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a b s t r a c t

A ‘‘double’’ Pythagorean-hodograph (DPH) curve r(t) is character-
ized by the property that |r′(t)| and |r′(t)× r′′(t)| are both polyno-
mials in the curve parameter t . Such curves possess rational Frenet
frames and curvature/torsion functions, and encompass all heli-
cal polynomial curves as special cases. As noted by Beltran and
Monterde, the Hopf map representation of spatial PH curves ap-
pears better suited to the analysis of DPH curves than the quater-
nion form. A categorization of all DPH curve types up to degree 7
is developed using the Hopf map form, together with algorithms
for their construction, and a selection of computed examples of
(both helical and non-helical) DPH curves is included, to highlight
their attractive features. For helical curves, a separate constructive
approach proposed by Monterde, based upon the inverse stereo-
graphic projection of rational line/circle descriptions in the com-
plex plane, is used to classify all types up to degree 7. Criteria to
distinguish between the helical and non-helical DPH curves, in the
context of the general construction procedures, are also discussed.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In a companion paper (Farouki et al., 2009), the algebraic structure of polynomial curves r(t) =
(x(t), y(t), z(t)) in R3 that incorporate a ‘‘double’’ Pythagorean hodograph property was described.
Namely, the components of the first derivative r′(t) and the cross product r′(t)× r′′(t) of the first and
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second derivatives of these curves satisfy the Pythagorean identities

|r′|2 = x′2 + y′2 + z ′2 ≡ σ 2, (1)
|r′ × r′′|2 = (y′z ′′ − y′′z ′)2 + (z ′x′′ − z ′′x′)2 + (x′y′′ − x′′y′)2 ≡ (σω)2, (2)

for polynomials σ(t) and ω(t). This structure was first implicitly recognized in the study (Farouki
et al., 2004) of helical polynomial curves — its significance was explicitly emphasized by Beltran
and Monterde (2007), who noted that the ‘‘DPH’’ curves satisfying (1) and (2) comprise the set of
polynomial space curves whose Frenet frames, defined (Kreyszig, 1959) by

t =
r′

|r′|
, p =

r′ × r′′

|r′ × r′′|
× t, b =

r′ × r′′

|r′ × r′′|
,

and curvature κ = |r′|−3|r′ × r′′| and torsion τ = |r′ × r′′|−2 (r′ × r′′) · r′′′ are rational functions
(Wagner and Ravani, 1997) of the curve parameter t . Moreover, the DPH curves encompass all helical
polynomial curves (Beltran and Monterde, 2007; Farouki et al., 2004) as a proper subset.
Choi et al. (2002) introduced two algebraic characterizations of solutions to condition (1), based

on quaternions and the Hopf map, that are extremely useful in the construction and analysis of spatial
PH curves. In the quaternion model, the hodograph r′(t) is expressed as a product of the form2

r′(t) = A(t) iA∗(t), (3)

A(t) = u(t) + v(t) i + p(t) j + q(t) k being a quaternion polynomial of degree m for a PH curve of
degree n = 2m + 1. Using the Hopf map, H : C2 → R3, the hodograph is constructed from two
complex polynomials α(t) = u(t)+ i v(t), β(t) = q(t)+ i p(t) of degreem according to

r′(t) = H(α(t),β(t))
= (|α(t)|2 − |β(t)|2, 2 Re(α(t)β(t)), 2 Im(α(t)β(t))). (4)

By identifying the imaginary unit i with the quaternion basis element i, the relation between the two
models may be expressed as

A(t) = α(t)+ kβ(t). (5)

Although the quaternion form (3) has seen more widespread use in developing practical algorithms
(Farouki et al., 2002, 2008) for the spatial PH curves, Beltran and Monterde (2007) have shown that
the Hopf map form (4) offers, in certain respects, a more natural context in which to study the double
PH structure (1) and (2). In the quaternion model, condition (2) requires the components u(t), v(t),
p(t), q(t) of the quaternion polynomialA(t) to satisfy

up′ − u′p+ vq′ − v′q = h(a2 − b2),

uq′ − u′q− vp′ + v′p = 2hab,

ω = 2h(a2 + b2), (6)

for real polynomials h(t), a(t), b(t)where gcd(a(t), b(t)) = constant (Kubota, 1972). Using the Hopf
mapmodel, this requirement acquires a simple expression in terms of the complex polynomials α(t),
β(t) — namely,

α(t)β′(t)− α′(t)β(t) = h(t)w2(t), (7)

where h(t) and w(t) = a(t) + i b(t) are real and complex polynomials, with gcd(a(t), b(t)) =
constant. As observed by Monterde (in press), the Hopf map also offers a more intuitive approach
to constructing helical polynomial curves.
The plan for the remainder of this paper is as follows. First, the double PH condition is thoroughly

analyzed in Section 2: after briefly reviewing the established forms of DPH cubics and quintics, three

2 Quaternions are denoted by calligraphic letters, complex numbers and vectors by bold letters (the meaning should be clear
from the context), and real numbers by italic letters.
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distinct types of degree 7 DPH curves are enumerated, and systems of equations and constraints are
developed that facilitate their construction. The focus of Section 3 is on the helical DPH curves, using
the approach of Monterde (in press) based upon rational line/circle parameterizations in the complex
plane. Section 4 presents criteria to distinguish between the helical and non-helical DPH curves of
each type. Finally, Section 5 provides a comprehensive selection of examples of both the helical and
non-helical degree 7DPH curves, computed using the procedures developed in the preceding sections,
while Section 6 summarizes key results of this paper and identifies some problems worthy of further
consideration.

2. Classification of low-degree DPH curves

Following Beltran and Monterde (2007) and Monterde (in press), greater emphasis will be placed
here on expression (7) of the double PH condition in the Hopf map model. Since the combination

α(t)β′(t)− α′(t)β(t) (8)

of the complex polynomials α(t), β(t) plays a prominent role in the ensuing discussion, it merits a
special name. We call it the proportionality polynomial for α(t) and β(t)— see Farouki et al. (2009). In
Section 2.1 we review how the proportionality polynomial for all PH cubics, and all helical PH quintics,
satisfies the DPH condition (7), and Section 2.2 then discusses the case of degree 7 DPH curves. The
polynomials α(t), β(t) are assumed to be specified in the Bernstein form,

α(t) =
m∑
l=0

αl

(
m
l

)
(1− t)m−lt l, β(t) =

m∑
l=0

βl

(
m
l

)
(1− t)m−lt l.

2.1. Double PH cubics and quintics

Spatial PH cubics are defined by two linear complex polynomials α(t), β(t). In this case, since

α(t)β′(t)− α′(t)β(t) = α0β1 − α1β0

is just a complex constant, we must have deg(h(t)) = 0 and deg(w(t)) = 0 to satisfy (7). We may,
without loss of generality, take h(t) = 1 and w(t) = w0, and the double PH condition then amounts
to

α0β1 − α1β0 = w20.

Clearly, this is satisfied for arbitrary complex values α0, α1, β0, β1 by taking either of the complex
values

√
α0β1 − α1β0 forw0. Hence every spatial PH cubic is a double PH curve — and is also a helical

curve (Farouki and Sakkalis, 1994).
Spatial PH quintics are defined by quadratic polynomialsα(t),β(t). In this case, the proportionality

polynomial (8) is the quadratic

2 (α0β1 − α1β0) (1− t)
2
+ (α0β2 − α2β0) 2(1− t)t + 2 (α1β2 − α2β1) t

2

and satisfaction of the double PH condition (7) can be achieved with either (a) deg(h(t)) = 0 and
deg(w(t)) = 1; or (b) deg(h(t)) = 2 and deg(w(t)) = 0.

2.1.1. The case deg(h) = 0 and deg(w) = 1
Choosing h(t) = 1 and a linear polynomial with Bernstein coefficients w0,w1 for w(t) in (7) for

case (a), we obtain the equations

2 (α0β1 − α1β0) = w20, (α0β2 − α2β0) = w0w1, 2 (α1β2 − α2β1) = w21.

These equations can be satisfied for somew0,w1 if and only if the coefficients of α(t), β(t) satisfy

4 (α0β1 − α1β0) (α1β2 − α2β1) = (α0β2 − α2β0)
2.
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2.1.2. The case deg(h) = 2 and deg(w) = 0
Taking a quadratic with Bernstein coefficients h0, h1, h2 for h(t) and w(t) = w0 in case (b), and

equating coefficients of the quadratic polynomials on the left and right in (7), yield the system of
equations

2 (α0β1 − α1β0) = h0w
2
0, (α0β2 − α2β0) = h1w

2
0, 2 (α1β2 − α2β1) = h2w

2
0

which can be satisfied if and only if

arg(α0β1 − α1β0) = arg(α0β2 − α2β0) = arg(α1β2 − α2β1) (mod π)

— i.e., the complex numbers α0β1 − α1β0, α0β2 − α2β0, α1β2 − α2β1 must be real multiples of each
other in this case.

