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Abstract

This dissertation presents a set of top-down modulation mechanisms for the modulation of the
swarm-based visual saliency computation process proposed by Santana et al. (2010) in context
of path detection and tracking. In the original visual saliency computation process, two swarms of
agents sensitive to bottom-up conspicuity information interact via pheromone-like signals so as to
converge on the most likely location of the path being sought. The behaviours ruling the agents’
motion are composed of a set of perception-action rules that embed top-down knowledge about the
path’s overall layout. This reduces ambiguity in the face of distractors. However, distractors with a
shape similar to the one of the path being sought can still misguide the system. To mitigate this issue,
this dissertation proposes the use of a contrast model to modulate the conspicuity computation and
the use of an appearance model to modulate the pheromone deployment. Given the heterogeneity
of the paths, these models are learnt online. Using in a modulation context and not in a direct
image processing, the complexity of these models can be reduced without hampering robustness.
The result is a system computationally parsimonious with a work frequency of 20 Hz. Experimental
results obtained from a data set encompassing 39 diverse videos show the ability of the proposed
model to localise the path in 98.67 % of the 29789 evaluated frames.

keywords: swarm cognition, monocular path detection, visual saliency, bio-inspired methods,
off-road navigation.
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Resumo

Esta dissertação apresenta um conjunto de mecanismos para modulação do processo de com-
putação de saliência visual proposto por Santana et al. (2010) no contexto da detecção e seguimento
de caminhos. No processo de computação de saliência visual original, dois enxames de agentes
sensíveis à informação de conspicuidade visual interagem através de feromonas virtuais, de modo
a convergirem para a localização do caminho procurado. Os comportamentos que regem o deslo-
camento destes agentes são especificados através de um conjunto de regras percepção-acção, que
incorporam conhecimento de alto nível sobre a morfologia de um caminho típico. Este conhecimento
reduz a ambiguidade face a regiões salientes no campo visual que não pertencem ao caminho. No
entanto, se estas regiões forem semelhantes à morfologia de caminhos típicos, podem desviar a
actividade do enxame para fora do caminho. Com o objectivo de resolver este problema, esta disser-
tação propõe a utilização de um modelo de contraste para modular a computação da conspicuidade
e de um modelo de aparência para modular o depósito de feromona. Dada a heterogeneidade dos
caminhos, estes modelos são aprendidos em tempo de execução. Ao serem usados num contexto
de modulação, e não para um processamento directo da imagem, a complexidade dos modelos
pode ser reduzida sem com isso limitar a robustez. O resultado é um sistema computacionalmente
parsimonioso capaz de funcionar a uma frequência de 20 Hz. Resultados experimentais, obtidos
a partir de um conjunto de 39 vídeos, mostram a capacidade do modelo a localizar o caminho em
98,67 % do total de 29789 frames avaliados.

palavras-chave: cognição de enxame, detecção de caminhos monocular, saliência visual, méto-
dos bio-inspirados, navegação todo-o-terreno.
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Chapter 1

Introduction

Paths always played an important role on human civilisations. Since the early days of mankind,
paths were built to create trade routes between small remote settlements in search of items not
available in their own locality. In addition, paths usually provide safe passages in demanding envi-
ronments, thus reducing the chances of the traveller getting lost or incurring in dead-lock situations.
Following this observation, field robots should also benefit from exploiting these visual structures.
Furthermore, the presence of these paths can also be regard as an indirect visual cue that can be
used to help performing a direct free-space visual assessment. In particular, the latter inference is
achieved by analysing the terrain’s surface volumetric properties, using range information provided
by stereo-vision systems or laser scanners (Batavia and Singh, 2001; Lacroix et al., 2002; Manduchi
et al., 2005; Broggi et al., 2005; Seraji, 2006; Konolige et al., 2009; Kolter et al., 2009; Rusu et al.,
2009; Santana et al., 2011). Hence, the motivation behind this dissertation resides in the fact that
off-road robots benefit from having the perceptual capabilities required to exploit paths, saving com-
putation time in obstacle detection and path planning. A practical application of path following can be
environmental surveillance and protection.

Detecting paths can be rather complex given their wide variety, ranging from structured paved
roads to nature trails with varying shape and tread materials. This high diversity difficults the task
of path detection, due to a lack of a well defined path’s geometric structure and appearance infor-
mation. Concretely, this hampers a straightforward definition and learning of either path or back-
ground models. Furthermore, nature trails usually impose a defiant acquisition process of helpful
three-dimensional information, as they not always have a recognisable volumetric signature in typical
off-road environments. Therefore, model-free solutions (or as free as possible) are essential for the
development of robust and general path detection systems.

Paths are usually conspicuous structures in the visual field of the robot. Following this obser-
vation to help the task of path detection, the use of visual salience is exploited in a swarm-based
model proposed by Santana et al. (2010), which was shown to operate where previous models fail.
The merit of this approach is to not impose any hard constraints on the appearance or shape of both
path and background. This happens in part because visual salience and path location are positively
correlated. This model assumes the paths’ overall layout is more predictable than other visual fea-
tures (e.g. colour). This a priori knowledge is embedded in a motion behaviours set of simple swarm

1



Chapter 1. Introduction

agents that inhabit the visual bottom-up conspicuity maps (products of visual salience computation).
Each path created by an agent is taken as a hypothesis. Moreover, these agents interact with each
other, materialising the metaphor of collective intelligence (Franks, 1989) exhibited by social insects.
The swarm’s goal is to ensure that the agents cooperatively build up, through these pheromone-like
interactions, a robust approximation of the actual path’s skeleton. To accumulate evidence across
frames, the model relies on a dynamic neural field (Amari, 1977; Rougier and Vitay, 2006), extended
with a mechanism to compensate robot motion.

The presence of too many distractors or a considerably heterogeneity of the path itself can lead
to situations where the bottom-up conspicuity maps are not so well behaved, creating ambiguities on
trail hypotheses and, on the worst case, temporarily misleading the swarm off the path. This tracking
challenge can be reduced by applying the general concept of top-down knowledge, boosting the set
of visual features (e.g., colour), known beforehand to better describe the object being sought (Frin-
trop et al., 2005; Navalpakkam and Itti, 2005). This dissertation exploits this observation to improve
the original swarm-based model proposed by Santana et al. (2010). Moreover, visual features can be
considerably unpredictable in the case of trails in natural environments. Therefore, top-down knowl-
edge about paths must be learnt and updated on-line, increasing robustness to sudden changes
in the path. To obtain this goal, this dissertation proposes a simple learning mechanism to learn
path appearance and contrast models. The activity of each agent is top-down biased by the appear-
ance and contrast-based models. Moreover, pheromone is deployed proportionally to the likelihood
between the agent’s trajectory and the path. As a result of numerous pheromone-like interactions,
this mechanism allows the swarm activity to be spatially biased according to the expected path’s
appearance. This approach renders a cross-influence between the perception of appearance and
contrast, and the perception of shape, which promotes robustness without hampering computational
parsimony.

To validate the proposed model, experimental results were obtained from a data set of 39 diverse
videos. The results showed that the model herein proposed is able to localise the path in the robot’s
visual field in 98.67 % of the 29789 evaluated frames at 20 Hz, whereas the original model attained
84.66 % at 20 Hz on the same data set.

1.1 Dissertation Outline

This dissertation is organised as follows:

Chapter 2 reviews the state-of-the-art for road and trail detection;

Chapter 3 presents the supporting concepts of this work. In particular, an overview of the original
path detector (Santana, 2011; Santana et al., 2010) is provided. Namely, the creation of bottom-
up visual attention maps, the deployment and execution of swarm agents, and the temporal
filter used to integrate evidence across time and to promote the swarm perceptual grouping,
are outlined.

Chapter 4 describes the extensions proposed to the original model (Santana, 2011; Santana et al.,
2010). Namely, the addition of top-down knowledge models about the appearance and contrast

2



1.1. Dissertation Outline

of the path, and a learning mechanism to update these models;

Chapter 5 presents the experimental setup and the set of results obtained from a data set of 39

diverse videos;

Chapter 6 aggregates a set of conclusions, main contributions of this dissertation, and further re-
search opportunities on the subject.

3
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Chapter 2

Related Work

There are different path detection methods that can be applied in diverse scenarios, given the
wide variety of paths. Some methods are more suitable for structured paved roads, where others
are better applied to nature trails. In particular, several road detection methods have been proposed
and fielded successfully. These methods exploit the intrinsic characteristics of roads, such as: well
defined boundaries; distinct appearance with respect to the surroundings; and they are somewhat
monotonous structures, i.e., sudden changes in their shape seldom occurs. Conversely, nature trails
are rather misbehaved structures. In some scenarios, there is a lack of strong edges delimiting them
and the surroundings can be blended with the trail. As trail detection methods rely on work developed
for the road domain, a survey is first done on road detection methods.

2.1 Road Detection Methods

The detection and tracking of paved roads is facilitated by the predictable appearance of the
road’s surface and by its delimiting strong edges. However, this is not the case of ill-structured
unpaved rural roads. The typical solution on this latter case is to use a region-based approach to
segment the road region from its surroundings. This segmentation can be achieved by a pixel-wise
classification mechanism that can either be trained off-line or on-line. Off-line learning is done from
a set of already labelled images (Chaturvedi and Malcolm, 2005; Alon et al., 2006), whereas on-line
learning gives a more adaptive and robust operation, as it is done from a set of reference regions in
the input image that the system was able to automatically label as road/non-road. The capability to
discern autonomously between target and non-target regions is the challenge of the latter approach.
A possible solution to this problem is to exploit short range volumetric information obtained from
other sensors (e.g., laser or stereo) to discriminate the road plane from others (Thrun et al., 2006;
Tue-Cuong et al., 2008). Fig. 2.1 depicts a stereo-based road detection system architecture.

Alternatively, one can assume that some regions can be logically labelled as road. For instance, if
the road is wide and assuming that the robot is on it, then the near region in front of it can be labelled
as road (Thorpe et al., 1988; Fernandez and Casals, 1997; Fernandez and Price, 2005; Song et al.,
2007).
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Chapter 2. Related Work

(a) Stereo-based road detection architecture (b) Stereo processing module (black box in (a))

Figure 2.1: Overview of a stereo-based system for road region extraction. Adapted from Tue-Cuong et al.
(2008). Shortly, a pair of images of the road are taken at the same time from two separate cameras (displaced
horizontally from one another) and passed to a stereo processing module (b). The displacement of relative
features among these images is measured to calculate a disparity map. Knowing the geometric arrangement
of the cameras, the disparity map can be translated into a depth map. This depth map is classified into ground
and non-ground patches. A learning region is then defined in front of the vehicle for colour data collection. At
the intersection of this region and the ground (non-obstacle) patches, sample pixels are extracted to update the
road colour model. Finally, the image is segmented according to the road colour model.

Once the road is segmented from the background, information regarding its appearance, geom-
etry, and orientation can be extracted and used to build and update a road model. In general, a
simplified model of the road (e.g., triangular) can be used to fit to the segmented image. To handle
hard to model roads, region growing can be an interesting alternative to the model fitting process
(Ghurchian et al., 2004; Fernandez and Price, 2005; Chaturvedi and Malcolm, 2005). In particular,
Fernandez and Price (2005) presents a method for dirt road detection and tracking using colour vi-
sion and region growing technique. In order to segment the dirt road, this method assumes that a
small rectangle at the centre-bottom of the image always contains a portion of the road that is suit-
able for analysis. Another assumption made is that the colour-space statistics of the road surface are
different from the one of the surrounding regions. The analysis of the road area starts by comput-
ing the mean and standard deviation of the pixels’ hue, saturation and intensity. The adaptation to
road appearance changes is assured by a periodic update of these statistics. Then, a colour-based
filter is parametrised according to the calculated means and standard deviations. The input image
is processed using a recursive subdivision method. Shortly, the image is first divided into a small
number of sub-regions that are processed coarsely. Upon finding a pixel that satisfies the filter equa-
tion (i.e. a pixel that belongs to road region), the current sub-region is further divided. This process
proceeds until a minimal region is achieved. Afterwards, the image is divided into horizontal slices
that will determine slices of the road by a region growing process. The outcome is a series of road
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segments. In order to track the road, these slices’ centres of mass are used to planning a trajectory
along them, based on a variation of cubic spline fitting. Fig. 2.2 summarises the process. A limita-
tion of this road detection method is its proneness to fail when the road’s surface and surrounding
regions share similar appearances. Another disadvantage that limits the application of this method
is the assumption that the centre-bottom of the input image always contains part of the road, which
cannot be guaranteed in the presence of narrow nature trails.

