216 research outputs found

    3D Object Reconstruction from Imperfect Depth Data Using Extended YOLOv3 Network

    Get PDF
    State-of-the-art intelligent versatile applications provoke the usage of full 3D, depth-based streams, especially in the scenarios of intelligent remote control and communications, where virtual and augmented reality will soon become outdated and are forecasted to be replaced by point cloud streams providing explorable 3D environments of communication and industrial data. One of the most novel approaches employed in modern object reconstruction methods is to use a priori knowledge of the objects that are being reconstructed. Our approach is different as we strive to reconstruct a 3D object within much more difficult scenarios of limited data availability. Data stream is often limited by insufficient depth camera coverage and, as a result, the objects are occluded and data is lost. Our proposed hybrid artificial neural network modifications have improved the reconstruction results by 8.53 which allows us for much more precise filling of occluded object sides and reduction of noise during the process. Furthermore, the addition of object segmentation masks and the individual object instance classification is a leap forward towards a general-purpose scene reconstruction as opposed to a single object reconstruction task due to the ability to mask out overlapping object instances and using only masked object area in the reconstruction process

    Vision-Based navigation system for unmanned aerial vehicles

    Get PDF
    Mención Internacional en el título de doctorThe main objective of this dissertation is to provide Unmanned Aerial Vehicles (UAVs) with a robust navigation system; in order to allow the UAVs to perform complex tasks autonomously and in real-time. The proposed algorithms deal with solving the navigation problem for outdoor as well as indoor environments, mainly based on visual information that is captured by monocular cameras. In addition, this dissertation presents the advantages of using the visual sensors as the main source of data, or complementing other sensors in providing useful information; in order to improve the accuracy and the robustness of the sensing purposes. The dissertation mainly covers several research topics based on computer vision techniques: (I) Pose Estimation, to provide a solution for estimating the 6D pose of the UAV. This algorithm is based on the combination of SIFT detector and FREAK descriptor; which maintains the performance of the feature points matching and decreases the computational time. Thereafter, the pose estimation problem is solved based on the decomposition of the world-to-frame and frame-to-frame homographies. (II) Obstacle Detection and Collision Avoidance, in which, the UAV is able to sense and detect the frontal obstacles that are situated in its path. The detection algorithm mimics the human behaviors for detecting the approaching obstacles; by analyzing the size changes of the detected feature points, combined with the expansion ratios of the convex hull constructed around the detected feature points from consecutive frames. Then, by comparing the area ratio of the obstacle and the position of the UAV, the method decides if the detected obstacle may cause a collision. Finally, the algorithm extracts the collision-free zones around the obstacle, and combining with the tracked waypoints, the UAV performs the avoidance maneuver. (III) Navigation Guidance, which generates the waypoints to determine the flight path based on environment and the situated obstacles. Then provide a strategy to follow the path segments and in an efficient way and perform the flight maneuver smoothly. (IV) Visual Servoing, to offer different control solutions (Fuzzy Logic Control (FLC) and PID), based on the obtained visual information; in order to achieve the flight stability as well as to perform the correct maneuver; to avoid the possible collisions and track the waypoints. All the proposed algorithms have been verified with real flights in both indoor and outdoor environments, taking into consideration the visual conditions; such as illumination and textures. The obtained results have been validated against other systems; such as VICON motion capture system, DGPS in the case of pose estimate algorithm. In addition, the proposed algorithms have been compared with several previous works in the state of the art, and are results proves the improvement in the accuracy and the robustness of the proposed algorithms. Finally, this dissertation concludes that the visual sensors have the advantages of lightweight and low consumption and provide reliable information, which is considered as a powerful tool in the navigation systems to increase the autonomy of the UAVs for real-world applications.El objetivo principal de esta tesis es proporcionar Vehiculos Aereos no Tripulados (UAVs) con un sistema de navegacion robusto, para permitir a los UAVs realizar tareas complejas de forma autonoma y en tiempo real. Los algoritmos propuestos tratan de resolver problemas de la navegacion tanto en ambientes interiores como al aire libre basandose principalmente en la informacion visual captada por las camaras monoculares. Ademas, esta tesis doctoral presenta la ventaja de usar sensores visuales bien como fuente principal de datos o complementando a otros sensores en el suministro de informacion util, con el fin de mejorar la precision y la robustez de los procesos de deteccion. La tesis cubre, principalmente, varios temas de investigacion basados en tecnicas de vision por computador: (I) Estimacion de la Posicion y la Orientacion (Pose), para proporcionar una solucion a la estimacion de la posicion y orientacion en 6D del UAV. Este algoritmo se basa en la combinacion del detector SIFT y el descriptor FREAK, que mantiene el desempeno del a funcion de puntos de coincidencia y disminuye el tiempo computacional. De esta manera, se soluciona el problema de la estimacion de la posicion basandose en la descomposicion de las homografias mundo a imagen e imagen a imagen. (II) Deteccion obstaculos y elusion colisiones, donde el UAV es capaz de percibir y detectar los obstaculos frontales que se encuentran en su camino. El algoritmo de deteccion imita comportamientos humanos para detectar los obstaculos que se acercan, mediante el analisis de la magnitud del cambio de los puntos caracteristicos detectados de referencia, combinado con los ratios de expansion de los contornos convexos construidos alrededor de los puntos caracteristicos detectados en frames consecutivos. A continuacion, comparando la proporcion del area del obstaculo y la posicion del UAV, el metodo decide si el obstaculo detectado puede provocar una colision. Por ultimo, el algoritmo extrae las zonas libres de colision alrededor del obstaculo y combinandolo con los puntos de referencia, elUAV realiza la maniobra de evasion. (III) Guiado de navegacion, que genera los puntos de referencia para determinar la trayectoria de vuelo basada en el entorno y en los obstaculos detectados que encuentra. Proporciona una estrategia para seguir los segmentos del trazado de una manera eficiente y realizar la maniobra de vuelo con suavidad. (IV) Guiado por Vision, para ofrecer soluciones de control diferentes (Control de Logica Fuzzy (FLC) y PID), basados en la informacion visual obtenida con el fin de lograr la estabilidad de vuelo, asi como realizar la maniobra correcta para evitar posibles colisiones y seguir los puntos de referencia. Todos los algoritmos propuestos han sido verificados con vuelos reales en ambientes exteriores e interiores, tomando en consideracion condiciones visuales como la iluminacion y las texturas. Los resultados obtenidos han sido validados con otros sistemas: como el sistema de captura de movimiento VICON y DGPS en el caso del algoritmo de estimacion de la posicion y orientacion. Ademas, los algoritmos propuestos han sido comparados con trabajos anteriores recogidos en el estado del arte con resultados que demuestran una mejora de la precision y la robustez de los algoritmos propuestos. Esta tesis doctoral concluye que los sensores visuales tienen las ventajes de tener un peso ligero y un bajo consumo y, proporcionar informacion fiable, lo cual lo hace una poderosa herramienta en los sistemas de navegacion para aumentar la autonomia de los UAVs en aplicaciones del mundo real.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Carlo Regazzoni.- Secretario: Fernando García Fernández.- Vocal: Pascual Campoy Cerver

