period W and maximum usage

limit U . Thus the 2-D warranty region is the rectangle [0,W ) × [0, U). Given y,

the usage sensitive warranty expires when the item currently in use reaches an age

Wy = min(W, U
y

).
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3.2 Proposed 2-D Warranty Servicing Strategy

with a Brown-Proschan Repair Option

Jack et al. [40] have considered a 2-D warranty servicing strategy using minimal

repairs and at most one replacement. Such a strategy is described via three disjoint

intervals [0, Ky), [Ky, Ly) and [Ly,Wy) with 0 ≤ Ky ≤ Ly ≤ Wy, along the age

(time) scale where failures in [0, Ky) undergo only minimal repairs; the first failure in

[Ky, Ly) if any, rectified by a replacement and all subsequent failures therein, and in

[Ly,Wy) are repaired minimally. For a given usage rate y, the optimal values of the

parameters K∗y and L∗y minimize the expected warranty servicing cost. As y varies,

the set of points (K∗y , L
∗
y) defines a closed region, analogous to Jack et al. [40].

Our work described here, is an attempt to extend the model and analysis

of 2-D warranties by allowing a warranty servicing action, henceforth referred to

as Brown-Proschan repair, which randomizes the choice of restoration between a

replacement or, minimal repair with a probability p and (1−p) respectively, that was

first introduced by Brown and Proschan [15], although not in the cost of warranty

servicing context. The servicing strategy we consider and analyze, can be described

as follows:

With the warranty period partitioned into three intervals as described at the

beginning of this Section; the first failure (if any) in the middle interval [Ky;Ly)

undergoes a ‘Brown-Proschan repair’; all other failures undergo minimal repair.

It is clear that our strategy reduces to the strategy of Jack et al. [40] when

p = 1 and that of minimal repairs when p = 0. Pragmatically however, there

may be practical reasons to choose a Brown-Proschan repair with 0 < p < 1; e.g.,

consider a repair crew, each with one of two skill levels (minimal, as-good-as-new)

in proportions (1 − p, p) respectively, to whom repair jobs are assigned randomly.

Such randomized assignments will result in a total expected servicing cost bracketed

between the corresponding costs of the strategy of minimal repairs only and that of

Jack et al. [40].
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Intuition suggests that higher the chance of choosing a replacement, smaller

should be the total expected cost of servicing the warranty (see e.g., Tables 3.2 and

3.3), under reasonable degradation profiles of the unit’s failure time and replacement

versus minimal repair cost ratio.

3.3 Repair Strategy with Constant Probability of Replacement

Let us consider that the probability p of Brown-Proschan repair is fixed irrespective

of the time to first failure after age Ky. Clearly this assumption simplifies the analysis

of the strategy since the manufacturer need to determine of a single probability p as

oppose to a spectrum of degrees of repairs (δ) as in the previous chapter. This inherent

simplicity which can be easily understood and be appealing to a warranty provider,

is an argument in its favor as a realistic model apart from pragmatic justification of

utilizing repair crews with different skill levels, as mentioned in the previous Section.

3.3.1 Model Formulation

Our objective here is to model the expected warranty servicing cost denoted by

J(Ky, Ly, p) for a given usage rate y, and find the optimal values of the parameters

that minimize the cost. Let Cm denote the cost of a minimal repair and Cr (> Cm)

denote the cost of a replacement. For a given usage rate y, let T1 denote the time of

the first failure under usage rate y after age Ky. The conditional CDF of T1 is given

by

F1(t;α(y)) =
F (t;α(y))− F (Ky;α(y))

F (Ky;α(y))
. (3.1)

All failures over [0, Ky) are minimally repaired, so the failures occur according

to an non-homogeneous poisson (NHPP) process with conditional intensity function

h(x;α(y)) and the conditional expected warranty servicing cost for this interval is
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given by

Cm

∫ Ky

0

h(x;α(y))dx = CmH(Ky;α(y)),

where H(x;α(y)) is the cumulative hazard function at age x. For failures occurring

after age Ky we need to consider two cases:

(1) Ky ≤ T1 = x ≤ Ly and (2) T1 = x > Ly

The conditional expected cost, conditional on Ky ≤ T1 ≤ Ly, is obtained as

follows. The first failure in [Ky, Ly) occurs at age T1 ≡ t and is either replaced

with probability p or, minimally repaired with probability (1 − p). All failures over

the remaining interval (t,Wy] are minimally repaired. The expected cost function of

servicing failures over [t,Wy] is given by

p[Cr + Cm

∫ Wy

t

h(x− t;α(y))dx] + (1− p)Cm[1 +

∫ Wy

t

h(x;α(y))dx]

=p[Cr + CmH(Wy − t;α(y))] + (1− p)Cm[1 +H(Wy;α(y))−H(t;α(y))].

As a result, the expected warranty cost over the intervals [Ky, Ly) and [Ly,Wy] for

usage rate y conditioned on Ky ≤ T1 ≤ Ly is given by

J(Ky, Ly, p|Ky ≤ T1 ≤ Ly) =

∫ Ly

Ky

[
p{Cr + CmH(Wy − t;α(y))}

+(1− p)Cm{1 +H(Wy;α(y))−H(t;α(y))}
] f(t;α(y))

F̄ (Ky;α(y))
dt.

The expected cost, conditioned on T1 > Ly, is obtained as follows. Note that, in

this case, there is no failure in [Ky, Ly] and failures over the remaining interval (Ly,Wy]

occur according to an NHPP with intensity function h(t;α(y)), for Ly ≤ T1 ≤ Wy.

Therefore, the conditional expected warranty cost given by T1 > Ly is,

J(Ky, Ly, p|T1 > Ly) = Cm[H(Wy;α(y))−H(Ly;α(y))].
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By removing the conditioning on T1 using Equation (3.1), the total expected

warranty servicing cost for a given usage rate y, is therefore

J(Ky, Ly, p) = CmH(Ky;α(y)) +

∫ Ly

Ky

[
p{Cr + CmH(Wy − t;α(y))}

+ (1− p)Cm[1 +H(Wy;α(y))−H(t;α(y))]
] f(t;α(y))

F̄ (Ky;α(y))
dt

+ Cm[H(Wy;α(y))−H(Ly;α(y))]
F̄ (Ly;α(y))

F̄ (Ky;α(y))
. (3.2)

3.3.2 Model Analysis and Optimization

We assume the probability p ∈ [0, 1] is known. Hence, the optimization problem

minKy ,Ly J(Ky, Ly) involves selecting the optimal K∗y and L∗y for a given y (subject to

the constraints 0 ≤ Ky ≤ Ly ≤ Wy). We obtain this using a two-stage approach. In

stage 1, for a fixed Ky, obtain the optimal L∗y(Ky) that minimizes J(Ky, Ly). Then, in

stage 2, we obtain the optimal K∗y by minimizing J(Ky, L
∗
y(Ky)). Thus for a fixed Ky,

the optimal L∗y(Ky) can be obtained from the first order condition ∂
∂Ly

J(Ky, Ly) = 0;

i.e.,

pCmξy(Ly)
f(Ly;α(y))

F̄ (Ky;α(y))
= 0, (3.3)

where

ξy(t) =
Cr
Cm
− 1 +H(Wy − t;α(y))−H(Wy;α(y)) +H(t;α(y))

=
Cr
Cm
− 1− g(t), and (3.4)

g(t) := H(Wy;α(y))−H(t;α(y))−H(Wy − t;α(y)). (3.5)

Since Cm ∈ (0,∞), p ∈ (0, 1] and f(Ly ;α(y))

F̄ (Ky ;α(y))
> 0 (as Ky and Ly are in the support of

f(·;α(y))); Equation (3.3) reduces to ξy(Ly) = 0.

Note the optimal L∗y(Ky) ≡ L∗y does not depend on the probability p.

Finally the optimum K∗y is obtained by solving

∂

∂Ky

J(Ky, L
∗
y(Ky)) = 0.



58

Unlike L∗y, it can be seen that the optimal K∗y (p) ≡ K∗y does depend on p. We have

used computational approach to find the optimal values of K∗y and L∗y.

3.3.3 Special Case: Weibull Failure Distribution

Let the time to first failure under the nominal usage rate y0 denoted by T0 follow

a Weibull distribution with scale parameter α0 > 0 and shape parameter β > 1,

i.e., F (x;α0) = 1− F (x;α0) = exp (− x
α0

)β. Using the corresponding AFT model, the

survival function, hazard function and cumulative hazard function for Ty, the time to

first failure under the usage rate y can be derived as follows,

F (x;α(y)) = 1− F (x;α(y)) = exp (−(
y

y0

)γ
x

α0

)β,

h(x;α(y)) = β(
y

y0

)γβ(
xβ−1

αβ0
), and

H(x;α(y)) = (
y

y0

)γβ(
xβ

αβ0
).

Finally we derive the special forms of Equations (3.2)-(3.4), and compute the optimal

values K∗y , L
∗
y with the corresponding minimal cost J(K∗y , L

∗
y, p), given in Tables 3.1

and 3.2, respectively.

3.4 Age Dependent Probability of Replacement (Block-Borges-Savits)

Strategy: For Some Generic Function p(t)

If we are to exercise a choice between a replacement vs. a minimal repair probabilisti-

cally, Block, Borges and Savits [13], henceforth referred to as BBS, suggest that the

probability of such choices should depend on the item’s age at failure. Let p(t) (and

(1 − p(t)), respectively) denote the probability of choosing a replacement (minimal

repair, respectively) of an item that fails at age t (≥ Ky). Consistent with their

suggestion for choosing an age-dependent repairs, we will refer to the corresponding

warranty servicing policy of choosing a replacement or minimal repair in the middle
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interval [Ky, Ly) as the BBS Strategy. Note that the technical condition∫ ∞
0

p(t)Λ(dt) = +∞,

where Λ denote the hazard measure induced by a new item’s life-distribution, which

ensures the finiteness with probability one of the sojourn-time between consecutive

replacements with a random number of minimal repairs in between when the BBS

repair option is repeatedly exercised at each failure, is inapplicable in out context,

which exercises such a choice only once and then switches to minimal repairs at all

subsequent failures for the duration of the warranty. The choice of the randomizing

function p(t), is thus in principle, quite arbitrary subject only to the constraint that

it is a mapping of the half-line [0,∞) into [0, 1].

In our view, realistic models of the probability p(t) should be chosen in a

way that reflects the extent of the failed item’s degradation (at age t of failure)

and our attitude towards the potential usefulness of a replacement versus minimal

repair. For example, a monotone increasing choice of p(t) may be appropriate for

items whose replacements are increasingly important with increasing age at failure

from a mission critical or, safety perspective, when the items degradation profile has

an increasing hazard (failure) rate function. Conversely, functions p(t) which are

monotone decreasing may be relevant, if either, the item has a decreasing failure

rate (DFR), or, we are in a situation where replacements are much more costly than

minimal repairs and the working unit’s degradation status is unimportant.

One can also imagine other scenarios where a bell-shaped unimodal choice of

p(t) would be a reasonable model to pursue. The odds of a minimal repair versus

replacement is the ratio {1 − p(t)}/p(t), which can be constructed for practical

purposes to favor minimal repair (replacements, respectively) if p(t) < (>, respectively)

p0, where p0 is an externally specified threshold. A bell-shaped unimodal p(t) together

with a specified threshold p0 would partition the warranty duration into three intervals:
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an ‘early’, ‘intermediate’ and ‘late’ phases when the item’s age is considered ‘young’,

‘mature’ and ‘old’ respectively.

Consider an equipment degrading with increasing failure rate (IFR). If it fails

in an ‘early’ phase, the hazard rate value at the time of failure is relatively low and

likely to be close to the value of the hazard rate when the item was new (age zero). In

such cases the potential gains of a replacement due to a stochastically larger lifetime

to the next failure compared to that under a minimal repair may not be worthwhile

depending on the ratio of replacement versus minimal repair costs. A bell-shaped

unimodal p(t) which is increasing in the ‘early’ phase would correspondingly indicate

odds in favor of a minimal repair, and thus endorse the previous argument for a

preference of minimal repair over replacement due to small values of p(t) in the early

phase.

Similarly, for failures that occur during the ‘late’ phase, an increasing hazard

rate (IFR) assumption implies that although its value at the point of failure is already

high, a replacement is possibly not cost effective since we are nearing the end of the

warranty duration. The resulting preference of minimal repairs during the ‘late’ phase

is likewise endorsed by reasonable choices of bell-shaped unimodal p(t) which would

be decreasing during the ‘late’ phase.

Finally, if a working item has reached the ‘intermediate’ phase in age, although

the item has progressively deteriorated to a certain extent, the trade-offs between

time to next failure and costs of minimal repair versus replacement is less clear. A

bell-shaped unimodal p(t) such that max
t
p(t) occurs at a point t in the ‘intermediate’

phase would schemate capture such situations.

In this Section we consider some specific functions p(t) in [Ky, Ly] and investigate

the behavior of costs using a computational approach. It can be noted that the forms

of function p(t) considered here depicts the degradation profile of the product. The

three probability functions considered for illustrative purposes, are the following:
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Figure 3.1 Plots of the probability functions for Cr = 2, Cm = 1, Ky = 0, Ly = 2
and a = b = 2.

(i) If p1(t) = 1 − e−t , t ∈ [Ky, Ly] i.e., the probability function p(t) is increasing

in time to first failure t after age Ky. Such a function is relevant for items with

increasing failure rates (IFR) distributions, which are prone to failures at later

ages. In this case as the operating time increase, the rate of failures and the

probability of replacement is simultaneously increased. Also when t is relatively

small the products hazard rate is low and expected number of failures is less

compare to later ages, and there is no point in replacement at an early age.

Whereas at later ages if a replacement is performed, it will not only reduce the

hazard rate but also the expected number of failures over the warranty term

resulting in minimal cost.

(ii) If p2(t) = 1
(Cr−Cm)+t

, t ∈ [Ky, Ly] i.e., the probability function p(t) is decreasing

in time to first failure t after age Ky. Such a function is relevant for items

with decreasing failure rate (DFR) distributions, which are prone to failures at

early ages. Here as the operating time increase, the rate of failures and the

probability of replacement simultaneously decrease. Also when t is relatively

less the products hazard rate is high and expected number of failures is more
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compare to later ages. Thus an early replacement will reduce the total number

of failures and minimize the expected cost over the warranty period.

There are obviously many choices for p(t) decreasing, e.g., p(t) = [(Ly−t)/(Ly−

Ky)]
a, Ky ≤ t ≤ Ly, a > 0, decreases from 1 to 0 as the item’s age increases

from Ky to Ly. The shape of p(t) over [Ky, Ly] is determined by the parameter

a ∈ [0,∞), viz. p(t) is concave for 0 < a < 1, linear for a = 1, strictly convex if

a > 1, and constant ( equivalent to Brown-Proschan repair, Section 3.2-3.3) if

a = 0.

(iii) If p3(t) = (t−Ky)
a−1(Ly− t)b−1 , t ∈ [Ky, Ly], a > 1, b > 1, i.e., the probability

function p(t) is a unimodal function of time to first failure t after age Ky. In

this case the item’s hazard rate initially increase and then decrease, as a result

the probability of replacement is low when the item is relatively young or old.

A replacement near the peak of the hazard rate (determined by the parameters

a and b) will reduce the expected number of failures resulting in minimal cost.

For computational purposes we have considered a = 2 and b = 2.

Table 3.3 in Section 3.6 shows the results of computation with a Weibull failure

distribution model.

