38,175 research outputs found

    Changes in the Frontotemporal Cortex and Cognitive Correlates in First-Episode Psychosis

    Get PDF
    Background: Loss of cortical volume in frontotemporal regions has been reported in patients with schizophrenia and their relatives. Cortical area and thickness are determined by different genetic processes, and measuring these parameters separately may clarify disturbances in corticogenesis relevant to schizophrenia. Our study also explored clinical and cognitive correlates of these parameters.Methods: Thirty-seven patients with first-episode psychosis (34 schizophrenia, 3 schizoaffective disorder) and 38 healthy control subjects matched for age and sex took part in the study. Imaging was performed on an magnetic resonance imaging 1.5-T scanner. Area and thickness of the frontotemporal cortex were measured using a surface-based morphometry method (Freesurfer). All subjects underwent neuropsychologic testing that included measures of premorbid and current IQ, working and verbal memory, and executive function.Results: Reductions in cortical area, more marked in the temporal cortex, were present in patients. Overall frontotemporal cortical thickness did not differ between groups, although regional thinning of the right superior temporal region was observed in patients. There was a significant association of both premorbid IQ and IQ at disease onset with area, but not thickness, of the frontotemporal cortex, and working memory span was associated with area of the frontal cortex. These associations remained significant when only patients with schizophrenia were considered.Conclusions: Our results suggest an early disruption of corticogenesis in schizophrenia, although the effect of subsequent environmental factors cannot be excluded. In addition, cortical abnormalities are subject to regional variations and differ from those present in neurodegenerative diseases

    Evaluation of atlas-based segmentation of hippocampi in healthy humans

    Get PDF
    Introduction and aim: Region of interest (ROI)-based functional magnetic resonance imaging (fMRI) data analysis relies on extracting signals from a specific area which is presumed to be involved in the brain activity being studied. The hippocampus is of interest in many functional connectivity studies for example in epilepsy as it plays an important role in epileptogenesis. In this context, ROI may be defined using different techniques. Our study aims at evaluating the spatial correspondence of hippocampal ROIs obtained using three brain atlases with hippocampal ROI obtained using an automatic segmentation algorithm dedicated to the hippocampus. Material and methods: High-resolution volumetric T1-weighted MR images of 18 healthy volunteers (five females) were acquired on a 3T scanner. Individual ROIs for both hippocampi of each subject were segmented from the MR images using an automatic hippocampus and amygdala segmentation software called SACHA providing the gold standard ROI for comparison with the atlas-derived results. For each subject, hippocampal ROIs were also obtained using three brain atlases: PickAtlas available as a commonly used software toolbox; automated anatomical labeling (AAL) atlas included as a subset of ROI into PickAtlas toolbox and a frequency-based brain atlas by Hammers et al. The levels of agreement between the SACHA results and those obtained using the atlases were assessed based on quantitative indices measuring volume differences and spatial overlap. The comparison was performed in standard Montreal Neurological Institute space, the registration being obtained with SPM5 (http://www.fil.ion.ucl.ac.uk/spm/). Results: The mean volumetric error across all subjects was 73% for hippocampal ROIs derived from AAL atlas; 20% in case of ROIs derived from the Hammers atlas and 107% for ROIs derived from PickAtlas. The mean false-positive and false-negative classification rates were 60% and 10% respectively for the AAL atlas; 16% and 32% for the Hammers atlas and 6% and 72% for the PickAtlas. Conclusion: Though atlas-based ROI definition may be convenient, the resulting ROIs may be poor representations of the hippocampus in some studies critical to under- or oversampling. Performance of the AAL atlas was inferior to that of the Hammers atlas. Hippocampal ROIs derived from PickAtlas are highly significantly smaller, and this results in the worst performance out of three atlases. It is advisable that the defined ROIs should be verified with knowledge of neuroanatomy before using it for further data analysis

    Neural indicators of fatigue in chronic diseases : A systematic review of MRI studies

    Get PDF
    The authors would like to thank the Sir Jules Thorn Charitable Trust for their financial support.Peer reviewedPublisher PD

    Functional specialization within rostral prefrontal cortex (Area 10): a meta-analysis

    Get PDF
    One of the least well understood regions of the human brain is rostral prefrontal cortex, approximating Brodmann's area 10. Here, we investigate the possibility that there are functional subdivisions within this region by conducting a meta-analysis of 104 functional neuroimaging studies (using positron emission tomography/functional magnetic resonance imaging). Studies involving working memory and episodic memory retrieval were disproportionately associated with lateral activations, whereas studies involving mentalizing (i.e., attending to one's own emotions and mental states or those of other agents) were disproportionately associated with medial activations. Functional variation was also observed along a rostral-caudal axis, with studies involving mentalizing yielding relatively caudal activations and studies involving multiple-task coordination yielding relatively rostral activations. A classification algorithm was trained to predict the task, given the coordinates of each activation peak. Performance was well above chance levels (74% for the three most common tasks; 45% across all eight tasks investigated) and generalized to data not included in the training set. These results point to considerable functional segregation within rostral prefrontal cortex

    High-density speckle contrast optical tomography (SCOT) for three dimensional tomographic imaging of the small animal brain

    Get PDF
    High-density speckle contrast optical tomography (SCOT) utilizing tens of thousands of source-detector pairs, was developed for in vivo imaging of blood flow in small animals. The reduction in cerebral blood flow (CBF) due to local ischemic stroke in a mouse brain was transcanially imaged and reconstructed in three dimensions. The reconstructed volume was then compared with corresponding magnetic resonance images demonstrating that the volume of reduced CBF agrees with the infarct zone at twenty-four hours.Peer ReviewedPostprint (author's final draft

    Introducing alternative-based thresholding for defining functional regions of interest in fMRI

    Get PDF
    In fMRI research, one often aims to examine activation in specific functional regions of interest (fROIs). Current statistical methods tend to localize fROIs inconsistently, focusing on avoiding detection of false activation. Not missing true activation is however equally important in this context. In this study, we explored the potential of an alternative-based thresholding (ABT) procedure, where evidence against the null hypothesis of no effect and evidence against a prespecified alternative hypothesis is measured to control both false positives and false negatives directly. The procedure was validated in the context of localizer tasks on simulated brain images and using a real data set of 100 runs per subject. Voxels categorized as active with ABT can be confidently included in the definition of the fROI, while inactive voxels can be confidently excluded. Additionally, the ABT method complements classic null hypothesis significance testing with valuable information by making a distinction between voxels that show evidence against both the null and alternative and voxels for which the alternative hypothesis cannot be rejected despite lack of evidence against the null

    Quantitative Susceptibility Mapping: Contrast Mechanisms and Clinical Applications.

    Get PDF
    Quantitative susceptibility mapping (QSM) is a recently developed MRI technique for quantifying the spatial distribution of magnetic susceptibility within biological tissues. It first uses the frequency shift in the MRI signal to map the magnetic field profile within the tissue. The resulting field map is then used to determine the spatial distribution of the underlying magnetic susceptibility by solving an inverse problem. The solution is achieved by deconvolving the field map with a dipole field, under the assumption that the magnetic field is a result of the superposition of the dipole fields generated by all voxels and that each voxel has its unique magnetic susceptibility. QSM provides improved contrast to noise ratio for certain tissues and structures compared to its magnitude counterpart. More importantly, magnetic susceptibility is a direct reflection of the molecular composition and cellular architecture of the tissue. Consequently, by quantifying magnetic susceptibility, QSM is becoming a quantitative imaging approach for characterizing normal and pathological tissue properties. This article reviews the mechanism generating susceptibility contrast within tissues and some associated applications
    corecore