2.2. Double PH curves of degree 7

Spatial PH curves of degree 7 are specified by two cubic complex polynomials α(t), β(t). In this
case, the proportionality polynomial (8) is the quartic

3 (α0β1 − α1β0) (1− t)
4
+
3
2
(α0β2 − α2β0) 4(1− t)

3t

+

[
1
2
(α0β3 − α3β0)+

3
2
(α1β2 − α2β1)

]
6(1− t)2t2

+
3
2
(α1β3 − α3β1) 4(1− t)t

3
+ 3 (α2β3 − α3β2) t

4,

and (7) may be satisfied with either (a) deg(h(t)) = 0 and deg(w(t)) = 2; or (b) deg(h(t)) = 2 and
deg(w(t)) = 1; or (c) deg(h(t)) = 4 and deg(w(t)) = 0. Note that the six complex values αiβj−αjβi
for 0 ≤ i, j ≤ 3 occurring in the coefficients of α(t)β′(t)− α′(t)β(t) are not independent: they must
satisfy the compatibility condition

(α0β1 − α1β0)(α2β3 − α3β2)

= (α0β2 − α2β0)(α1β3 − α3β1)− (α1β2 − α2β1)(α0β3 − α3β0). (9)

2.2.1. The case deg(h) = 0 and deg(w) = 2
If we choose h(t) = 1 and a quadratic with Bernstein coefficients w0, w1, w2 for w(t) in case (a),

we obtain from (7) the equations

3 (α0β1 − α1β0) = w20,
3 (α0β2 − α2β0) = 2w0w1,

(α0β3 − α3β0)+ 3 (α1β2 − α2β1) =
2
3
(2w21 +w0w2),

3 (α1β3 − α3β1) = 2w1w2,

3 (α2β3 − α3β2) = w22. (10)

Setting α1β2 − α2β1 = z, α0β3 − α3β0 =
4
3w

2
1 +

2
3w0w2 − 3z, and invoking (9), we note that the

valuesw0,w1,w2 and zmust satisfy(
1
3
w20

)(
1
3
w22

)
=

(
2
3
w0w1

)(
2
3
w1w2

)
− z

(
4
3
w21 +

2
3
w0w2 − 3z

)
,

which reduces to the quadratic equation

27 z2 − (12w21 + 6w0w2) z+ (4w
2
1 −w0w2)w0w2 = 0
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in z. The solutions of this equation indicate that, in this case, α1β2 − α2β1 must be given in terms of
w0,w1,w2 by

α1β2 − α2β1 =
1
3
w0w2 or

1
9
(4w21 −w0w2). (11)

2.2.2. The case deg(h) = 2 and deg(w) = 1
In case (b) we take h(t) quadratic andw(t) linear with Bernstein coefficients h0, h1, h2 andw0,w1

and thus obtain from (7) the equations

3 (α0β1 − α1β0) = h0w
2
0,

3 (α0β2 − α2β0) = h1w
2
0 + h0w0w1,

(α0β3 − α3β0)+ 3 (α1β2 − α2β1) =
1
3
(h2w20 + 4h1w0w1 + h0w

2
1),

3 (α1β3 − α3β1) = h2w0w1 + h1w
2
1,

3 (α2β3 − α3β2) = h2w
2
1. (12)

Setting α1β2 − α2β1 = z, α0β3 − α3β0 =
1
3 (h2w

2
0 + 4h1w0w1 + h0w

2
1) − 3z, we see from (9) that

the values h0, h1, h2,w0,w1, zmust satisfy(
1
3
h0w20

)(
1
3
h2w21

)
=
1
3
(h1w20 + h0w0w1)

1
3
(h2w0w1 + h1w21)

− z
[
1
3
(h2w20 + 4h1w0w1 + h0w

2
1)− 3 z

]
,

yielding the quadratic equation

27 z2 − 3 (h2w20 + 4h1w0w1 + h0w
2
1) z+ h1w0w1(h2w

2
0 + h1w0w1 + h0w

2
1) = 0

whose solutions indicate that α1β2 − α2β1 must be given in terms of h0, h1, h2 andw0,w1 by

α1β2 − α2β1 =
1
3
h1w0w1 or

1
9
(h2w20 + h1w0w1 + h0w

2
1). (13)

2.2.3. The case deg(h) = 4 and deg(w) = 0
Finally, choosing h(t) as a quartic with Bernstein coefficients h0, . . . , h4 andw(t) = w0 in case (c),

and equating coefficients of the quartic polynomials on the left and right in (7), yield the equations

3 (α0β1 − α1β0) = h0w
2
0,

3 (α0β2 − α2β0) = 2 h1w
2
0,

(α0β3 − α3β0)+ 3 (α1β2 − α2β1) = 2 h2w
2
0,

3 (α1β3 − α3β1) = 2 h3w
2
0,

3 (α2β3 − α3β2) = h4w
2
0. (14)

Setting α1β2 − α2β1 = z, α0β3 − α3β0 = 2h2w20 − 3z, and invoking (9), we see that the values
h0, . . . , h4,w0, and zmust satisfy(

1
3
h0w20

)(
1
3
h4w20

)
=

(
2
3
h1w20

)(
2
3
h3w20

)
− z (2h2w20 − 3z),

which reduces to the quadratic equation

27 z2 − 18h2w20 z+ (4h1h3 − h0h4)w
4
0 = 0
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in z. The solutions of this equation indicate that, in this case, α1β2 − α2β1 must be given in terms of
h0, . . . , h4 andw0 by

α1β2 − α2β1 =
1
9

(
3h2 ±

√
9h22 + 3h0h4 − 12h1h3

)
w20. (15)

2.3. Construction of degree 7 double PH curves

The above characterizations for degree 7 double PH curves of different types furnish algorithms for
constructing examples of these curves.
First, we assign numerical values for the coefficients of h(t) and w(t) on the right-hand side of

Eqs. (10), (12), or (14). An appropriate value for z = α1β2 − α2β1 is then determined through the
corresponding compatibility constraint from expression (11), (13), or (15). This assignment, together
with Eqs. (10), (12), or (14), defines a system comprising six bilinear equations in the eight unknowns
α0, . . . ,α3 and β0, . . . ,β3.
Since these equations are (by construction) consistent, and the variables are inherently complex,

one can in principle assign two of them arbitrarily, and then solve the six equations for the remaining
variables. Of course, this purely algebraic process is not suited for constructing curves with prescribed
geometrical properties. We expect that it can be suitably modified to furnish more geometrically-
intuitive constructions for double PH curves of different types, but the formulation of such algorithms
is deferred to a future study.

Remark 1. Since Eqs. (10)–(11), (12)–(13), or (14)–(15) depend only on the combinations αiβj−αjβi,
if (αk,βk) for 0 ≤ k ≤ 3 is any solution, then (αkz,βk/z) for 0 ≤ k ≤ 3 is also a solution for each z 6= 0.
Hence, one may initially assign arbitrary complex values to any three of the coefficients (αk,βk) for
0 ≤ k ≤ 3, and then determine corresponding values for the other five. This yields another freedom
of initial assignment, beyond the two arising from the difference between the number of unknowns
and equations.

3. Hopf map form of helical curves

A helical curve r(t)may be characterized by the fact that the locus traced by its unit tangent vector
t = r′/|r′| – i.e., the tangent indicatrix of r(t) – is a circle3 on the unit sphere (Farouki et al., 2004). This
characteristic property has been used by Monterde (in press) to give a geometrically-intuitive and
quite general construction of helical polynomial curves, based on the Hopf map model, as follows.
For the hodograph defined in terms of complex polynomials α(t), β(t) through the Hopf map

construction (4), the tangent indicatrix is given by

t =
H(α,β)
|α|2 + |β|2

=
(|α|2 − |β|2, 2 Re(αβ), 2 Im(αβ))

|α|2 + |β|2
.

The final expression above defines the normalized Hopf map, which we denote by Ĥ(α,β). Note that
Ĥ maps complex values α, β with |α|2 + |β|2 = 1 to a unit vector in R3 or, equivalently, a point on
the unit sphere S2.
As noted by Monterde (in press), the normalized Hopf map satisfies

Ĥ(α,β) = Ĥ(α/β, 1),

and hence, for the purpose of investigating the tangent indicatrix, it suffices to consider only the ratio
α(t)/β(t) of the complex polynomials in (4). Thus, different spatial PH curves defined by integrating
(4) with different choices for α(t), β(t) may nevertheless exhibit identical tangent indicatrices, if

3 Plane curves (which are trivially helical) have great-circle tangent indicatrices, while proper helical curves have small-circle
tangent indicatrices. The center of the circle and its angular radius identify the helix axis a and pitch angle ψ — see equation
(3) in Farouki et al. (2009).
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they have the same ratio α(t)/β(t). Such curves differ in themagnitude, but not the direction, of their
hodograph vectors r′(t) at each parameter value t .
Now the ratio z(t) = α(t)/β(t) of the polynomials α(t), β(t) specifies a rational curve in the

complex plane, and through the normalized Hopf map an image c(t) = Ĥ(z(t), 1) of this curve on the
unit sphere S2 in R3 is defined, with |c(t)| ≡ 1. In fact, as observed by Monterde (in press), the map
z→ Ĥ(z, 1) from C to S2 is just the inverse of the familiar stereographic projection, used in complex
analysis to visualize the ‘‘extended’’ complex plane (Needham, 1997). Drawing rays from the north
pole of S2 through each point z ∈ C, we associate with each z the point of S2 at which such a ray
pierces the sphere. In this manner, ‘‘infinitely distant’’ points in C – regardless of direction – are all
mapped to the north pole of S2, and we regard the extended complex plane as comprising all finite
complex values z augmented by the single value∞.
As is well known (Needham, 1997), all circles on S2 are mapped to either lines or circles in C

by stereographic projection, depending on whether or not the circle on S2 passes through the north
pole. Monterde (in press) thus observes that, if we are interested in helical polynomial curves, with
circular tangent indicatrices on S2, their construction can be reduced by the above arguments to
identifying those pairs of complex polynomials α(t), β(t) whose ratios z(t) = α(t)/β(t) define
rational parameterizations of lines or circles in C.

3.1. Complex representation of lines/circles

Given complex numbers a0, a1, b0, b1 that satisfy a0b1 − a1b0 6= 0, consider the complex-valued
function

z(t) =
a0(1− t)+ a1t
b0(1− t)+ b1t

(16)

of a real parameter t . This may be viewed as a mapping t → z(t) of the real axis to a locus in the
complex plane, as specified by a Möbius transformation. Form (16) defines all lines and circles in the
complex plane (Needham, 1997; Schwerdtfeger, 1979).
If b1b0 − b1b0 = 2 i Im(b1b0) 6= 0, expression (16) defines a circle — one can easily verify that

zc =
a1b0 − a0b1
b1b0 − b1b0

and R =
∣∣∣∣ a0b1 − a1b0
b1b0 − b1b0

∣∣∣∣
identify the center and radius, so that

|z(t)− zc |2 ≡ R2.

If b1b0 − b1b0 = 0, however, zc and R become infinite, and z(t) degenerates to a straight line. This
may be seen by noting that the derivative

dz
dt
=

a1b0 − a0b1
[b0(1− t)+ b1t]2

has direction specified by

arg
(
dz
dt

)
= arg(a1b0 − a0b1)− 2 arg(b0(1− t)+ b1t).

Writing b0 = b0 + iβ0 and b1 = b1 + iβ1, we note that

arg(b0(1− t)+ b1t) = tan−1
β0(1− t)+ β1t
b0(1− t)+ b1t

(mod π).