3.5 Age Dependent Probability of Replacement (Block-Borges-Savits)

Strategy: For General Function p(t)

Finally, let us suppose that the probability p(t) of replacement in [Ky, Ly] is an

unknown function of time to first failure t ∈ [Ky, Ly]. Our objective in this case to

optimally derive the function p(t), t ∈ [Ky, Ly] along with K∗y and L∗y such that the

expected warranty cost is minimum.
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3.5.1 Model Formulation

The model formulation is similar to the constant probability case Section 3.3, except

p is replaced by p(t). The expected warranty servicing cost for a given usage rate y,

is

J(Ky, Ly, p(t)) = CmH(Ky;α(y)) +

∫ Ly

Ky

[
p(t){Cr + CmH(Wy − t;α(y))}

+ (1− p(t))Cm[1 +H(Wy;α(y))−H(t;α(y))]
] f(t;α(y))

F̄ (Ky;α(y))
dt

+ Cm[H(Wy;α(y))−H(Ly;α(y))]
F̄ (Ly;α(y))

F̄ (Ky;α(y))
,

=
Cm

F̄ (Ky;α(y))

[
(H(Ky;α(y)) +H(Wy;α(y)) + 1)F̄ (Ky;α(y))

−
∫ Ly

Ky

H(t;α(y))f(t;α(y))dt− (H(Ly;α(y)) + 1)F̄ (Ly;α(y))

+

∫ Ly

Ky

p(t)
{ Cr
Cm
− 1− g(t)

}
f(t;α(y))dt

]
,

= Ψ(Ky, Ly) + Φ(Ky, Ly, p(t)), (3.6)

with

Ψ(Ky, Ly) :=
Cm

F̄ (Ky;α(y))

[
(H(Ky;α(y)) +H(Wy;α(y)) + 1)F̄ (Ky;α(y))

−
∫ Ly

Ky

H(t;α(y))f(t;α(y))dt− (H(Ly;α(y)) + 1)F̄ (Ly;α(y))
]
,

(3.7)

Φ(Ky, Ly, p(t)) :=
Cm

F̄ (Ky;α(y))

∫ Ly

Ky

p(t)
{ Cr
Cm
− 1− g(t)

}
f(t;α(y))dt, (3.8)

where

g(t) := H(Wy;α(y))−H(t;α(y))−H(Wy − t;α(y)).

(labeled earlier as Equation (3.5)).
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3.5.2 Model Analysis and Optimization

The optimization problem min
Ky ,Ly ,p(t)

J(Ky, Ly, p(t)) involves two stages. At the first

stage is for fixed y, Ky and Ly, select the function p∗(t) that minimizes J(Ky, Ly, p
∗(t)).

At the second stage, for fixed y the optimal K∗y and L∗y are obtained (subject to the

constraints 0 ≤ Ky ≤ Ly ≤ Wy) such that J(K∗y , L
∗
y, p
∗(t)) is minimum.

Stage 1:

Clearly, the contribution of the probability p(t) of practising a replacement (perfect

repair) in (Ky, Ly] on the expected cost is captured by Φ(Ky, Ly, p(t)) in Equation

(3.8). Thus, the optimal choice p∗(t) of the age-dependent replacement probability

p(t) can be obtained by studying Φ(Ky, Ly, p(t)).

Proposition 3.5.1 Suppose x1 and x2(> x1) are the roots of the equation Cr
Cm
− 1−

g(t) = 0, where g(t) is given in Equation (3.5).

CASE A

If 1 + g
(
Wy

2

)
> Cr

Cm
, then the expected warranty servicing cost is minimized by the

following choices of p∗(t), depending on the positions of the roots x1, x2 relative to Ky

and Ly.

(a) If 0 ≤ Ky < Ly ≤ x1, then p∗(t) = 0 for all t ∈ (Ky, Ly].

(b) If Ky ≤ x1 < Ly ≤ x2, then p∗(t) =

 0, t ∈ (Ky, x1],

1, t ∈ (x1, Ly].

(c) If Ky ≤ x1 < x2 ≤ Ly, then p∗(t) =

 0, t ∈ (Ky, x1] ∪ [x2, Ly]

1, t ∈ (x1, x2).

(d) If x1 ≤ Ky < Ly ≤ x2, then p∗(t) =

 1, t ∈ (Ky, Ly]

0, o.w.

(e) If x1 ≤ Ky < x2 ≤ Ly, then p∗(t) =

 1, t ∈ (Ky, x2]

0, t ∈ (x2, Ly].

(contd. after Figure 3.2)
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Figure 3.2 Graphs of the functions ρ := Cr/Cm, 1 + g(t) versus age t.

CASE A: (a) Ky < Ly ≤ x1, (b) Ky ≤ x1 < Ly ≤ x2, (c) Ky ≤ x1 < x2 ≤ Ly, (d)

x1 ≤ Ky < Ly ≤ x2 (e) x1 ≤ Ky < x2 ≤ Ly, (f) x2 ≤ Ky < Ly ≤ Wy,

CASE B: (g) 1 + g
(
Wy

2

)
< Cr

Cm
, (h) 1 + g

(
Wy

2

)
= Cr

Cm
.
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(CASE A contd.)

(f) If x2 ≤ Ky < Ly ≤ Wy, then p∗(t) = 0 for all t ∈ (Ky, Ly].

The corresponding optimal values of K∗y and L∗y are obtained as follows:

K∗y ∈
[
0, Wy

2

)
is the smaller root of the equation

F̄ (Ky;α(y))− F̄ (Ly;α(y))−
∫ Ly

Ky

h(Wy − t;α(y))F̄ (t;α(t))dt = 0;

and L∗y ∈
(
Wy

2
,Wy

]
is the larger root of the equation

Cr
Cm
− 1− g(Ly) = 0.

CASE B

If 1+g
(
Wy

2

)
≤ Cr

Cm
, then p∗(t) = 0 for all t ∈ (Ky, Ly] and the corresponding K∗y = L∗y,

i.e., the optimal strategy is to carryout minimal repair throughout the warranty period.

Remark : If the roots of the equation Cr
Cm
−1−g(t) = 0 are equal, the strategy reduces

to the ‘minimal repairs only’ strategy.

Proof of CASE A: Equation (3.6) above shows that, the expected cost is the sum of

two components Φ and Ψ. It is easy to note that, in the integral equation

Φ(Ky, Ly, p(t)) = C

∫ Ly

Ky

p(t)
{ Cr
Cm
− 1− g(t)

}
f(t;α(y))dt,

constant C :=
Cm

F̄ (Ky;α(y))
> 0, p(t) ≥ 0, f(t;α(y)) ≥ 0 for all t, the expression g(t)

in (3.5) is concave (assuming h′(t;α(y)) exists) and symmetric about t = Wy/2, with

maximum value

max
t

g(t) = g
(Wy

2

)
= H(Wy;α(y))− 2H

(Wy

2
;α(y)

)
.

Therefore, sign of the function Cr
Cm
− 1− g(t) depends on the cost ratio Cr

Cm
and age t.

Further simplification of Equation (3.7) gives

Ψ(Ky, Ly) = CmH(Wy;α(y)) > 0
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(same as the expected cost of minimal repair only strategy), since, integrating by

parts we get,∫ Ly

Ky

H(t;α(y))f(t;α(y))dt = H(Ky;α(y))F̄ (Ky;α(y))−H(Ly;α(y))F̄ (Ly;α(y))

+ F (Ly;α(y))− F (Ky;α(y)).

And Φ(Ky, Ly, p(t)) < Ψ(Ky, Ly) for all p(t), Ky and Ly. Thus a smaller Φ(Ky, Ly, p(t))

will reduce the expected cost. So our objective is to choose optimally the function

p∗(t) ∈ [0, 1] such that the resultant Φ(Ky, Ly, p
∗(t))(< 0) is as small as possible. The

following are the different possibilities of choosing p∗(t).

Case(1a): If 0 ≤ Ky < Ly ≤ x1 as shown in Figure 3.2(a), then Cr
Cm
− 1 − g(t) > 0

for all x ∈ (Ky, Ly], therefore the value of the integral Φ(Ky, Ly, p(t)) is minimum iff

p∗(t) = 0 for all t ∈ (Ky, Ly].

Case(1b): If Ky ≤ x1 < Ly ≤ x2 as shown in Figure 3.2(b), then

Cr
Cm
− 1− g(t) > 0, t ∈ (Ky, x1]

≤ 0, t ∈ (x1, Ly]

so, the corresponding probability that minimizes the total expected cost

J(Ky, Ly, p(t)) is

p∗(t) =

 0, x ∈ (Ky, x1],

1, x ∈ (x1, Ly].

Case(1c): If Ky ≤ x1 < x2 ≤ Ly as shown in Figure 3.2(c), then

Cr
Cm
− 1− g(t) ≥ 0, t ∈ (Ky, x1] ∪ [x2, Ly]

< 0, t ∈ (x1, x2)
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thus, the corresponding probability that minimizes the total expected cost

J(Ky, Ly, p(t)) is

p∗(t) =

 0, t ∈ (Ky, x1] ∪ [x2, Ly]

1, t ∈ (x1, x2).

Case(1d): If x1 ≤ Ky < Ly ≤ x2 as shown in Figure 3.2(d), then

Cr
Cm
− 1− g(t) < 0, t ∈ (Ky, Ly]

hence, the corresponding probability that minimizes the total expected cost

J(Ky, Ly, p(t)) is

p∗(t) =

 1, t ∈ (Ky, Ly]

0, o.w.

Case(1e): If x1 ≤ Ky < x2 ≤ Ly as shown in Figure 3.2(e), then

Cr
Cm
− 1− g(t) < 0, t ∈ (Ky, x2]

≥ 0, t ∈ (x2, Ly]

therefore, the corresponding probability that minimizes the total expected cost

J(Ky, Ly, p(t)) is

p∗(t) =

 1, t ∈ (Ky, x2]

0, t ∈ (x2, Ly].

Case(1f): If x2 ≤ Ky < Ly ≤ Wy as shown in Figure 3.2(f), then Cr
Cm
− 1 − g(t) >

0, x ∈ (Ky, Ly] therefore, the corresponding probability that minimizes the total

expected cost J(Ky, Ly, p(t)) is p∗(t) = 0 for all t ∈ (Ky, Ly].

Stage 2:

At this stage for a fixed Ky, the optimal L∗y(Ky) can be obtained from the first order
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condition ∂
∂Ly

J(Ky, Ly) = 0; i.e.,

p(Ly)Cmξy(Ly)
f(Ly;α(y))

F̄ (Ky;α(y))
= 0, (3.9)

where ξy(t) = Cr
Cm
− 1− g(t).

Since Cm ∈ (0,∞), p(Ly) ∈ (0, 1] and f(Ly ;α(y))

F̄ (Ky ;α(y))
> 0 (as Ky and Ly are in the

support of f(·;α(y))); Equation (3.9) reduces to ξy(Ly) = 0. Thus the optimal L∗y

depends on the behavior of ξy(Ly) for Ky ≤ Ly ≤ Wy as shown in the following

subcases.

2(i) If 1 + g
(
Wy

2

)
≥ Cr

Cm
, then ξy(Ly) ≥ 0 and ∂

∂Ly
J(Ky, Ly) ≥ 0, ∀Ly ∈ [Ky,Wy], so

L∗y(Ky) = Ky, ∀Ky ∈ [0,Wy].

2(ii) If 1 + g
(
Wy

2

)
< Cr

Cm
, then ξy(Ly) = 0 has two roots in the interval [0,Wy], one

at L1 ∈ [0,Wy/2) and the other at L2 ∈ (Wy/2,Wy]:

(a) If Ky ∈ [0, L2], then Ly ∈ [Ky,Wy] and L∗y(Ky) = L2, due to convexity of

ξy(Ly).

(b) If Ky ∈ [L2,Wy], then Ly ∈ [Ky,Wy] and L∗y(Ky) = Ky.

Note that the optimal L∗y(Ky) ≡ L∗y does not depend on p(t).

Finally the optimum K∗y is obtained as follows. If from the previous step in

Stage 2, L∗y(Ky) = Ky, ∀Ky ∈ [0,Wy], then the optimal strategy is to carry out

minimal repair throughout the warranty period and the expected warranty cost will

be CmH(Wy;α(y)), i.e.,

J(Ky, L
∗
y, p
∗(t)) =

 J(Ky, L2, p
∗(t)), if 0 ≤ Ky ≤ L2

J(Ky, Ky, p
∗(t)) if L2 < Ky ≤ Wy.

(3.10)
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From Equation (3.6),

∂

∂Ky

J(Ky, L
∗
y(Ky), p

∗(t)) = Cm
h(Ky;α(y))

F̄ (Ky;α(y))

[ ∫ Ly

Ky

p∗(t)ξy(t)f(t;α(y))dt

− p∗(Ky)ξy(Ky)f(Ky;α(y))
]

= Cm
h(Ky;α(y))

F̄ (Ky;α(y))

[ ∫ Ly

Ky

ξy(t)f(t;α(y))dt

− ξy(Ky)f(Ky;α(y))
]
, for p∗(t) = 1,

= Cm
h(Ky;α(y))

F̄ (Ky;α(y))
ζ(Ky),

where

ζ(Ky) =

∫ Ly

Ky

H(Wy − t;α(y))f(t;α(y))dt− F̄ (Ly;α(y)) + F̄ (Ky;α(y))

+H(Wy − Ly;α(y))−H(Wy −Ky;α(y))

=

∫ Ly

Ky

[
h(t;α(y))− h(Wy − t;α(y))

]
F̄ (t;α(y))dt.

The value of K∗y depends on the behavior of ζ(Ky) for Ky ∈ [0, L2]. ζ(0) < 0, ζ(L2) =

0 and ζ ′(Ky) = h(Ky;α(y))− h(Wy −Ky;α(y))F̄ (Ky;α(y)), i.e., ζ(Ky) is increasing

on [0,Wy/2), decreasing on (Wy/2, L2] and attains a maximum at Ky = Wy/2. The

equation ζ(Ky) = 0 has two roots in the interval [0, L2] one at K1 ∈ [0,Wy/2) and

other at K2 = L2. Thus the optimal value of Ky that minimizes cost is K∗y = K1.

Unlike L∗y, it can be seen that the optimal K∗y does depend on p∗(t). We have

used a computational approach to find optimal values K∗y and L∗y.

Proof of CASE B : In this case, Φ(Ky, Ly, p(t)) ≥ 0 and is clearly minimized if and

only if p∗(t) = 0. Thus the optimal strategy reduces to the ‘minimal repairs only’

strategy and the corresponding K∗y = L∗y.
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3.6 Numerical Illustration

Let the cost of minimal repair Cm = 1, cost of replacement (perfect repair) Cr = 2,

warranty period W = 2 (years), total usage limit U = 2(×104 km per year), Weibull

baseline parameters α0 = 1, β = 2, nominal usage rate y0 = 1 and the AFT model

parameter γ = 2. In Table 3.1 and 3.2, we assign values 0 (minimal repairs), 0.2, 0.4,

0.6, 0.8 and 1 (replacement) to the constant probability of replacement p and compute

the corresponding minimal costs J(K∗y , L
∗
y) and optimal (K∗y , L

∗
y) for different y’s. The

figures in brackets are the percentage cost savings relative to the strategy of always

minimal repair (i.e., p = 0). In Table 3.3, the behavior of expected warranty costs is

demonstrated numerically by plugging in the different probability functions given in

Section 3.4 in the expected cost model Equation (3.2).

The MATLAB program used to compute the optimal parameters (K∗y , L
∗
y) and the

corresponding minimal costs J(K∗y , L
∗
y) is included in Appendix A.