Figure 2.2: Overview of a region growing technique for road region extraction (adapted from Fernandez and
Price (2005)). Briefly, an priori defined learning region is used to update a road colour model. A colour-based
filter is then applied to the original image, removing the majority of non-road pixels. A region growing module
segments the filtered image into road slices. The centers of mass of these slices are used to computed a motion
trajectory.

An interesting alternative to the region growing process is to enforce a global shape constraint on
the product of an unsupervised clustering mechanism (Crisman and Thorpe, 1991), which discards
the need for a road/non-road pixel classification process. The trade-off on this method is the elimi-
nation of road appearance models at the cost of raising the number of possible ambiguities between
regions with similar shape.

When the road and the background share the same appearance, the previously presented ap-
proaches may be inadequate. In this case, the dominant texture orientations, like road borders and
wheel tracks, can be helpful to extract the road’s vanishing point (Rasmussen, 2004, 2008; Kong
et al., 2010). There are also hybrid architectures that integrate the orientations-based and regions-
based approaches Alon et al. (2006); Song et al. (2007).

2.2 Trail Detection Methods

The road detection methods, described in the previous section, are the basis of most work done
on trail detection. For instance, Bartel et al. (2007) use a region-based approach that relies on a
priori knowledge about the colour distributions of both path and background. In this method, the
path segmentation is done by detecting and extracting its borders, given the a priori knowledge that
paths are grey and surrounded by grass or planted borders. Bartel et al. (2007) replace all green
pixels of the input image by black ones, ensuring that the contrast between the path and boundaries
is maximised. Next, a Gaussian convolution is applied to eliminate fine textures. The contrast of
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the input image is then enhanced and a threshold filter is applied, leaving the path region as the
brightest one. Afterwards, a gradient filter is applied to extract the edges of the detected pathway. To
conclude the path segmentation, an object extraction algorithm is applied to remove shadows within
the boundaries of the path. The outcome of these steps is shown in Fig. 2.3. This border extraction
technique cannot be employed when there is no well defined path edges. Moreover, a priori colour
knowledge about paths and their surroundings is of little use in less structured environments.

(a)

(b) (c)

Figure 2.3: Processing steps for path border extraction using a priori knowledge. According to the model
proposed by Bartel et al. (2007). (b) Input image. (c) Contrast enhancement and threshold filter result.

Substituting a priori models by self-supervised learning models helps in providing required adapt-
ability in situations in which the trail’s appearance is heterogeneous (Grudic and Mulligan, 2006;
Rasmussen and Scott, 2008b). However, it is difficult to assure that the robot is on the trail when
shape of the latter varies. From this observation, it follows that defining reference regions to super-
vise the learning process is not a straightforward task, as it is in the road domain. Moreover, the use
of depth information to find the trail plane might be not so helpful if the trail and its surroundings exhibit
the same height. Alternatively, as done in the road domain, the use of a global shape constraint, by
first over-segmenting the image and then scoring a set of trail hypotheses against the global shape,
have experienced some success (Rasmussen and Scott, 2008a; Rasmussen et al., 2009; Blas et al.,
2008). In particular, Rasmussen et al. (2009) make the assumption that the trail’s shape is approxi-
mately triangular under perspective and both left and right sides share the same appearance. (see
Fig. 2.4). To track the trail, particle filtering is used. Each triangle hypothesis corresponds to a parti-
cle and its weight is the score given by a trail likelihood function. To measure appearance similarity
between triangular regions, a technique based on histograms of k -means1 (Lloyd, 1982) cluster la-
bels is used. That is, a set of textons2 describing colour features in CIE-Lab colour space is created
at each pixel of the input image. K -means is performed only on textons with non-saturated pixels

1The K-means algorithm is a clustering method which aims to partition samples into k clusters. Each sample belongs to
the cluster with the nearest mean. The result may depend on the initial clusters and there is no guarantee that it will converge
to the global optimum.

2The term textons refers to fundamental micro-structures in generic natural images and the most basic elements in early
(pre-attentive) visual perception. Please refer to (Zhu et al., 2005) for further information.
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to create 8 texton labels. These are combined with the under- and over-saturated groups to yield a
small set of final texton labels. The hypothesis region’s colour distribution is modelled by a histogram
of texton labels inside it, and the chi-squared metric is used to measure the appearance dissimilarity
between the two histograms. The triangular shape-constraint presented by Rasmussen et al. (2009)
is inadequate when the trail is considerably unstructured or interrupted. Moreover, false positives
can emerge in situations where a distractor is on the trail. For instance, if the triangle hypothesis is
over a bush at the centre of the trail, then the triangular neighbouring regions to its right and left are
similar (trail regions), and the bush itself gives an high contrast with the surround. In this scenario, a
misleading high score will be given to this trail hypothesis by the trail likelihood function.

Figure 2.4: Model for trail detection and tracking based on shape-constraint (Rasmussen et al., 2009). The
shape-based visual trail tracker assumes that the trail region is approximately triangular under perspective. It
generates region hypotheses from a learnt distribution of expected trail width and curvature variation, which are
scored according to the colour and brightness contrast with flanking regions.

In general, the use of the global shape constraint limits the type of trails that can be detected.
Moreover, nature trails may have not clear edges segmenting them from the background, hampering
the accuracy of the image over- segmentation process that precedes the global shape application.

Another concept with limited application in the trail domain is the vanishing point method. Despite
of the good results in the road domain, the vanishing point method seldom applies in trail detection,
as the global orientation of the trail is rarely indicated by dominant orientations.

An interesting line of research that can be applied in path detection is the use of the social insects
metaphor (swarm intelligence). This concept has been applied in the design of several computer
vision systems (Poli and Valli, 1993; Liu et al., 1997; Ramos and Almeida, 2000; Owechko and
Medasani, 2005; Antón-Canalís et al., 2006; Mobahi et al., 2006; Broggi and Cattani, 2006; Mazouzi
et al., 2007; Zhang et al., 2008; Santana, 2011). For instance, the ant foraging metaphor is exploited
by Broggi and Cattani (2006), proposing a swarm-based system for trail border detection, in which
two agent colonies are set to track each side of the trail. Agents move pixel by pixel, trying to find
trail’s borders. The motion rules are inspired by the behaviours of biological ants. Before executing
the swarm algorithm, the starting regions and the height limit for the agents’ motion in the input image
must be defined. This is done by setting the starting areas in the periphery of the image, where a
sufficient percentage of edges is present. Each agent is put randomly inside these areas. A point of
attraction polarises the random moving component of the agents. Hence, the average moving direc-
tion of the colony is towards this point. Moreover, this point of attraction is computed frame by frame,
using information on previously computed trail boundaries. The agents of a colony are divided into n
different subsets, each one characterised by different moving rules parameters. The subsets are ex-
ecuted in sequence, and when all the agents of a certain subset have reached the upper limit pixels,
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the pheromone trails are updated. The movements of the first subset are only based on heuristics,
ignoring the pheromone deposit (edge-exploitation phase). As the execution proceeds, the other
subsets of agents become increasingly sensitive to pheromone and less to heuristics (pheromone-
exploitation). Finally, two agents, one per colony, only attracted by the pheromone trails are deployed.
The final left and right road boundaries are defined by the trajectories executed by these two agents.
Although the interesting results, this method is limited to well delimited paths. However, as aforemen-
tioned, trails rarely have strong edges in natural environments to help in trail border detection.

(a) (b) (c) (d)

Figure 2.5: Ant colony optimisation approach to detect off-road trail borders (Broggi and Cattani, 2006). The
white curves on (a) represent road boundaries obtained from a previous frame. The horizontal lines are the
bottom and upper limits of the agents’ movement. The yellow straight lines in (b) are a linear approximation of
the white curves, and the triangle T is the midpoint of the intersection between the upper limit line with the yellow
ones. The new point of attraction is represented by point P . Two borders at two sides of the road are tracked by
two agent colonies, where (c) presents the input image with the agents’ paths superposed, and (d) shows only
the ants’ paths for an easier visual evaluation.

From a different perspective, Santana et al. (2010) propose the use of a conspicuity space to-
gether with swarm cognition concepts for the design of self-organising in visual attention, exploiting
the observation that trails are conspicuous structures. The typical distributed and parallel design of
swarm-based models is a major helpful feature, as the path hypothesis generation process demands
an active selection of multiple pixels in order to approximate the skeleton of the path being sought.
The swarm agents interact with each other indirectly by using a dynamical 2-D neural field that sim-
ulates the physical medium in which pheromone is deposited and propagated in time. In particular,
these pheromone-like interactions are based on a phenomenon known as stigmergy3. A key advan-
tage of the use of conspicuity space over the work proposed by Rasmussen et al. (2009), is that visual
salience represents contrast information between trail and local surroundings, as well as between the
path and the overall scene. Moreover, Santana (2011) showed that by modelling the cognitive pro-
cess of visual attention as a self-organising process, the typical challenge of speed-accuracy trade-off
in the face of context and task changes is more easily handled. The model proposed by Santana
et al. (2010) discards hard constraints on the shape of both path and background, as well as the use
of any a priori appearance and contrast knowledge.

The presence of too many visual distractors (e.g., salient non-path regions) can lead to situations
in which the swarm-based model (Santana et al., 2010) does not converge to the path location.
This issue can be diminished by top-down boosting the bottom-up visual features that describes
the path being sought. The contribution of this dissertation lies in the integration of both contrast

3Stigmergy is a mechanism of indirect coordination between agents. This is achieved when an agent lefts a trace in the
environment, stimulating the execution of a next action, by the same or a different agent. It was first observed in social insects
and was introduced by Grassé (1959) (e.g., ants exchange information by laying down pheromones).
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and appearance-based top-down knowledge into the original model and the addition of an adaptive
pheromone deployment mechanism, based on the likelihood between the swarm agent’s trajectory
and the path. An on-line learning method is used to learn the appearance and contrast of the path,
increasing robustness to sudden changes on the latter. Furthermore, the synergistic interaction
between both bottom-up and top-down pathways reduces the dependency on accurate path models.
Hence, the proposed model is potentially more suitable for path detection and tracking.
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Chapter 3

Supporting Concepts

This chapter introduces the reader to the key aspects of the original model, proposed by Santana
et al. (2010), which serves as basis for this dissertation. These key aspects are the use of visual
attention for path detection and the use of swarm agents for its computation. Visual attention is
introduced in Section 3.1, whereas the swarm paradigm is overviewed in Section 3.2. Finally, in
Section 3.3, the details about the model itself are provided from (Santana, 2011; Santana et al.,
2010), in which the interested reader may also refer for a detailed explanation.

3.1 Visual Attention

The ability of a visual system to detect salient regions on a given scene is known as visual at-
tention. These regions can be used in complex vision tasks, such as detection, tracking or even
recognition of objects. The active search for interesting regions, as done with eye movements in
biological visual systems, is known as overt attention. The indirect perception of these regions is
referred to as covert attention. For instance, without moving the eyes, humans can mentally acknowl-
edge peripheral salient regions in their visual field. The belief that multiple covert attention processes
co-exist in the human brain has been support by several studies (Pylyshyn and Storm, 1988; Doran
et al., 2009).

Bottom-up and top-down factors can bias the focus of attention. Bottom-up attention is derived
from instinctive and reflexive mechanisms that are triggered by the conspicuity of regions, like a
source of light in a dark background. Top-down attention is a pro-active attention in the sense that,
it is driven by expectations, motivations and goals of the subject, such as a priori knowledge about
the object being sought. Therefore, bottom-up conspicuous regions obtained from the visual field
can be analysed by a top-down cognitive process, which is based on knowledge of the object being
sought. The outcome is a visual salience map which signals the regions of the visual field that are
simultaneously conspicuous and share the general properties of the object of interest.
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3.1.1 The Human Visual System

As the human perception englobes visual attention, a brief and simplified description about the
human visual system is herein presented.

When the light achieves the human eye, it enters by the pupil, travels through the vitreous humour,
and reaches the retina (see Fig. 3.1). The retina is formed by numerous photosensitive cells that
transform the electromagnetic waves (light) into neural impulses. These photoreceptors cells are
divided into two types: the rods and the cones (Kandel et al., 2000). The cones are colour sensitive,
whereas the rods are sensitive to luminance. In particular, the cones are subdivided into three
categories, each one sensitive to a specific colour frequency of the visible spectrum: red, green
or blue. Rods and cones are connected to ganglion cells, via bipolar cells (Kandel et al., 2000).
Ganglion cells transform the analog signal (graded potentials) to a discrete one by sending electrical
discharges into the optic nerve. This stimulus travels from the optic nerve to the optic chiasm, where
is divided in two pathways to each brain hemisphere (see Fig. 3.2). Visual cognitive processes in the
brain are then fed from this stimulus.