Now [β0(1− t)+β1t] / [b0(1− t)+b1t] = constant, so arg(dz/dt) = constant (mod π), if and only
if b0β1 − b1β0 = Im(b1b0) = (b1b0 − b1b0)/2 i = 0.
The condition b0β1−b1β0 = 0 implies that the complex coefficients in the denominator of (16) are

of the form (b0, b1) = (k0w, k1w) for some complex valuew and real values k0, k1.Writing c0 = a0/w,
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c1 = a1/wwe see that, for a straight line, form (16) can be reduced to

z(t) =
c0(1− t)+ c1t
k0(1− t)+ k1t

, (17)

i.e., straight lines may be characterized by real denominators.
In order to construct different helical curve types, there are two ways to generate higher-order

line/circle parameterizations from the basic form (16). We may multiply both the numerator and
denominator of (16) by a complex polynomial, to obtain z(t) = α(t)/β(t) where gcd(α(t),β(t)) 6=
constant — this does not change the tangent indicatrix, but it does alter the magnitude of
the hodograph r′(t) upon substituting α(t), β(t) into (4). Curves defined in this manner are
monotone helical, since they originate from faithful circle parameterizations. Alternatively, a rational
transformation t → f (t)/g(t) of the curve parameter may be invoked, defined by real polynomials4
f (t), g(t) of degree ≥ 2. This yields, in general, a parameterization z(t) = α(t)/β(t) with
gcd(α(t),β(t)) = constant that is not faithful, and the resulting curves are general helices — i.e.,
they may reverse their sense of tangent rotation. These ‘‘multiplication’’ and ‘‘re-parameterization’’
procedures for generating helical curves may also be combined, but only for curves of degree≥ 7.

3.2. Spatial PH cubics

The rational linear form (16) is the simplest (lowest-order) parameterization of lines and circles.
By substituting the linear complex polynomials

α(t) = a0(1− t)+ a1t, β(t) = b0(1− t)+ b1t

into the Hopf map specification (4) of a spatial Pythagorean hodograph and integrating, we obtain a
spatial PH cubic. In this case, we have

α(t)β′(t)− α′(t)β(t) = a0b1 − a1b0,

which may be interpreted as being of the form (7) with h(t) = 1 and w2(t) = a0b1 − a1b0, i.e.,
deg(h(t)) = 0 and deg(w(t)) = 0. Hence, all spatial PH cubics are helical, and are also double PH
curves.
In Farouki et al. (2004) a curve was said to bemonotone helical if its tangent indicatrix is a simply-

traced circle on the unit sphere — i.e., it does not indicate any reversals in the sense of the tangent
rotation. Since the rational linear form (16) is a faithful parameterization of lines/circles in the complex
plane, and the inverse stereographic projection from the complex plane to the unit sphere is one-to-
one, all PH cubics are monotone helical.

3.3. Helical PH quintics

To define helical PH quintics by means of the normalized Hopf map, we must use rational
quadratic parameterizations of lines and circles in the complex plane. These must be true quadratic
parameterizations, not degree-elevated versions of (16). There are two essentially distinct methods
of obtaining such quadratic parameterizations from the basic form (16).

3.3.1. Quadratic re-parameterization
The first method involves introducing a non-linear (real) transformation of the parameter t .

Imposing on (16) the parameter transformation defined by the rational quadratic function

t →
f (t)
g(t)
=
f0(1− t)2 + f12(1− t)t + f2t2

g0(1− t)2 + g12(1− t)t + g2t2
, (18)

4 These polynomials are assumed to be relatively prime, i.e., gcd(f (t), g(t)) = constant.



R.T. Farouki et al. / Journal of Symbolic Computation 44 (2009) 307–332 315

we obtain the quadratic line/circle parameterization

z(t) =
α(t)
β(t)
=

α0(1− t)2 + α12(1− t)t + α2t2

β0(1− t)2 + β12(1− t)t + β2t2
,

where

αi = fi(a1 − a0)+ gia0, βi = fi(b1 − b0)+ gib0, i = 0, 1, 2.

We then find that the proportionality polynomial has the form

α(t)β′(t)− α′(t)β(t) = h(t) (a0b1 − a1b0),

where h(t) is the real quadratic polynomial defined by

h(t) = f ′(t)g(t)− f (t)g ′(t), (19)

with Bernstein coefficients

h0 = 2(f1g0 − f0g1), h1 = f2g0 − f0g2, h2 = 2(f2g1 − f1g2). (20)

This is an instance of (7) with deg(h(t)) = 2, deg(w(t)) = 0. The spatial PH quintics defined in this
manner are thus double PH curves — as observed by Beltran and Monterde (2007), they correspond
to general helical PH quintics.
Invoking relation (5) between the quaternion and Hopf map models, we see that these helical

quintics may be specified by a quadratic quaternion polynomialA(t) = α(t)+ kβ(t)with Bernstein
coefficients of the form

Ai = fi [a1 − a0 + k (b1 − b0)] + gi [a0 + k b0], i = 0, 1, 2. (21)

SinceA0,A1,A2 are linearly dependent upon just two quaternions, a1−a0+k (b1−b0) and a0+k b0,
they reside in a two-dimensional subspace ofH. Hence, as noted in Farouki et al. (2004), these helical
PH curves are characterized by the fact thatA1 is linearly dependent onA0 andA2, i.e.,

A1 = A0 c0 +A2 c2
for appropriate values c0, c2 ∈ R. Substituting from (21) into this relation, we find that these
coefficients are given in terms of the quantities (20) by

c0 =
h2
2h1

and c2 =
h0
2h1

.

3.3.2. Linear polynomial multiplication
A different way of obtaining a quadratic rational parameterization from (16) is to multiply the

numerator and denominator by the same (complex) linear polynomial,w(t) = w0(1− t)+w1t . The
parameterization z(t) = α(t)/β(t) defined in this manner is specified by

α(t) = [a0(1− t)+ a1t] [w0(1− t)+w1t],

= a0w0(1− t)2 +
1
2
(a0w1 + a1w0)2(1− t)t + a1w1t2,

β(t) = [b0(1− t)+ b1t] [w0(1− t)+w1t],

= b0w0(1− t)2 +
1
2
(b0w1 + b1w0)2(1− t)t + b1w1t2,

and hence we obtain

α(t)β′(t)− α′(t)β(t) = (a0b1 − a1b0) [w0(1− t)+w1t]2.

Clearly, this corresponds to the case where deg(h(t)) = 0 and deg(w(t)) = 1 in (7) — note that the
factor

√
a0b1 − a1b0 can be absorbed intow0,w1. As observed by Beltran and Monterde (Beltran and

Monterde, 2007), this case corresponds to the monotone-helical PH quintics. The reason for this is
clear from the present arguments: obviously, multiplying the numerator and denominator of (16) by
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the same complex polynomialw(t)does not change the faithfulness of the line/circle parameterization
(i.e., the monotonicity of the tangent indicatrix). The sole effect of this multiplication is to modulate
the hodographmagnitude |r′(t)| by the factor |w(t)|2 — the direction of r′(t) remains unchanged.
In Farouki et al. (2004) the monotone-helical PH quintics were characterized in terms of the

quaternion model by the fact that their quaternion coefficients satisfy

A1 = A0 c0 +A2 c2, (22)

c0 = c0 + γ0 i, c2 = c2 + γ2 i being complex numbers (regarded as quaternions with vanishing j and
k components) that satisfy

4 c0c2 = 1. (23)

We can verify that this is equivalent to the above Hopf map characterization by invoking relation (5)
between the Hopf map and quaternion models.
For α(t) and β(t) as defined above, we obtain the quadratic quaternion polynomial A(t) =

α(t)+ kβ(t)with Bernstein coefficients

A0 = (a0 + kb0)w0,

A1 =
1
2
[(a0 + kb0)w1 + (a1 + kb1)w0],

A2 = (a1 + kb1)w1.

Bearing in mind that complex numbers have commutative products, one can then verify that
A0w1 = (a0 + kb0)w1w0 and A2w0 = (a1 + kb1)w0w1,

and dividing (on the right) byw0 andw1, respectively, we obtain

A1 = A0

(
w1
2w0

)
+A2

(
w0
2w1

)
.

A1 is thus of the form (22) where c0 = w1/2w0, c2 = w0/2w1 satisfy (23).

3.3.3. Degenerate common case
The cases discussed in Sections 3.3.1 and 3.3.2 are not entirely disjoint. There are specific

circumstances for these two cases inwhichα(t)β′(t)−α(t)β′(t)will degenerate to a common special
form. Generically, the polynomial h(t) in Section 3.3.1 is a ‘‘true’’ quadratic — i.e., its discriminant
is non-zero, and it is not the square of a linear polynomial. If its coefficients satisfy h0h2 = h21,
however, α(t)β′(t) − α(t)β′(t) will be the product of a complex constant and the square of a real
linear polynomial.
Likewise, the coefficients of the polynomialw0(1−t)+w1t in Section 3.3.2 are generically linearly

independent— i.e., (w0,w1) 6= (cw0, cw1) for some complex value c and real valuesw0,w1. However,
if the polynomial is of the form c [w0(1− t)+w1t], then α(t)β′(t)− α′(t)β(t) in this case is also the
product of a complex constant and the square of a real linear polynomial.

3.4. Helical PH curves of degree 7

Helical PH curves of degree 7 may be generated through the normalized Hopf map using cubic
parameterizations of lines and circles in the complex plane. These may be constructed in three
essentially distinct ways — of which two are direct extensions of the methods employed above for
helical PH quintics, and the third is a ‘‘hybrid’’ of these two.

3.4.1. Cubic re-parameterization
By analogy with the method used in Section 3.3.1, a rational cubic line/circle parameterization is

defined by imposing the parameter transformation

t →
f (t)
g(t)
=
f0(1− t)3 + f13(1− t)2t + f23(1− t)t2 + f3t3

g0(1− t)3 + g13(1− t)2t + g23(1− t)t2 + g3t3
(24)
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on (16). This yields

z(t) =
α(t)
β(t)
=

α0(1− t)3 + α13(1− t)2t + α23(1− t)t2 + α3t3

β0(1− t)3 + β13(1− t)2t + β23(1− t)t2 + β3t3
,

where
αi = fi(a1 − a0)+ gia0, βi = fi(b1 − b0)+ gib0, i = 0, 1, 2, 3.