3.6.1 Qualitative Interpretation of Results

The results of numerical computation in Tables 3.1, 3.2 and 3.3 demonstrate the

following features of the expected cost model. From Table 3.1, it can be seen that

(i) For fixed usage rate (y), the total expected warranty servicing cost decreases as

the probability of choosing a replacement increases.

(ii) For a fixed probability p, the total expected warranty servicing cost is increasing

in usage rate y as one intuitively expect.

(iii) The corresponding percentage savings in costs relative to minimal repair only

strategy (p = 0), typically has a maximum at some intermediate usage rate y,

similar to the profile of cost savings of Jack et al. [40] (p = 1).

(iv) For any function p, the expected warranty cost is bracketed between the costs

of Jack et al. [40] (minimum) and minimal repair only strategy (maximum).
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From Table 3.2, it can be seen that

(i) The usage sensitive warranty period Wy is decreasing in usage rate y.

(ii) The optimal K∗y decreases to zero as usage rate y increase.

(iii) The corresponding optimal L∗y decreases to Wy as usage rate y increase.

(iv) Unlike L∗y, the optimal K∗y is dependent on the probability of replacement p.

Finally, from Table 3.3, it can be seen that

(i) Unlike L∗y, the optimal K∗y is dependent on the probability of replacement pi(t),

i = 1, 2, 3.

(ii) The expected warranty cost varies for different forms of pi(t), i = 1, 2, 3.

(iii) The optimal Ky(pi(t)) is decreasing in usage rate y.

(iv) The expected warranty servicing cost is always bracketed between the costs of

p(t) = 0 and p(t) = 1 strategy.
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Table 3.1 Optimal Warranty Parameters (K∗y , L
∗
y) for Constant Replacement

Probability p

y Wy K∗y (p = 0.2) K∗y (p = 0.4) K∗y (p = 0.6) K∗y (p = 0.8) K∗y (p = 1) L∗y

0.85 2.00 0.79 0.81 0.81 0.81 0.82 1.21

0.9 2.00 0.66 0.66 0.66 0.66 0.66 1.49

1.0 2.00 0.67 0.67 0.66 0.66 0.66 1.71

1.2 1.67 0.61 0.61 0.61 0.61 0.60 1.51

1.4 1.43 0.57 0.57 0.56 0.56 0.56 1.33

1.6 1.25 0.54 0.53 0.52 0.52 0.51 1.19

1.8 1.11 0.49 0.49 0.48 0.48 0.48 1.06

2.0 1.00 0.45 0.45 0.44 0.44 0.44 0.97

2.5 0.8 0.34 0.34 0.34 0.34 0.34 0.78

3.0 0.67 0.26 0.26 0.26 0.26 0.26 0.66

3.5 0.57 0.20 0.20 0.20 0.20 0.20 0.57

4.0 0.5 0.16 0.16 0.16 0.16 0.16 0.50

4.5 0.44 0.13 0.13 0.13 0.13 0.13 0.44

5.0 0.4 0.11 0.11 0.11 0.11 0.11 0.40

5.5 0.36 0.09 0.09 0.09 0.09 0.09 0.36

6.0 0.33 0.08 0.08 0.08 0.08 0.08 0.33

Note, unlike K∗y , optimal choices of L∗y does not depend on the choice of

probability of replacement p.
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Table 3.2 Expected Warranty Servicing Costs for Constant Replacement
Probability p

y J∗(p = 0) J∗(p = 0.2) J∗(p = 0.4) J∗(p = 0.6) J∗(p = 0.8) J∗(p = 1)

0.85 2.09 2.09(0.1) 2.08(0.2) 2.08(0.3) 2.08(0.4) 2.08(0.5)

0.9 2.62 2.59(1.3) 2.56(2.5) 2.53(3.8) 2.49(5.0) 2.46(6.2)

1.0 4.00 3.84(3.9) 3.69(7.8) 3.54(11.6) 3.38(15.4) 3.23(19.2)

1.2 5.76 5.42(5.9) 5.09(11.6) 4.76(17.3) 4.43(23.1) 4.10(28.9)

1.4 7.84 7.29(7.1) 6.74(14.0) 6.21(20.8) 5.66(27.8) 5.10(34.9)

1.6 10.24 9.44(7.9) 8.65(15.5) 7.88(23.0) 7.08(30.8) 6.28(38.7)

1.8 12.96 11.87(8.4) 10.82(16.5) 9.76(24.7) 8.71(32.8) 7.62(41.2)

2.0 16.00 14.6(8.8) 13.25(17.2) 11.90(25.7) 10.55(34.1) 9.12(43.0)

2.5 25.00 22.67(9.3) 20.47(18.1) 18.27(26.9) 16.07(35.7) 13.80(44.8)

3.0 36.00 32.58(9.5) 29.43(18.2) 26.28(27.0) 23.14(35.7) 19.79(45.0)

3.5 49.00 44.38(9.4) 40.25(17.9) 36.11(26.3) 31.98(34.7) 27.67(43.5)

4.0 64.00 58.04(9.3) 52.89(17.4) 47.74(25.4) 42.64(33.4) 37.44(41.5)

4.5 81.00 73.6(9.1) 67.43(16.7) 61.27(24.4) 55.19(31.9) 48.26(40.4)

5.0 100.00 90.92(9.1) 83.69(16.3) 76.46(23.5) 69.36(30.6) 61.67(38.3)

5.5 121.00 110.34(8.8) 102.22(15.5) 94.09(22.2) 85.96(29.0) 77.04(36.3)

6.0 144.00 131.21(8.9) 121.93(15.3) 112.66(21.8) 103.38(28.2) 94.35(34.5)

The figures in brackets are the percentage cost savings with respect to ‘minimal

repairs only’ (i.e., p = 0) strategy. The expected costs for an intermediate value of p ∈ (0, 1)

is bracketed between Jack et al. [40] and ‘minimal repairs only’ strategy costs.
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Table 3.3 Optimal Warranty Parameters (K∗y , L
∗
y) and Expected Servicing Costs

J∗ for Some Choices of Age-dependent Replacement Probability Function p(t)

y K∗y (p1(t)) J∗(p1(t)) K∗y (p2(t)) J∗(p2(t)) K∗y (p3(t)) J∗(p3(t)) L∗y

0.85 0.86 2.038 0.86 2.038 0.86 2.038 1.21

0.9 0.63 2.5414 0.71 2.5201 0.67 2.5335 1.49

1.0 0.56 3.6067 0.79 3.5031 0.73 3.7632 1.71

1.2 0.49 4.8325 0.75 4.7823 0.68 4.8545 1.51

1.4 0.45 6.2075 0.70 6.3622 0.64 6.3854 1.33

1.6 0.41 7.7468 0.64 8.2655 0.59 8.1334 1.19

1.8 0.38 9.4571 0.58 10.501 0.52 10.2865 1.06

2.0 0.35 11.3431 0.51 13.0964 0.47 12.3467 0.97

2.5 0.28 16.8636 0.36 21.2833 0.33 18.8745 0.78

3.0 0.22 23.6978 0.26 31.8494 0.24 28.5324 0.66

3.5 0.18 31.9168 0.20 44.4862 0.20 37.9877 0.57

4.0 0.14 42.1298 0.16 59.1082 0.16 49.7319 0.50

4.5 0.12 53.5022 0.13 75.7416 0.13 66.9176 0.44

5.0 0.10 67.0670 0.11 94.1313 0.11 75.6549 0.40

5.5 0.8 83.4194 0.9 114.7269 0.9 98.8531 0.36

6.0 0.7 100.4835 0.8 136.6894 0.8 121.7698 0.33

Note, optimal choices of L∗y does not depend on the choice of probability

function p(t). The functions pi(t), i = 1, 2, 3 are those cited in Section 3.4 with

Cm = 1, Cr = 2, W = 2, U = 2, Weibull (α0 = 1, β = 2) baseline and accelerated

failure time parameter γ = 2.
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3.7 Concluding Remarks

Our proposed servicing strategy extends the work of Jack et al. [40] by introducing

a randomized choice between replacement and minimal repair in the middle interval.

Since a replacement is costlier than a minimal repair (Cr > Cm); the manufacturer

or warranty provider has a natural incentive to do minimal repairs rather than a

replacement. However, allowing a randomized choice between minimal repairs and

replacement will have an impact on the reliability of the item in use at the end

of warranty and, under reasonable assumptions on the aging profile of the item’s

life distribution, will typically be increasing in the probability of replacement, and

hence higher than the corresponding reliability with minimal repairs only (p = 0).

The corresponding analysis of resulting final reliability at the end of warranty is the

subject of a future work.

Also as remarked in Section 3.3; under plausible assumptions such as an increas-

ing failure rate (IFR) property of the unit’s failure time and the relative cost ratio of

the replacement vs minimal repair we may intuitively expect the total average cost of

warranty to be decreasing in p, since a replacement in the middle interval is likely to

result in less degradation compared to minimal repairs only and correspondingly to

less number of expected failures in the remaining time to end of warranty. Exploring

such conditions would also be a topic of future research.

Finally in Section 3.4-3.5, the impact of an age-dependent probability of replace-

ment on the expected warranty servicing costs is investigated. The results are similar

to the constant probability of repair p case, in the sense that the expected cost

is bracketed between the respective costs of Jack et al. [40] and ‘minimal repairs

only’. Qualitatively, we have discussed the necessity of considering an age-dependent

probability of replacement and its impact on products with the different types of

degradation profiles (e.g., IFR, DFR, etc.).



CHAPTER 4

ANALYSIS OF A 2-D WARRANTY SERVICING STRATEGY WITH

TWO RANDOMIZED REPAIR OPTIONS

4.1 Background and Motivation

Reduction of the total expected warranty cost is a serious issue in the warranty theory.

Thus, contemporary research focuses on designing warranty servicing strategies and

analytically justify their use under appropriate circumstances. If an item fails under

warranty, it is rectified by a replacement or some form of repair. Clearly, the cost

induced due to replacement by an identically similar item is maximum that a warranty

provider can incur. On the contrary a minimal repair costs least, which restores the

failed item to the state right before failure. An imperfect repair instead restores

the failed item up to a specified degree, with 100% and 0% restorations implying a

replacement and minimal repair, respectively. As a result, the cost and resulting item

reliability of an imperfect repair is bracketed between those of minimal repairs and

replacements. Here, as in other chapters of the thesis, our focus is on two-dimensional

(2-D) warranty policies, that explicitly account for the influence of lifetime character-

istics as well as the usage intensity of the item and allows for ‘degree of repair’ options

based on the co-ordinates of failure instances in the (age, usage) plane, where such

failures occur among pre-defined subspaces that constitute a finite partition of the

2-D warranty region. For modeling purposes describing the results of our research

in this chapter, the 2-D region is partitioned into four subregions (Ωi; i = 1, 2, 3, 4),

originally considered by Varnosafaderani and Chukova [98], which we modify and

generalize to include a randomized choice of ‘degree of repair’, is optimized for total

costs together with our model parameters that are subject to choice.

Iskandar et al. [36] defined an approach of modeling 2-D warranty by partitioning

the 2-D rectangle into three disjoint two-dimensional subregions Ω1,Ω2 and Ω3 such

77
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that Ω1 ∪ Ω2 ∪ Ω3 = Ω with regions Ω1 and Ω1 ∪ Ω2 having similar shapes, where

all repairs are minimal, except the first repair in the middle subregion Ω2 which is

perfect (replacement). Yun et al. [105] modified the strategy so that the first repair

in Ω2 is imperfect and all others are minimal. Chukova et al. [21] extended [36] where

regions Ω1 and Ω1 ∪ Ω2 were not necessarily of similar shapes. Chukova et al. [20]

further extended the strategy to n disjoint subregions. Their strategy is to repair all

failures occurring in Ω1 and Ωn minimally; but, the first failures (if any) in subregions

Ωi, i = 2, 3, ..., n − 1 are rectified by a replacement which can be followed by several

minimal repairs in that subregion. This strategy was modified by Varnosafaderani

et al. [98] by extending [105] to four ( and n, in general) subregions where the first

failures (if any) in each of middle subregions Ω2 and Ω3 (when n = 4) are imperfectly

repaired, all others therein, and in Ω1 and Ω4 are minimally repaired. Our work in the

four subregion context of [98] is an attempt to randomize (with a fixed probability p)

the choice of minimal and imperfect repairs for the first failures (if any) in the middle

subregions i.e., Ω2 and Ω3, and analyze the corresponding expected cost functions.

4.1.1 Imperfect Repair Strategy of Varnosafaderani and Chukova (2010)

We follow the symbolic notations of Varnosafaderani and Chukova [98] to model the

expected warranty servicing cost with randomization of ‘degree of repair’. The 2-D

warranty region is denoted by the rectangle Ω = [0, K) × [0, L), where K and L are

the time and usage limits. The warranty expires when either the age exceeds K or

the usage exceeds L [9]. We consider The restricted strategy in which Ω is partitioned

into four disjoint subregions, Ωi = ([0, Ki]×[0, Li])\([0, Ki−1]×[0, Li−1]), i = 1, 2, 3, 4,

K0 = L0 = 0, Kn ≡ K, Ln ≡ L such that Ω1 ∪ Ω2 ∪ ... ∪ Ω4 = Ω and

L1

K1

=
L2

K2

=
L3

K3

= r1(> 0) and
L4

K4

=
L

K
= r2(> 0). (4.1)

The total warranty cost is a function of 4 decision variables (K1, K2, K3, r1) that

uniquely define the subregions and the strategy.
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The imperfect repair strategy (say, Sδ4) proposed and investigated by Varnosaf-

aderani and Chukova [98] is as follows. Failures in Ω1 and Ω4 are minimally repaired

with cost Cm, the first failures (if any) in each of the intermediate subregions Ω2

and Ω3, is imperfectly repaired with cost Ci (which is proportional to the degree of

repair denoted by δ ∈ (0, 1)), and any further failure in these subregions is repaired

minimally.

Let A(t) and U(t) be the virtual (operating) age and virtual (operating) usage of

the product at the calendar time t, and the random variable R (with distribution G(·))

be the usage rate of a typical customer. Then, the items total usage can be modeled

as U(t) = RA(t) ([36], [98]). Conditional on R = r, the process is a one-dimensional

counting process {Ñ(t|r); t ≥ 0}, with intensity function λ̃(t|r) = θ0+θ1r+(θ2+θ3r)t
2

[36]. Consider the time at sale of the item to be zero. Therefore the virtual age of the

item at time t, prior to the first imperfect repair is A0(t) = t. After each imperfect

repair, it gets adjusted and becomes

Ai(t) = Ai−1(t)− δAi−1(ui),

where ui is the time of the ith imperfect repair, i = 1, 2 and δ ∈ [0, 1] is the degree

of imperfect repair which is considered to be fixed throughout the warranty period.

Correspondingly, every imperfect repair reduces (changes) the hazard rate (intensity)

of the item (process) with respect to the virtual age. Thus, conditional on the times

(u1, u2) of the imperfect repairs, the intensity function of the process is given by

λ̃(t|r) =


λ(t|r), 0 ≤ t ≤ u1

λ(A1(t)|r), u1 ≤ t ≤ u2

λ(A2(t)|r), u2 ≤ t ≤ ∞.

(4.2)

Since all repairs between the imperfect repairs are minimal, the processes before,

between and after the imperfect repairs, can be viewed as nonhomogeneous Poisson

processes with intensity functions given in expression (4.2).
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4.2 Proposed Randomized Repair Strategy

In the Sδ4 setup, we investigate a variation of the Varnosafaderani-Chukova strategy,

which can be defined as follows.

