11 research outputs found

    Construction of planar quintic Pythagorean-hodograph curves by control-polygon constraints

    Get PDF
    In the construction and analysis of a planar Pythagorean–hodograph (PH) quintic curve r(t), t∈[0,1] using the complex representation, it is convenient to invoke a translation/rotation/scaling transformation so r(t) is in canonical form with r(0)=0, r(1)=1 and possesses just two complex degrees of freedom. By choosing two of the five control–polygon legs of a quintic PH curve as these free complex parameters, the remaining three control–polygon legs can be expressed in terms of them and the roots of a quadratic or quartic equation. Consequently, depending on the chosen two control–polygon legs, there exist either two or four distinct quintic PH curves that are consistent with them. A comprehensive analysis of all possible pairs of chosen control polygon legs is developed, and examples are provided to illustrate this control–polygon paradigm for the construction of planar quintic PH curves

    Helical polynomial curves and double Pythagorean hodographs II. Enumeration of low-degree curves

    Get PDF
    AbstractA “double” Pythagorean-hodograph (DPH) curve r(t) is characterized by the property that |râ€Č(t)| and |râ€Č(t)×r″(t)| are both polynomials in the curve parameter t. Such curves possess rational Frenet frames and curvature/torsion functions, and encompass all helical polynomial curves as special cases. As noted by Beltran and Monterde, the Hopf map representation of spatial PH curves appears better suited to the analysis of DPH curves than the quaternion form. A categorization of all DPH curve types up to degree 7 is developed using the Hopf map form, together with algorithms for their construction, and a selection of computed examples of (both helical and non-helical) DPH curves is included, to highlight their attractive features. For helical curves, a separate constructive approach proposed by Monterde, based upon the inverse stereographic projection of rational line/circle descriptions in the complex plane, is used to classify all types up to degree 7. Criteria to distinguish between the helical and non-helical DPH curves, in the context of the general construction procedures, are also discussed

    IMECE2005-79682 PATH PLANNING OF MULTIPLE UAVS IN AN ENVIRONMENT OF RESTRICTED REGIONS

    Get PDF
    ABSTRACT This paper describes a novel idea of path planning for multiple UAVs (Unmanned Aerial Vehicle

    Evaluating the boundary and covering degree of planar Minkowski sums and other geometrical convolutions

    Get PDF
    AbstractAlgorithms are developed, based on topological principles, to evaluate the boundary and “internal structure” of the Minkowski sum of two planar curves. A graph isotopic to the envelope curve is constructed by computing its characteristic points. The edges of this graph are in one-to-one correspondence with a set of monotone envelope segments. A simple formula allows a degree to be assigned to each face defined by the graph, indicating the number of times its points are covered by the Minkowski sum. The boundary can then be identified with the set of edges that separate faces of zero and non-zero degree, and the boundary segments corresponding to these edges can be approximated to any desired geometrical accuracy. For applications that require only the Minkowski sum boundary, the algorithm minimizes geometrical computations on the “internal” envelope edges, that do not contribute to the final boundary. In other applications, this internal structure is of interest, and the algorithm provides comprehensive information on the covering degree for different regions within the Minkowski sum. Extensions of the algorithm to the computation of Minkowski sums in R3, and other forms of geometrical convolution, are briefly discussed

    Development of an Integrated Intelligent Multi -Objective Framework for UAV Trajectory Generation

    Get PDF
    This thesis explores a variety of path planning and trajectory generation schemes intended for small, fixed-wing Unmanned Aerial Vehicles. Throughout this analysis, discrete and pose-based methods are investigated. Pose-based methods are the focus of this research due to their increased flexibility and typically lower computational overhead.;Path planning in 3 dimensions is also performed. The 3D Dubins methodology presented is an extension of a previously suggested approach and addresses both the mathematical formulation of the methodology, as well as an assessment of numerical issues encountered and the solutions implemented for these.;The main contribution of this thesis is a 3-dimensional clothoid trajectory generation algorithm, which produces flyable paths of continuous curvature to ensure a more followable commanded path. This methodology is an extension of the 3D Dubins method and the 2D clothoid method, which have been implemented herein. To ensure flyability of trajectories produced by 3D pose-based trajectory generation methodologies, a set of criteria are specified to limit the possible solutions to only those flyable by the aircraft. Additionally, several assumptions are made concerning the motion of the aircraft in order to simplify the path generation problem.;The 2D and 3D clothoid and Dubins trajectory planners are demonstrated through a trajectory tracking performance comparison between first the 2D Dubins and 2D clothoid methods using a position proportional-integral-derivative controller, then the 3D Dubins and 3D clothoid methods using both a position proportional-integral-derivative controller and an outer-loop non-linear dynamic inversion controller, within the WVU UAV Simulation Environment. These comparisons are demonstrated for both nominal and off-nominal conditions, and show that for both 2D and 3D implementations, the clothoid path planners yields paths with better trajectory tracking performance as compared to the Dubins path planners.;Finally, to increase the effectiveness and autonomy of these pose-based trajectory generation methodologies, an immunity-based evolutionary optimization algorithm is developed to select a viable and locally-optimal trajectory through an environment while observing desired points of interest and minimizing threat exposure, path length, and estimated fuel consumption. The algorithm is effective for both 2D and 3D routes, as well as combinations thereof. A brief demonstration is provided for this algorithm. Due to the calculation time requirements, this algorithm is recommended for offline use

    A Generalized Blending Scheme for Arbitrary Order of Continuity

    Get PDF
    In this thesis, new templates and formulas of blending functions, schemes, and algorithms are derived for solving the scattered data interpolation problem. The resulting data fitting scheme interpolates the positions and derivatives of a triangular mesh, and for each triangle of the mesh blends three triangular sub-surfaces, and creates a triangular patch. Similar to some existing schemes, the resulting surface inherits the derivatives of the sub-surfaces on the boundaries. In contrast with existing schemes, the new scheme has additional properties: The order of interpolated derivatives is extended to arbitrary values, and the restrictions of the sub-surfaces are relaxed. Then based on the properties of the new blending functions, an algorithm for constructing smooth triangular surfaces with global geometric continuity is described. The new blending functions and the scheme are then extended to multi-sided faces. The algorithm using these new blending functions accepts data sites formed by multi-sided polygons

    Blending techniques in Curve and Surface constructions

    Get PDF
    Source at https://www.geofo.no/geofoN.html. <p
    corecore