For this type of circle parameterization, we find that
α(t)β′(t)− α′(t)β(t) = h(t) (a0b1 − a1b0),

where the real quartic polynomial h(t) has the form (19), and its Bernstein coefficients are given by

h0 = 3(f1g0 − f0g1), h1 =
3
2
(f2g0 − f0g2),

h2 =
3
2
(f2g1 − f1g2)+

1
2
(f3g0 − f0g3),

h3 =
3
2
(f3g1 − f1g3), h4 = 3(f3g2 − f2g3). (25)

This corresponds to the case deg(h(t)) = 4 and deg(w(t)) = 0 of (7), and it defines a general helical
double PH curve of degree seven.
In the quaternion model, such curves are specified by a cubic quaternion polynomial A(t) =

α(t)+ kβ(t)with Bernstein coefficients

Ai = fi [a1 − a0 + k (b1 − b0)] + gi [a0 + k b0], i = 0, 1, 2, 3. (26)

SinceA0,A1,A2,A3 are linearly dependent on the twoquaternions, a1−a0+k (b1−b0) and a0+k b0,
they reside in a two-dimensional subspace of H. Hence, A1, A2 must be expressible in terms of A0,
A3 in the form

A1 = A0 c10 +A3 c13, A2 = A0 c20 +A3 c23, (27)

for suitable values c10, c13, c20, c23 ∈ R. Substituting from (26) into the above, these coefficients can
be expressed in terms of (25) and k = f3g0 − f0g3 as

c10 =
2h3
3k
, c13 =

h0
3k
, c20 =

h4
3k
, c23 =

2h1
3k
. (28)

3.4.2. Quadratic polynomial multiplication
Instead of a cubic re-parameterization, we now consider the cubic line/circle parameterizations

defined by multiplying the numerator and denominator of (16) by a complex quadratic polynomial.
Writing

α(t) = [a0(1− t)+ a1t] [w0(1− t)2 +w12(1− t)t +w2t2],
β(t) = [b0(1− t)+ b1t] [w0(1− t)2 +w12(1− t)t +w2t2], (29)

the Bernstein coefficients of the cubics α(t) and β(t) are given by

α0 = a0w0, α1 =
1
3
(2a0w1 + a1w0), α2 =

1
3
(2a1w1 + a0w2), α3 = a1w2,

β0 = b0w0, β1 =
1
3
(2b0w1 + b1w0), β2 =

1
3
(2b1w1 + b0w2), β3 = b1w2.

One can then verify that
α(t)β′(t)− α′(t)β(t) = (a0b1 − a1b0) [w0(1− t)2 +w12(1− t)t +w2t2]2,

corresponding to deg(h(t)) = 0 and deg(w(t)) = 2 in (7) — note that the complex constant√
a0b1 − a1b0 can be absorbed into w0, w1, w2. As with the case of Section 3.3.2, multiplying the
numerator and denominator of (16) preserves the faithfulness of the line/circle parameterization.
Hence, in this case, we have a monotone-helical double PH curve of degree 7.
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Comparing with the quaternion model for this case, the cubic quaternion polynomial A(t) =
α(t)+ kβ(t) has the Bernstein coefficients

A0 = (a0 + kb0)w0, A1 =
1
3
[2(a0 + kb0)w1 + (a1 + kb1)w0],

A2 =
1
3
[2(a1 + kb1)w1 + (a0 + kb0)w2], A3 = (a1 + kb1)w2.

By arguments similar to those of Section 3.3.2, we may infer that a degree 7 PH curve is monotone
helical if and only ifA1,A2 can be expressed in terms ofA0,A3 in the form

A1 = A0 c10 +A3 c13, A2 = A0 c20 +A3 c23, (30)

where the coefficients c10, c13, c20, c23 are given in terms ofw0,w1,w2 by

c10 =
2w1
3w0

, c13 =
w0
3w2

, c20 =
w2
3w0

, c23 =
2w1
3w2

, (31)

and satisfy

c10 = 3 c20c23 and c23 = 3 c10c13. (32)

3.4.3. Degenerate common case
As with the helical PH quintics, there is a common special instance between the cases in

which the cubic line/circle representation is obtained purely by re-parameterization, and purely by
multiplication. If the real quartic h(t) in the former case is actually the square of a real quadratic,
and the complex quadratic w0(1 − t)2 + w12(1 − t)t + w2t2 in the latter case can be written as
c [w0(1− t)2 +w12(1− t)t +w2t2], then α(t)β′(t)− α′(t)β(t) is in both cases a complex constant
times the square of a real quadratic polynomial.

3.4.4. Re-parameterization and multiplication
A new approach becomes possible with the degree 7 helical PH curves, since cubic line/circle

parameterizations z(t) = α(t)/β(t) can be generated from (16) in a ‘‘hybrid’’ manner: we
can combine a quadratic re-parameterization with multiplication by a complex linear polynomial.
Imposing the parameter transformation (18) on (16) andmultiplying the numerator and denominator
byw0(1− t)+w1t , we obtain the cubics α(t), β(t)with Bernstein coefficients

α0 = [f0(a1 − a0)+ g0a0]w0,

α1 =
1
3
{[f0(a1 − a0)+ g0a0]w1 + 2 [f1(a1 − a0)+ g1a0]w0} ,

α2 =
1
3
{[f2(a1 − a0)+ g2a0]w0 + 2 [f1(a1 − a0)+ g1a0]w1} ,

α3 = [f2(a1 − a0)+ g2a0]w1,
β0 = [f0(b1 − b0)+ g0b0]w0,

β1 =
1
3
{[f0(b1 − b0)+ g0b0]w1 + 2 [f1(b1 − b0)+ g1b0]w0} ,

β2 =
1
3
{[f2(b1 − b0)+ g2b0]w0 + 2 [f1(b1 − b0)+ g1b0]w1} ,

β3 = [f2(b1 − b0)+ g2b0]w1, (33)

and in this case, we find that

α(t)β′(t)− α′(t)β(t) = h(t) (a0b1 − a1b0) [w0(1− t)+w1t]2,

h(t) being the real quadratic polynomial with the Bernstein coefficients (20). This corresponds to the
case deg(h(t)) = 2 and deg(w(t)) = 1 of (7).
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It should be noted that the order of the operations characterizing this case (first re-
parameterization, thenmultiplication) is important, since it is not possible to achieve a cubic line/circle
parameterization through a polynomial multiplication followed by a re-parameterization. For this
case, setting

V0 = a1 − a0 + k (b1 − b0) and V1 = a0 + k b0,

we find that the quaternion representation is defined by the cubic polynomialA(t) = α(t)+ kβ(t)
with Bernstein coefficients

A0 = (f0V0 + g0V1)w0,

A1 =
1
3
(f0V0 + g0V1)w1 +

2
3
(f1V0 + g1V1)w0,

A2 =
1
3
(f2V0 + g2V1)w0 +

2
3
(f1V0 + g1V1)w1,

A3 = (f2V0 + g2V1)w1.

As in the preceding casesA1,A2 can be expressed in terms ofA0,A3 as

A1 = A0 c10 +A3 c13, A2 = A0 c20 +A3 c23. (34)

In this case, the complex coefficients c10, c13 and c20, c23 are given in terms of w0, w1, w2 and the
quantities (20) defined in Section 3.3.1 by

c10 =
h1w1 + h2w0
3h1w0

, c13 =
h0w0
3h1w1

, c20 =
h2w1
3h1w0

, c23 =
h1w0 + h0w1
3h1w1

. (35)

Note that the coefficients c10, c13 and c20, c23 depend only on the three ratios h0/h1, h2/h1, andw1/w0.
It can be shown that they must satisfy

(9c13c20 − 1)2 = 9 (3c13c10 − c23) (3c23c20 − c10). (36)

3.5. Higher-order helical PH curves

To construct higher-order generalizations of the helical PH curves of degree 5 and 7 described
in Sections 3.3.1 and 3.4.1, one may use re-parameterizations t → f (t)/g(t) of the line/circle (16)
defined by polynomials f (t) and g(t) with m = deg(f , g) ≥ 4. Curves defined in this manner have
the common feature that the coefficients of α(t), β(t) are of the form

αi = fi(a1 − a0)+ gia0, βi = fi(b1 − b0)+ gib0, i = 0, . . . ,m.

Invoking relation (5) between the quaternion and Hopf map models, we see that such curves are
characterized by quaternion coefficients of the form

Ai = fi [a1 − a0 + k (b1 − b0)] + gi [a0 + k b0], i = 0, . . . ,m

for real values f0, . . . , fm and g0, . . . , gm. The m + 1 quaternions A0, . . . ,Am are thus linearly
dependent on just two quaternions – a1 − a0 + k (b1 − b0) and a0 + k b0 – and reside within a two-
dimensional subspace of H. Hence, as observed in Farouki et al. (2004) for the PH quintics (m = 2)
and in Monterde (in press) for generalm, such helical PH curves are characterized by the fact that the
interior coefficientsA1, . . . ,Am−1 are linearly dependent on the outer coefficientsA0 andAm.
As generalizations of the degree 5 and 7 monotone-helical curves discussed in Sections 3.3.2 and

3.4.2, a line/circle parameterization z(t) = α(t)/β(t) of degree m may be specified by multiplying
a0(1− t)+ a1t and b0(1− t)+ b1t by a polynomialw(t) of degreem− 1 with Bernstein coefficients
w0, . . . ,wm−1. The coefficients of α(t) and β(t) are then given by α0 = a0w0, αm = a1wm−1 and
β0 = b0w0, βm = b1wm−1 while for k = 1, . . . ,m− 1 we have

αk =
(m− k)a0wk + k a1wk−1

m
, βk =

(m− k)b0wk + k b1wk−1
m

,
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and such curves satisfy α(t)β′(t) − α′(t)β(t) = (a0b1 − a1b0)w2(t). As in Sections 3.3.2 and 3.4.2,
the quaternion form of these curves is characterized by the fact that A1, . . . ,Am can be written as
linear combinations ofA0,Am with suitable complex coefficients ck0, ckm for k = 1, . . . ,m− 1.
Finally, as generalizations of the degree 7 helical curves in Section 3.4.4, one may invoke

any combination of (real) rational re-parameterizations and complex polynomial multiplications,
specified in a particular order.