Figure 3.1: Simplified anatomy of the human eye. Adapted from (Reinhardt, 2010)) and from (Stroobandt,
1997).

The complex, but yet hierarchical, connections between the diverse neuronal cells composing the
retina, are the key to form receptive fields with different complexity. Specifically, receptive fields of
cells at one level of the visual system are formed from input by cells at a lower level. Thus, small and
simple receptive fields are combined to form large and complex ones. For instance, the receptive
field of a photoreceptor cell is a fictional cone-shaped volume in the visual field, that comprises all
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the directions in which light activates that cell. On the other hand, the bipolar cells have a circu-
lar receptive field composed by a centre area and a surround area, both connected to numerous
photoreceptors.

Bipolar cells are divided into two groups: on-centre cells and off-centre cells (Kandel et al., 2000).
On-centre cells are excited by the activation of the photoreceptors that compose the centre area.
However, if the activation occurs on the respective surrounding area, these cells are inhibited. An
off-centre cell have the opposite response. In addition to centre and surround differences, colour op-
ponency information is also generated with bipolar cells, as the latter could be connected to different
cones. For instance, a bipolar cell can process the differences between the output of a red cone and
a green cone, or the differences between blue cones and a combined signal from both red and green
cones (blue-yellow opponency).

The receptive field of a ganglion cell encompasses all the photoreceptors connected to bipolar
cells, which are in turn connected to this particular ganglion cell. Consequently, the organisation of
ganglion cells’ receptive fields provides a way of detecting not only light exposition through photore-
ceptors, but also the centre-surround differences, i.e., luminance and colour contrast information.

Finally, there are two major classes of ganglion cells: magnocellular and parvocellular (Kandel
et al., 2000). Magnocellular cells are more sensitive to luminance (light-dark contrast) and can receive
signals from both rods and cones. Parvocellular cells are sensitive to colour and, thus, only receive
signals from cones. In particular, parvocellular are subdivided into two groups: one that receives
red-green opponent signals, and one that receives blue-yellow opponent signals.

Figure 3.2: Human visual pathway (from ADInstruments (2009)).
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3.1.2 Visual Attention Computational Model

In computer vision, the paradigm of visual attention has been widely investigated (Ahmed, 1991;
Tsotsos et al., 1995; Koch and Ullman, 1985) and implemented in both software (Itti et al., 1998)
and hardware (Ouerhani and Hugli, 2003b) domains. In particular, the biologically inspired saliency-
based model of visual attention presented by Itti et al. (1998) has been used in several computer
vision applications (Todt and Torras, 2000; Ouerhani and Hugli, 2003a). Moreover, the plausibility
of this salience-based model has been assessed by Ouerhani et al. (2004) and encouraging results
about correlation of human and computer attention were obtained. Under these circumstances, this
visual attention model is properly adapted and used by Santana et al. (2010) and, therefore, herein
described.

First, a set of visual feature maps is obtained from an input colour image. This set is composed
by an intensity feature I and two double-opponency colour features, respectively for Red-Green,RG,
and for Blue-Yellow, BY, opponency. The existence of this chromatic opponency in human visual
cortex has been proved by Engel et al. (1997). Although only intensity and colour features are used
for the sake of computational speed, additional features (e.g., orientations and depth) could be used
for improved background-path segmentation. Formally, these visual features are computed in the
following way:

I =
r + g + b

3
, (3.1)

rn =
r − (g + b)

2
, (3.2)

gn =
g − (r + b)

2
, (3.3)

bn =
b− (r + g)

2
, (3.4)

yn =
(r + g)

2
− |r − g|

2
− b, (3.5)

RG = R− G, (3.6)

BY = B − Y, (3.7)

with r, g, and b being the red, green, and blue channels of the input colour image. The corresponding
normalised channels are denoted by rn, gn, and bn, respectively. The yn is the normalised yellow
channel. If yn has negative values, they are set to zero. To decouple hue from intensity, these
channels are normalised by I, denotingR, G, B, and Y, respectively. As proposed by Itti et al. (1998),
only pixels with I larger than 10% of its maximum value are submitted to this second normalisation,
as hue variations are not perceivable at very low luminance. Other pixels yield a zero value.

Each feature map is transformed into its respective conspicuity map through a centre-surround
mechanism (Itti et al., 1998), highlighting the regions of the input scene that strongly differ from their
surroundings. This centre-surround mechanism mimics the behaviour of the retinal bipolar cells in
the human eye. The centre-surround operator is illustrated in Fig. 3.3.
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Figure 3.3: Bottom-up centre-surround operator.

Shortly, one dyadic Gaussian pyramid (Burt and Adelson, 1983), with eight levels (or scales), is
computed from the intensity channel. Two additional pyramids, also with eight levels, are computed
to account for the Red-Green and Blue-Yellow double-opponency color feature sub-channels. These
various scales are used to perform centre-surround operations. The resulting set of on-off and off-on
centre-surround maps per pyramid have higher intensity on those pixels whose corresponding feature
differs the most from their surroundings. On-off centre-surround maps are built by across-scale point-
by-point subtraction, between a level with a fine scale and a level with a coarser one. Off-on maps
are computed the other way around, i.e., subtracting the coarser level from the finer one. Both on-
off and off-on centre-surround maps are used separately, rather than considering the modulo of the
difference, as done by Itti et al. (1998). This separation yields better results as shown in (Frintrop
et al., 2005; Frintrop, 2006). All centre-surround maps built from the intensity pyramid are re-sized to
a common size and independently scaled in magnitude according to a normalisation operator, and
finally averaged together to produce the intensity conspicuity map CI

bu ∈ [0, 1]. The same process
applies to create Red-Green and Blue-Yellow conspicuity maps, each one subsequently weighted
and then averaged together to produce a single colour conspicuity map CC

bu ∈ [0, 1]. Fig. 3.4 depicts
the bottom-up conspicuity computation process for a given input image, whereas Fig. 3.5 shows
some more samples with the corresponding bottom-up conspicuity maps.
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3.2 Swarm Intelligence

Swarm intelligence is the collective behaviour of decentralised and self-organizing systems that
exhibit a collective intelligence (ben, 1989). From such systems, a coherent pattern emerges not
from the influence of a central authority, but as the result of the local interactions among their dis-
tributed components. Notwithstanding the limited cognition capabilities of these individual processes,
the system as a whole can solve complex problems more efficiently or solve those that go beyond
the capability of a single individual process. Despite of external perturbations, self-organising sys-
tems can maintain its orderly behaviour and can be inherently robust to individual failures, if there is
redundancy in their components. Moreover, only minimal complexity is required for each constituent
parts of such systems. However, devising these individual processes can be challenging, as the
connection between simple local rules and the desired complex global properties is indirect.

3.2.1 Biological Inspiration

Collective intelligence can be found in the animal kingdom, such as in bird flocking or exhibited
by social insects. For instance, there is no centralised management in ant colonies. A coherent
behaviour can be observed at the colony level, due to numerous interactions between individual ants,
following simple rules and tasks. Some collect waste and perform maintenance duties, some search
and collect food, others defend the colony, and so on. Another example is the search procedure done
by bees when looking for a new hive location. When bees decide to move to a new hive and begin
a new colony, scout bees fly out in all directions, searching for a suitable location. When one finds
a interesting place, it flies back to the hive and communicates the new finding to the other scouts.
The new hive location is chosen only when fifteen bees happens to arrive at the same location.
Furthermore, a particular species of wasps organise themselves into different task-oriented groups,
in which the size of each group is regulated according to the colony needs (Jeanne, 1996).

Finally, considering the example of the human body, one can see the emergence of a collective
intelligence in this highly coordinated system of interacting swarms of cells, messenger molecules
and bacterias.

3.2.2 Swarm-based Computational Models

From an engineering perspective, swarm-based computational models have desirable charac-
teristics to solve complex problems. They are flexible in dynamic environments and implemented
with simple and elementary rules to achieve a complex group behaviour. A certain randomness is
also introduced to help the system exploring new and creative solutions. Furthermore, these models
are robust to individual failures and inherently distributed and parallel with little or no supervision.
Therefore, diverse swarm-based computational models have been applied to several domains with
interesting results. For instance, to address the problem of reducing traffic jams, Oliveira and Bazzan
(2006) proposes a swarm-based approach to coordinate and synchronise traffic lights in an efficient
pattern. Each traffic light is an agent that interacts with other agents to perform adaptive signalling
plans. Stimuli are provided in the form of produced pheromone according to the volume of traffic.
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(a) input image (b) feature I (c) feature R (d) feature G (e) feature B

(f) feature Y (g) I on-off (h) I off-on (i) RG on-off (j) RG off-on

(k) BY on-off (l) BY off-on (m) CI
bu map (n) CC

bu map (o) CCI
bu map

Figure 3.4: Bottom-up conspicuity computation process. The set of bottom-up centre-surround maps are shown
from (g) to (l). The combined bottom-up intensity and colour conspicuity map, obtained by a linear combination
of (m) and (n), are depict by (o). The most salient regions are marked by white pixels on conspicuity maps. For
instance, the stop signal are the most salient object in the scene.

Figure 3.5: Examples of bottom-up conspicuity maps. Input image (top row), bottom-up intensity conspicuity
map CI

bu (top middle row), bottom-up colour conspicuity map CC
bu (bottom middle row), and combined bottom-up

colour and intensity conspicuity map CCI
bu (bottom row). The field of the stadium, the light of the lighthouse, the

toucan’s beak, and the trail are all salient regions on the visual field.
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Another interesting application of swarm intelligence is to model and simulate biological sys-
tems. Jacob et al. (2004) proposes a three-dimensional swarm-based model to simulate the human
immune system reaction to viral antigen exposure. In particular, the production of antibodies in re-
sponse to a viral population is modelled, as the reinforced memory response to a previously encoun-
tered pathogen. In the environmental domain, a swarm-based model of forest dynamics to simulate
ecological disturbances is described in (Savage and Askenazi, 1998).

Finally, the original model (Santana et al., 2010) demonstrated that fast and relatively robust
systems can be achieved with a simple and loosely coupled swarm-based design.

3.3 Swarm-based Path Detection

The original model (Santana et al., 2010) aims at detecting the path using bottom-up visual cues.
Concretely, it computes visual conspicuity maps based on a set of bottom-up centre-surround fea-
ture maps, obtained from the input image at various spatial scales. These conspicuity maps are
then shape-based filtered according to a priori knowledge about path’s generic morphological prop-
erties. This is done implicitly by setting behavioural rules into a set of agents operating on the visual
conspicuity maps. Their collective behaviour results in a final salience map that represents the path
hypothesis. Fig. 3.6 depicts how the original model processes each frame.

3.3.1 Model Execution Overview

At each new frame I, the two bottom-up conspicuity maps, CC
bu for colour and CI

bu for intensity
information, are computed. The intensity of a pixel belonging to either one of these maps, signals
how much that pixel detaches from the background at several scales. The bottom-up conspicuity
maps, CC

bu and CI
bu, are then shape-based filtered with the use of a priori top-down knowledge about

typical path’s shape. A set of n virtual ants (hereafter called p-ants, from perceptual-ants) is deployed
on each bottom-up conspicuity map. The swarm activity builds two pheromone maps, PC ∈ [0, 1] for
colour and PI ∈ [0, 1] for intensity information. Moreover, the p-ants’ set of behaviours is designed to
exploit a priori knowledge about typical paths approximate layout. Hence, the activation of pheromone
maps is expected to match the path’s location better than the activation of bottom-up conspicuity
maps. Thus, rather than combining both bottom-up conspicuity maps to generate the final salience
map S, as typically done Itti et al. (1998); Frintrop et al. (2005), these map is obtained by combining
both pheromone fields, S ← 1

2P
I + 1

2P
C . Additionally, to create cross-modality influences, p-ants

on a given pheromone map also affect the other pheromone map. This cross-modality increases
robustness by allowing p-ants to exploit multiple cues indirectly.

The final salience map, S, feeds a dynamic neural field (permanent pheromone map), F ∈ [0, 1],
which integrates pheromone (i.e., evidence) across frames, playing the role of a temporal filter. This
allows self-organisation to occur at a longer time-scale and, as a consequence, to enable tracking.
However, to avoid that the mentioned cross-modality influences propagate across frames and prob-
ably induce an undesirable neural field’s activity build-up, two auxiliary pheromone maps, PI∗ and
PC∗ , are created free of these influences. Therefore, these auxiliary maps only encompasses the
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pheromone deposited by the p-ants associated to the respective visual feature. These maps are
then used to replace the pheromone maps, PI ← PI∗,P

C ← PC∗ , just before blending them for the
purpose of creating S. Moreover, in order to allow p-ants’ creation and activity to be affected by
history, at the onset of each frame, both instantaneous pheromone maps are initialised with a small
ratio λ of the neural field after being motion compensated, PI ← λ · F,PC ← λ · F.