Any failure in Ω1 is minimally repaired. In each of the subregions Ωi, i = 2, 3, the

first failure (if any) is either imperfectly repaired to a degree δ ∈ [0, 1] with probability

p ∈ [0, 1], or minimally repaired (equivalent to δ = 0) with probability (1 − p) and

all subsequent failures are minimally repaired. Any failure in Ω4 is minimally repaired.

Randomizing the choice between a given degree δ ∈ [0, 1] of repair and minimal

repair (δ = 0) with a constant probability p can be pragmatically justified on the same

grounds as in the Brown-Proschan strategy (Chapter 3, Section 3.2). Clearly p = 1

reduces to the strategy of Varnosafaderani-Chukova [98] and p = 0 is the ‘minimal

repairs only’ strategy. Thus given the warranty limits K, L and the probability p,

there are 5 decision variables (K1, K2, K3, r1, δ), that uniquely determines the new

warranty strategy of randomized repairs.

4.2.1 Probability Distribution of the Times of Imperfect Repair

The distribution function of the time to first failure T1|r, conditioned on R = r, is

FT1|r(t) = 1 − e−Λ(t|r), and its density function is fT1|r(t) = λ(t|r)e−Λ(t|r). Let the

random variables TK1|r and TK2|r denote the time of the first failure (or, imperfect

repair) in intermediate subregions Ω2 and Ω3 respectively. For t ≥ K1, the distribution

and density functions of TK1|r are

FTK1|r
(t) = 1− e−[Λ(t|r)−Λ(K1|r)],

fTK1|r
(t) = λ(t|r)e−[Λ(t|r)−Λ(K1|r)]

and zero otherwise. The distribution of TK2|r depends on TK1|r as follows. Suppose

there are no failures in Ω2 then the CDF of TK2|r is same as that of TK1|r. But if

there is atleast one failure in Ω2, it is then imperfectly repaired with probability p
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and minimally repaired with probability (1 − p). Thus for t ≥ K2, the distribution

and density functions of TK2|r are

FTK2|r
(t) =

∫ t

K2

fTK1|r
(u1)du1 +

∫ K2

K1

[
p
(

1− e−[Λ(A1(t)|r)−Λ(A1(K2)|r)]
)

+ (1− p)
(

1− e−[Λ(t|r)−Λ(K2|r)]
)]
fTK1|r

(u1)du1,

fTK2|r
(t) = fTK1|r

(t) +

∫ K2

K1

[
pλ(A1(t)|r)e−[Λ(A1(t)|r)−Λ(A1(K2)|r)]

+ (1− p)λ(t|r)e−[Λ(t|r)−Λ(K2|r)]
]
fTK1|r

(u1)du1

and zero otherwise.

4.2.2 Modeling Expected Warranty Servicing Cost

Our objective is to derive the expected cost equation ECΩ, under any usage rate r.

The two possible situations as shown in Figures 4.1 and 4.2, are

Case(A): r1 ≤ r2, corresponding cost denoted by ECΩ
A ,

Case(B): r2 ≤ r1, corresponding cost denoted by ECΩ
B .

Figure 4.1 Different sub-cases of warranty strategy for r1 ≤ r2.



82

Figure 4.2 Different sub-cases of warranty strategy for r2 ≤ r1.

We need to consider three subcases for each of cases A and B as shown in Figures 4.1

and 4.2,

(A− 1) r ≤ r1 (B − 1) r ≤ r2

(A− 2) r1 ≤ r ≤ r2 (B − 2) r2 ≤ r ≤ r3

(A− 3) r2 ≤ r (B − 3) r1 ≤ r

The expected cost for sub-cases (A−1), (A−2) and (A−3) are denoted by ECΩ
A1

,ECΩ
A2

and ECΩ
A3

, combining which we get the expected cost for Case(A) i.e.,

ECΩ
A =

∫ r1

0

ECΩ
A1
dG(r) +

∫ r2

r1

ECΩ
A2
dG(r) +

∫ ∞
r2

ECΩ
A3
dG(r). (4.3)

Similarly, the cost of Case (B) is computed by taking the sum of average costs of four

subregion.

4.2.2.1 Analysis of Case(A): r1 ≤ r2. Now, we consider the three subcases

individually to model the total expected warranty servicing cost.

Case(A-1) r ≤ r1

The cost of each subregion Ωi, i = 1, 2, 3, 4, denoted by ECΩi
A1

and the expected cost

conditioned on r ≤ r1, i.e., ECΩ
A1

=
∑4

i=1EC
Ωi
A1

is evaluated.
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1. The expected cost over the subregion Ω1 is ECΩ1
A1

= CmΛ(K1|r), since all repairs

are minimal with average cost Cm.

2. If there are no failures in Ω2, the cost in this subregion is denoted by ECΩ2
A1

= 0.

Suppose there is atleast one failure (repair) in Ω2, then the first failure at u1 ∈

[K1, K2] is imperfectly repaired with probability p and the resultant intensity

function becomes λ(A1(·)|r); or, it is minimally repaired with probability (1−p)

and the intensity function λ(·|r) remains unchanged. Thus for K1 < TK1|r ≡

u1 ≤ K2, the expected servicing cost over Ω2 is,

ECΩ2
A1

=

∫ K2

K1

[
p[Ci + Cm{Λ(A1(K2)|r)− Λ(A1(u1)|r)}]

+ (1− p)[Cm + Cm{Λ(K2|r)− Λ(u1|r)}]
]
fTK1|r

(u1)du1.

3. Over Ω3, ECΩ3
A1

= 0, if there are no failures. Suppose there is atleast one failure

(repair) in Ω3, then the expected cost is modeled considering the following list

of events:

• the first failure in Ω2 is imperfectly repaired with probability p and the

intensity function alters to λ(A1(·)|r); the first failure in Ω3 is also imper-

fectly repaired with probability p and the intensity function becomes

λ(A2(·)|r).

• the first failure in Ω2 is imperfectly repaired with probability p and the

intensity function alters to λ(A1(·)|r); the first failure in Ω3 is minimally

repaired with probability (1−p) and the intensity function remains unchan-

ged i.e., λ(A1(·)|r).

• the first failure in Ω2 is minimally repaired with probability (1−p) and the

intensity function remains unchanged i.e., λ(·|r); the first failure in Ω3 is

imperfectly repaired with probability p and the intensity function changes

to λ(A1(·)|r).
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• the first failure in each of the subregions Ω2 and Ω3 is minimally repaired

with probability (1 − p) respectively and the intensity function remains

unchanged i.e., λ(·|r).

• there are no failures in Ω2, the first failure in Ω3 is either imperfectly

repaired with probability p with intensity function changing to λ(A1(·)|r),

or, minimally repaired with probability (1− p) and the intensity function

remains unchanged i.e., λ(·|r)

The total expected cost over Ω3 is, therefore,

ECΩ3
A1

= p2

∫ K3

K2

∫ K2

K1

[
Ci + Cm{Λ(A2(K3)|r)− Λ(A2(u2)|r)}

]
λ(A1(u2)|r)e−[Λ(A1(u2)|r)−Λ(A1(K2)|r)]fTK1|r

(u1)du1du2

+ p(1− p)
∫ K3

K2

∫ K2

K1

[
Cm + Cm{Λ(A1(K3)|r)− Λ(A1(u2)|r)}

]
λ(A1(u2)|r)e−[Λ(A1(u2)|r)−Λ(A1(K2)|r)]fTK1|r

(u1)du1du2

+ (1− p)p
∫ K3

K2

∫ K2

K1

[
Ci + Cm{Λ(A1(K3)|r)− Λ(A1(u1)|r)}

]
λ(u2|r)e−[Λ(u2|r)−Λ(K2|r)]fTK1|r

(u1)du1du2

+ (1− p)2

∫ K3

K2

∫ K2

K1

[
Cm + Cm{Λ(K3|r)− Λ(u1|r)}

]
λ(u2|r)e−[Λ(u2|r)−Λ(K2|r)]fTK1|r

(u1)du1du2

+

∫ K3

K2

[
p[Ci + Cm{Λ(A1(K3)|r)− Λ(A1(u1)|r)}]

+ (1− p)[Cm + Cm{Λ(K3|r)− Λ(u1|r)}]
]
fTK1|r

(u1)du1.

4. Over Ω4, ECΩ4
A1

= 0, if there are no failures. Suppose there is atleast one failure

(repair) in Ω4, then the expected cost is modeled considering the following list

of events:

• no failure occurs in both Ω2 and Ω3, with probability e−[Λ(K3|r)−Λ(K1|r)].
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• atleast one failure (repair) occur in Ω2 which is either imperfectly repaired

with probability p, and the corresponding intensity function changes to

λ(A1(·)|r), or, minimally repaired with probability (1−p), intensity function

remains unchanged i.e., λ(·|r); but no failure occur in Ω3 with probability

e−[Λ(A1(K3)|r)−Λ(A1(K2)|r)].

• atleast one failure (repair) occur in Ω3 which is either imperfectly repaired

with probability p, and the corresponding intensity function changes to

λ(A1(·)|r), or, minimally repaired with probability (1−p), intensity function

remains unchanged i.e., λ(·|r); but no failure occur in Ω2.

• the first failure in Ω2 is imperfectly repaired with probability p and the

intensity function alters to λ(A1(·)|r); the first failure in Ω3 is also imper-

fectly repaired with probability p and the intensity function becomes

λ(A2(·)|r).

• the first failure in Ω2 is imperfectly repaired with probability p and the

intensity function alters to λ(A1(·)|r); the first failure in Ω3 is minimally

repaired with probability (1−p) and the intensity function remains unchan-

ged i.e., λ(A1(·)|r).

• the first failure in Ω2 is minimally repaired with probability (1−p) and the

intensity function remains unchanged i.e., λ(·|r); the first failure in Ω3 is

imperfectly repaired with probability p and the intensity function changes

to λ(A1(·)|r).

• the first failure in each of the subregions Ω2 and Ω3 is minimally repaired

with probability (1 − p) respectively and the intensity function remains

unchanged i.e., λ(·|r).
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The total expected cost over Ω4 is, therefore,

ECΩ4
A1

= Cm[Λ(K|r)− Λ(K3|r)]e−[Λ(K3|r)−Λ(K1|r)]

+

∫ K2

K1

[
pCm{Λ(A1(K)|r)− Λ(A1(K3)|r)}

+(1− p)Cm{Λ(K|r)− Λ(K3|r)}
]
e−[Λ(A1(K3)|r)−Λ(A1(K2)|r)]

fTK1|r
(u1)du1 +

∫ K3

K2

[
pCm{Λ(A1(K)|r)− Λ(A1(K3)|r)

+(1− p)Cm{Λ(K|r)− Λ(K3|r)}
]
fTK1|r

(u1)du1

+p2

∫ K3

K2

∫ K2

K1

[
Cm{Λ(A2(K)|r)− Λ(A2(K3)|r)}

]
λ(A1(u2)|r)

e−[Λ(A1(u2)|r)−Λ(A1(K2)|r)]fTK1|r
(u1)du1du2 + p(1− p)∫ K3

K2

∫ K2

K1

[
Cm{Λ(A1(K)|r)− Λ(A1(K3)|r)}

]
λ(A1(u2)|r)

e−[Λ(A1(u2)|r)−Λ(A1(K2)|r)]fTK1|r
(u1)du1du2

+(1− p)p
∫ K2

K1

[
Cm{Λ(A1(K)|r)− Λ(A1(K3)|r)}

]
λ(u2|r)

e−[Λ(u2|r)−Λ(K2|r)]fTK1|r
(u1)du1du2

+(1− p)2Cm[Λ(K|r)− Λ(K3|r)]
∫ K3

K2

∫ K2

K1

λ(u2|r)

e−[Λ(u2|r)−Λ(K2|r)]fTK1|r
(u1)du1du2.

The expected cost for Case (A-1) is obtained by summing the costs over four sub-

regions and is expressed as

ECΩ
A1

= ϕ(K1, K2, K3, K).

To obtain the cost of sub-cases (A-2) and (A-3) we need to adjust the arguments of

the function ϕ(·, ·, ·, ·) as shown here.

Case(A-2) r1 ≤ r ≤ r2

It can be noted from Figure 4.1 Case (A-2), that the warranty of each rectangular
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sub-regions Ωi, i = 1, 2, 3 expires at the following time points τi respectively, where

τ1 =
L1

r
, τ2 =

L2

r
, τ3 =

L3

r
. (4.4)

Thus the required expected warranty cost here is

ECΩ
A2

= ϕ(τ1, τ2, τ3, K).

Case(A-3) r2 ≤ r

This sub-case is similar to sub-case (A-2), the only difference is the total warranty

period (K) expires at age τ =
L

r
, and the expected cost is

ECΩ
A3

= ϕ(τ1, τ2, τ3, τ).

Finally, unconditioning on R as shown in Equation (4.3) we obtain the total expected

warranty servicing cost for Case (A).

4.2.2.2 Analysis of Case(B): r2 ≤ r1. In this case, the computation of the

expected cost is similar to Case A. One can obtain a generic function ϕ(·, ·, ·, ·), the

arguments uniquely defining the subregions. Following Figure 4.2, the expected cost

for each of three different sub-cases corresponding to Case(B) can be obtained and

is listed here.

Case(B-1) r ≤ r2

The expected cost is same as Case A i.e.,

ECΩ
B1

= ϕ(K1, K2, K3, K). (4.5)

Case(B-2) r2 ≤ r ≤ r1

The expected cost is given by

ECΩ
B2

= ϕ(K1, K2, K3, τ) where τ =
L

r
. (4.6)
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Case(B-3) r1 ≤ r

Again, in this case the expected cost is same as Case A i.e.,

ECΩ
B3

= ϕ(τ1, τ2, τ3, τ), (4.7)

where τ1, τ2, τ3 and τ are given in Equations (4.4) and (4.6) respectively. Finally, the

expected servicing cost for Case B is obtained by unconditioning on R, i.e.,

ECΩ
B =

∫ r2

0

ECΩ
B1
dG(r) +

∫ r1

r2

ECΩ
B2
dG(r) +

∫ ∞
r1

ECΩ
B3
dG(r).