4. Non-helical double PH curves

A helical PH curve must be a double PH curve, but not all double PH curves are helical. As observed
by Beltran and Monterde (2007), the lowest-order double PH curves that are non-helical have degree
7. We now seek criteria that serve to distinguish the non-helical double PH curves of degree 7 from
the helical curves, for each of the three types enumerated in Section 2.2.
Assuming α(t) 6≡ 0 and β(t) 6≡ 0 in (4), we begin with some observations concerning the possible

common factors of these polynomials.
Lemma 1. For cubic polynomials α(t), β(t) let γ(t) = gcd(α(t),β(t)) where r = deg(γ(t)) satisfies
0 ≤ r ≤ 3, so that α(t) = γ(t) α̃(t), β(t) = γ(t) β̃(t) with gcd(α̃(t), β̃(t)) = constant and
deg(α̃(t), β̃(t)) = 3− r. Condition (7) for a DPH curve then becomes

γ2(t) [α̃(t)β̃
′

(t)− α̃′(t)β̃(t)] = h(t)w2(t), (37)

and we must have r ≤ 1 for a curve satisfying this condition to be non-helical.
Proof. If r = 3, the cubics α(t), β(t) are proportional, and hence the curve degenerates (Farouki et al.,
2009) to a straight line—which is trivially helical. If r = 2,we haveα(t) = γ(t) α̃(t),β(t) = γ(t) β̃(t)
with α̃(t), β̃(t) linear and γ(t) quadratic, so that z(t) = α(t)/β(t) = α̃(t)/β̃(t) defines a line/circle of
the form (16) in the complex plane, and the double PH curve is helical (see Section 3). Thus, we must
have r ≤ 1 for a non-helical DPH curve of degree 7. �

Lemma 2. For cubics α(t), β(t) let r be the degree of γ(t) = gcd(α(t),β(t)) and let α(t) = γ(t) α̃(t),
β(t) = γ(t) β̃(t) as in Lemma 1. Then (7) cannot be satisfied with r = 1 if h(t) is a constant or a perfect
square.

Proof. If r = 1, α(t) = γ(t) α̃(t) and β(t) = γ(t) β̃(t) with γ(t) linear and α̃(t), β̃(t) quadratic and
relatively prime. In this case, α̃(t)β̃

′

(t)− α̃′(t)β̃(t) is quadratic, and it must be a perfect square if h(t)
in (37) is a constant or a perfect square, i.e., we must have

α̃(t)β̃
′

(t)− α̃′(t)β̃(t) = δ2(t) (38)

for some linear polynomial δ(t). Then, if τ is the root of δ(t), we have

α̃(τ )β̃
′

(τ )− α̃′(τ )β̃(τ ) = α̃(τ )β̃
′′

(τ )− α̃′′(τ )β̃(τ ) = 0. (39)

Now since gcd(α̃(t), β̃(t)) = constant, α̃(τ ) and β̃(τ ) cannot be both zero. If we assume both are
non-zero, equations (39) imply that

α̃(τ ) : α̃′(τ ) : α̃′′(τ ) = β̃(τ ) : β̃
′

(τ ) : β̃
′′

(τ ).

But since α̃(t) and β̃(t) are quadratic, this implies that they are proportional — contradicting
gcd(α̃(t), β̃(t)) = constant. If we assume α̃(τ ) = 0 6= β̃(τ ), equations (39) imply that α̃′(τ ) =
α̃′′(τ ) = 0, so α̃(t) = α0(t − τ)2 for some constant α0 6= 0. Substituting in (38) and writing
δ(t) = δ0(t − τ)2 gives

2α0 β̃(t) = [α0 β̃
′

(t)− δ20(t − τ)
2
] (t − τ),

contradicting the assumption that β̃(τ ) 6= 0. A similar contradiction arises if we assume α̃(τ ) 6= 0 =
β̃(τ ). Hence, we infer that (7) cannot be satisfied by cubics α(t), β(t) with γ(t) = gcd(α(t),β(t)) of
degree 1 if h(t) is a constant or a perfect square. �
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The following lemmas give useful alternatives to the (rational) line/circle representations discussed
in Section 3.1, that will be invoked subsequently.

Lemma 3. Let a1, a2, b1, b2 be complex constants such that a1b2− a2b1 6= 0, and let φ be a real variable.
Then if |b1| 6= |b2| the function

z(φ) =
a1eiφ + a2
b1eiφ + b2

(40)

defines a circle with center and radius given by

zc =
a1b1 − a2b2
|b1|2 − |b2|2

and R =
∣∣∣∣ a2b1 − a1b2
|b1|2 − |b2|2

∣∣∣∣ ,
while if |b1| = |b2| the function (40) defines a straight line.

Proof. The condition a1b2−a2b1 6= 0 guarantees that the numerator and denominator of (40) are not
proportional, so z(φ) does not degenerate to a constant. By subtracting zc from z(φ) and simplifying,
one obtains

z(φ)− zc =
a2b1 − a1b2
|b1|2 − |b2|2

b1e−iφ + b2
b1eiφ + b2

eiφ,

and since the two factors dependent on φ have unit magnitude, we see that |z(φ) − zc | = R. For the
case |b1| = |b2|, in which zc and R become infinite, we have a circle of infinite radius — i.e., a straight
line. �

Lemma 4. If τ1, τ2 are both real or complex conjugates,5 the function

z(t) =
a1(t − τ1)m + a2(t − τ2)m

b1(t − τ1)m + b2(t − τ2)m

of the real variable t defines, for integer m, a line/circle in the complex plane.

Proof. Writing f(t) = (t − τ1)m/(t − τ2)m we have

z(t) =
a1f(t)+ a2
b1f(t)+ b2

.

If τ1, τ2 are real, f(t) becomes a real function f (t), and we may regard z(t) as arising from a real re-
parameterization t → f (t) applied to the rational linear form (16) of a line/circle. On the other hand,
if τ1, τ2 are complex conjugates, we have f(t) = exp(i 2m arg(t−τ1)), andwriting φ = 2m arg(t−τ1)
we see that z(t) has the alternative line/circle form (40). �

These lemmas simplify the identification of criteria to distinguish helical and non-helical degree 7
DPH curves, as described in the following sections.

4.1. The case deg(h) = 0, deg(w) = 2

In this case h(t) is a constant, h0. To identify the non-helical DPH curves of this type, we set
γ(t) = gcd(α(t),β(t)) and r = deg(γ(t)) as in Lemma 1.

Proposition 1. A degree 7 DPH curve satisfying (7) with h(t) constant andw(t) quadratic is non-helical
if the roots τ1, τ2 ofw(t) are neither both real nor complex conjugates, and α(t), β(t) can be expressed in
terms of them as

α(t) = a1(t − τ1)3 + a2(t − τ2)3, β(t) = b1(t − τ1)3 + b2(t − τ2)3, (41)

where a1b2 − a2b1 6= 0.

5 Here, the case of complex conjugates subsumes the case of a (real) double root, τ1 = τ2 .
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Proof. By Lemmas 1 and 2, we need only consider γ(t) = gcd(α(t),β(t)) of degree r = 0. For
relatively prime cubics α(t), β(t) satisfying

α(t)β′(t)− α′(t)β(t) = h0w2(t), (42)

let τ1, τ2 be the roots of the quadraticw(t). Then τ1, τ2 must be double roots of (8), and we have

α(τi)β
′(τi)− α′(τi)β(τi) = α(τi)β

′′(τi)− α′′(τi)β(τi) = 0 (43)

for i = 1, 2. To study when these conditions can be satisfied, we note that if τ1 6= τ2 we may write
α(t), β(t) in the Bernstein-like form

α(t) =
3∑
k=0

pk
(
3
k

)
(τ2 − t)3−k(t − τ1)k, β(t) =

3∑
k=0

qk
(
3
k

)
(τ2 − t)3−k(t − τ1)k

for suitable complex coefficients pk, qk. We note that (α(τi),β(τi)) 6= (0, 0) for i = 1, 2 since
gcd(α(t),β(t)) = constant, and consider two possible cases:

case (a): α(τi) 6= 0 and β(τi) 6= 0 for i = 1, 2. In this case relations (43) can be written as

α′(τi)

α(τi)
=

β′(τi)

β(τi)
,

α′′(τi)

α(τi)
=

β′′(τi)

β(τi)

for i = 1, 2. In terms of the coefficients pk, qk these imply that
p1
p0
=

q1
q0
,

p2
p0
=

q2
q0
,

p2
p3
=

q2
q3
,

p1
p3
=

q1
q3
.

Now satisfying these conditions with p1, p2 and q1, q2 not all zero implies that α(t), β(t) are
proportional— contradicting gcd(α(t),β(t)) = constant.Wemay satisfy themwithout contradiction,
however, by taking p1 = p2 = 0 and q1 = q2 = 0, so that

α(t) = p0(τ2 − t)3 + p3(t − τ1)3, β(t) = q0(τ2 − t)3 + q3(t − τ1)3,
where p0q3−p3q0 6= 0 is stipulated to ensure non-proportionality. Hence, setting a1 = p3, a2 = −p0
and b1 = q3, b2 = −q0, polynomials (41) define a non-helical DPH curve provided that τ1, τ2 are not
both real and not complex conjugates since, by Lemma4, z(t) = α(t)/β(t)does not define a line/circle
in the complex plane.

case (b): At least one of α(τi) and β(τi) for i = 1, 2 is zero. Assuming that α(τ1) = 0, we have β(τ1) 6=
0, i.e., q0 6= 0, since gcd(α(t),β(t)) = constant. Equations (43) then imply that α′(τ1) = α′′(τ1) = 0,
so p0 = p1 = p2 = 0 and α(t) = p3(t − τ1)3. From (43) with i = 2 we then infer that q1 = q2 = 0,
and hence β(t) = q0(τ2 − t)3 + q3(t − τ1)3. Thus, α(t) and β(t) in this case are also of the form
(41), but with a1 = p3, a2 = 0 and b1 = q3, b2 = −q0. Analogous results are obtained when
α(τ2) = 0 6= β(τ2) or α(τ1) 6= 0 = β(τ1) or α(τ2) 6= 0 = β(τ2) — namely, one of the coefficients a1,
a2 and b1, b2 in (41) vanishes. Again, the curve is non-helical, since z(t) = α(t)/β(t) does not describe
a line/circle under the stated constraints on τ1, τ2.

We assumed above thatw(t) has distinct roots τ1, τ2. If τ1 = τ2, sow(t) has a double root andw2(t)
is the fourth power of a linear polynomial, one may verify that (42) can only be satisfied with h0 = 0
and α(t), β(t) proportional, contradicting gcd(α(t),β(t)) = constant. �

4.2. The case deg(h) = 2, deg(w) = 1

By Lemma 1 we need only consider cases in which γ(t) = gcd(α(t),β(t)) is of degree r = 1 or
r = 0. In the following propositions, we shall see that non-helical DPH curves can exist only in the
latter case.