Motion compensation between current frame I and previous frame I′ is also implemented so that
the dynamics of the neural field can be decoupled from the dynamics of the robot. Finally, the output
of the system is given by the current state of the neural field, in which the higher the activation of
a given neuron the higher its chances of being associated to a path’s pixel. Note that conspicuity
maps, pheromone maps, final salience map, and neural field, all share the same width w and height
h. These two values are selected bearing in mind real-time performance.

Figure 3.6: Operation overview of the model proposed by Santana et al. (2010). Two bottom-up conspicuity
maps, CC

bu and CI
bu are computed from the input frame I. A set of n virtual ants, embedding a priori top-down

knowledge about typical path morphology, are deployed on these two bottom-up conspicuity maps. The result
of the swarm activity are two pheromone maps, PC and PI , that are combined to obtained a final salience map
S. To exploit multiple cues indirectly, p-ants on a given pheromone map also affect the other pheromone map.
The final salience map, S, feeds a dynamic neural field, F, which integrates pheromone across frames. In order
to allow p-ants’ creation and activity to be affected by history, at the onset of each frame, both instantaneous
pheromone maps are initialised with a small ratio λ of the neural field after being motion compensated.
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3.3.2 Bottom-Up Conspicuity Maps Computation

The bottom-up conspicuity maps, CC
bu and CI

bu, are computed according to the method proposed
by Itti et al. (1998) and explained in Section 3.1. These bottom-up conspicuity maps and the centre-
surround ones are magnitude scaled by recurring to a normalisation operator. The goal is to promote
maps that have fewer conspicuous locations, avoiding that, when blending maps, strongly salient
objects appearing in only a few maps are masked by noise or by other less-salient objects present
in other maps. Therefore, the contribution of each pixel to the average is weighted according to its
distance from the top row of the image. Formally, let p(x, y) be the pixel in column x and row y of a
given conspicuity map C, with height h and, M(.) a function that returns the global maximum intensity
of C. Let w(x, y) =

√
y/h be the weight of pixel p(x, y). The map’s weighted average, mw, is thus

given by

mw(C) =

∑
(x,y)∈C

p(x, y) · w(x, y)

∑
(x,y)∈C

w(x, y)
, (3.8)

and the normalising operator, K(.), takes the form

K(C) = C ·
(
M(C)−mw(C)

)2
. (3.9)

All maps are 8-bit grayscale images, meaning that M(C) = 255. Fig. 3.7 depicts normalised
bottom-up conspicuity maps for a given input image. As stated by Santana et al. (2010), the K(.) nor-
malising operator shows a small quantitative improvement over other normalising operators, achiev-
ing better results in some key frames as it allocates higher levels of salience to path than to the
background.

(a) Input image (b) Conspicuity map CI
bu (c) Conspicuity map CC

bu

Figure 3.7: Bottom-up intensity (b) and colour (c) conspicuity maps obtained from image (a).
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3.3. Swarm-based Path Detection

3.3.3 Pheromone Maps Computation

The bottom-up conspicuity maps, CI
bu and CC

bu are shape-based filtered by p-ants, so as to build
two pheromone maps, PI and PC , respectively. The pheromone maps computation begins with
the creation and deployment of a p-ant, pm, associated to a visual feature m ∈ {I, C} (intensity or
colour). The other visual feature is represented by m′.

The creation of a p-ant pm on a given location opm depends on the level of conspicuity and
pheromone at that location on the corresponding conspicuity map Cm and pheromone map Pm.
Hence, to reduce sensitivity to any potentially noise at the boundaries of the conspicuity map Cm,
p-ants are deployed within a small randomly selected offset z ∈ [0, 0.1 · h] from the bottom of the
map. In particular, a p-ant is deployed at row r ∈ [h, h − z], where h is the height of the map1. In
order to determine the respective deployment column, a uni-dimensional vector vm = (vm0 , . . . , v

m
w )

is computed, where the element vmk of vm refers to the average conspicuity level of the pixels in a
small window centred on column k and with a randomly selected offset from the bottom row of the
map, r. To compute the pheromone level, the same windowing process is applied to build the vector
um = (um0 , . . . , u

m
w ), where the element umk corresponds to the maximum pheromone level found in

the window.

The chances of deploying a p-ant in a randomly selected column z2 ·w is as high as the conspicuity
and pheromone levels at the deployment region, according with the following test:

z1 < (ρ · umz2·w + (1− ρ) · vmz2·w), (3.10)

where z1 ∈ [0, 1] and z2 ∈ [0, 1] are numbers sampled from a uniform distribution each time the test is
performed and ρ is a weight factor used to trade-off the influence of both pheromone and conspicuity
information. Moreover, ρ operates as an adaptive process, changing the system from a conspicuity-
driven behaviour (exploration) to a pheromone-driven behaviour (refinement/exploitation), by starting
with a small ρ0, and linearly increasing at each iteration by an amount ∆ρ.

Observing carefully the deployment condition, Eq. 3.10, one can see that p-ants are progressively
and probabilistically deployed on path-like locations, assuming that the path tend to be conspicu-
ous and has been successfully detected in the previous frame (neural field dynamics), and that the
pheromone accumulated by p-ants deployed in the current frame builds-up mostly around the actual
path’s location.

After being deployed, the p-ant must iterate (with a maximum of η1 iterations) on the conspicuity
map, Cm, creating a trajectory that represents a path hypothesis. The p-ant’s motion is ruled by a
set of simple behaviours that make little assumptions regarding the path’ structure. However, before
specifying p-ants behaviours, it is necessary to specify their sensory and action spaces. The sensory
space is defined by five receptive fields disposed around the p-ant’s current position (see Fig. 3.8).
An action a ∈ A moves the p-ant to one of the five neighbour pixels not behind the current p-ant’s
position. The action space is thus defined by the set A = {1, 2, 3, 4, 5}.

1Rows are indexed in increasing order from the top to the bottom of the map.
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Figure 3.8: P-ant’s set of receptive fields (Santana, 2011), namely, R1 = {1, 6, 11}, R2 = {2, 7}, R3 = {3, 8},
R4 = {4, 9}, and R5 = {5, 10, 12}.

At each iteration, p-ant pm executes a set of behavioursB = {greedy, track, centre, ahead, commit},
which independently vote on each possible action in A. Formally, behaviours are described as func-
tions that return a vote in the interval [0, 1] for each possible action a ∈ A. Following a typical
approach of behaviour coordination (Rosenblatt, 1995), the most voted action is the one taken by the
p-ant. Table 3.1 summarises, for each behaviour, which regions in the neighbourhood of the p-ant
are associated to the most preferred action. Fig. 3.9 illustrates the pheromone trajectory created ac-
cording to the set of p-ant’s behaviours. As already stated, these behaviours embed top-down path
shape information.

Table 3.1: P-Ant behaviours for path detection. Adapted from Santana (2011).

Behaviour Voting Preferences

greedy Regions of higher levels of conspicuity, under the assumption that trails are
salient in the input image.

track Regions whose average level of conspicuity is more similar to the average
level of conspicuity of all the pixels visited by the p-ant, under the assumption
that trails’ appearance is homogeneous.

centre Regions that maintain the p-ant equidistant to the boundaries of the trail hy-
pothesis being pursued.

ahead Upwards regions under the assumption that trails are often vertically elon-
gated.

commit Region targeted by the motor action at the previous iteration, under the as-
sumption that trails’ orientation tend to be monotonous.

The p-ant pm selects its action apm by maximising the following function, which incorporates
behaviours’ votes, pheromone-based interactions, and random fluctuations:

apm = arg max
a∈A

( ∑
bpm∈B

αbfb(pm, a) + Pm(Ra, opm) + γq

)
, (3.11)

where αb is a user defined weight accounting for the contribution of behaviour bpm ∈ B and γ is
the weight accounting for stochastic behaviour, being q ∈ [0, 1] a number sampled from a uniform
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3.3. Swarm-based Path Detection

(a) Conspicuity map (b) Greedy (c) Track

(d) Ahead (e) Centre (f) All

Figure 3.9: P-ants’ behaviours demonstration. The bottom-up conspicuity map in (a) was used to demonstrate
the p-ants’ behaviours. As can be seen in (b), the greedy behaviour chooses regions with maximum conspicuity,
whereas the track behaviour (c) moves toward regions with conspicuity similar to the average conspicuity from
all pixels visited by the p-ant, since the beginning of its motion. The ahead behaviour (d) bias the p-ants to move
upward. A purely commit behaviour (not combined with other behaviours) has the same effect as the ahead
behaviour in (d), due to replication of the p-ant’s previous action. The centre behaviour (e) attracts the p-ants
to the centre of a region, by detecting the boundaries created by regions with a different conspicuity level. The
contribution of all behaviours, depicted in (f), shows a dominant pheromone trajectory with convergence to a
region with high conspicuity.

distribution each time the action is evaluated. To match the randomness magnitude with the scale
of the image, which is typically smaller for pixels in upper regions of the image, the weight γ starts
with an initial value γ0 and exponentially decays by a constant factor γτ at each iteration. In case
of an immediate loop detection, namely, the p-ant moving recurrently from one pixel to another,
then the action for the current iteration is randomly selected. The p-ant deploys pheromone in each
corresponding position on Pm with a magnitude Φ(pm), and a small portion of it, υ, in Pm

′
:

Φ(pm) = ε (3.12)

where ε is an empirically defined pheromone level baseline. Finally, the p-ant’s position opm is up-
dated according to the selected action. Another p-ant associated to the other visual feature, p′m,
is deployed and iterated following the same procedure. The modification of both pheromone maps
(colour and intensity) by p-ants, enables a loosely coupled cross-modality influence, allows each p-
ant to exploit multiple cues indirectly. This process is repeated n times, meaning that 2n p-ants are
created and iterated. Algorithm 1 outlines the overall iteration process.

Once p-ants’ activity has ceased, the computation of the two pheromone maps, PI and PC , is
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Algorithm 1 P-ant execution pseudo-code
1: Input: p-ant (p), conspicuity map (Cm

bu), pheromone map (Pm), pheromone map of other visual
feature (Pm

′
), pheromone map without cross-modality and neural field influences (Pm∗ ))

2: Output: updated pheromone maps, Pm, Pm
′
, and Pm∗

3: Data: η1, ε, υ are empirically defined constants.
4:
5:
6: // default previously selected action is forward motion
7: a′pm ← 3
8:
9: // initialize list of scalars representing the conspicuity level at each p-ant’s visited position

10: Vpm ← ∅
11:
12: // execute p-ant p for η1 times
13: for η1 iterations do
14:
15: use Equation 3.11 to obtain p-ant’s action, apm , based on Cm

bu, Pm, Vpm , and a′pm
16:
17: // append conspicuity of the new p-ant’s position
18: Vpm ← Vpm

⋃
{Cm(Rapm ,opm)}

19:
20: // use obtained p-ant’s action, apm , to update p-ant’s position, opm
21: Pm(opm)← Pm(opm) + Φ(pm) // update Pm at pixel opm
22: Pm∗ (opm)← Pm∗ (opm) + Φ(pm) // update Pm∗ at pixel opm
23: Pm

′
(opm)← Pm

′
(opm) + υ · Φ(pm) // update Pm

′
at pixel opm

24:
25: // store selected action
26: a′pm ← apm
27:
28: end for
29:
30: return (Pm,Pm

′
,Pm∗ )

complete. Then, the two pheromone maps are merged into a final salience map, S:

S =
1

2
·PI +

1

2
·PC . (3.13)

Fig. 3.10 illustrates typical pheromone maps. Moreover, it shows a competition between p-ants
with, roughly, two pheromone trajectories, one at the centre and another at the right of the map. The
centre trajectory has more pheromone, as more p-ants are attracted by the high conspicuity.

The instantaneous salience map, S, feeds a two dimensional dynamic neural field F (Amari, 1977;
Rougier and Vitay, 2006), which is a 2-D lattice of w × h neurons, each one corresponding to one
pixel of the salience map. The activated neurons excite their neighbours and inhibit distant ones,
promoting perceptual grouping and reducing ambiguities in the focus of attention. The goal of the
neural field, F, is to integrate evidence across time, to consider competition between multiple focus
of attention, and to promote perceptual grouping.