4.2.3 Numerical Illustration

We consider a FRW example given by [98], where K = 2 (years), L = 2 (20000 km),

r2 = 1, θ0 = 0.1, θ1 = 0.2, θ2 = 0.7, θ3 = 0.7. The usage rate R is uniformly distributed

over [rl, ru], and three usage level considered are ‘light’ (i.e., [rl = 0.1, ru = 0.9]),

‘medium’ (i.e., [rl = 0.7, ru = 1.3]) and ‘heavy’ (i.e., [rl = 1.1, ru = 2.9]). Let the cost

of replacement Cr = 1, the cost ratio of minimal repair to replacement ς = Cm
Cr

= Cm

varies from 0.1 to 0.9 with increments of 0.1 and the cost ratio of imperfect repair

to replacement δ = Ci
Cr

= Ci takes values in (ς, 1) with increments of 0.1. For each

ς the optimal Ki, i = 1, 2, 3 are also obtained by grid search method over [0.1,2.0)

with steps of size 0.1 and r1 is sought over [0.2, 3) with increments of 0.2. Tables 4.1,

4.2 and 4.3 show the minimal costs for three intermediate probabilities of imperfect

repairs i.e., p = [0.25, 0.5, 0.75] along with those of Varnosafaderani and Chukova [98]

(same as p = 1) and ‘minimal repairs only’ strategies.
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4.2.4 Qualitative Interpretation

Tables 4.1, 4.2 and 4.3, respectively corresponds to ‘low’, ‘medium’ and ‘high’ usage

rates. From the tables it can be observed that:

i) The minimal cost corresponding to an intermediate p ∈ (0, 1) is bracketed

between the ‘minimal repairs only’ and p = 1 (same as [98]) costs as expected

by intuition.

ii) If probability p is relatively high, the strategy is more cost-effective, thus allowing

further reduction of cost compared to ‘minimal repairs only’ strategy.

iii) The strategy is optimal for the lowest value of δ∗ ∈ (ς, 1) irrespective of the

values of probability p.

vi) As the cost of each minimal repair (equivalently, ς = Cm/Cr) increases, the

optimal ratio r∗1 = Li/Ki, i = 1, 2, 3 converges to 1. This means, if the cost of

minimal repairs are relatively high, the expected servicing cost is minimum for

square shaped subregions Ωi, i = 1, 2, 3, i.e., providing a longer warranty limit

(Ki, i = 1, 2, 3) or higher total usage limit (Li, i = 1, 2, 3) is not worth the cost.

v) If the cost of each minimal repair is too high (here for e.g., ς = 0.9) close

to replacement, then the best strategy is to replace the item with a new one

(i.e., p = 1 and δ = 1). Hence, no computational results are obtained for the

proposed strategy and Varnosafaderani-Chukova strategy for ς = 0.9 (for search

grid-size equal to 0.1).
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4.3 Concluding Remarks

Thus in this chapter, a new servicing strategy has been proposed, extending the model

of Varnosafaderani and Chukova [98]. Our model offers a randomized choice between

imperfect and minimal repairs at the first failures (if any) in the two intermediate

subregions. This type of randomization is warranty-friendly, because it provides the

warrantor with an alternative option at these two specific failure times thus increasing

the flexibility of the strategy. Further, if the chosen probability of imperfect repair

is reasonably high, the warrantor can substantially reduce the total servicing cost as

shown in Tables 4.1, 4.2 and 4.3.



CHAPTER 5

A DECISION PROBLEM FOR 2-D PRO-RATED WARRANTY

STRATEGY WITH MAINTENANCE

5.1 Background and Motivation

In production industries, manufacturers aim at maximizing their total expected profit

by controlling costs. These costs are incurred due to several factors viz. costs

of manufacturing, marketing, servicing, maintenance etc. Hence, the total profit

cannot be optimized without considering these related costs and their interactions.

A successful marketing strategy should account for these different aspects of pricing,

production, and warranty. Many researchers have considered such integrated decision

problems to analyze the effect of individual factors. In this study, we consider

a decision problem and analyze the behavior of total expected profit under usage

sensitive warranty strategy, popularly known as two-dimensional (2-D) warranties.

Many integrated decision related problems present in literature are based on

historical data only. But, it has been pointed out in some recent articles that, decision

models of cost optimization based solely on historical data and managerial experience

are either too optimistic – indicating an ‘ideal’ situation, where the true values of

governing parameters that influence such costs are considered to be known; or, are

insufficient to estimate the true rate of deterioration of a product. A data driven

Bayesian updating process based on real life observations can be useful here as a

more pragmatic decision model applicable to the real market.

In a typical Bayesian updating process, the model describing deterioration

process of a product is updated by collecting failure data of related products from the

market and incorporating them in the model. Thus, in this approach a combination

of expert opinion from production managers (historical data) and real-life data from

94
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market is used to model item failures, which increase the realism of deterioration

process model and the consequent optimization of cost estimates.

In an integrated approach to cost optimization, an important aspect of marketing

strategy is the provision of post-sales servicing in form of some warranty policy.

It not only safeguards the rights and interests of consumers, but also acts as a

tool for promoting sales by signaling enhanced product reliability. In particular,

a good warranty policy of service and maintenance assists in leveraging the image

of a high-quality product, and thus, becomes a powerful weapon in a competitive

market. The following flow diagram (Figure 5.1) obtained from Huang [32], shows

the interaction between production, pricing, sales and warranty.

Figure 5.1 Interaction of production and marketing factors.

The two main types of warranties considered here, are Free Replacement Warr-

anty (FRW) and Pro-rated Warranty (PRW). The policy of a PRW, which charges the

consumer a preset proportion of the cost for each repair during the term of warranty,

is a popular warranty policy for relatively high-priced products such as plant facilities

and large scale machines. On the contrary, a FRW policy does not charge consumers

anything to rectify a failed product during the term of warranty. PRW seems more

appealing to manufacturers because the warranty cost is partially paid by customers,

and the money saved may be used to extend the warranty term to attract more



96

customers and gain their loyalty. However, the greater the proportion of costs borne

by the manufacturers, the higher the operational costs, which may eventually make

the product unprofitable. Therefore, the tradeoff between a higher warranty cost and

a greater market share is of special importance for managers aiming to control costs

or, maximize profits.

5.2 Review of Pro-rated Warranty Policy

In general, PRW policy would be applicable to industry, since plant facilities and

large-scale machinery usually need a long-term maintenances service program for

which the duration of warranty is longer, but a certain portion of the warranty cost is

shared by customers. Murthy and Djamaludin [70] mentioned that FRW is sometimes

thought of as an offensive strategy, while PRW is a defensive strategy that distributes

the risk of bearing warranty cost between sellers and buyers. PRW can be justifiable

in many industrial applications [86]. Murthy and Blischke [69] stated that FRW is

most often used for items that are not repairable, while PRW is most often used for

items that are repairable.

Most of the studies regarding the PRW issue have mainly focused on cost

analysis with considerations of reliability estimation. Menke [58] evaluated the warr-

anty cost for a nonrepairable product under PRW with the assumption of exponential

failure process. Blischke and Scheuer [12] extended Menkes research to consider

other failure processes. Thomas [96] proposed an approach to determine the optimal

warranty term for non-repairable products, by which the equivalent situation of PRW

and FRW can also be investigated. Nguyen and Murthy [75] assessed the expected

warranty costs for renewable and nonrenewable warranty policies, respectively, under

the assumption of a monotone product failure rate. Frees and Nam [27] revised the

assumption made by Nguyen and Murthy [75] and used the approach of straight-line

approximation to estimate the warranty cost from both long-term and short term

perspectives with the policy of PRW. Balcer and Sahin [3] proposed a stochastic
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failure model to derive the expected warranty cost in which the repair cost is paid by

the manufacturer in accordance with the proportion of damage under PRW. Blischke

and Murthy [9] derived the expected warranty cost for renewable and nonrenewable

PRW from the perspectives of sellers and buyers, respectively, with the assumption

of having a Weibull product failure model. Zuo et al. [109] considered the optimal

decision about replacement versus repair for minimizing the warranty cost with the

considerations of the degree of decay and the surplus of the warranty term for

repairable products with multi-phase decay.

Wang et al. [100] stated that warranty cost and product reliability are positively

associated (correlated), and thus, the expected warranty cost can be reduced by

improving the product reliability. Ja et al. [38] proposed an approach to determine

the optimal warranty term under the condition that manufacturers pay for the expense

of minimal repair. Chattopadhyay and Murthy [16] evaluated the expected warranty

cost in terms of a component failure mechanism. Jain and Maheshwari [43] proposed

a warranty model for a renewed PRW policy in which the failure rate of the product,

the cost of preventive maintenance (PM), and the cost of replacement are assumed

to be constant, and the proposed model is able to determine the optimal number

of preventive maintenance (PM) activities within the warranty period. Zhou [108]

developed a mathematical model to investigate a policy that jointly considers product

pricing and warranty length for a repairable high-tech product over its effective

lifetime. Huang et al. [31] developed a model to determine the optimal combination

of product reliability, price, and warranty that can achieve the maximum profit for a

repairable product. Wu et al. [101] developed a cost model to determine the optimal

burn-in time and warranty term for nonrepairable products under the policies of FRW

and PRW.

It is not uncommon that the manufacturer does not have sufficient historical

data to estimate the deterioration of a newly developed product. In such cases, the

results obtained via frequentist models may not be reliable, and Bayesian analysis
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that additionally take expert opinions into account could be a reasonable approach

to improve decision making. Kwon [54] proposed a Bayesian life test sampling

plan for products with Weibull lifetime distributions by minimizing the expected

average cost, which involves three cost components: testing cost, acceptance cost,

and rejection cost. Percy et al. [83] solved the problem of scheduling periodic PM

by a Bayesian approach, where the prior knowledge about manufacturing processes

of similar systems is included. Papazoglou [79] utilized a Bayesian decision analysis

to deal with the problem of reliability certification on the basis that the existing

prior assessment of uncertainties and the further information that can be obtained

through testing of the components. Perlstein et al. [84] developed a Bayesian

method to determine the optimal burn-in duration for a batch of products whose life

distributions were assumed from a mixture of two different exponential populations.

Percy [82] discussed several suitable forms of prior distribution for common models

and developed a concept of predictive elicitation to specify the hyper parameter

subjective prior distributions. Juang and Anderson [47] utilized a Bayesian approach

to determine an optimal adaptive PM policy with minimal repairs. By incorporating

minimal repair, major repair, planned replacement, unplanned replacement, and

periodic maintenance in the model, the mathematical formulas of the expected cost

per unit time are obtained. Huang and Fang [34] considered a more complex decision

problem under the policy of PRW, a Bayesian decision model for determining the

optimal warranty proportion is proposed in which a periodic PM program is performed

during the warranty term to slowdown the deterioration, and a nonhomogeneous

Poisson process (NHPP) is employed to describe the successive failure times of the

deteriorating product. Accordingly, both the repair cost of each breakdown and the

potential sales increase due to a specific warranty proportion are also considered.

Our proposed work, described in what follows, is an extension of the strategy of

Huang and Fang [34] from one to two-dimensional warranties. We study the impact

of accelerated usage rate on the warranty proportion, sales and profit.
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5.2.1 Decision of Optimal 2-D Warranty

We now turn to a description of recent approaches to 2-D warranty servicing strategies

which are sensitive to the rate of usage, that will lead us to a proposed decision

problem of choosing the optimal warranty proportion parameter. The servicing setup

considered here is that of Pro-rated warranties (PRW) where the manufacturer and

the consumer share the cost of rectification on item failures.

For completeness, we briefly recall (from Chapter 2, Section 2.2.1), the following

description of 2-D warranty policies sensitive to the rate of usage. Consider a repairable

item sold with a 2-D non-renewing warranty of period W and maximum usage limit

U . Then the 2-D warranty region is the rectangle [0,W )× [0, U).

We assume that the usage rate Y varies from customer to customer but is

constant for a given customer. Therefore, Y is a random variable that can be modeled

using a density function g(y). Conditional on Y = y, the total usage u at age x is

given by

u = yx, 0 ≤ u <∞

Fixed y, the usage sensitive warranty expires when the item currently in use reaches

an age

Wy = min(W,
U

y
).

Note that under the policy of PRW setting a suitable percentage of warranty

costs as the seller’s liability, with the balance carried by the buyers, is one of choosing a

tradeoff since a low warranty proportion will save warranty costs, but on the contrary,

a higher proportion will attract consumers and eventually increase sales. Further,

the number of breakdowns during the warranty period becomes crucial in choosing

the optimal proportion for PRW; because if the warranty period is too long, the

manufacturer will have to repair too many failures and incur losses.
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There is a close association between the customer usage rate and item degradation

resulting failures followed by repairs. Since most products degrade due to both age

and usage intensity, usage rate is an important determinant of the rate of item failures

and cannot be ignored. Thus, an ideal 2-D PRW policy should be such that the

manufacturer shares an optimal 100ρ% of the repair cost at each item failure up to

age Wy. Determining this optimal pro-rated proportion ρ with respect to warranty

duration Wy is the main focus of this chapter.

5.2.2 Modeling Failure Distributions

Failures over time are modeled by a counting process. If failed items are repaired

then the counting process is characterized by a conditional intensity function λy(x),

which is a non-decreasing function of age (x) and usage rate (y). Suppose (i) all

repairs are minimal (i.e., items after repair are ‘as bad as old’) and (ii) repair times

are negligible compared to the mean time between failures. Then the successive

clock-times of breakdowns follow non homogeneous poisson process (NHPP) with the

hazard rate of the item under use as the intensity function of NHPP, as is well known.

Corresponding to an accelerated failure time (AFT) model with an Weibull baseline

hazard distribution (as in Chapter 2), Huang and Bier [34] consider the power law

intensity function:

λy(x) = α(y)βx(β−1), (5.1)

where the shape parameter denoting the rate of deterioration of the product is β (> 1,

indicating IFR Weibull distribution) and the scale parameter is

α(y) =
( y
y0

)γ
α, (5.2)

which captures the effect of usage intensity on the failure rate of the item, α is the

baseline scale, y0 is the nominal usage rate, y is a typical usage rate and γ(> 1) is the

acceleration parameter. Therefore, the expected number of failures over the usage
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sensitive warranty period [0,Wy] is

Ny =

∫ Wy

0

( y
y0

)γ
αβx(β−1)dx =

( y
y0

)γ
αW β

y ,

which is a function of α and β. If α and β are unknown, one can model them using

a suitable joint prior distribution. In this case, the expected number of failures Ny is

also random, since it captures the uncertainty of α and β.

5.2.3 Pro-rated Warranty Proportion

Suppose the cost of rectification of the item at failure is shared by both the manufac-

turer and the consumer. The proportion of repair cost that the manufacturer has to

pay when the item fails is denoted by ρ ∈ [0, 1]. Clearly if ρ = 1 this strategy reduces

to Free Replacement Warranty (FRW), where the manufacturer pays full repair cost

denoted by CmNy, where Cm is the cost of a minimal repair.

There are several reasons for which reasons for which Pro-rated warranties (PRW)

can be appealing. Some of these are as follows.

• If the repair costs (of expensive items) are too high; they drastically affect the

manufacturer’s profit margin. Distributing such costs between the manufacturer

and the user thus allows the manufacturer to reasonably price a PRW and still

be cost effective in the long run.

• Customers covered by PRW, have a financial stake in the process. They being

aware of the fact that they share a portion of the repair costs, tend to use the

item with more care, reducing excessive usage related stress on the product and

the corresponding faster degradation.

• Manufacturers get the choice of undertaking appropriate maintenance under

PRW, which eventually reduces the number of failures over the warranty duration.

• Manufacturers can extend the warranty term to a longer period over the useful

lifetime of the item, thus promoting brand loyalty.
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It is easy to believe that a higher value of the proportion ρ of warranty costs that

reflect the manufacturer’s liability, will signal the product as highly reliable and is

correspondingly likely to attract more buyers, thus accelerating product sales.

5.2.4 The Total Sales Function

Let C0 denote the planned sale price of a new item, then an estimate of total sales

(demand) S(ρ) according to Glickman and Berger [29] and Huang and Fang [34] is

modeled as:

S ≡ S(ρ) = w1C0
−v1(w2 +Wy)

v2exp{−v3(1− ρ)}, (5.3)

where w1 > 0, w2 > 0, v1 > 1, 0 < vi < 1, i = 2, 3.

Here w1 is an amplitude factor, w2 is a constant to allow for nonzero baseline demand

without warranty, v1, v2, v3 are the elasticities of the sale price (C0), the warranty

length (Wy) with usage rate y, and the proportion of warranty cost shared by the

manufacturer (ρ), respectively.

