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Abstract

Advanced Traffic Management Systems utilize diverse types of sensor networks with

the goal of improving mobility and safety of transportation systems. These systems re-

quire information about the state of the traffic configuration, including volume, vehicle

speed, density, and incidents, which are useful in applications such as urban planning,

collision avoidance systems, and emergency vehicle notification systems, to name a

few. Sensing technologies are an important part of Advanced Traffic Management

Systems that enable the estimation of the traffic state. Inductive Loop Detectors are

often used to sense vehicles on highway roads. Although this technology has proven

to be effective, it has limitations. Their installation and replacement cost is high and

causes traffic disruptions, and their sensing modality provides very limited informa-

tion about the vehicles being sensed. No vehicle appearance information is available.

Traffic camera networks are also used in advanced traffic monitoring centers where the

cameras are controlled by a remote operator. The amount of visual information pro-

vided by such cameras can be overwhelmingly large, which may cause the operators

to miss important traffic events happening in the field.

This dissertation focuses on visual traffic surveillance for Advanced Traffic Man-

agement Systems. The focus is on the research and development of computer vision

algorithms that contribute to the automation of highway traffic analytics systems that

require estimates of traffic volume and density.
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This dissertation makes three contributions:

The first contribution is an integrated vision surveillance system called 3DTown,

where cameras installed at a university campus together with algorithms are used to

produce vehicle and pedestrian detections to augment a 3D model of the university

with dynamic information from the scene.

A second major contribution is a technique for extracting road lines from high-

way images that are used to estimate the tilt angle and the focal length of the camera.

This technique is useful when the operator changes the camera pose.

The third major contribution is a method to automatically extract the active road

lanes and model the vehicles in 3D to improve the vehicle count estimation by individ-

uating 2D segments of imaged vehicles that have been merged due to occlusions.
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Chapter 1

Introduction

An intelligent transportation system (ITS) as defined by the Intelligent Transportation

Systems Society of Canada (ITS Canada) is the application of advanced and emerging

technologies (computers, sensors, control, communications, and electronic devices) in

transportation to save lives, time, money, energy and the environment [1, 2].

Under the umbrella of ITS, Advanced Traffic Management Systems (ATMS) utilize

diverse types of roadway sensor networks with the goal of improving mobility, safety,

and productivity of transportation systems. These systems require information about

the operational state and characteristics of the traffic, including traffic volume, vehicle

speed, traffic density, occupancy, incidents, and weather conditions, which are useful in

applications such as urban planning, collision avoidance systems, and emergency vehi-

cle notification systems, to name a few. The COMPASS (http://www.mto.gov.

on.ca/english/traveller/trip/compass.shtml) freeway traffic man-

agement system in Ontario, Canada is an example of ATMS that improves emergency

assistance, provides timely traffic information, decreases motor vehicle collisions, in-

creases safety assurance, reduces congestion as well as travel times and pollution.

Sensing technologies are an important part of Advanced Traffic Management Sys-

tems to enable the estimation of the traffic state. In particular, inductive loop detectors,

1
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which are electrical wire loops embedded in the road surface (Figure 1.1), are typi-

cally used to sense travelling vehicles on city and highway roads with the objective of

estimating the traffic state.

Although this technology has proven to be effective and accurate for detecting and

counting vehicles, it has its own limitations: namely, their installation and replacement

cost is high and causes traffic disruptions, especially if not installed correctly [1], and

multiple loops are required to monitor different road lanes. Moreover, their sensing

modality provides very limited information about the vehicles being sensed. No ve-

hicle appearance information is available for applications such as appearance-based

vehicle classification [3] or license plate recognition [4]. Other sensing technologies

are available for ATMS applications, inlcuding, magnetometers, radar, video cameras,

infrared and ultrasonic sensors, and LIDAR. Each of them has advantages and disad-

vantages as explained in detail in [1].