    Survey of Visual and Force/Tactile Control of Robots for Physical Interaction in Spain

    Get PDF
    Sensors provide robotic systems with the information required to perceive the changes that happen in unstructured environments and modify their actions accordingly. The robotic controllers which process and analyze this sensory information are usually based on three types of sensors (visual, force/torque and tactile) which identify the most widespread robotic control strategies: visual servoing control, force control and tactile control. This paper presents a detailed review on the sensor architectures, algorithmic techniques and applications which have been developed by Spanish researchers in order to implement these mono-sensor and multi-sensor controllers which combine several sensors

    A learning approach to swarm-based path detection and tracking

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de ComputadoresThis dissertation presents a set of top-down modulation mechanisms for the modulation of the swarm-based visual saliency computation process proposed by Santana et al. (2010) in context of path detection and tracking. In the original visual saliency computation process, two swarms of agents sensitive to bottom-up conspicuity information interact via pheromone-like signals so as to converge on the most likely location of the path being sought. The behaviours ruling the agents’motion are composed of a set of perception-action rules that embed top-down knowledge about the path’s overall layout. This reduces ambiguity in the face of distractors. However, distractors with a shape similar to the one of the path being sought can still misguide the system. To mitigate this issue, this dissertation proposes the use of a contrast model to modulate the conspicuity computation and the use of an appearance model to modulate the pheromone deployment. Given the heterogeneity of the paths, these models are learnt online. Using in a modulation context and not in a direct image processing, the complexity of these models can be reduced without hampering robustness. The result is a system computationally parsimonious with a work frequency of 20 Hz. Experimental results obtained from a data set encompassing 39 diverse videos show the ability of the proposed model to localise the path in 98.67 % of the 29789 evaluated frames

    Development of Sensory-Motor Fusion-Based Manipulation and Grasping Control for a Robotic Hand-Eye System