Here ‘elasticity’ is defined in the usual sense as understood in the context of

Microeconomics, viz., as the ratio of the relative change in sales volume (equal to

marginal demand) to the relative change of a variable of interest; e.g., the warranty

length elasticity of sales is(dS
S

)/(dwy
wy

)
=
(wy
S

)( dS
dwy

)
=

d(lnS)

d(lnwy)
= v2 ∈ (0, 1)

where wy := w2 +Wy. Similarly,

d(lnS)

d(lnC0)
= −v1 < −1

d(lnS)

d(ln ρ)
= v3 ∈ (0, 1)

are the price-elasticity and manufacturer’s warranty proportion-elasticity respectively.

The assumed restrictions on the constants vi, i = 1, 2, 3 reflect the reasonableness of
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the above Glickman-Berger model which shows that the sales (demand) S , as well

as the marginal demand (d lnS) decreases as the warranty length (Wy) or/and PRW

proportion (ρ) increases. The model also implies, as noted by Huang and Fang [34]

that a longer warranty length (Wy), larger PRW proportion (ρ), as well as lower price

C0 will encourage a larger sales volume S.

5.2.5 Preventive Maintenance Action

Under a PRW policy, a manufacturer often includes some preventive maintenance

(PM) action to reduce the hazard rate. Such maintenance actions are generally

periodic and similar to an ‘imperfect repair’, i.e., each PM improves the operating

condition of the product. In this 2-D model, suppose a periodic PM action is executed

after every h units of time. Research related to PM is vast, for e.g. Park et al. [80]

considered a periodic PM policy along with minimal repairs after breakdowns, and

derived the optimal period and number of PM actions, Seo and Bai [90] depicted a

periodic PM policy for two cases in which the time of PM can be ignored or not, and

others for e.g., Jack and Dagpunar [39], Jung et al. [48], Kim et al. [52], Wang and

Sheu [99], and Wu and Li [102]. Since for our purposes of modeling and analysis, only

the extent of reduction in effective age as a consequence of preventive maintenance

(PM) activity are of interest, we are not concerned with the specific nature of PM

activity undertaken.

Let η denote the proportion of reduction in the effective age of the item as a

result of every preventive maintenance. Let x denote the actual age of the item, then

x+
1 is the effective age of the item after first PM action and can be expressed as follows

x+
1 = (1 − η)h. According to Martorell et al. [56], the effective ages of the product

immediately before and after the kth PM action can be, respectively, derived as

x−k = x+
k−1 + h = [k − (k − 1)η]h,

x+
k = x−k − ηh = [k − (k − 1)η]h− ηh = k(1− η)h.
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Figure 5.2 Periodic maintenance policy.

Thus under periodic PM, the expected number of failures on [0,Wy] is

Npm
y ≡ Npm

y (Wy, h, η, |α(y), β)

= Σ
bWy/hc−1
k=0

∫ x−k+1

x+k

λy(x)dx+

∫ x+bWy/hc
+(Wy−bWy/hc)

x+bWy/hc

λy(x)dx

=
( y
y0

)γ
α
[
Σ
bWy/hc−1
k=0 [(((1− η)k + 1)h)β − ((1− η)kh)β]

+ [(Wy − ηbWy/hch)β − ((1− η)bWy/hch)β]
]
, (5.4)

where bxc denotes the ‘floor of x’ ( i.e., the largest integer less or equal to x). So

bWy/hc is the number of PM actions performed within the warranty period [0,Wy].

The first term in the summands of Equation (5.4) denotes the expected number of

failures before the last PM action, while the second term denotes the expected number

of failures after the last PM until the end of warranty.

Due to the mechanical aging of the system, the maintenance cost will get higher

and higher for sequential PM activities over the warranty term. If % is the periodically
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increasing rate of PM cost, then the total cost of PM is

Cpm := Cpm(Cb, %, h,Wy) = Σ
bWy/hc
k=1 Cb(1 + %kh),

where Cb denotes the base cost of maintenance (see Jayabalan et al. [45]). In addition,

the minimal repair cost that must be paid by the manufacturer is ρCmN
pm
y . By

adopting a PRW policy, it is practically recognized that a significant proportion of

PRW can increase both the revenues and the additional expenses, and the tradeoff

for choosing the optimal proportion would be a crucial decision problem for the

manufacturer.

5.2.6 The Profit Function

Let Cp denote the production cost per unit. Considering the revenue and the relative

costs, the anticipated profit can be expressed as:

πy = (C0 − Cp)S(ρ)− {Cpm + ρCmN
pm
y }S(ρ), (5.5)

where C0 is planned sale price, Cpm is cost of PM actions and Cm is cost of minimal

repairs. It can be noted that πy being a function of Npm
y is itself uncertain and thus

needs to be estimated using Bayesian methods.

5.3 A Bayesian Decision Model for 2-D Warranty

Product failures are modeled by a NHPP process with power law intensity function

sensitive to usage rate y, as shown in Equation (5.1). To obtain the optimal proportion

of warranty cost, shared by the manufacturer a Bayesian prior analysis is performed.

This analysis is completely based on prior knowledge of item failure distribution in

terms of the the unknown parameters α and β, which are jointly modeled by a suitable

prior distribution. To set the ground of prior analysis we define:

• State space: Θ = {θ = (α, β)|α > 0, β > 0}.
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• Set of actions: A = {ρ|0 < ρ < 1}. Here ρ denotes the fraction of repair costs

shared by the manufacturer.

• Set of profit functions: Π = {π(θ, ρ)|π : Θ× [0, 1]→ (−∞,∞)}. The profits we

gain, if a proportion ρ is chosen as the warrantor’s share of repair cost liability,

under θ, is given by π(θ, ρ).

• Sample space S: The additional information available to be collected (e.g.,

successive breakdown times for similar products). The cost of collecting this

additional information should also be considered in the decision process.

In this context, the production managers typically specify two sets of prior

information, which are,

i) the expected values and variances of the unknown parameters α and β, i.e.,

µα, σα and µβ, σβ, respectively, for modeling the product degradation profile

with prior knowledge, and

ii) a model describing the total volume of sales of the product.

The results of prior analysis based on these information are presented to the managerial

group for consideration and possible modification of production decisions. If these

results, based solely on expert opinion in the prior stage, are not convincing, (which

is often the case, because such results are too optimistic and represent an ‘ideal’

situation deviating from the real market scenario), a posterior analysis is performed

combining the market data and the prior knowledge.

A ‘preposterior analysis ’ serves as a bridge between the prior and posterior

analysis. It determines the necessity of a posterior analysis in terms of costs incurred

due to collection of market data versus the information extracted from those data.

The crux of the preposterior analysis, is to determine the optimal sample size n∗

of failures and the corresponding data to be collected from the market. Clearly,

the problem reduces to balancing the trade-off between this sample size n∗ and the
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corresponding cost of information collection, which is schematically illustrated in

Section 5.3.2, Figure 5.4.

5.3.1 Prior and Posterior Analysis

The estimated usage sensitive profit function involves the unknown parameters α and

β through Npm
y . If our beliefs about (α, β) can be described by some specific joint

prior distribution, then from Equation (5.5) the prior expected profit is given by the

expression

E(πy) = (C0 − Cp)S(ρ)− {Cpm + ρCmE(Npm
y )}S(ρ),

where S(ρ) is the sales volume, defined by Equation (5.3), considered as a function of

ρ and E(Npm
y ) denotes the prior expected number of failures under PM, for a specific

usage rate y, i.e.,

E(Npm
y ) = α(y)

∫
A

∫
B

[
Σ
bWy/hc−1
k=0

(
{((1− η)k + 1)h}β − {(1− η)kh}β

)
+ {Wy − ηbWy/hch}β − {(1− η)bWy/hch}β

]
f(α(y), β)dβdα(y)

=
( y
y0

)2γ

α

∫
A

∫
B

[
Σ
bWy/hc−1
k=0

(
{((1− η)k + 1)h}β − {(1− η)kh}β

)
+ {(Wy − ηbWy/hch)β − ((1− η)bWy/hch)β}

]
f
(( y

y0

)γ
α, β

)
dβdα. (5.6)

where f
((

y
y0

)γ
α, β

)
denotes the prior probability distribution of (α, β). A and B

respectively, are the supports of the prior distribution of (α, β).

The expected profit function E(πy) is clearly continuous and differentiable with

respect to ρ ∈ (0, 1). The following proposition states the necessary and sufficient

condition for concavity of E(πy).

Proposition 5.3.1 The function E(πy), being continuous and differentiable with

respect to ρ, is concave in ρ if and only if the condition

1/v3 < (C0 − Cp − Cpm)/CmE(Npm
y ) < 1 + 1/v3, (5.7)
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holds, where v3 denotes elasticity of the proportion ρ of warranty cost shared by the

manufacturer given in Equation (5.3); then there exists a unique root ρ ∈ (0, 1) that

maximizes E(πy).

The proof of this proposition follows by arguments analogous to Proposition 3 of

Huang and Fang [34], together with necessary modifications to include the effect of

usage rate y in E(πy).

The corresponding optimal warranty proportion ρ0 ≡ ρ0(y) := arg max
ρ

E(πy) is

ρ0 =
v3(C0 − Cp − Cpm)− CmE(Npm

y )

v3CmE(Npm
y )

(5.8)

Therefore, maximum expected profit is E(πy(θ, ρ0)). However, according to

the marketing convention as practised in the industry for such purposes, the unit of

warranty proportions considered are usually in 5% increments (e.g., ρ = 35% or 50%,

etc.). Let A = 100ρ0 be the optimal PRW percentage. Correspondingly, we define

A1 := bA/5c5 and A2 := dA/5e5

Here bxc and dxe respectively, denotes the ‘floor’ and ‘ceiling’ of x. Now, setting

ρ1 := A1/100 and ρ2 := A2/100, (5.9)

the decision rule for selecting the optimal PRW proportion ρ∗ would therefore be

ρ∗ = {ρj|max
j=1,2

E[π(θ, ρj)]} (5.10)

Since parameters α and β are assumed to be unknown, they can be modeled by

a suitable joint prior distribution f
((

y
y0

)γ
α, β

)
. By doing so, one can model the

randomness of E(Npm
y ) and estimate the optimal proportions ρ0 and ρ∗ (as shown in

Equations (5.8) and (5.10) respectively) along with the expected profit function.

On the otherhand, if these prior estimates do not meet the expectation of the

managerial experts, a further investigation is performed to update the results. This is
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typically done by a posterior analysis, where real life data are integrated in the model,

which is denoted by f ′
((

y
y0

)γ
α, β

)
. This modified model denotes the posterior joint

distribution of α and β, and contain observed failure times of similar products from

the market. The posterior analysis is performed by substituting the prior expectation

E(Npm
y ) by the posterior expectation E ′(Npm

y ).

Therefore, the warranty costs shared by the manufacturer under warranty and

relation between ρ and Wy for the prior and posterior analysis respectively, are given

by

Prior Analysis:

Cw = ρCmE(Npm
y ) + Cpm,

ρ = Cm
−1{Cw − (Σ

bWy/hc
k=1 Cb(1 + %kh))}

[( y
y0

)2γ

α

∫
A

∫
B

[
Σ
bWy/hc−1
k=0 [{((1− η)k + 1)h}β

− {(1− η)kh}β] + {(Wy − ηbWy/hch)β − ((1− η)bWy/hch)β}
]
f
(( y

y0

)γ
α, β

)
dβdα

]−1

and

Posterior Analysis:

C ′w = ρCmE
′(Npm

y ) + Cpm,

ρ′ = Cm
−1{Cw − (Σ

bWy/hc
k=1 Cb(1 + %kh))}

[( y
y0

)2γ

α

∫
A

∫
B

[
Σ
bWy/hc−1
k=0 [{((1− η)k + 1)h}β

− {(1− η)kh}β] + {(Wy − ηbWy/hch)β − ((1− η)bWy/hch)β}
]
f ′
(( y

y0

)γ
α, β

)
dβdα

]−1

.

A value Cw of the expected warranty cost (prior-based) can be achieved by varying

combinations of ρ and Wy. The corresponding plot of ρ versus Wy for fixed CW is

referred to as a iso-warranty cost curve as in Figure 5.3. From Iso-warranty Cost

figure, it can be seen that, the warranty cost increases (decreases, respectively) if the

curve shifts to the right (left, respectively).
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Figure 5.3 2-D iso-warranty cost curve.

5.3.2 Preposterior Analysis

Suppose the result of the prior analysis is not very persuasive, for example, the

estimated profit is much higher (lower) than expected. In such cases, gathering

additional information might be desirable. But, before collecting this additional data,

one need to investigate if the possible outcome of collecting data is worth the cost

of collection. Thus the vital step between prior and posterior analysis termed as the

‘preposterior analysis’ is performed in which a suitable cost-effective sampling plan is

proposed, subject to some constraints as discussed here.

In this context, we need to define the expected value of sample information

(EVSI) (sometimes called expected value of imperfect information, EVII) which (see

[23]) is

EV SI(S(i)) = ES

{
max
j=1,2
{E[πy(θ, ρj)|S(i)]}

}
−max

j=1,2
{E[πy(θ, ρj)]}

where S(i) denotes the ith sampling plan under consideration. Also, the expected net

gain of sample information (ENGS) is defined as

ENGS(S(i)) = EV SI(S(i))− CI(S(i)),
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where CI(S
(i)) denotes the cost of collecting information (CI) for the ith sampling

plan. We use a simple decision rule, that is if ENGS ≤ 0, then collection of

additional information is not cost- worthy; but, if ENGS > 0, then one can collect

more information for a posterior analysis. Note that the ith sampling plan should be

optimally adopted in order to satisfy the condition

ENGS(S(i∗)) = max
i
{EV SI(S(i))− CI(S(i))}.

Therefore, if we assume that additional information can be collected from the successive

failure times of similar products, then the critical task is to determine how many

breakdowns ought to be gathered. The corresponding ENGS would be

ENGS(S(n)) =

∫
X1

∫
X2

...

∫
Xn

∫
A

∫
B

( y
y0

)γ
E ′[π(θ, ρ∗

′

(x1, x2, ..., xn))]f
(( y

y0

)γ
α, β

)
(( y

y0

)γ
α
)n
βn[Πn

i=1xi]exp
{
−
( y
y0

)γ
αxβn

}
dβdαdx1dx2...dxn

− E[π(θ, ρ∗
′

)]− CI(n) (5.11)

where n denotes the sample size, xi denotes the ith breakdown time, E ′[·] is the

posterior expectation and ρ∗
′
(·) is the optimal pro-rated proportion based on the

market data x1, x2, ..., xn. The optimal decisions can be derived from Equation (5.11),

which will vary for different samples x1, x2, ..., xn.

Clearly, more information (data) would improve the quality of decision regarding

maximization of profit, but this effect of increasing profit would gradually decrease

as the cost of information collection increases. As a result, the ENGS will decrease

eventually with increasing sample size as shown in Figure 5.4 obtained from [32], and

the decision makers need to determine the optimal sample size n∗ where ENGS(S(n∗))

is maximum.
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Figure 5.4 Preposterior decision problem of selecting optimal sample size n∗.

5.4 Analysis with Natural Conjugate

Bayesian decision analysis is typically not easy to perform since the derivation of

posterior distributions might involve the use of numerical integration. Especially, in

our case of two random variables (i.e., α and β) in the state space, the analysis would

be much more complicated to deal with. Huang and Bier [33] proposed a natural

conjugate prior distribution for the power law deteriorating model for repairable

systems that is of the form

f
(( y

y0

)γ
α, β

)
= K

(( y
y0

)γ
α
)(g−1)

β(g−1)(e−dzg)(β−1)exp
{
−
( y
y0

)γ
αczβ

}
(5.12)

Here K is a normalizing factor and g, d, z, c are four suitably chosen constants.