During the last decades, the use of Pan-Tilt-Zoom (PTZ) cameras in traffic moni-

toring systems has gained traction. These cameras are typically installed on poles or

overpass bridges located next to or over the road at heights of up to 21 m [1]. Typical

traffic monitoring centers are comprised of networks of several cameras that are con-

trolled and monitored by a remote operator using switches and multi-paneled displays

as shown in Figure 1.2(a). The amount of visual information provided by such camera

networks can be overwhelmingly large, which may cause the operators to miss impor-

tant traffic events happening in the field. Thus, computer vision systems are desirable

for automating the surveillance process.

This dissertation is focused on visual traffic surveillance for Advanced Traffic Man-

agement Systems. More specifically, the focus is on the research and development of

computer vision algorithms and methods that contribute to the automation of highway

traffic analytics systems that require estimates of traffic volume (number of vehicles

passing a reference point per unit of time), vehicle speed (distance travelled by a vehi-
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Figure 1.1: Road traffic monitoring via inductive loops. Example indictive loop con-
figuration where a diamond-shaped loop is installed on each lane of the road. Source:
[1].

cle per unit of time, usually expressed in km/h), and traffic density (number of vehicles

occupying a road lane per unit of length at a given point in time).

1.1 Problem Definition

The problem under consideration is simple: How to determine from a single camera

the number of vehicles in highway traffic scenes. The main challenges that we iden-

tify are: 1.-Determining the mapping from the 3D world scene onto the image plane

(i.e. camera calibration) given that the camera pose can be changed by the remote

operator, 2.-The extraction of road lanes (which can be linear or curved), and 3.- The

segmentation of vehicles that are occluded by other vehicles.
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(a) (b)

Figure 1.2: Road traffic monitoring via surveillance cameras - (a) Example of human
monitoring of a large number of traffic surveillance cameras. (b) Example image from a
real traffic surveillance camera.

1.2 Summary of Contributions

This dissertation presents three technical contributions that attempt to address the prob-

lem stated above. These contributions are summarized as follows:

1. A distributed prototype surveillance system we call 3DTown [5] for sensing, in-

terpreting and visualizing the real-time dynamics of urban life within the 3D

context of a city. The main strategy is the automatic integration of 3D urban

models with data from pan/tilt video cameras, environmental sensors and other

real-time information sources used for the three-dimensionalization of pedestri-

ans and vehicles tracked in 2D camera video, aided by the automatic real-time

computation of camera pose relative to the 3D urban environment.

This contribution was the result of a joint collaboration by the following team

members (author names ordered as in [5]): Eduardo R. Corral-Soto, Ron Tal,

Langyue Wang, Ravi Persad, Luo Chao, Chan Solomon, Bob Hou, Gunho Sohn,

and James H. Elder. I was the main author in that paper [5], which was published

in the Computer and Robot Vision (CRV), 2012 Conference.
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2. A novel and effective single-view probabilistic method [6] that extracts the road

lane lines/curves from highway images and exploits parallelism between copla-

nar curves to iteratively estimate the tilt angle and, if possible, the focal length of

the surveillance camera on linear or curved roads (unlike typical methods based

on vanishing points extracted from straight roads and orthogonal structures). Our

method is based on establishing associations iteratively between pairs of corre-

sponding points lying on the image projection of these curves.

3. A novel data-driven 3D generative reasoning method [7] that automatically seg-

ments the active road lanes (highway lane structure) from traffic video and mod-

els the vehicles in 3D to disaggregate individual vehicles from 2D image clusters

formed due to dense traffic conditions. The method estimates the vehicle con-

figuration and dimensions that provide the most likely account of the observed

foreground pixels.

The proposed methods have been evaluated objectively and/or compared against

state-of-the art methods.

Each of these three contributions is described in detail in the next chapters of this

dissertation document, and each chapter contains its own introduction, geometry, al-

gorithm, data sets and evaluation sections.
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Chapter 2

First Contribution: 3DTown - The

Automatic Urban Awareness Project

The work described in this chapter was the result of a joint collaboration by the fol-

lowing team members (author names ordered as in [5]): Eduardo R. Corral-Soto, Ron

Tal, Langyue Wang, Ravi Persad, Luo Chao, Chan Solomon, Bob Hou, Gunho Sohn,

and James H. Elder. I was the main author in that paper [5], which was published in

the Computer and Robot Vision (CRV), 2012 Conference.