Proposition 2. There are no non-helical degree 7 DPH curves satisfying (7) with h(t) quadratic, w(t)
linear, and γ(t) = gcd(α(t),β(t)) of degree r = 1.
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Proof. By Lemma 2, we need only consider quadratics h(t)with two distinct roots τ1, τ2 in this case,
and from (37) it is apparent that α̃(t)β̃

′

(t)− α̃′(t)β̃(t) and γ(t)must be proportional to h(t) andw(t),
respectively. For suitable coefficients p0, p1, p2 and q0, q1, q2 we may write

α̃(t) = p0(τ2 − t)2 + p12(τ2 − t)(t − τ1)+ p2(t − τ1)2,
β̃(t) = q0(τ2 − t)2 + q12(τ2 − t)(t − τ1)+ q2(t − τ1)2,

and the fact that α̃(t)β̃
′

(t)− α̃′(t)β̃(t)must vanish at τ1 and τ2 implies that

p0q1 − p1q0 = 0 and p1q2 − p2q1 = 0.

Now if p1, q1 are not both zero, these equations imply that α̃(t), β̃(t) must be proportional,6 which
contradicts gcd(α̃(t), β̃(t)) = constant. But they are satisfied without contradiction if p1 = q1 = 0.
Taking a1 = p0, a2 = p2 and b1 = q0, b2 = q2 and a suitable choice of constants, we then have

α(t) = w(t) [a1(t − τ1)2 + a2(t − τ2)2],
β(t) = w(t) [b1(t − τ1)2 + b2(t − τ2)2],

where the roots τ1, τ2must be both real or complex conjugates, since h(t) is a real polynomial. Hence,
Lemma 4 indicates that z(t) = α(t)/β(t) describes a line/circle in the complex plane, so the DPH
curve must be helical. �

If deg(h) = 2, deg(w) = 1 and α(t), β(t) are relatively prime, it is not so easy to derive a
characterization for these polynomials in terms of the roots of h(t) and w(t), analogous to (41), that
yields non-helical curves. However, wemay appeal to the analysis of helical DPH curves in Section 3.4
to obtain a simple resolution of this question.

Proposition 3. All double PH curves of degree 7 that satisfy (7) with h(t) quadratic, w(t) linear, and
gcd(α(t),β(t)) of degree r = 0 are non-helical.

Proof. Section 3.4 enumerates all possible construction modes for degree 7 helical curves, starting
from a line/circle parameterization of the form (16) in the complex plane. These include a cubic re-
parameterization, multiplication with a quadratic polynomial, and a quadratic re-parameterization
followed by multiplication with a linear polynomial. Of these, only the latter mode (Section 3.4.4)
yields helical curves with deg(h) = 2 and deg(w) = 1 in (7), and for such curves α(t) and β(t)must
have the linear polynomialw(t) as a common factor. Hence, degree 7 DPH curves with h(t) quadratic,
w(t) linear, and gcd(α(t),β(t)) = constant are necessarily non-helical. �

4.3. The case deg(h) = 4, deg(w) = 0

In this case, we appeal to the characterization of degree 7 helical DPH curves derived in
Section 3.4.1, and find that a simple quadratic expression in the Bernstein coefficients of the real
quartic polynomial h(t) serves to distinguish between helical and non-helical double PH curves.

Proposition 4. A degree 7 double PH curve with deg(h) = 4 and deg(w) = 0 in (7) is helical or non-
helical according to whether or not the quantity

∆ = 9 h22 + 3 h0h4 − 12 h1h3, (44)

defined in terms of the Bernstein coefficients of h(t), is non-negative.

Proof. As noted in Section 3.4.1, a degree 7 double PH curve with deg(h) = 4 and deg(w) = 0 in (7)
is helical if and only if the real quartic polynomial h(t) can be written in terms of real cubics f (t), g(t)
in the form (19). This is equivalent to the requirement that the Bernstein coefficients of h(t) should
be such as to admit real solutions of equations (25) for the Bernstein coefficients of f (t), g(t). Now
system (25) may be interpreted as five linear equations in the six quantities figj − fjgi with i 6= j for

6 They are trivially proportional when one of them vanishes identically.
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0 ≤ i, j ≤ 3. So we can choose one of these quantities arbitrarily. Setting f2g1 − f1g2 = c , we obtain

f1g0 − f0g1 =
1
3
h0, f2g0 − f0g2 =

2
3
h1, f3g0 − f0g3 = 2h2 − 3c,

f2g1 − f1g2 = c, f3g1 − f1g3 =
2
3
h3, f3g2 − f2g3 =

1
3
h4.

However, these equations in fi, gi for 0 ≤ i ≤ 3 may not be consistent. Since

(f2g0 − f0g2)(f3g1 − f1g3)− (f2g1 − f1g2)(f3g0 − f0g3) = (f1g0 − f0g1)(f3g2 − f2g3),

the values h0, . . . , h4 and c must satisfy the consistency condition(
2
3
h1

)(
2
3
h3

)
− c(2h2 − 3c) =

(
1
3
h0

)(
1
3
h4

)
,

which can be reduced to a quadratic equation in c , namely
27 c2 − 18 h2c + 4 h1h3 − h0h4 = 0.

Clearly, the solutions

c = f2g1 − f1g2 =
1
9

(
3h2 ±

√
9h22 + 3h0h4 − 12h1h3

)
can be real if and only if the discriminant ∆ defined by (44) is non-negative. In such cases, h(t) can
be expressed in the form (19) for real cubics f (t), g(t) and the degree 7 double PH is helical, since
α(t)/β(t) corresponds to the real cubic re-parameterization (24) of the line/circle (16).
In all other cases, no real cubics f (t), g(t) exist, such that h(t) is given by (19). Since these cases

do not correspond to real cubic re-parameterizations of the line/circle (16), they define non-helical
degree 7 double PH curves. �

5. Computed examples

For a spatial PH curve of degree 7, we use a cubic quaternion polynomial A(t) in (3), specified in
the Bernstein form as

A(t) = A0 (1− t)3 +A1 3 (1− t)2 t +A2 3 (1− t) t2 +A3 t3. (45)

Integrating hodograph (3) then gives the Bézier form

r(t) =
7∑
i=0

pi
(
7
i

)
(1− t)7−i t i

of the degree 7 PH curve, with control points pi = xi i+ yi j+ zi k given by

p1 = p0 +
1
7

A0 iA∗0,

p2 = p1 +
1
14
(A0 iA∗1 +A1 iA∗0),

p3 = p2 +
1
35
(A0 iA∗2 + 3A1 iA∗1 +A2 iA∗0),

p4 = p3 +
1
140

(A0 iA∗3 + 9A1 iA∗2 + 9A2 iA∗1 +A3 iA∗0),

p5 = p4 +
1
35
(A1 iA∗3 + 3A2 iA∗2 +A3 iA∗1),

p6 = p5 +
1
14
(A2 iA∗3 +A3 iA∗2),

p7 = p6 +
1
7

A3 iA∗3, (46)

where we usually take p0 = (0, 0, 0) as the integration constant.
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5.1. Degree 7 helical DPH curves

We begin with examples that illustrate the direct construction of helical DPH curves of degree
7 from complex-plane line/circle parameterizations, through the Hopf map method of Monterde (in
press) described in Section 3.

Example 1 (Cubic Re-parameterization). Using the complex line/circle (16) defined by (a0, a1) =
(1, 1+ i) and (b0, b1) = (1− i, i) and re-parameterization function (24) specified by (f0, f1, f2, f3) =
(1, 2, 2, 1) and (g0, g1, g2, g3) = (1, 2, 3, 3) we obtain the form z(t) = α(t)/β(t) with
(α0,α1,α2,α3) = (1 + i, 2 + 2 i, 3 + 2 i, 3 + i) and (β0,β1,β2,β3) = (i, 2 i, 1 + i, 2 − i). The
corresponding coefficientsAl = αl + kβl of the cubic quaternion polynomialA(t) are then

(A0,A1,A2,A3) = (1+ i+ j, 2+ 2 i+ 2 j, 3+ 2 i+ j+ k, 3+ i− j+ 2 k)

and from (46) we obtain the control points

p0 = (0.0000, 0.0000, 0.0000), p1 = (0.1429, 0.2857,−0.2857),
p2 = (0.4286, 0.8571,−0.8571), p3 = (1.0000, 1.7714,−1.7143),
p4 = (2.1000, 2.8286,−2.4857), p5 = (3.6143, 3.9143,−2.6571),
p6 = (5.0429, 5.0571,−1.9429), p7 = (5.7571, 6.4857,−0.5143).

This helical curve has the curvature/torsion ratio |κ(t)/τ(t)| =
√
5/2.

Example 2 (Quadratic Polynomial Multiplication). Using (a0, a1) = (5 i, 1 + i) and (b0, b1) = (1 −
i, 2 + 5 i) in (16), and the complex quadratic specified by (w0,w1,w2) = (1, 1 + i, 1) in (29),
yield the rational cubic z(t) = α(t)/β(t) with (α0,α1,α2,α3) = (5 i,−3 + 11

3 i, 3 i, 1 + i) and
(β0,β1,β2,β3) = (1 − i, 2 + 5

3 i,−
5
3 +

13
3 i, 2 + 5 i). For the coefficients Al = αl + kβl of the

cubic quaternion polynomialA(t), we then have

(A0,A1,A2,A3) =

(
5 i− j+ k,− 3+

11
3

i+
5
3
j+ 2 k,

3 i+
13
3

j−
5
3
k, 1+ i+ 5 j+ 2 k

)
and from (46) we obtain the control points

p0 = (0.0000, 0.0000, 0.0000), p1 = (3.2857,−1.4286, 1.4286),
p2 = (5.8571,−1.1905, 2.9524), p3 = (8.4000,−0.1048, 4.7619),
p4 = (9.4286, 3.5810, 6.5905), p5 = (7.6857, 6.7238, 7.0286),
p6 = (5.4952, 9.2476, 7.0286), p7 = (1.6381, 11.2476, 6.1714).

These control points define a monotone-helical curve, with curvature/torsion ratio |κ(t)/τ(t)| =
√
829/2.