Compared to other approaches, this natural conjugate prior distribution has certain

features that enables straight-forward and successful analysis instead of the usually

complicated computation. Some of these properties are listed here:

1) the marginal distribution β is Gamma with parameters g and d, expectation

and coefficient of variation (CV) are

E(β) =
g

d
,

CV (β) =
σβ
µβ

= g−1/2.



113

2) The conditional distribution of α given β is Gamma with parameters g and czβ,

expectation and coefficient of variation (CV) are

E(α) =
g

c

( d

d+ z1

)g
, and

CV (α) =
σα
µα

=
[(1 +

z21
d2+2dz1

)
(g + 1)

g − 1

]1/2

,

where z1 = ln(z).

Therefore, in our case, for a fixed usage rate y, E(α(y)) = (y/y0)γE(α) and CV (α(y))

= CV (α). The four parameters g, d, c and z can be chosen to obtained the desired

prior moments of α and β obtained from historical data (expert opinion). The prior

analysis can be performed straightforwardly by calculating E(Npm
y ) in Equation (5.6)

with respect to the four parameters (i.e., g, d, c and z), applying the decision rules

shown in Equations (5.8) and (5.10).

Now, suppose the results of prior analysis is not convincing and posterior

analysis is required. Then the optimum sample size n is carefully obtained using

the Monte Carlo curve fitting method (by Muller et al. [64]) in the preposterior

analysis. If n breakdown times (from the other similar products) are collected as

(x1, x2, ..., xn), then the posterior distribution of α and β can be obtained by the

property of the natural conjugate family as

f ′
(( y

y0

)γ
α, β

)
∝ L

(
D(n)

∣∣∣( y
y0

)γ
α, β

)
f
(( y

y0

)γ
α, β

)
= K ′

(( y
y0

)γ
α
)(g+n−1)

β(g+n−1)(e−dzg
n∏
i=1

xi)
(β−1)exp

{
−
( y
y0

)γ
α(czβ + xβn)

}
(5.13)

where L
(
D(n)

∣∣∣( y
y0

)γ
α, β

)
=
((

y
y0

)γ
α
)n
βn(
∏n

i=1 xi)
(β−1)exp{−( y

y0
)γαxβn} is the like-

lihood function, and K ′ is a normalizing factor to ensure the distribution sums up to
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unity. The posterior expected number of failures is, therefore,

E ′(Npm
y ) =

( y
y0

)2γ[ bWy/hc−1∑
k=0

[ ∫
A

∫
B
α(h(k(1− η) + 1))βf ′

(( y
y0

)γ
α, β

)
dβdα

−
∫
A

∫
B
α(hk(1− η))βf ′

(( y
y0

)γ
α, β

)
dβdα

]
+

∫
A

∫
B
α(Wy − ηbWy/hch)βf ′

(( y
y0

)γ
α, β

)
dβdα

−
∫
A

∫
B
α((1− η)bWy/hch)βf ′

(( y
y0

)γ
α, β

)
dβdα

]
.

The complicated expressions of expected number of failures for both the prior and

posterior analyzes are obtained numerically via Monte Carlo (MC) Integration.

5.4.1 Numerical Illustration of Prior and Posterior Analysis

For comparison and illustrative purposes, we have used the same cost and other

parameters considered by Huang and Fang [34]; except for the usage rate, the inclusion

of which is new.

Suppose we have a heavy industrial equipment which is covered under a non-

renewing 2-D PRW policy with warranty period W = 5.5 (years), usage limit U = 5.5

(×105 loads of production), parameters of demand w1 = 280,000,000, w2 = 0.8, v1

= 2.5, v2 = 0.83, v3 = 0.25, planned price per unit C0 = 128, 000 (dollars), unit

production cost Cp = 60, 000 (dollars), prior moments µα=0.46, σα=0.21, µβ=2.60,

σβ=0.64, maintenance interval h = 4 (months) or 1/3 (year), base cost Cb = 500

(dollars), age reduction factor η = 0.7, annual rate of increase in maintenance cost

% = 0.05, minimal repair cost Cm = 2000 (dollars).

Based on the discussion in the previous sections, the first step is to calculate the

estimates of warranty proportion ρ∗ and expected profit using the prior knowledge in

the prior analysis. The corresponding results are shown in Table 5.1. The change in

optimal PRW proportion ρ∗ with respect to warranty duration Wy as obtained from

the prior analysis is shown in Table 5.3. It can be noted that the behavior of ρ∗ w.r.t.

Wy is similar to that shown in Figure 5.3.
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Now suppose we want to investigate if posterior analysis is worth the cost for

the given problem. To do so we need to calculate ENGS as schematically illustrated

in Figure 5.4. Clearly, it is difficult to evaluate the complicated integral in (5.11)

defining ENGS, except via computational approaches. It can be noticed that in our

scenario the posterior density is a joint density of α, β and failure times X1, X2, ..., Xn.

The posterior expected number of failures have been obtained by Gibbs sampling to

draw random samples of α, β, X1, X2, ..., Xn.

Integrating Equation (5.13), with respect to α (or, β, respectively) yields the

following conditional marginal distributions, which are used to generate random

samples of α (or, β).

Proposition 5.4.1 The posterior conditional distribution of α given β is Gamma

with parameters g + n and
(
y
y0

)γ
(czβ + xβn), where n is the optimal sample size, i.e.,

f(α|β) =
αg+n−1e

−( y
y0

)γα(czβ+xβn)
[( y
y0

)γ(czβ + xβn)]g+n

Γ(g + n)
, α > 0. (5.14)

Proposition 5.4.2 The posterior conditional density function of β given α is

f(β|α) =
βg+n−1(e−dzg

∏n
i=1 xi)

β−1e
−( y

y0
)γα(czβ+xβn)∫∞

0
βg+n−1(e−dzg

∏n
i=1 xi)

β−1e
−( y

y0
)γα(czβ+xβn)

dβ
, β > 0. (5.15)

Here g, d, z, c are constant prior parameters given in Equation (5.12). To obtain

samples of β from the complicated Equation (5.15), we have used the Metropolis-

Hastings (M-H) algorithm (see for e.g., Chib and Greenberg [17]) which can be

summarized as follows: Suppose g(x) be the target density function such that g(x) ∝

h(x)ψ(x), where h(x) is the density that can be simulated by some known method

and ψ(x) is uniformly bounded. Define v(x, y) = min{ψ(y)
ψ(x)

, 1} as the candidate-

generating-density. Then,

• repeat for j = 1 to N .

• generate y from h(x(j)) and u from Uniform(0, 1).
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• if u ≤ v(x(j), y), set x(j) = y.

• else set x(j+1) = x(j).

• return {x(1), x(2), x(3), ..., x(N)}.

The first 100 values are burned out to avoid dependency on the initial choice of

random variables. In our case the target distribution is f(β|α) given in Equation

(5.15), we have considered h(β) = de−dβ, β > 0, (i.e., exponential density function

with mean 1/d), and

ψ(β) = βg+n−1(zg
n∏
i=1

xi)
β−1exp{d− (

y

y0

)γα(czβ + xβn)}. (5.16)

Thus following the steps of M-H algorithm, the expression of ENGS is evaluated and

the optimal sample sizes n∗’s are determined according to Figure 5.4 as

n∗ =


3, if y ≤ 0.7

5, if 0.7 < y < 1.4

6, if y ≥ 1.4

It can be noted that as the usage rate y increases, the optimal sample size increase.

Intuitively, it makes sense, since high usage rate will result in more failures creating

an unstable situation in the product market and this instability in product reliability

profile can be efficient captured with greater sample sizes. Let the usage sensitive

failure times (in years) of a similar product are

n∗ = 3, {1.12, 1.57, 1.79}

n∗ = 5, {1.30, 1.82, 2.15, 2.63, 2.96}

n∗ = 6, {1.18, 1.61, 1.95, 2.35, 2.88, 3.07}

then, the corresponding posterior analysis results are given in Table 5.2.
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Table 5.3 Relationship between Warranty Duration (Wy) and Optimal PRW
Proportion (ρ∗), for Constant Usage Rates (y)

ρ∗

Wy y = 0.5 y = 1∗ y = 1.5

2 1 1 0.9

3 1 0.9 0.8

4 1 0.8 0.6

5 1 0.7 0.5

6 1 0.6 0.3

7 0.9 0.5 0.1

8 0.8 0.4 0.05

9 0.7 0.3 < 0.05

10 0.6 0.2 < 0.05

∗ Case of Huang and Fang [34].

For a fixed usage rate y, the optimal PRW proportion ρ∗ is decreasing

in the warranty period Wy. As the latter increases, the number of repairs during

warranty increase and the expected warranty cost can be controlled by curtailing the

proportion of repair cost paid by the warrantor at each failure. However, for a fixed

warranty period Wy, ρ
∗ is decreasing in y, since higher y results in more failures (or,

repairs) and the warranty cost is controlled by reduction of ρ∗.
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Figure 5.5 Effects of different usage rates on the prior and posterior estimates of
warranty proportion under the PRW scheme.

It can be observed that for relatively low and moderate usage rates y, the

estimate of posterior warranty proportion based on failure data obtained from the

market, is higher than the prior estimate. This implies that when the item is being

used within a nominal usage range, the optimal warranty proportion ρ is relatively

high. This will not only attract customers in the market but will result in higher

profit levels to the firm. On the contrary, when y is too high (typically more than

double the nominal usage level i.e., y = 1), the posterior warranty proportion is less

than the prior, this is a reasonable outcome, since when usage (and consequently

the failure rate) is high, a greater proportion ρ will only increase the warranty cost,

drastically affecting the profit margin of the firm.
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Figure 5.6 Effects of different usage rates on the prior and posterior estimates of
warranty cost under the PRW scheme.

Similarly, it can be observed that for relatively low and moderate usage rates

y, the estimate of posterior warranty cost based on failure data obtained from the

market, is higher than the prior estimate. This is because the warranty cost is

proportional to the the warranty proportion ρ, which is high for low and moderate

y’s. Also it can be seen that the warranty cost reduces for high usage rate, since as

y increases, ρ and warranty term Wy decreases, in turn reducing the total warranty

cost. Although some variation among costs are observable from the plots of prior

and posterior warranty costs, those are approximately equal for greater values of y,

indicating that a prior analysis is sufficient to draw conclusions if y is too high.
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Figure 5.7 Effects of different usage rates on the prior and posterior estimates of
expected profit under the PRW scheme.

Interestingly, the expected profit is decreasing in y. For relatively low and

high usage rates the posterior estimate of profit is more than the prior estimate,

probably because for a nominal (or lower) usage rate, the number of item failures is

low resulting in lower repair costs and more profit. As y increases the converse effect

is seen for expected profit value, due to excessive number of product failures over

warranty.
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5.4.2 Sensitivity Analysis

From previous discussion, it is obvious that the prior analysis results are dependent

on the pre-specified values of the moments of α and β. It can be clearly seen that,

the effect of misjudgment on the values of these parametric moments, provided by

the managers (experts) influence the estimates of warranty proportion ρ and expected

profit for every usage rate y. Hence, it is interesting for the managers to study the cost

behavior for mis-specification of µα, σα, µβ, and σβ respectively. Thus, a sensitivity

analysis with respect to percentage changes in each of µα, σα, µβ, and σβ is performed

to estimate the variations in profit and warranty proportion.

We have considered usage rates y = 0.5, 1, 1.5, 2, 3 and for each y, the variations

with respect to percentage changes in the value of µα, σα, µβ, and σβ are computed,

as shown in Tables 5.4 − 5.7. The first column shows the percentage change in the

parameters followed by the estimates of warranty proportions and expected value

of profit for each y. Figures 5.8 − 5.11 show the results of sensitivity analysis with

respect to µα, σα, µβ, and σβ for some specific usage rates.

It is understandable that under-estimating µα (µβ ) would cause the underesti-

mation of the warranty cost, leading to an improper decision such as mistakenly

extending the warranty term and/or increasing the warranty proportion. Similarly,

misjudging σα (σβ ) may result in more risky decisions being taken. Therefore, the

managers should be very cautious with the judgments.

Some discussions on the effects of mis-specified prior moments on ρ and expected

profit are included below Figures 5.8 - 5.11.
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Figure 5.8 Sensitivity analysis of ρ with respect to µα and σα for different usage
rates y.

Here five different usage rates are considered as indicated in each block. The

x-axis and y-axis corresponds to the percentages of deviation from the true values of

the parameters µβ and σβ and the estimate of optimal ρ, respectively.The solid line

shows the behavior of ρ for percentage deviation of µα from the true value 0.46. If

the specified value of µα is less (more) than the true value, estimated optimal ρ is

over-estimated (under-estimated, respectively). On the contrary if σα is less than the

true value 0.21, ρ is initially under-estimated, but eventually over-estimated. If the

specified σα is more than the true value, ρ is over-estimated.



127

Figure 5.9 Sensitivity analysis of Expected Profit with respect to µα and σα for
different usage rates y.

Here, the solid line shows the behavior of expected profit for percentage

deviation of µα from the true value 0.46. If the specified value of µα is less (more) than

the true value, estimated profit is over-estimated (under-estimated, respectively). On

the contrary if the specified value of σα is less (more) than the true value 0.21,

estimated optimal ρ is initially under-estimated, but eventually over-estimated. If

the specified σα is more than the true value, the estimated profit is under-estimated

(over-estimated,respectively).
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Figure 5.10 Sensitivity analysis of ρ with respect to µβ and σβ for different usage
rates y.

Here the solid (dotted) line shows the behavior of optimal warranty proportion

ρ for percentage deviation of µβ (σβ) from the true value 2.6 (0.64). It can be seen

that if the specified value of µβ is less (more) than the true value, estimated optimal

ρ is over-estimated (under-estimated, respectively). On the contrary if the specified

value of σβ is less than the true value, estimated optimal ρ is under-estimated for

y = 0.5 and over-estimated for rest of the y’s. If the specified σβ is more than the

true value, the estimated optimal ρ is either the same or is under-estimated for all

y’s. It is worth noting that the the effect of mis-specification of µβ has more adverse

effect on ρ, compares to that of σβ.
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Figure 5.11 Sensitivity analysis of Expected Profit with respect to µβ and σβ for
different usage rates y.

Here the solid (dotted) line shows the behavior of optimal warranty proportion

profit for percentage deviation of µβ (σβ) from the true value 2.6 (0.64). It can be seen

that if the specified value of µβ is less (more) than the true value, estimated profit

is over-estimated (under-estimated, respectively). On the contrary if the specified

value of σβ is less (more) than the true value, estimated profit is under-estimated

(over-estimated, respectively).
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5.5 Concluding Remarks

In this chapter, we have investigated a profit optimization decision problem for 2-

D warranties, by integrating several component models affecting the profit such as

production, sales, warranty and maintenance. A decision regarding the optimal pro-

rated warranty (PRW) proportion (paid by the manufacturer to repair failed item) and

optimal warranty period that maximizes the expected profit of the firm under different

usage rates of the consumers is explored here in a Bayesian framework. The first phase

or, prior analysis is based on expert opinion and historical data (prior information).

The second phase or, posterior analysis is based on prior information and market

data. In most real life scenarios, managers dealing with such situations believe that

the estimates obtained by posterior analysis that blends expert knowledge, prior

believes and market data, are generally more accurate.

Our objective in studying this problem in a 2-D warranty context, is primarily

to demonstrate the effect of varying usage rates on the final decision regarding the

PRW proportion and warranty duration – which can be clearly seen from our results.

Thus for items degrading due to both age and usage rate (almost every product in

the market), the fact that an integrated decision problem modeling is incomplete

without the consideration of usage rates has been demonstrated in this chapter.