The dynamical characteristic of the neural fields, displayed in the form of inertia, is the key element
that enables information to be integrated across time. However, if not properly handled, this property
causes the field to smear when the robot moves. A way of avoiding this undesirable effect is to shift
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(a) (b) (c)

(d) (e) (f)

Figure 3.10: Pheromone maps computation. (a) Input image. (b) Bottom-up conspicuity map for intensity
feature, CI

bu. (c) Bottom-up conspicuity map for colour feature, CC
bu. (d) Pheromone map for intensity feature,

PI . (e) Pheromone map for colour feature, PC . (f) Salience map, S, obtained by a linear combination of (d) and
(e).

the neural field’s activity according to the robot motion estimate by using asymmetrical kernels in
the neurons (Zhang, 1996). The following three steps explicitly compensate the neural field for the
camera motion engaged between the previous and current frames:

1. Estimate the homography matrix H that describes the projective transformation between the
current frame, I, and the previous one, I′. To estimate the projective transformation H, a set of
corner points (Tomasi and Shi, 1994) is first detected in the previous frame, I′. These points
are then tracked in the current frame, I, with a pyramidal implementation of the Lucas-Kanade
feature tracker (Bouguet, 1999). The resulting sparse optical flow is then used to estimate the
projective transformation relating both frames, i.e., the 3× 3 homography matrix H, such that,

u′i = H · ui, (3.14)

where ui is a corner point found in I and u′i its correspondence in I′. If a minimum of four cor-
respondences between corner points is not found, the homography matrix is set to the identity
matrix, H = diag(1, 1, 1);

2. Obtain a motion compensated version of the previous neural field’s state by using the estimated
homography matrix, F← HF;

3. Update F with the salience map S (Santana et al., 2010).
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Chapter 4

Proposed Model

This chapter describes the work done in the framework of this thesis to improve the accuracy of
the path detection and tracking. Concretely, a mechanism for on-line learning of top-down knowledge
about the path being sought is added to the original model proposed by Santana et al. (2010). Sec-
tion 4.1 presents the motivation behind this extension, whereas the proposed model is presented in
Section 4.2.

4.1 Motivation

With the sudden presence of distractors in the bottom-up conspicuity maps, the sought path might
not be as highly conspicuous as desired to help in its detection. Nevertheless, as stated by Santana
et al. (2010), the original model is able to often detect the path’s location in these scenarios, due
to the key interaction between the neural field’s inertia and the p-ants’ sensorimotor coordination
capabilities. However, if the path’s conspicuity is low for several frames, the neural field’s inertia
cannot prevent the p-ants and, consequently, neither itself from migrating to the path’s surrounding.
The temporarily misleading of swarm activity to non-path regions can also be indirectly caused by an
incorrect output in the optical flow, as this can severely affects the compensation of the neural field
for the robot motion. Recovering from this situation can be difficult if the bottom-up conspicuity maps
are populated with off-path distractors. Another issue is the presence of shadows. The latter tend to
affect the bottom-up conspicuity maps, as they can break the segmented path’s region, compromising
its detection.

These are limitations that this dissertation mitigates by learning and using top-down knowledge
to modulate the salience computation process and to influence the swarm activity, increasing ro-
bustness to sudden visual changes in the path. Fig. 4.1 illustrates the advantage of using top-down
contrast-based modulation to path detection. The dependency on accurate path models is also re-
duced by the interactions between both bottom-up and top-down knowledge processes.

To minimise the effect of shadows, a shadow invariant colour space is used. A number of colour
spaces such asHSI, normalisedRGB, c1c2c3, and l1l2l3, have been tested and compared by Gevers
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and Smeulders (1999). As the colour space c1c2c3 showed to be the best shadow-invariant under
indoor lightning (Gevers and Smeulders, 1999), as well as the best shadow and illumination invariant
colour space for outdoor environments (Song et al., 2007), it is herein exploited. Fig. 4.2 shows an
example in which this property is evident.

(a) (b) (c) (d)

Figure 4.1: Typical situation where top-down contrast-based modulation is key for a proper path detection. (a)
Input image with most likely path location overlaid, using the top-down contrast-based modulated conspicuity
maps depicted in (b). (c) Input image with most likely path location overlaid, using the bottom-up conspicuity
map depicted in (d). The specific environmental configuration results in an inversion of the bottom-up conspicuity
maps, attracting virtual ants to the sides of the path. By including top-down contrast knowledge, this problem is
overcome.

(a) (b) (c) (d)

Figure 4.2: Shadow invariant colour space c1c2c3. (a) RGB image. (b) Channel c1. (c) Channel c2. (d) Channel
c3. The shadow on path region, depicted in (a), is somewhat attenuated in the c3 component (d).

Finally, the failure of the optical-flow motion compensation process remains as a limitation of the
proposed model with no straightforward solution, as strong camera motion occurs in unstructured en-
vironments like nature trails. Moreover, the lack of well defined textures in poor lightning environments
difficults the tracking of visual features, which are needed to compute the frame-wise translation and
rotation matrices used to motion compensate the neural field. A hypothetical solution could be the
use of inertial measurement units, as the latter does not rely on visual features to estimate the motion
matrices.

4.2 Model Overview

The key concept of top-down knowledge is considered in the proposed model by several means.
First, contrast knowledge is used to bias the computation of top-down contrast-based maps from
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the bottom-up feature maps. Second, appearance knowledge plays a role in the computation of
a probability map related to the path location and in an adaptive pheromone deployment process.
Third, as in the original model, the swarm activity behaves like a shape-based filter, according to
a priori knowledge about path’s generic morphological properties. As results will show, the joint
operation of these three sources of information is sufficient to ensure safe tracking of the path.

As seen on Chapter 3, a priori shape knowledge is implemented in the form of behavioural rules
executed by the p-ants. Hence, this knowledge is taken as innate and, thus, not affected by learning.
Conversely, top-down appearance and contrast models are learnt on-line, meaning that they need
an initialisation phase. Therefore, the proposed model has two execution phases: the initialisation
phase and the tracking phase. The initialisation phase lasts for η2 frames, during which the system
detects the path as in the original model, i.e., based upon bottom-up visual cues and without taking
into account the top-down appearance and contrast models. In addition, the necessary information to
build top-down knowledge about the target path is gathered. In the tracking phase, the model updates
and uses the learnt top-down knowledge, so as to modulate the bottom-up conspicuity computation
process. This way, the path location is more robustly tracked over time.

Similar to the original model, two bottom-up conspicuity maps, one encompassing intensity infor-
mation, CI

bu, and another encompassing colour information, CC
bu, are computed from the input frame

I. In the tracking phase, these bottom-up conspicuity maps are biased by a top-down contrast-based
model, w, and fused with a top-down appearance-based probability map, A. The top-down contrast
model is implemented as an on-line learnt set of weights, each one representing the importance of
a given visual feature to the detection of the path (see Section 4.3.2). The probability map, A, is ob-
tained by back projecting an on-line learnt top-down appearance-based model, which is implemented
as a normalised histogram, href (see Section 4.3.1).

The two top-down conspicuity maps, CI
td and CC

td, are subsequently shape-based filtered into two
pheromone maps, PI and PC , by the activity of two swarm of p-ants, as in the original model. The
pheromone maps are initialised with neural field’s activity, as seen on Chapter 3. Moreover, each
swarm operates over the respective pheromone map, using the information contained in the corre-
sponding top-down conspicuity map. If system is in the initialisation phase, the bottom-up conspicuity
map is used instead of the respective top-down map, as there is no top-down knowledge models cre-
ated yet. Top-down appearance knowledge is used to modulate the level of pheromone deployed
by the virtual ants. Rather than having p-ants deploying a constant level of pheromone along their
paths, this approach compels p-ants deploying higher doses of pheromone on regions of the visual
field whose appearance is similar to the one of the path.

After the shape-based filtering process, the resulting set of two pheromone maps are fused to-
gether, generating the salience map, S. As in the original model, this salience map feeds the dy-
namical neural field, F, which performs temporal filtering. Finally, the most salient region of the
visual field is obtained as an image mask1, which constrains the learning of information used to up-
date both appearance and contrast models (see Section 4.4). Fig. 4.3 depicts the proposed model’s
pipeline, whereas Fig. 4.4 provides a system’s snapshot on a typical situation. Algorithm 2 outlines
the initialisation phase and Algorithm 3 the tracking one.

1An image mask is a binary image whose pixels’ intensity belongs to {0, 1}.
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Figure 4.3: Proposed model’s pipeline. The proposed model starts by computing two bottom-up conspicuity
maps from the input image (intensity and colour information). After the initialisation phase, these maps are
biased by the top-down contrast model and fused with an appearance-based probability map, computed from
the top-down appearance model. The resulting top-down maps are shape-based filtered into two pheromone
maps (one for colour and another for intensity information) by two swarms of virtual ants, respectively. The virtual
ants use a set of behavioural rules that represent the top-down knowledge of the overall path’s typical shape.
These pheromone maps are initialised with the neural field’s activity. Cross-modality, represented by the two-
way arrow, are maintained by allowing swarms to share pheromone during their activity. Top-down appearance
knowledge is used to modulate the level of pheromone deployed by the virtual ants. The two pheromone maps
are fused together to generate a salience map. This latter map feeds the dynamical neural field, which performs
temporal filtering. Finally, the most salient region is obtained as a mask to constrain the learning of both top-down
appearance and contrast-based models.
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Figure 4.4: System’s snapshot on a typical situation. Due to the environment’s specific configuration, the
bottom-up conspicuity maps, CI

bu (left) and CC
bu (right), are unable to unambiguously signal the presence of

the path. By modulating the conspicuity process with the top-down contrast-based model learnt so far, path-
background discrimination improves considerably. It is also possible to see that the back projection of the
histogram (i.e., probability map, A) used as top-down appearance-based model provides a discriminatory map
that helps the swarms in performing the shape-based filtering. The good quality of the appearance-based model
reflects the good correlation between the most salient region, Rmsr of previous frames and the actual location
of the path. The image on the left of the neural field, F, corresponds to its overlay on the input image, I.
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Algorithm 2 Initialisation phase pseudo-code
1:
2: Input: current frame (I), previous frame (I′), frame number (nr_frame)
3: Output: Neural field (F)
4: Data: Number of p-ants (n_ants) is an empirically defined constant. Ctemp is an auxiliary image.
5:
6:
7: if nr_frame > 1 then
8:
9: use Equation 3.14 to estimate the homography matrix H, from I and I′

10: compensate neural field for robot motion, F← H · F
11:
12: end if
13:
14: //initialise pheromone maps
15: PI ← λ · F;
16: PI∗ ← ∅;
17: PC ← λ · F;
18: PC∗ ← ∅;
19:
20: compute bottom-up conspicuity maps, (CI

bu and CC
bu), from I [see Section 3.3.2]

21:
22: //update pheromone maps
23: for n_ants do
24:
25: create p-ant pI based on CI

bu and PI [see Section 3.3.3]
26: create p-ant pC based on CC

bu and PC

27:
28: (PI,PC,PC

∗ )← execute(pI ,C
I
bu,P

C,PI and PC
∗ ) [see Algorithm 1]

29: (PC,PI,PI
∗)← execute(pC ,C

C
bu,P

I,PC and PI
∗)

30:
31: remove(pI , pC)
32:
33: end for
34:
35: discard cross-modality and neural field influences, (PI ,PC)← (PI∗,P

C
∗ )

36:
37: compute salience map, S← 1

2P
I + 1

2P
C

38:
39: update neural field F with S [see (Santana et al., 2010)]
40:
41: Ctemp ← 1

2 ·C
I
bu + 1

2 ·C
C
bu

42:
43: (w,href )← updateTopDownModels(I,F,w,Ctemp,href ) [see Algorithm 5]
44:
45: return F
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Algorithm 3 Tracking phase pseudo-code
1:
2: Input: current frame (I), previous frame (I′)
3: Output: Neural field (F)
4: Data: Number of p-ants (n_ants) is an empirically defined constant. Ctemp is an auxiliary image.
5:
6:
7: use Equation 3.14 to estimate the homography matrix H, from I and I′

8:
9: compensate neural field for robot motion, F← H · F

10:
11: //initialise pheromone maps
12: PI ← λ · F;
13: PI∗ ← ∅;
14: PC ← λ · F;
15: PC∗ ← ∅;
16:
17: compute the probability map A from I and href [see Section 4.5.2]
18:
19: compute top-down contrast-based maps, CI

w and CC
w , from I and w [see Section 4.5.1]

20:
21: compute top-down conspicuity maps, CI

td and CC
td, from CI

w,CC
w and A [see Section 4.5.3]

22:
23: //update pheromone maps
24: for n_ants do
25:
26: create p-ant pI based on CI

td and PI [see Section 3.3.3]
27: create p-ant pC based on CC

td and PC

28:
29: (PI,PC,PC

∗ )← execute(pI ,C
I
td,P

C,PI,PC
∗ ) [see Algorithm 1]

30: (PC,PI,PI
∗)← execute(pC ,C

C
td,P

I,PC,PI
∗)

31:
32: remove(pI , pC)
33:
34: end for
35:
36: discard cross-modality and neural field influences, (PI ,PC)← (PI∗,P

C
∗ )

37:
38: compute salience map, S← 1

2P
I + 1

2P
C

39:
40: update neural field F with S [see (Santana et al., 2010)]
41:
42: Ctemp ← 1

2 ·C
I
w + 1

2 ·C
C
w

43:
44: (w,href )← updateTopDownModels(I,F,w,Ctemp,href ) [see Algorithm 5]
45:
46: return F
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4.3 Top-down Knowledge Models

4.3.1 Appearance-based Model

The appearance model is used to promote the deployment of pheromone on the regions whose
appearance is more similar to the one of the target path. To perform this image analysis, the appear-
ance model is implemented as a histogram, as the latter classifies aspects of an image into discrete
intervals to determine the correlation between images or features in an image. Shortly, a histogram
is a function that returns the frequency of an intensity σ, i.e., the value of h(σ) is the number of pixels
with intensity σ. Formally, being np the total number of pixels in a given image, and kh the intensity
intervals (or bins), the histogram h(.) meets the following condition:

np =

kh−1∑
σ=0

h(σ). (4.1)

Furthermore, a normalised image histogram of a particular object, hn(.), can be seen as a function
giving the probability that a certain pixel belongs to this specific object. Formally, the probability of a
pixel having an intensity of σ, p(σ), in the 8-bit grayscale image I, is defined as:

p(σ) = hn(σ) =
h(σ)

np
(4.2)

where h(.) is the non-normalised image histogram.