Example 3 (Re-parameterization and Multiplication). The values (a0, a1) = (1 + i, 1) and (b0, b1) =
(1 − i, 2) in (16), together with (f0, f1, f2) = (1, 2, 1), (g0, g1, g2) = (1, 2, 2), and (w0,w1) =
(1, 1 + i) in (33) yield z(t) = α(t)/β(t) with (α0,α1,α2,α3) = (1, 53 +

1
3 i, 2 +

5
3 i, 1 + 3 i) and

(β0,β1,β2,β3) = (2,
10
3 +

2
3 i,

11
3 +

7
3 i, 4+2 i). The coefficientsAl = αl+kβl of the cubic quaternion

polynomialA(t) are then

(A0,A1,A2,A3) =

(
1+ 2 k,

5
3
+
1
3
i+
2
3
j+
10
3

k,

2+
5
3
i+

7
3
j+
11
3

k, 1+ 3 i+ 2 j+ 4 k
)

and from (46) we obtain the control points
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Fig. 1. The three types of degree 7 helical DPH curves (Examples 1–3).

p0 = (0.0000, 0.0000, 0.0000), p1 = (−0.4286, 0.5714, 0.0000),
p2 = (−1.1429, 1.5238, 0.0000), p3 = (−2.1905, 2.9524, 0.0571),
p4 = (−3.5619, 4.9238, 0.3143), p5 = (−5.2857, 7.5714, 0.9810),
p6 = (−7.0476, 10.7143, 2.6000), p7 = (−8.4762, 13.5714, 5.4571).

For this curve, the curvature/torsion ratio is |κ(t)/τ(t)| =
√
10.

Fig. 1 illustrates the three degree 7 helical DPH curves constructed in the preceding examples,
together with their control polygons. The following examples will illustrate the construction of DPH
curves through the methods described in Section 2.3, for various combinations of the degrees of h(t)
andw(t) in (7). These examples also illustrate the use of the criteria in Section 4 to distinguish between
helical and non-helical DPH curves.

5.2. DPH curves with deg(h) = 0, deg(w) = 2

Example 4 (deg(h) = 0, deg(w) = 2, Helical). In equations (10) we choose the numerical values

h0 = 1, w0 = 1, w1 = 1+ i, w2 = i.

Assigning values to α0, α1, β0 and solving the bilinear system specified by (10) and the second
expression in (11) for the other coefficients, we obtain

α0 = 1, α1 = 2 i, α2 = −4+
5
3
i, α3 = −4− 2 i,

β0 = i, β1 = −
5
3
, β2 = −1−

10
3
i, β3 = 2− 3 i.

The resulting hodograph

x′(t) = 14 t6 − 28 t5 + 14 t4 + 7 t2,
y′(t) = − 12 t6 + 28 t5 − 20 t4 + 4 t3 − 6 t2 + 2 t,
z ′(t) = − 84 t6 + 192 t5 − 136 t4 + 32 t3 − 46 t2 + 12 t − 2,

is non-primitive, since gcd(x′(t), y′(t), z ′(t)) = 2 t4 − 4 t3 + 2 t2 + 1. We have

σ(t) = |r′(t)| = (43 t2 − 12 t + 2)(2 t4 − 4 t3 + 2 t2 + 1),

|r′(t)× r′′(t)| = 2 (2 t4 − 4 t3 + 2 t2 + 1) σ (t),
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and a constant curvature/torsion ratio, |κ(t)/τ(t)| = 1/7. This curve has an especially simple rational
Frenet frame, given by

t =
(7 t2,− 6 t2 + 2 t,− 42 t2 + 12 t − 2)

43 t2 − 12 t + 2
,

p =
(− 42 t2 + 14 t,− 7 t2 − 12 t + 2,− 6 t2 + 2 t)

43 t2 − 12 t + 2
,

b =
(− 6 t2 − 12 t + 2, 42 t2 − 14 t,− 7 t2)

43 t2 − 12 t + 2
,

and the rational curvature function is just κ(t) = 2/(43 t2 − 12 t + 2) σ (t). For this curve, we have
the quaternion coefficients

A0 = 1+ j, A1 = 2 i−
5
3
k,

A2 = − 4+
5
3
i−
10
3

j− k, A3 = − 4− 2 i− 3 j+ 2 k.

HereA1,A2 can be specified in terms ofA0,A3 using (30), with the values

c10 =
1
3
(2+ 2 i), c13 = −

1
3
i, c20 =

1
3
i, c23 =

1
3
(2− 2 i)

for coefficients (31), which evidently satisfy relations (32).
Example 5 (deg(h) = 0, deg(w) = 2, Non-helical). Using the numerical values of the previous
example, but the first rather than the second expression in (11), we obtain

α0 = 1, α1 = 2 i, α2 = −4+ 3 i, α3 = −12− 2 i,

β0 = i, β1 = −
5
3
, β2 = −

7
3
−
10
3
i, β3 = 2−

29
3
i.

The corresponding hodograph components

x′(t) =
86
9
t6 +

44
3
t5 + 14 t4 +

16
3
t3 + 7 t2,

y′(t) = −
4
3
t6 − 4 t5 − 4 t4 + 4 t3 − 6 t2 + 2 t,

z ′(t) = −
124
3
t6 − 80 t5 − 56 t4 −

80
3
t3 − 46 t2 + 12 t − 2,

possess no common factor, and we have

σ(t) = |r′(t)| =
382
9
t6 +

244
3
t5 + 58 t4 +

80
3
t3 + 47 t2 − 12 t + 2,

|r′(t)× r′′(t)| = 2 (2 t4 − 4 t3 + 2 t2 + 1) σ (t).

The curvature and torsion have a non-constant ratio κ(t)/τ(t), namely

9 (2 t4 − 4 t3 + 2 t2 + 1)2

460 t8 − 1840 t7 − 296 t6 − 2688 t5 + 1272 t4 + 624 t3 − 180 t2 + 144 t + 63
.

In the present example, the polynomial w(t) = w0(1 − t)2 + w12(1 − t)t + w2t2 has roots
τ1, τ2 =

1
2 (1 ±

√
2 + i) that are neither both real nor complex conjugates, and one can verify that

α(t), β(t) can be expressed in terms of them in the form (41), with coefficients

a1 =
1
2
[
√
2− 1+ (4

√
2− 5) i], a2 = −

1
2
[
√
2+ 1+ (4

√
2+ 5) i],

b1 =
1
3
[6− 5

√
2+ (
√
2− 1) i], b2 =

1
3
[6+ 5

√
2− (
√
2+ 1) i].
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Since a1b2 − a2b1 = −
√
2 i/3 6= 0 for these coefficients, the non-helical nature of the curve is

consistent with Proposition 1.

5.3. DPH curves with deg(h) = 2, deg(w) = 1

Example 6 (deg(h) = 2, deg(w) = 1, Helical). In equations (12) we choose the numerical values
h0 = 1, h1 = 2, h2 = 1, w0 = i, w1 = 1.

Assigning values to α0, α1, β0 and solving the bilinear system specified by (12) and the second
expression in (13) for the other coefficients then give

α0 = 1, α1 = 1, α2 = 2−
1
3
i, α3 = 2− 5 i,

β0 = −1, β1 = −
4
3
, β2 = −

8
3
+
2
3
i, β3 = −2+ 7 i.

The corresponding hodograph components are

x′(t) = −14 t6 − 6 t5 + 3 t4 − 4 t3 − t2 − 2 t,
y′(t) = −52 t6 + 4 t5 − 18 t4 + 4 t3 − 12 t2 − 2 t − 2,
z ′(t) = −4 t6 − 4 t5 + 2 t4 − 2 t2.

This hodograph is non-primitive: it has gcd(x′(t), y′(t), z ′(t)) = 2 t2 − 2 t + 1 as the common factor
of its components. For this case, we have

σ(t) = |r′(t)| = (2 t2 − 2 t + 1)(27 t4 + 26 t3 + 21 t2 + 6 t + 2),

|r′(t)× r′′(t)| = 2 |2 t2 − 2 t − 1| (2 t2 − 2 t + 1) σ (t),

and the curvature/torsion ratio has the constant value |κ(t)/τ(t)| = 1/2. In this case α(t), β(t)
have the common factor w(t) = t − 1

2 (1 − i), so the helical nature of the curve is consistent with
Proposition 2.

For this curve, the rational Frenet frame is defined by

t = −
(t(t + 1)(7t2 + 3t + 2), 2(13t4 + 12t3 + 10t2 + 3t + 1), 2t2(t + 1)2)

27t4 + 26t3 + 21t2 + 6t + 2
,

p =
(2(11t4 + 8t3 + 8t2 + 3t + 1),−t(t + 1)(7t2 + 3t + 2), 2t(t + 1)(7t2 + 3t + 2))

27t4 + 26t3 + 21t2 + 6t + 2
,

b =
(−2t(t + 1)(7t2 + 3t + 2), 2t2(t + 1)2, 23t4 + 18t3 + 17t2 + 6t + 2)

27t4 + 26t3 + 21t2 + 6t + 2
,

and the rational curvature function is

κ(t) =
|4 t2 − 4 t − 2|

(2 t2 − 2 t + 1) (27 t4 + 26 t3 + 21 t2 + 6 t + 2)2
.

The Bernstein coefficients of (45) for this curve are

A0 = 1− k, A1 = 1−
4
3
k,

A2 = 2−
1
3
i+
2
3
j−
8
3
k, A3 = 2− 5 i+ 7 j− 2 k,

and in this caseA1,A2 can be expressed in terms ofA0,A3 in the form (34), with the values

c10 =
1
6
(1− 2 i), c13 =

1
6
i, c20 = −

1
6
i, c23 =

1
6
(1+ 2 i)

of the coefficients (35). These coefficients satisfy (36), the expressions on the left and right having the
common value 916 .
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Example 7 (deg(h) = 2, deg(w) = 1, Non-helical). Using the numerical values of the previous
example, but the first rather than the second expression in (13), we obtain

α0 = 1, α1 = 1, α2 = 2+ i, α3 = 2− i,

β0 = −1, β1 = −
4
3
, β2 = −

8
3
−
2
3
i, β3 = −2+

5
3
i.