Finally a sensitivity analysis shows the effect (given below Figures 5.8 - 5.11) of

mis-specification (of prior moments) on the firm’s profit.



CHAPTER 6

CONCLUSION

6.1 Research Summary

In this dissertation, our focus is on the design and cost analysis of warranty that

incorporate usage level of items as important factor that impacts on their failure

profile and corresponding costs of service assurance by replacement or repair. We have

considered usage sensitive warranty servicing strategies in several different setups,

analyzed their theoretical and practical consequences and presented a comparative

study of their behavior in terms of expected costs to those in the literature. It may

be noted that the usage sensitiveness aspect of these models has given a different

direction to this research in terms of applicability in real-life. We have broadly

demonstrated considerations of usage sensitivity in warranty models impacts the

cost behavior and under appropriate conditions can be a more efficient and realistic

approach to designing such policies.

6.2 Some Possible Research Problems for the Future

6.2.1 Using Copulas to Model Warranties

Copulas are mathematical constructs that can fully capture the dependence structure

among components of random vectors, and hence offer great flexibility in modeling

joint distributions [44]. Formally a n-dimensional copula is any joint distribution on

[0, 1]n, n ≥ 2 with uniform marginal distributions [73]. If the products lifetime (X)

and its usage (U) have a joint distribution H(x, u) and marginal distributions F (x)

and G(u) respectively; their mutual relationship is captured by

H(x, y) := P (X ≤ x, U ≤ u) = C(F (x), G(u)) (6.1)
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where C is a suitable copula on the unit square. Thus given H, F , and G there exists

a copula C satisfying Equation (6.1). Conversely, given the marginals F , G and a

copula C determines the joint distribution H of (X,U).

For 2-D warranty modeling and analysis, the joint distribution of (X, Y ), is

usually not known. Generally the marginal or conditional (on Y ) distribution of item’s

failure time (X) is assumed to be Weibull (or Gamma) for computational purposes.

Exploring the different types of joint - marginal distribution combinations of X and

Y have received some importance in literature [55]. Problems demonstrating the use

of copula functions in this context is an area that needs further investigation. In

future work, we would like to use copula functions as the basic toolkit for identifying

the distributional patterns associated with the 2-D warranty modeling.

6.2.2 Bayesian Warranty Policies

In the case of new products in the market there may not be enough historical data to

completely specify a model, for the product’s lifetime that can be adequately justified

statistically. Absence of such knowledge can reflect the ignorance of either (i) the true

value(s) of underlying parameter(s) of a parametric lifetime distribution model, or

(ii) the distribution of the lifetime itself – except for some structural nonparametric

assumptions about the product’s degradation profile.

A Bayesian approach which updates the product’s lifetime profile as failure and

service cost data accumulate is appropriate here. While there is some literature on

the subject (see e.g., [26], [63], [95]); further research focused on a Bayesian approach

to warranties can profitably receive more attention.

In the setup of parametric life-distribution models with unknown parameter

value(s) together with a prior distribution that reflects our beliefs about the latter;

except for models with conjugate priors, solutions for Bayesian warranties in a closed

form will be generally rare, relying instead on numerical solutions via computational

methods. More realistic Bayesian warranty models will involve hierarchical modeling



and computationally intensive simulation using a Markov Chain Monte Carlo (MCMC)

approach.

In the other case, when the lifetime distribution is unknown, one could imagine

the possibility of exploiting a nonparametric Bayesian approach; which is methodo-

logically an area of current active research and, to the best of our knowledge has not

yet been used for warranty analysis. The development and application of Bayesian

nonparametric methods in the context of warranties are therefore still in their infancy

and awaits future research.
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APPENDIX A

A SAMPLE PROGRAM

MATLAB program used to compute the optimal parametersKy
∗, Ly

∗ and the minimal

expected cost J∗ ≡ J(Ky
∗, Ly

∗) for models in Chapter 3, Analysis of a 2-D Warranty

Servicing Strategy with a Brown-Proschan Repair Option.

1. Constant Probability of Repair (p)

(% To compute the Weibull hazard rate function h(x;α(y)).)

function[h] = wei haz fn(b, g, y, x)

b1 = b ∗ g;

y1 = y∧b1;

y2 = y1 ∗ b;

b1 = (b− 1);

x1 = x∧b1;

h = y2 ∗ x1;

————————————————–

(% To compute the Weibull survival function F (x;α(y)).)

function[FbarX] = wei surv fn(b, g, y, x)

H = wei cumhaz fn(b, g, y, x);

H1 = −H;

FbarX = exp(H1);

————————————————–

(% To compute the Weibull cumulative hazard function H(x;α(y)).)

function[H] = wei cumhaz fn(b, g, y, x)

b1 = b ∗ g;

y1 = y∧b1;

x1 = x∧b;

136



137

H = y1 ∗ x1;

————————————————–

(% To evaluate the equation g(x) = H(Wy)−H(x)−H(Wy − x).)

function[gx] = g fn value(Wy, x, b, g, y)

HWy = wei cumhaz fn(b, g, y,Wy);

HX = wei cumhaz fn(b, g, y, x);

Wy1 = Wy − x;

HWyX = wei cumhaz fn(b, g, y,Wy1);

gx = HWy −HX −HWyX;

————————————————–

(% To find the optimal Ly
∗ for a given usage rate y.)

function[s] = find opt L(Cr,Cm,W,U, y, b, g)

rho = Cr/Cm;

rho1 = rho− 1;

if(y <= U/W )

Wy = W ;

else

Wy = U/y;

end

Wy;

syms x;

g1 = g fn value(Wy, x, b, g, y);

cond = rho1− g1;

s = solve(cond);

————————————————–

(% Given usage rate y and corresponding Ly
∗, to find the optimal Ky

∗.)

function[C1] = I fn root(p, y, L)

Cr = 2;Cm = 1;W = 2;U = 2; b = 2; g = 2;
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rho = Cr/Cm;

if(y <= U/W )

Wy = W ;

else

Wy = U/y;

end

FbarL = wei surv fn(b, g, y, L);

HWy = wei cumhaz fn(b, g, y,Wy);

HL = wei cumhaz fn(b, g, y, L);

A2 = HWy −HL;

term5 = FbarL ∗ A2;

x = [0 : .001 : L];

for i = 1 : length(x)

FbarX(i) = wei surv fn(b, g, y, x(i));

HX(i) = wei cumhaz fn(b, g, y, x(i));

A1(i) = HWy −HX(i);

term3(i) = A1(i) ∗ FbarX(i);

gf(i) = g fn value(Wy, x(i), b, g, y);

term1(i) = p ∗ (gf(i) + 1− rho) ∗ FbarX(i);

term2(i) = int IKyfun1(Wy, x(i), L, b, g, y, p);

term4(i) = int IKyfun2(Wy, x(i), L, b, g, y);

I1(i) = term1(i) + term2(i)− term3(i) + term4(i) + term5;

I2(i) = 0;

end

I1;

C = [x; I1];

C1 = C ′;

plot(x, I1, x, I2)
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————————————————–

function[area1] = int IKyfun1(Wy,K,L, b, g, y, p)

rho = 2;

h = (L−K)/10000;

for j = 1 : 10000

x(j) = K + (j ∗ h);

FbarX(j) = wei surv fn(b, g, y, x(j));

hazx(j) = wei haz fn(b, g, y, x(j));

f1(j) = hazx(j) ∗ FbarX(j)

;gfn(j) = g fn value(Wy, x(j), b, g, y);

f2(j) = rho− 1− gfn(j);

f3(j) = p ∗ f2(j) ∗ f1(j);

end

f3;

x;

fsum = sum(f3);

area1 = h ∗ fsum;

————————————————–

function[area2] = int IKyfun2(Wy,K,L, b, g, y)

HWy = wei cumhaz fn(b, g, y,Wy);

h = (L−K)/10000;

for j = 1 : 10000

x(j) = K + (j ∗ h);

FbarX(j) = wei surv fn(b, g, y, x(j));

hazx(j) = wei haz fn(b, g, y, x(j));

f1(j) = hazx(j) ∗ FbarX(j);

HX(j) = wei cumhaz fn(b, g, y, x(j));

h1(j) = 1 +HWy −HX(j);
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h2(j) = h1(j) ∗ f1(j);

end

hsum = sum(h2);

area2 = h ∗ hsum;

————————————————–

(% To find the minimum cost J∗ for a given usage rate y and corresponding

optimal Ky
∗ and Ly

∗.)

function[minco] = bpoptco final(p, y,K, L)

W = 2;U = 2; b = 2; g = 2;

if(y <= U/W )

Wy = W ;

else

Wy = U/y;

end

FbarL = wei surv fn(b, g, y, L);

FbarK = wei surv fn(b, g, y,K);

HWy = wei cumhaz fn(b, g, y,Wy);

HK = wei cumhaz fn(b, g, y,K);

HL = wei cumhaz fn(b, g, y, L);

A2 = HWy −HL;

term1 = HK ∗ FbarK;

term2 = int IKyfun1(Wy,K,L, b, g, y, p);

term3 = int IKyfun2(Wy,K,L, b, g, y);

term4 = FbarL ∗ A2;

brac = term1 + term2 + term3 + term4;

minco = brac/FbarK;

————————————————–
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2. Age-dependent Probability of Repair (p(t))

(% To evaluate probability function p1(t) = 1/(c+ t), c = Cr − Cm.)

function[p1] = bbscase1(Cr,Cm, t)

c = Cr − Cm;

c1 = c+ t;

p1 = 1/c1;

————————————————–

(% To evaluate probability function p2(t) = 1− exp(−t))

function[p2] = bbscase2(t)

t1 = −t;

e = exp(t1);

p2 = 1− e;

————————————————–

(% To evaluate the equation g(x) = H(Wy)−H(x)−H(Wy − x).)

function[gx] = g fn value(Wy, x, b, g, y)

HWy = wei cumhaz fn(b, g, y,Wy);

HX = wei cumhaz fn(b, g, y, x);

Wy1 = Wy − x;

HWyX = wei cumhaz fn(b, g, y,Wy1);

gx = HWy −HX −HWyX;

————————————————–

(% To find the optimal Ly
∗ for a given usage rate y.)

function[s] = find opt L(Cr,Cm,W,U, y, b, g)

rho = Cr/Cm;

rho1 = rho− 1;

if(y <= U/W )

Wy = W ;

else
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Wy = U/y;

end

Wy;

syms x;

g1 = g fn value(Wy, x, b, g, y);

cond = rho1− g1;

s = solve(cond);

————————————————–

function[Area int] = int IKyfun1 BBS(Wy,K,L, b, g, y)

Cr = 2;Cm = 1;

rho = 2;

h = (L−K)/10000;

for j = 1 : 10000

x(j) = K + (j ∗ h);

FbarX(j) = wei surv fn(b, g, y, x(j));

hazx(j) = wei haz fn(b, g, y, x(j));

f1(j) = hazx(j) ∗ FbarX(j);

gfn(j) = g fn value(Wy, x(j), b, g, y);

f2(j) = rho− 1− gfn(j);

p1(j) = bbscase1(Cr,Cm, x(j));

p2(j) = bbscase2(x(j));

F11(j) = p1(j) ∗ f2(j) ∗ f1(j);

F22(j) = p2(j) ∗ f2(j) ∗ f1(j);

end

F11;

F22;

x;

F11sum = sum(F11);
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F22sum = sum(F22);

Area11 = h ∗ F11sum;

Area22 = h ∗ F22sum;

Area int = [Area11, Area22];

————————————————–

function[area2] = int IKyfun2(Wy,K,L, b, g, y)

HWy = wei cumhaz fn(b, g, y,Wy);

h = (L−K)/10000;

for j = 1 : 10000

x(j) = K + (j ∗ h);

FbarX(j) = wei surv fn(b, g, y, x(j));

hazx(j) = wei haz fn(b, g, y, x(j));

f1(j) = hazx(j) ∗ FbarX(j);

HX(j) = wei cumhaz fn(b, g, y, x(j));

h1(j) = 1 +HWy −HX(j);

h2(j) = h1(j) ∗ f1(j);

end

hsum = sum(h2);

area2 = h ∗ hsum;

————————————————–

(% Given y and corresponding Ly
∗, to find the optimal Ky

∗ for both p1(t) and

p2(t).)

function[C1] = I fn root BBS(y, L)

Cr = 2;Cm = 1;W = 2;U = 2; b = 2; g = 2;

rho = Cr/Cm;

if(y <= U/W )

Wy = W ;

else
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Wy = U/y;

end

FbarL = wei surv fn(b, g, y, L);

HWy = wei cumhaz fn(b, g, y,Wy);

HL = wei cumhaz fn(b, g, y, L);

A2 = HWy −HL;

term5 = FbarL ∗ A2;

x = 0 : .001 : L;

for i = 1 : length(x)

area = int IKyfun1 BBS(Wy, x(i), L, b, g, y);

FbarX(i) = wei surv fn(b, g, y, x(i));

HX(i) = wei cumhaz fn(b, g, y, x(i));

A1(i) = HWy −HX(i);

term3(i) = A1(i) ∗ FbarX(i);

gf(i) = g fn value(Wy, x(i), b, g, y);

p1(i) = bbscase1(Cr,Cm, x(i));

p2(i) = bbscase2(x(i));

%case1

term11(i) = p1(i) ∗ (gf(i) + 1− rho) ∗ FbarX(i);

term21(i) = area(1);

term4(i) = int IKyfun2(Wy, x(i), L, b, g, y);

I11(i) = term11(i) + term21(i)− term3(i) + term4(i) + term5;

%case2

term12(i) = p2(i) ∗ (gf(i) + 1− rho) ∗ FbarX(i);

term22(i) = area(2);

I12(i) = term12(i) + term22(i)− term3(i) + term4(i) + term5;

I2(i) = 0;

end
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I11;

I12;

C = [x; I11; I12];

C1 = C ′;

plot(x, I11, x, I12, x, I2)

————————————————–

(% Given y, Ky
∗ and Ly

∗, to find the minimum cost J∗ for both p1(t) and p2(t).)

function[minco] = BBSoptco final(y,K1, K2, L)

W = 2;U = 2; b = 2; g = 2;

if(y <= U/W )

Wy = W ;

else

Wy = U/y;

end

FbarL = wei surv fn(b, g, y, L);

FbarK = [wei surv fn(b, g, y,K1), wei surv fn(b, g, y,K2)];

HWy = wei cumhaz fn(b, g, y,Wy);

HK = [wei cumhaz fn(b, g, y,K1), wei cumhaz fn(b, g, y,K2)];

HL = wei cumhaz fn(b, g, y, L);

A2 = HWy −HL;

area = [int IKyfun1 BBS(Wy,K1, L, b, g, y);

int IKyfun1 BBS(Wy,K2, L, b, g, y)]

%Case1 when p(t) = 1/(c+ t), c = Cr − Cm.

term11 = HK(1) ∗ FbarK(1);

term21 = area(1, 1)

term31 = int IKyfun2(Wy,K1, L, b, g, y);

term41 = FbarL ∗ A2;

brac1 = term11 + term21 + term31 + term41;
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minco1 = brac1/FbarK(1);

%Case2 when p(t) = 1− exp(−t)

term12 = HK(2) ∗ FbarK(2);

term22 = area(2, 2)

term32 = int IKyfun2(Wy,K2, L, b, g, y);

term42 = FbarL ∗ A2;

brac2 = term12 + term22 + term32 + term42;

minco2 = brac2/FbarK(2);

minco = [minco1,minco2];

————————————————–
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