Concretely, the appearance model, href , is defined as a normalised three-dimensional 8-bit 16×
16 × 16 colour histogram. The use of 16 intervals for each dimension is empirically shown to better
correlate a given image region with the information classified by href , i.e., the most likely path region.
Being shadow invariant, the c1c2c3 is used as the colour space that encodes the visual information,
from which the model href is updated (see Section 4.4).

4.3.2 Contrast-based Model

The top-down contrast-based model, w, is defined as a vector of six elements, each representing
the weight a given aggregate centre-surround feature map has to the detection of the path. Once the
initialisation phase is over, these weights are updated and used at each frame to override the scaling
function applied by default to the aggregate centre-surround maps (see Chapter 3). Table 4.1 lists
the weights for the target path region delimited by a red rectangle, as depicted in Fig. 4.5 (a). This
rectangular area is used herein only for the purpose of giving a simple example. As will be seen in the
Section 4.4, the area used for updating w, has a dynamic and complex shape. Fig. 4.5 also depicts
the bottom-up conspicuity maps and the corresponding top-down contrast-based maps, computed
using w (see Section 4.5.1).
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Table 4.1: Computed weight vector w for the path depicted in Fig. 4.5 (a). The analysed path region corresponds
to the area defined by the red rectangle in (a). These weights show that the learnt target’s region is bright on a
dark background (intensity) and more reddish with green background, whereas blue and yellow are less present
than in the rest of the image and, thus, used for inhibition.

Centre-surround
feature maps Weights

Intensity On-Off 1.61601

Intensity Off-On 0.60327

Red-Green On-Off 2.27737

Red-Green Off-On 0.88842

Blue-Yellow On-Off 0.00000

Blue-Yellow Off-On 0.78312

(a) (b) (c) (d) (e)

Figure 4.5: Top-down contrast-based maps obtained from bottom-up feature maps, using the weight vector. (a)
The input image with a hypothetical red rectangle marking the area used to compute the weight vector w. (b)
Bottom-up intensity conspicuity map, CI

bu. (c) Bottom-up colour conspicuity map, CC
bu. (d) Top-down intensity

contrast map, CI
w. (e) Top-down colour contrast map, CC

w .

4.4 Learning Top-down Knowledge Models

To learn both top-down appearance and contrast models about the path being sought, it is nec-
essary to specify, at each frame, the region of the input image that corresponds to the most likely
location of the path.

As seen on Chapter 3, the high intensity region on the neural field represents a convergent be-
haviour that emerged from the p-ants’ activity. Therefore, the highest intensity region of the neural
field is more likely to belong to the path’s location and, thus, it is used to find the most salient pixel on
a temporary conspicuity map, Ctemp. During the initialisation phase, Ctemp is computed as the aver-
age of both colour and intensity bottom-up conspicuity maps, CI

bu and CC
bu, as the system does not

acquired yet a top-down knowledge about the target path. In the tracking phase, Ctemp is computed
as the average of both colour and intensity top-down contrast-based maps, CC

w and CI
w, respectively.

Instead of searching in the whole Ctemp map, the search is restricted to this region of interest defined
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as Rsearch and, thus, computation time is saved.

Formally, the most salient pixel is found with the following expression:

(xs, ys) = arg max
(x,y)

{Ctemp(x, y)}, Rsearch(x, y) 6= 0 (4.3)

where (xs, ys) is the location of the pixel with the highest intensity value found on Ctemp and, simul-
taneously, belongs to a non-zero value of Rsearch.

The location of the most salient pixel is used as a seed for a region growing process on Ctemp.
The outcome of this process is a mask of the most salient region, Rmsr, which is provided to both
appearance and contrast learning processes.

4.4.1 Most Salient Region Computation

The region growing process is herein implemented by a floodfill algorithm. Shortly, similarity
between the seed and its eight immediate neighbours is verified. If a neighbour pixel meets the simi-
larity criterion, it is labelled as belonging to the most salient region, Rmsr. After all eight neighbours
have been processed, one of them, belonging to the seed’s region, is chosen and its neighbours are
checked against the similarity criterion. This process goes on until all pixels have been analysed or
until all the neighbours of the seed’s region do not meet the similarity criterion. Formally, this criterion
is defined as:

Ctemp(xs, ys)− δ ≤ Ctemp(x, y) ≤ Ctemp(xs, ys) + δ, (4.4)

where Ctemp(xs, ys) is the seed’s intensity, Ctemp(x, y) is the intensity at location (x, y), and δ is
the allowed intensity deviation. Fig. 4.6 depicts the obtained Rmsr mask from a given input image.
Algorithm 4 outlines the floodfill pseudo-code.

(a) (b) (c) (d) (e)

Figure 4.6: Search procedure used to find the most salient region Rmsr. (a) Temporary map Ctemp, computed
in this example as the average of both colour and intensity bottom-up conspicuity maps. (b) Neural field F. (c)
Search mask Rsearch. (d) Location of the highest intensity pixel ps (green dot). (e) Most salient region Rmsr.
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Algorithm 4 FloodFill pseudo-code
1:
2: Input: Seed location (xs, ys), conspicuity map (Ctemp), Region mask (Rmsr)
3: Output: Region mask, Rmsr

4: Data: Intensity threshold (δ), wait list (Q)
5:
6:
7: initialise list Q with the eight immediate neighbours of the seed pixel
8:
9: while Q 6= {∅} do

10:
11: get the next pixel’s location (xn, yn) from the list Q
12:
13: // comparison criterion
14: if (Ctemp(xn, yn) ≤ Ctemp(xs, ys) + δ) and (Ctemp(xn, yn) ≥ Ctemp(xs, ys)− δ) then
15:
16: search to the left of (xn, yn) to find the location, (xl, yl), of a pixel that no longer matches the

comparison criterion
17:
18: search to the right of (xn, yn) to find the location, (xr, yr), of a pixel that no longer matches

the comparison criterion
19:
20: for all xn between xl and xr do
21:
22: paint a white pixel at (xn, yn) on the mask Rmsr

23:
24: get the neighbour, (xu, yu), above (xn, yn)
25:
26: if (Ctemp(xu, yu) ≤ Ctemp(xs, ys) + δ) and (Ctemp(xu, yu) ≥ Ctemp(xs, ys)− δ) then
27:
28: add neighbour (xu, yu) to Q
29:
30: end if
31:
32: get neighbour, (xd, yd), below (xn, yn)
33:
34: if (Ctemp(xd, yd) ≤ Ctemp(xs, ys) + δ) and (Ctemp(xd, yd) ≥ Ctemp(xs, ys)− δ) then
35:
36: add neighbour (xd, yd) to Q
37:
38: end if
39:
40: end for
41:
42: end if
43:
44: end while
45:
46: return Rmsr
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4.4.2 Appearance-based Model Update

The most salient region, Rmsr, is a key element in the update process of both appearance and
contrast models, as non-path information can be filtered with the help of this image mask. Hence, to
update the appearance model, the input RGB image is first converted to the c1c2c3 colour space in
the following way:

c1 = arctan

(
r

max(g, b)

)
, (4.5)

c2 = arctan

(
g

max(r, b)

)
, (4.6)

c3 = arctan

(
b

max(r, g)

)
. (4.7)

The c1c2c3 image is then pixel-wise multiplied by Rmsr. The resulting image region is used to
build a histogram, hsample, that contains the new information about the path’s appearance. Formally,
this information is integrated in the appearance model href according with the following expression:

href ← href · (1− β1) + hsample · β1, (4.8)

where β1 is the weight that the new information has in the href , i.e., the intrinsic adaptation speed
of the appearance model. For instance, a higher β1 value means a faster learning rate, but with the
cost of a lower model’s robustness to sudden misleading information.

4.4.3 Contrast-based Model Update

To update the contrast model w, a weight vector w′ is learnt for the current frame, based on the
method proposed by Frintrop and Kessel (2009). Basically, this adapted method sets higher weights
to bottom-up centre-surround maps that positively correlate with the most likely location of the object
and lower weights to maps otherwise. This way, centre-surround maps are promoted according to
their relevance to the object.

The weight of a centre-surround map is computed as the ratio between the average intensity of
its pixels that simultaneously correspond to non-zero pixels in Rmsr, and the average intensity of the
other pixels. Formally, the weight wi of the centre-surround map, Csi , is computed as
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wi =

1
m1
·

∑
Rmsr(x,y)6=0

Csi(x, y)

1
m2
·

∑
Rmsr(x,y)=0

Csi(x, y)
i ∈ {1...6}, (4.9)

where m1 and m2 is the number of non-zero and zero pixels in Rmsr, respectively. However, it might
happen that the most salient region mask, Rmsr, can partially cover path and non-path regions in the
following two scenarios: (1) during the floodfill segmentation, the allowed intensity deviation value, δ,
might be too loose; or (2) a misleading location of the seed, caused by high conspicuity of distractors.
To increase robustness to sudden misleading information contained in Rmsr, the contrast knowledge
model w has a smooth learning mechanism based on information learnt in the past. Hence, the
adaptation of w is formulated as

w(t) = (1− β2)w(t− 1) + β2w
′(t), (4.10)

where β2 is the learning rate. Algorithm 5 outlines the appearance and contrast-based models update
procedure.

Algorithm 5 Pseudo-code of the frame-wise top-down knowledge update process
1:
2: Input: Input image (I), Neural field (F), conspicuity map (Ctemp), weight vector (w), histogram

structure (href )
3: Output: weight vector (w), histogram structure (href )
4:
5:
6: obtain neural field’s (F) highest activity region, Rsearch

7:
8: find the coordinates (xs, ys) of the highest intensity pixel on Ctemp, using the mask Rsearch

9:
10: Rmsr ← floodFill(xs, ys,Ctemp) [see Algorithm 4]
11:
12: update weight vector w with I and Rmsr [see Section 4.5.1]
13:
14: update top-down appearance-based model href with I and Rmsr [see Section 4.5.2]
15:
16: return (w,href )

4.5 Applying Top-down Knowledge Models

The weights of the vector w are used to excite or inhibit bottom-up visual features. The outcome
of this procedure is two temporary top-down contrast-based maps, one for intensity information, CI

w,
and another for colour information, CC

w . As stated before, each one of these maps are fused with the
appearance-based probability map A to create two top-down intensity and colour conspicuity maps,
CI
td and CC

td, both based on contrast and appearance knowledge.
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4.5.1 Contrast-based Maps Computation

Each top-down contrast-based map is obtained by subtracting an inhibition map from an excitation
map, Ew − Iw. The excitation map Ew is the weighted sum of the bottom-up centre-surround maps
that weight more than unity (important contribution for the target being sought), whereas the inhibition
map Iw is the weighted sum of the maps that weight less than unity (not important). Centre-surround
maps whose weight is equal to unity indicate that the mean salience of the target region is exactly
the same as the mean salience of the background. Therefore, these maps have a zero contribution
for the target salience and are discarded. Formally, the excitation and inhibition maps are computed
from a set of ncs centre-surround maps, according to the following two expressions:

Ew =
∑
i

(
ωi ·Csi

)
∀i ∈ {1..ncs} : ωi > 1; (4.11)

Iw =
∑
i

(
Csi

ωi

)
∀i ∈ {1..ncs} : ωi < 1. (4.12)

Specifically, the top-down intensity contrast-based map, CI
w, is computed using the weights of the

on-off and off-on centre-surround intensity maps, whereas the weights of the four colour-opponency
centre-surround maps are used to compute CC

w . The two contrast biased maps are then normalised
with the operator K(.), described in Chapter 3. Fig. 4.7 depicts the top-down contrast map computa-
tion process.