    Get PDF

    Drone-based panorama stitching: A study of SIFT, FLANN, and RANSAC techniques

    Get PDF
    This paper documents the tasks I accomplished during my internship and project at UPC. It provides an overview of the project's structure, objectives, and task distribution. A summary is given for the Web Application part of the project, which was handled by my teammate. This paper also details the drone and payloads used in the project and their functionalities. In the parts I was responsible for, I conducted thorough investigations and tests on the Raspberry Pi camera to obtain the best image quality during every flight test. I delved into the entire process of basic panorama stitching, encompassing features detection, descriptors matching, and transformation estimation based on the homography matrix. I compared popular feature detectors and descriptor matchers in terms of processing speed and performance, subsequently developing a panorama stitching algorithm for images captured by the drone. Finally, I provided a detailed discussion on some extra tasks that were not completed and points that could be improved upon. The paper not only stands as a detailed account of our contributions but also serves as an inspiration and a guide for future enhancements of drone-based panorama stitching

    3D Modelling for Improved Visual Traffic Analytics

    Get PDF
    Advanced Traffic Management Systems utilize diverse types of sensor networks with the goal of improving mobility and safety of transportation systems. These systems require information about the state of the traffic configuration, including volume, vehicle speed, density, and incidents, which are useful in applications such as urban planning, collision avoidance systems, and emergency vehicle notification systems, to name a few. Sensing technologies are an important part of Advanced Traffic Management Systems that enable the estimation of the traffic state. Inductive Loop Detectors are often used to sense vehicles on highway roads. Although this technology has proven to be effective, it has limitations. Their installation and replacement cost is high and causes traffic disruptions, and their sensing modality provides very limited information about the vehicles being sensed. No vehicle appearance information is available. Traffic camera networks are also used in advanced traffic monitoring centers where the cameras are controlled by a remote operator. The amount of visual information provided by such cameras can be overwhelmingly large, which may cause the operators to miss important traffic events happening in the field. This dissertation focuses on visual traffic surveillance for Advanced Traffic Management Systems. The focus is on the research and development of computer vision algorithms that contribute to the automation of highway traffic analytics systems that require estimates of traffic volume and density. This dissertation makes three contributions: The first contribution is an integrated vision surveillance system called 3DTown, where cameras installed at a university campus together with algorithms are used to produce vehicle and pedestrian detections to augment a 3D model of the university with dynamic information from the scene. A second major contribution is a technique for extracting road lines from highway images that are used to estimate the tilt angle and the focal length of the camera. This technique is useful when the operator changes the camera pose. The third major contribution is a method to automatically extract the active road lanes and model the vehicles in 3D to improve the vehicle count estimation by individuating 2D segments of imaged vehicles that have been merged due to occlusions

    Sistemas de suporte à condução autónoma adequados a plataforma robótica 4-wheel skid-steer: percepção, movimento e simulação

    Get PDF
    As competições de robótica móvel desempenham papel preponderante na difusão da ciência e da engenharia ao público em geral. E também um espaço dedicado ao ensaio e comparação de diferentes estratégias e abordagens aos diversos desafios da robótica móvel. Uma das vertentes que tem reunido maior interesse nos promotores deste género de iniciativas e entre o público em geral são as competições de condução autónoma. Tipicamente as Competi¸c˜oes de Condução Autónoma (CCA) tentam reproduzir um ambiente semelhante a uma estrutura rodoviária tradicional, no qual sistemas autónomos deverão dar resposta a um conjunto variado de desafios que vão desde a deteção da faixa de rodagem `a interação com distintos elementos que compõem uma estrutura rodoviária típica, do planeamento trajetórias à localização. O objectivo desta dissertação de mestrado visa documentar o processo de desenho e concepção de uma plataforma robótica móvel do tipo 4-wheel skid-steer para realização de tarefas de condução autónoma em ambiente estruturado numa pista que pretende replicar uma via de circulação automóvel dotada de sinalética básica e alguns obstáculos. Paralelamente, a dissertação pretende também fazer uma análise qualitativa entre o processo de simulação e a sua transposição para uma plataforma robótica física. inferir sobre a diferenças de performance e de comportamento.Mobile robotics competitions play an important role in the diffusion of science and engineering to the general public. It is also a space dedicated to test and compare different strategies and approaches to several challenges of mobile robotics. One of the aspects that has attracted more the interest of promoters for this kind of initiatives and general public is the autonomous driving competitions. Typically, Autonomous Driving Competitions (CCAs) attempt to replicate an environment similar to a traditional road structure, in which autonomous systems should respond to a wide variety of challenges ranging from lane detection to interaction with distinct elements that exist in a typical road structure, from planning trajectories to location. The aim of this master’s thesis is to document the process of designing and endow a 4-wheel skid-steer mobile robotic platform to carry out autonomous driving tasks in a structured environment on a track that intends to replicate a motorized roadway including signs and obstacles. In parallel, the dissertation also intends to make a qualitative analysis between the simulation process and the transposition of the developed algorithm to a physical robotic platform, analysing the differences in performance and behavior
    corecore