The corresponding hodograph is primitive, with components

x′(t) = −
22
9
t6 −

10
3
t5 + 11 t4 − 4 t3 − t2 − 2 t,

y′(t) = −
124
3
t6 + 68 t5 − 26 t4 + 4 t3 − 12 t2 − 2 t − 2,

z ′(t) = −
28
3
t6 + 12 t5 + 2 t4 −

16
3
t3 − 2 t2,

and we have

σ(t) = |r′(t)| =
382
9
t6 −

206
3
t5 + 25 t4 − 4 t3 + 13 t2 + 2 t + 2,

|r′(t)× r′′(t)| = 2 |2 t2 − 2 t − 1| (2 t2 − 2 t + 1) σ (t).

The curvature/torsion ratio is non-constant, namely

κ(t)
τ (t)
=

9|2 t2 − 2 t − 1|(2 t2 − 2 t + 1)2

2 (92 t6 − 276 t5 − 60 t4 + 228 t3 − 126 t2 + 54 t + 9)
.

In this case we find that gcd(α(t),β(t)) = constant, so the non-helical nature of the curve is
consistent with Proposition 3.

5.4. DPH curves with deg(h) = 4, deg(w) = 0

Example 8 (deg(h) = 4, deg(w) = 0, Helical). In equations (14) we choose the numerical values

h0 = −1, h1 = 2, h2 = 3, h3 = 4, h4 = −5, w0 = 1.

Choosing complex values for α0, α1, β0 and solving for the five remaining coefficients from the system
of bilinear equations defined by (14) and (15) with the ‘‘+’’ sign, we obtain

α0 = 1, α1 = 1− i, α2 = −1+ 4 i, α3 = −1+ 9 i,

β0 = −1+ i, β1 = −
1
3
+ 2 i, β2 = −

5
3
− 5 i, β3 = −5− 10 i.

The components of the hodograph defined through (4) by the cubic complex polynomials α(t), β(t)
are then

x′(t) = −48 t6 + 216 t5 − 276 t4 + 48 t3 + 20 t2 − 2 t − 1,
y′(t) = −120 t6 + 600 t5 − 872 t4 + 208 t3 + 18 t2 − 2 t − 2,
z ′(t) = −80 t6 + 384 t5 − 552 t4 + 128 t3 + 12 t2 − 2.

This hodograph is primitive, and we have

σ(t) = |r′(t)| = 152 t6 − 744 t5 + 1068 t4 − 248 t3 − 26 t2 + 2 t + 3,

|r′(t)× r′′(t)| = 2 |12 t4 − 8 t3 + 12 t2 − 12 t + 1| σ(t).

In this case, the curvature/torsion ratio has the constant value |κ(t)/τ(t)| = 1/8. Note that, with
the chosen values for the coefficients of h(t), the quantity (44) is 0, so the fact that the curve is
helical is consistent with Proposition 4. One can verify that for this curve, α(t)/β(t)may be regarded
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Fig. 2. The degree 7 non-helical DPH curves of Examples 9 and 10.

as arising from the re-parameterization defined by (24) with (f0, f1, f2, f3) = (1, 2,−5,−10) and
(g0, g1, g2, g3) = (−1,− 53 ,

11
3 , 7) applied to the line/circle form (16)with (a0, a1) = (− 3−3 i,− 5−

6 i) and (b0, b1) = (5, 9+ i).

For the Bernstein coefficientsAl = αl + kβl of the quaternion polynomial (32) we obtain

A0 = 1+ j− k, A1 = 1− i+ 2 j−
1
3
k,

A2 = −1+ 4 i− 5 j−
5
3
k, A3 = −1+ 9 i− 10 j− 5 k,

and we note that A1, A2 can be written in terms of A0, A3 in the form (27) where, with k = 3, the
values of coefficients (28) are

c10 =
8
9
, c13 = −

1
9
, c20 = −

5
9
, c23 =

4
9
.

Example 9 (deg(h) = 4, deg(w) = 0, Non-helical). Using equations (14) again, we now choose the
numerical values

h0 = 1, h1 = 2, h2 = 2, h3 = 2, h4 = 1, w0 = 1.

Choosing complex values for α0, α1, β0 and solving for the five remaining coefficients from the system
of bilinear equations defined by (14) and (15) with the ‘‘−’’ sign, we obtain

α0 = 1, α1 = 1, α2 = 2+ i, α3 = 2+ 3 i,

β0 = −1, β1 = −
2
3
, β2 = −

2
3
− i, β3 = −2 i.

These give the hodograph components

x′(t) = 2 t6 − 4 t5 + 6 t4 + 3 t2 + 2 t,
y′(t) = −4 t6 + 16 t5 − 28 t4 + 12 t3 − 8 t2 + 2 t − 2,
z ′(t) = 4 t6 − 12 t5 + 12 t4 + 4 t3.

This hodograph is also primitive, with

σ(t) = |r′(t)| = 6 t6 − 20 t5 + 30 t4 − 8 t3 + 9 t2 − 2 t + 2,

|r′(t)× r′′(t)| = 2 |2 t4 − 4 t3 + 6 t2 − 4 t − 1| σ(t).

In this case, the curvature/torsion ratio is non-constant, namely

κ(t)
τ (t)
=
|2 t4 − 4 t3 + 6 t2 − 4 t − 1|
2 t (4 t3 + t2 − 3 t + 6)

.

For the specified coefficients of h(t), the quantity (44) has the value∆ = −9, so the non-helical nature
of this curve is consistentwith Proposition 4. This degree 7non-helical DPHcurve is illustrated in Fig. 2.
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5.5. Example of Beltran and Monterde

Example 10 (Beltran and Monterde). Beltran and Monterde (2007) identify a degree 7 double PH
curve r(t), given by

x(t) =
1
21
t7 +

1
5
t5 + t3 − 3 t, y(t) = −

1
2
t4 + 3 t2, z(t) = −2 t3.

This curve has a primitive hodograph, and satisfies

σ(t) =
t6 + 3 t4 + 9 t2 + 9

3
, |r′(t)× r′′(t)| = 2

(
t2 + 1

) (
t6 + 3 t4 + 9 t2 + 9

)
.

The curvature/torsion ratio for this curve is non-constant, namely

κ(t)
τ (t)
= −

9 (t2 + 1)2

2 t6 + 9 t4 − 9
.

The cubic polynomials α(t), β(t) have the Bernstein coefficients

α0 = 0, α1 =
1
√
3
i, α2 =

1
√
3
(1+ 2 i), α3 =

1
√
3
(3+ 2 i),

β0 = β1 = β2 = β3 =
√
3 i,

and are thus given by

α(t) =
√
3
[
t2 +

(
t −
1
3
t3
)
i
]
, β(t) =

√
3 i.

In this case, the proportionality polynomial is

α(t)β′(t)− α′(t)β(t) = −3 (t + i)2.

Hence, this curve satisfies the double PH condition (7) with deg(h) = 0 and deg(w) = 1. This is
a special (degenerate) DPH curve of degree 7 — for which α(t)β′(t) − α′(t)β(t) is just quadratic,
and is thus deficient in degree compared to the generic case of a quartic. It may be interpreted as a
special coincidence of the cases deg(h) = 0, deg(w) = 2 and deg(h) = 2, deg(w) = 1 discussed in
Sections 2.2.1 and 2.2.2 — in the former case,w(t) is considered to exhibit a degree reduction from 2
to 1; in the latter case, h(t) is considered to exhibit a degree reduction from 2 to 0.
For this curve, the quaternion polynomial (45) has Bernstein coefficients

A0 =
√
3 j, A1 =

√
3
(
1
3
i+ j

)
, A2 =

√
3
(
1
3
+
2
3
i+ j

)
,

A3 =
√
3
(
1+

2
3
i+ j

)
.

Substituting into (46), the Bézier control points of this curve are found to be

p0 = (0.0000, 0.0000, 0.0000), p1 = (−0.4286, 0.0000, 0.0000),
p2 = (−0.8571, 0.1429, 0.0000), p3 = (−1.2571, 0.4286,−0.0571),
p4 = (−1.6000, 0.8429,−0.2286), p5 = (−1.8476, 1.3571,−0.5714),
p6 = (−1.9429, 1.9286,−1.1429), p7 = (−1.7524, 2.5000,−2.0000).

This curve is illustrated, together with its control polygon, in Fig. 2.
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6. Closure

A complete categorization of double Pythagorean-hodograph (DPH) curves of degrees 3, 5, and 7
has been presented, together with algorithms for their construction and a representative selection of
computed examples. Such DPH curves possess the attractive distinguishing property that their Frenet
frames, and curvature and torsion functions, have a rational dependence on the curve parameter, and
they incorporate all helical polynomial curves.
All spatial PH cubics are DPH curves — they are also helical, and admit simple characterizations in

terms of the Bézier control polygon geometry (Farouki and Sakkalis, 1994). As noted in Beltran and
Monterde (2007), the DPH curves of degree 5 correspond to the helical spatial PH quintics, discussed
in Beltran and Monterde (2007) and Farouki et al. (2004). The focus of this paper was therefore on
the degree 7 DPH curves, which admit both helical and non-helical instances (Beltran and Monterde,
2007). In particular, theHopfmap formulation (7) of theDPH condition – specified in terms of complex
polynomials α(t), β(t) – was invoked to categorize the degree 7 DPH curves in terms of the possible
combinations of the degrees for the real polynomial h(t) and the complex polynomialw(t) in (7).
For each category of the degree 7 DPH curves, a system of equations and compatibility constraints

was derived, whose solutions facilitate the construction of representative example curves. Moreover,
simple criteria were formulated to distinguish between helical and non-helical degree 7 DPH curves
in each category. For the helical DPH curves, a more intuitive construction — based on the approach
of Monterde (in press) that uses inverse stereographic projection of a line/circle to generate a
circular tangent indicatrix — was also described. Starting from lines/circles parameterized in terms
of rational linear complex functions, all higher-order representations are generated by multiplying
the numerator and denominator by a complex polynomial, by a (real) non-linear rational re-
parameterization, or by a combination of these schemes.
Although the results of this paper have been couched primarily in terms of the Hopf map

representation, they are easily translated into the language of the quaternionmodel (more commonly
employed in practice), as described in the companion paper (Farouki et al., 2009). Finally, we note
that the construction algorithms for degree 7 DPH curves described herein are mostly algebraic in
character, and hence do not offer much insight into the shape properties of the resulting curves.
For geometric design applications, it would be desirable to formulate more geometrically-intuitive
constructions, such asHermite interpolation— such algorithms are a fruitful topic for further research.
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