Figure 4.7: Top-down contrast-based conspicuity computation.
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4.5.2 Appearance-based Probability Map Computation

The appearance-based probability map, A, is obtained by performing the back projection of the
normalised histogram, href . Concretely, this method computes a probability map by labelling each
one of its pixels accordingly to the likelihood between the corresponding input image’s pixels and the
path region, which is classified by href . Hence, a white pixel in the appearance-based probability
map, A, means a full match whereas a black one means a full mismatch (see Fig. 4.8).

The appearance-based probability map helps the tracking of the path by the following two ways:
(1) by its fusion with the top-down contrast-based maps to produce the final top-down conspicuity
maps and, (2) by biasing the level of pheromone deployed by the virtual ants. In particular, the
modulation of the pheromone deployment is implemented in the proposed model, as follows:

Φ(pm) = ε+ β · p(T |Vpm ,A) (4.13)

where β is an empirically defined weighting factor, ε is an empirically defined pheromone level base-
line, and p(T |Vpm ,A) is the probability of the p-ant’s path, Vpm , to belong to the path T , given the
information contained in the top-down appearance-based map A. The probability p(T |Vpm ,A) is ap-
proximated by the average probability computed by taking into account the probability of each pixel,
visited by the ant, of belong to the path region. These pixels are represented by the set Vpm , and
their individual probabilities are obtained from the top-down appearance-based probability map, A.

Figure 4.8: Appearance-based probability maps (bottom-row), and corresponding input images (top-row) for
path detection. The probability maps are computed using the histogram back projection method, after the colour
conversion process of the input RGB image to the c1c2c3 colour space.
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4.5.3 Top-down Conspicuity Maps Computation

Although useful, the top-down appearance-based model alone is unable to segment the path
when its appearance suffers a sudden change, as in the situation depicted in Fig. 4.9. Hence, to
overcome this failure case, the probability map, A, is superposed with each top-down contrast-based
map, CI

w and CC
w , obtaining two top-down conspicuity maps, CI

td and CC
td, as follows:

CI
td =

1

2
·CI

w +
1

2
·A, (4.14)

CC
td =

1

2
·CC

w +
1

2
·A. (4.15)

The outcome are maps with a reduced number of gaps which helps p-ants to track the path’s
skeleton in a more robust way (see Fig. 4.10).

(a) input image (b) back-projection map (c) top-down contrast map

Figure 4.9: Typical situation in which the back projection of the appearance model, depicted in (b), is insufficient
to segment the path from the background. Conversely, the top-down colour contrast-based map, depicted in (c),
is able to accurately localise the path in the input image. The failure of the top-down appearance model owes
mostly to the sudden appearance of a bridge along the path.

(a) (b) (c) (d)

Figure 4.10: Typical situation in which the superposition of the top-down colour contrast-based map, CC
w , and

the appearance model’s probability map, A, produces a top-down colour conspicuity map, CC
td, with a reduced

number of gaps, thus facilitating the swarm operation. (a) Input image with system’s output overlaid in red. (b)
Top-down colour contrast-based map of (a), CC

td. Top-down appearance-based probability map. Superposition
of (b) and (c).
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Chapter 5

Experimental Results

This chapter presents the experimental setup and parametrisation used to assert the robustness
and efficiency of the proposed model, as well as the obtained results. The failures cases of the
proposed model and the discussion of the results, are described in Section 5.3.

5.1 Experimental Setup

The proposed model was implemented entirely in the C++ programming language and it was
made fully compliant with the Robotics Operating System (ROS)1 (Quigley et al., 2009). The system
was tested in a Pentium(R) Dual-Core CPU T4300 2.10GHz with 4 Gb of RAM, running a 32-bit Linux
distribution Ubuntu 10.10 (Maverick Meerkat), and using OpenCV 2.3 (Bradski and Kaehler, 2008)
for low-level computer vision routines.

In order to measure the performance of the proposed model, an extensive data-set of 39 colour
videos, encompassing a total of 29789 analysed frames with a resolution of 640× 480, has been ob-
tained with a hand-handled camera carried at an approximate height of 1.5 m and speed of 1 ms−1.
The dataset includes both natural and engineered paths in a wide variety of backgrounds (see
Fig. 5.1). Experimental results were obtained running the model off-line.

5.2 Model Parametrisation

The proposed model’s parametrisation follows practically the same values of the free parameters
defined in the original model (Santana et al., 2010). Concretely, the number of p-ants deployed
per map, n, has been empirically defined to 20. A smaller number may not ensure convergence,
whereas a larger one did not exhibit considerable improvement in the tested data set. The same
reasoning applies to the number of iterations applied to each p-ant, η1, which has been set to 50. The

1ROS: http://www.ros.org
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Figure 5.1: Data set representative frames. Each image corresponds to one video whose ID is given by in-
creasing order from left to right and top to bottom. The redness of the blobs overlaid in the images correspond
to the activity level of the neural field above 85% of its maximum, representing the model’s estimate of the path’s
location.
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pheromone baseline deployed by a given p-ant on its associated pheromone map, ε, has been set to
2.0. The gain of the top-down appearance-based model’s contribution to the deployed pheromone,
β, is set to 2.0. The small portion of ε deployed in the other pheromone map, υ, has been set to 0.3.
These values should not be set too high to avoid pheromone saturation, inhibiting the emergence
of collective behaviour. The learning rates of both top-down appearance-based and contrast-based
models, β1 and β2, are set to 0.1. The ratio of the robot motion compensated neural field used to
initialise the pheromone maps at the onset of each frame has been set to λ = 0.1.

The p-ants are set to be more greedy in searching for high conspicuity regions or regions with
similar average level of conspicuity, learnt from its past iterations. Beyond that, the p-ants behave
with a little tendency to maintain equidistant to the boundaries of the path hypothesis. Hence, the
contribution of each behaviour is αgreedy = 0.45, αtrack = 0.35, αcentre = 0.10, αahead = 0.05, and
αcommit = 0.05. The goal of making αgreedy > αcentre + αahead + αcommit, is to ensure that p-
ants exploit more strongly the conspicuity cue than the a priori knowledge on the expected path’s
shape. With a relatively high αtrack, the swarm influences each individual p-ant to further reduce the
problems associated with noise and distractors.

The width, δw, and the height, δh, of the window used to create p-ants (see Chapter 3) have been
set to 9 and 5, respectively. The initial values of the random factor ρ (see Equation 3.10), ρ0, and
its increment at each iteration, ∆ρ, have been set to 0.3 and 0.02, respectively. The initial values of
the random factor γ (see Equation 3.11), γ0, and the rate of its exponential decay at each iteration,
γτ , have been set to 0.4 and 0.02, respectively. The number of input frames spent in the initialisation
phase was defined empirically to η2 = 50, which is empirically shown to be sufficient for the system
to converge.

5.3 Results

This section presents the quantitative results obtained with the proposed model in the presented
data set. Moreover, the following hypotheses are herein assessed:

1. Added value of the top-down appearance-based model;

2. Advantageous modulation of bottom-up visual feature cues into top-down contrast-based maps;

3. Increased path detection rate due to top-down knowledge;

4. Computational efficiency to ensure robust path following in off-road environments.

As seen on Chapter 4, the dynamic pheromone deployment process is biased by an appearance-
based probability map that is learnt and updated on-line. Fig. 5.2 depicts several probability maps
with a high probability value on path regions, confirming the first hypothesis.

As discussed in Chapter 3, in extreme situations where the path conspicuity is constantly low
and noisy, the neural field inertia isn’t enough, migrating slowly and together with the p-ants, to the
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Figure 5.2: Evaluation of path segmentation based on the probability maps. Input image (first column), neural
field F (second column), seed location marked by a green diamond on Ctemp map (third column), most salient
region mask Rmsr (fourth column), and the corresponding probability map Ip (fifth column) . These figures show
that path region is entirely (or partially) segmented on probability maps.

path’ surroundings. These scenarios are not so prone to happen with new proposed model. This is
achieved by the top-down contrast-based model, that allows the computation of top-down contrast-
based maps less noisy than the corresponding bottom-up conspicuity maps. Moreover, as seen in
Section 4.4.3, the contrast model has a smooth learning mechanism that gives importance to the past
learnt information. Hence, it offers some robustness to sudden and misleading temporary changes
on bottom-up conspicuity maps. Fig. 4.9 and Fig. 4.5 confirm the second hypothesis, as they illustrate
the added value of the top-down contrast-based model.

The third hypothesis being tested in this dissertation is that the interaction between the bottom-
up conspicuity maps and the top-down knowledge models are able to introduce the required added
value to ensure robust path detection and tracking. Concretely, the path is considered correctly
detected if the biggest blob of neural field activity (above 85 % of its maximum) is fully localised
within the path’s boundaries and roughly aligned with the path’s orientation. Additionally, the whole
neural field’s activity can be taken as an approximation of the path/background segmentation. Such
representation may be useful for detailed motion planning. Although a quantitative analysis is not
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provided, the obtained qualitative results support this possibility - see the high correlation between
neural field activity and path location in Fig. 5.2.

The results obtained from the data-set videos are shown in Table 5.1 to confirm the success of
the fourth hypothesis. That is, in the tested data set, the proposed adaptive top-down swarm-based
salience model predicts the path location 5 times more than a classical salience model based only
on the bottom-up conspicuity maps. For the sake of fair comparison, the neural field F, which is
fed by S, is used to generate the output on the different models. To assess the potential effects
the probabilistic nature of p-ants behaviours might have in the model’s repeatability, the results are
obtained from averaging 5 runs per video. For each video run, the number of frames where the path
is correctly detected is divided by the total number of frames. With a rather low standard deviation
(see Table A.1), model’s repeatability is demonstrated.

Table 5.1: Comparative detection results in the 39 data-set videos between several models: a classical salience
model based only on the conspicuity maps, S ← 1

2
(CI) + 1

2
(CC); the original model (Santana et al., 2010)

based on pheromone maps, S ← 1
2
(PI) + 1

2
(PC); and, the proposed model. Aggregate detection rate (mean

± standard deviation) computed as the average of the detection rates obtained per video. Refer to Table A.1 in
Appendix A for details.

Classical model
(Itti et al., 1998)

Original model
(Santana et al., 2010) Proposed model

Detection rate [%] 19.60± 0.0 84.66± 0.14 98.67± 0.04

It is worth noting that in 28 of the 39 videos, the proposed model shows 100 % success rate, for
all the 5 five runs. Videos 5, 27, 36, and 39 are accounted as long runs, above 4 minutes length,
composed by more than 2500 frames. The 100 % success rate of the model in these videos (except
for video 27 with a 99.47 % success rate) clearly shows its robustness in demanding situations.

To show that the model is capable of providing sufficient information to bring a robot back to the
path after a forced exit (e.g., in the presence of an obstacle), the camera was frequently moved off
path with a considerable level of oscillation. Fig. 5.3 depicts one of these situations.

The fourth hypothesis being assessed is whether the proposed model exhibits computational
efficiency enough to ensure robust path following in off-road environments. Computational efficiency
is attained with 20 Hz operation (see Table 5.2). Remarkably, the swarm-based pheromone maps
computation, which is the only path-specific operation, takes only 2 ms on average per frame. With
an average success rate of 98.67 % (see Table 5.1), the model shows itself capable of providing a
great deal of, and possibly sufficient, information for a control system to guide a robot along most
paths.

Table 5.2: Average computation times. The timing reported for the neural field update also includes optical flow
computation, homography estimation and neural field wrapping.

Neural field
Conspicuity maps

computation
Pheromone maps

computation Total

Time [ms] 18 33 2 53
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(a) Frame 219 (b) Frame 279 (c) Frame 399

(d) Frame 447 (e) Frame 501 (f) Frame 546

Figure 5.3: System’s output in a sequence of images from video 19 obtained with the camera moving on and
off path. This shows the ability of the model to provide enough information about the path’s location for a robot
to return to the path after a forced exit. The redness of the pheromone cloud overlaid in the images correspond
to the activity level of the neural field above 85% of its maximum, representing the model’s estimate of the path’s
location.

5.3.1 Failure Cases

Despite the overall good results, the model still presents some weaknesses that should be ad-
dressed in future work. As seen on Section 4.1, to reduce sensitivity to shadows, a different colour
space than RGB was used to build the probability map, A. However, strong shadows remove chro-
matic information, thus limiting the impact of the colour space. Fig. 5.4 illustrates one of these
situations, along with a segmentation produced by a classic clustering-based approach (Rasmussen
et al., 2009). The figure shows that the conspicuity maps produce segmentations similar to the clus-
tering approach. This confirms the ability of salience maps to produce interesting segmentations of
the input image. It also shows the difficulty classical segmentation approaches also have in handling
strong shadows. Hence, this failure can be credited more to the poor signal-to-noise ratio of the
input image than to any limitation of the proposed model. Given that shadows are cast mostly by tall
objects, the fix to this problem may lie in the inclusion of 3-D information.

Sometimes a temporary discompensation of the neural field for the robot motion, caused by a
failure in recovering the optic-flow, can temporarily mislead the swarm activity to non-path regions.
In particular, this failure results in a concentration of neural field activity off the path and a strong
competition between p-ants on and off the path, which can lasts for a few frames until symmetry
is broken. For instance, p-ants responsible for the off path activity tend to rapidly converge to path
regions due to “cleaner and accurate” top-down conspicuity maps that may suppress misleading
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(a) Input image (b) Consp. map CI
bu (c) Consp. map CC

bu (d) Image segmentation

Figure 5.4: Failure caused by strong shadows. Situation in which the proposed model fails to track the path
due to the presence of strong shadows. Note that conspicuity maps in (b)-(c) are themselves producing a
segmentation of the input image similar to the one produced by a classical clustering-based segmentation
approach (Rasmussen et al., 2009) in (d). Hence, failure is as likely in both cases.

non-path competition. But as one can infer, when the concentration of neural field activity is off
the path, it can jeopardise the path’s appearance and contrast learning due to a sudden misleading
seed location, and consequently, threatening and compromising the integrity of top-down conspicuity
maps. However, giving importance to past learnt contrast information, it offers some protection in
these failure cases. Fig. 5.5 depicts a sequence of images from video 30, that shows the model’s
ability to recover from dramatic mismatches between the representation built so far and the sensory
input.

5.3.2 Discussion

A key issue in the proposed model is the considerably high number of parameters that must be
set. However, a single parametrisation is robust enough to cope with different situations. This ability
can be verified by the success rate above 98 % in videos 26, 27, and 28, which include natural and
engineered paths in both natural and man-made environments.

When the path is highly conspicuous in the environment, as most often occurs, ambiguity is
rarely present in the system’s output. When this assumption fails, and distractors are scattered,
the model is still able to often perform correctly, as demonstrated by the quantitative results. This
robustness owes to the synergistic operation between neural field inertia and p-ants’ sensorimotor
coordination capabilities, which allow an opportunistic exploitation of the path-background prioritised
segmentation present in the conspicuity maps. Although the top-down appearance-based model is
also responsible for this success, it is possible to depict in Fig. 5.6 that it is insufficient alone when
the camera is compelled to change between paths of different appearance. In the same line, Fig 5.7
shows two additional situations in which the system successfully tracks the path despite its sudden
appearance change.

As seen by the obtained results, the proposed model exhibited computational efficiency enough
to ensure robust path following in off-road environments, as well as the capability to bring a robot
back to the path after a forced exit.
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Figure 5.5: Misleading learning due to bad seed location caused by erroneous motion compensation. Situation
in which the proposed model overcomes the failure of optic-flow and was able to track the path. From top
to bottom, rows represent the model’s state for key frames along the sequence. The figure shows that the
smooth learning mechanism, gives importance to the past, boosting system robustness. First column shows the
sequence of input frames. On the second, third and fourth columns, the obtained neural field, the most salient
pixel and the most salient region mask are shown, respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 5.6: System’s output in a sequence of images from video 27 obtained with the camera moving from
the path depicted in (a) to the path depicted in (c), and the corresponding appearance model’s back-projections
(d) and (f). In (e), the pixel-wise path probability map of image (b) shows the inability of the learnt appearance
model to indicate the presence of the new path. This is a result of both paths having different appearances. Nev-
ertheless, the system is able to switch from one path to the other thanks to the contrast model. The appearance
model eventually learns the new appearance of the path, as seen in (f).

Figure 5.7: System’s output in two sequences of images (top row from video 26 and bottom row from video 27)
obtained with the camera moving along two paths whose appearance suddenly changes.
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Chapter 6

Conclusions and Future Work

In this chapter, a summary of the results achieved in this dissertation is given, as well as some
directions for future research.

6.1 Conclusions

This dissertation proposes the incorporation of an adaptive pheromone deployment and a top-
down knowledge model into the swarm-based bottom-up visual attention model proposed by Santana
et al. (2010). The goal of this extension is to improve the original model, as the swarm-based design
developed by Santana et al. (2010) shows a fitted and adequate visual search, perceptual grouping,
and multiple hypotheses tracking. In particular, as the original model uses visual salience both local
and global cues on the path location are naturally exploited. That is, visual salience maps provide
contrast information not only between the path and its surroundings, but also between the path and
the overall scene. For instance, the appearance of the materials composing the path (e.g., soil) differ
from the appearance of the materials composing its surroundings (e.g., grass, sidewalks) and the
remainder elements present in overall scene (e.g., buildings, trees, sky). The complementarity of
both local and global contrast information results in a robust handling of less structured trails.

As seen on the original model (Santana et al., 2010), two swarms of agents sensitive to bottom-
up conspicuity information interact via pheromone-like signals so as to converge on the most likely
location of the path being sought. The behaviours ruling the agents’ motion are composed of a set of
perception-action rules that embed top-down knowledge about the path’s overall layout. This reduces
ambiguity in the face of distractors. However, distractors with a shape similar to the one of the path
being sought can still misguide the system. To mitigate this issue, the introduced top-down knowledge
model consists of three components: contrast, appearance, and a priori shape knowledge. Using in a
modulation context and not in a direct image processing, the complexity of these components can be
reduced without hampering robustness. Hence, the appearance component was implemented by a
simple c1c2c3 colour space histogram that is used to build an appearance-based map about the path
location and to modulate the pheromone deployment. The contrast component was implemented
by a weight vector that modulates bottom-up visual conspicuity information into top-down contrast-
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based maps. As already stated, the shape knowledge was implemented by the set of behaviours of
each swarm agent.

The proposed model’s architecture exploited synergistically contrast, appearance and shape in-
formation, which is essential to handle sudden path’s appearance changes. In particular, it allows
to further increase robustness and reliability of the original model by on-line learning of contrast and
appearance top-down information of the path being followed.

As seen by the experimental results presented in Chapter 5, the model was successfully validated
against a heterogeneous and challenging data-set, being capable of handling highly unstructured
paths in natural environments, and exhibiting a low computational footprint. Moreover, low cost com-
putation allows a faster robot motion. In particular, the model exhibited 98.67 % of success rate at
20 Hz, outperforming the previous non-adaptive model Santana et al. (2010), with 84.66 % success
rate at 20 Hz. The proposed model was able to successfully track the path in situations which its
sudden appearance changed (see Fig. 5.6). Furthermore, it was shown the ability of the model to
provide enough information about the path’s location for a robot to return to the path after a forced
exit.

Another positive result that worth mention was that the selected model’s parametrisation was not
over-fit to a specific natural environment as can be seen by the high success rate across the diverse
data-set, and thus highlighting its robustness.

Finally, proposed model contributes to the emerging swarm cognition field, which attempts to un-
cover the basic principles of cognition, i.e., adaptive behaviour, recurring to self-organising principles,
mainly those exhibited by social insects.

6.2 Future Work

An interesting future development is the self-supervised adaptation of the weights of each p-
ant’s behaviour to achieve better results in different scenarios, providing an evolutive capability to
the system. Another aspect to be taken into account is the creation of different expertises among
the p-ants. For instance, one p-ant may be expert in finding path borders, whereas others may be
expert in finding the horizon, keeping the p-ants away from exploring the sky. The addition of three-
dimensional information, as an obstacle detection process, can helpfully bias the p-ants’ motion away
of obstacles.

To further increase the robustness of the proposed model, other visual features can be exploited,
such as orientations. However, these features can increase significantly the processing time for each
frame. Therefore, another interesting development would be the use of modern Graphics Processing
Units (GPUs), as they are becoming more efficient and faster at performing calculations involving
matrix and vector operations. Their highly parallel hardware capabilities makes them more effective
than general-purpose CPUs for algorithms where processing of data is or can be done in parallel.
Therefore, the parallel nature of the proposed model can be used to greatly improved computation
time in future GPU-accelerated implementations, freeing more CPU resources for other tasks.

56



6.3. Dissemination

As the original model, this extended model does not handle bifurcations in the path. To overcome
this limitation in the future, multiple focus of p-ants activity must be analysed and tracked in the
neural field. The selection of which focus to track and, thus, which way the robot must proceed must
be hinted by some external stimuli, like a directional signal on the path.

A open challenge in the proposed model is the autonomous assessment of the most propitious
moment to automatically switch from initialisation to tracking phase.

6.3 Dissemination

Some of the concepts covered in this dissertation can be additionally viewed in the following
publication, co-authored by the author:

• Santana, P., Mendonça, R., Correia, L., and Barata, J. (2011). Swarms for robot vision: The
case of adaptive visual trail detection and tracking. Advances in Artificial Life, ECAL 2011.

• Santana, P., Mendonça, R., Alves, N., Correia, L., and Barata, J. (2011). Tracking natural trails
with swarm-based visual saliency. Journal of Field Robotics.

• Santana, P., Mendonça, R., Correia, L., and Barata, J. (2012). Neural-Swarm Visual Saliency
for Path Following. Applied Soft Computing.

The model herein proposed is being fielded on an all-terrain robot being developed with the SME
Portuguese company IntRoSys, S.A. in the context of the QREN project Introsys Robot, project
number 2008/002641.
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Table A.1: Comparisation between different visual attention models for path detection. The aggregate path
detection results were computed using a data-set composed by 39 videos.

Video
ID

Nr of
Frames

Classical model
(Itti et al., 1998)

detection rate [%]

Swarm-based model
(Santana et al., 2010)

detection rate [%]

Proposed model
detection rate [%]

1 278 44.60 100.00± 0.00 100.00± 0.00

2 204 61.76 100.00± 0.00 100.00± 0.00

3 422 4.74 93.03± 0.21 100.00± 0.00

4 135 0.00 100.00± 0.00 100.00± 0.00

5 2854 32.48 93.90± 0.02 100.00± 0.00

6 186 27.96 97.53± 0.30 100.00± 0.00

7 121 0.00 100.00± 0.00 100.00± 0.00

8 124 0.00 88.06± 0.36 100.00± 0.00

9 301 18.77 98.38± 0.32 97.35± 0.13

10 147 49.66 92.11± 0.61 100.00± 0.00

11 386 0.00 100.00± 0.00 100.00± 0.00

12 158 0.00 88.48± 0.28 100.00± 0.00

13 134 40.30 87.31± 0.53 100.00± 0.00

14 676 44.23 99.14± 0.07 100.00± 0.00

15 683 26.50 91.22± 0.10 100.00± 0.00

16 770 4.55 82.96± 0.14 97.45± 0.06

17 403 34.99 93.90± 0.14 100.00± 0.00

18 335 97.01 86.21± 0.13 100.00± 0.00

19 230 84.78 76.43± 0.20 100.00± 0.00

20 439 6.38 82.92± 0.23 100.00± 0.00

21 490 3.67 93.31± 0.09 100.00± 0.00

22 230 10.87 100.00± 0.00 100.00± 0.00

23 600 6.00 90.10± 0.15 100.00± 0.00

24 802 0.00 95.06± 0.07 100.00± 0.00

25 907 0.00 94.42± 0.06 100.00± 0.08

26 1553 0.97 60.08± 0.00 100.00± 0.08

27 3011 0.70 24.50± 0.05 99.47± 0.04

28 1288 0.00 89.72± 0.14 100.00± 0.00

29 267 11.99 71.39± 0.18 96.25± 0.24

30 440 19.32 79.00± 0.31 84.82± 0.36

31 1027 18.70 68.96± 0.07 99.51± 0.06

32 1083 2.95 82.01± 0.04 89.33± 0.07

33 1649 2.91 90.42± 0.00 92.15± 0.10

34 591 5.25 50.19± 0.14 97.33± 0.20

35 388 17.27 73.97± 0.16 97.42± 0.23

36 2515 0.00 30.43± 0.04 100.00± 0.00

37 429 47.09 75.34± 0.09 100.00± 0.00

38 829 3.26 91.05± 0.05 96.61± 0.10

39 2696 34.85 90.22± 0.01 100.00± 0.00

29789 19.60 84.66± 0.14 98.67± 0.04
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