My main contributions in the 3DTown project were:

1. The computation of the camera projection matrix and the mapping between im-

age locations and virtual ground plane (See sub-section 2.4.1).

2. The adaptation of an existing pre-attentive foreground extraction method to pedes-

trian and vehicle detection (See Appendix A).

3. A simple mechanism to detect pedestrian blobs via temporal processing of poste-

rior maps coupled with smoothing, peak detection, and nearest neighbour-based

tracking (Section 2.5).
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4. Collaboration with other team members to get the 3DTown system to work in

live mode (e.g. update rotation matrix, read images, compute updated pedestrian

ground locations, and demo preparations).

5. Experiments, qualitative evaluations, and demonstrations.

The 3DTown project was a qualitative study focused on the development of a dis-

tributed system for sensing, interpreting and visualizing the real-time dynamics of ur-

ban life within the 3D context of a city. In this project, the 3DTown motivates the work

presented in the subsequent chapters, which present more quantitative results.

At the heart of the 3DTown lies a core of algorithms that automatically integrate

3D urban models with data from pan/tilt video cameras, environmental sensors and

other real-time information sources. A key challenge is the three-dimensionalization

of pedestrians and vehicles tracked in 2D camera video, which requires automatic

real-time computation of camera pose relative to the 3D urban environment. Here,

I report qualitative results from a prototype system we call 3DTown, which is com-

posed of discrete modules connected through pre-determined communication proto-

cols. These modules consist of: 1) A 3D modeling module that allows for the efficient

reconstruction of building models and integration with indoor architectural plans; 2)

A GeoWeb server that indexes a 3D urban database to render perspective views of

both outdoor and indoor environments from any requested vantage; 3) Sensor mod-

ules that receive and distribute real-time data; 4) Tracking modules that detect and

track pedestrians and vehicles in urban spaces and access highways; 5) Camera pose

modules that automatically estimate camera pose relative to the urban environment; 6)

Three-dimensionalization modules that receive information from the GeoWeb server,

tracking and camera pose modules in order to back-project image tracks to geolocate

pedestrians and vehicles within the 3D model; 7) An animation module that repre-

sents geo-located dynamic agents as sprites; and 8) A web-based visualization module

that allows a user to explore the resulting dynamic 3D visualization in a number of

7



interesting ways.

To demonstrate our system we have used a blend of automatic and semi-automatic

methods to construct a rich and accurate 3D model of a university campus, including

both outdoor and indoor detail. The demonstration allows web-based 3D visualization

of recorded patterns of pedestrian and vehicle traffic on streets and highways, esti-

mations of vehicle speed, and real-time (live) visualization of pedestrian traffic and

temperature data at a particular test site. Having demonstrated the system for hundreds

of people, we report our informal observations on user reaction, potential application

areas and the main challenges that must be addressed to bring the system closer to

deployment.

2.1 Introduction

In recent years 3D Geographic Visualization Environments such as Google Earth and

Microsoft Virtual Earth have demonstrated the power of making 3D geographic in-

formation broadly available over the internet. However, these tools only provide in-

formation about the static infrastructure of the urban environment. Since cities are by

definition centres of activity, this limits the utility of these databases for many potential

applications. On the other hand, the number of surveillance video cameras installed in

urban areas grows every year as cameras become less expensive and as the demand for

security and monitoring systems grows. This includes networks of cameras installed

at universities, airports, train stations, shopping malls, highways, etc.

With the potential benefit of having vast amounts of visual information comes the

problem of viewing and analyzing the image data, which still today typically involves

one or more human operators. This monitoring task can become overwhelming and

inefficient if there are many cameras and few operators. For example if a pedestrian

walks out of the field of view of camera A and enters the field of view of camera B,

the operator may need some time to understand how the pedestrian is moving in the

8



3D world.

2.1.1 Prior Work

The problem of automatically mapping tracked agents in video to a 3D model has

been studied previously in a number of different contexts. For example, Kanade et

al ( [8, 9]) developed a cooperative multi-sensor video surveillance and monitoring

system (VSAM) for military applications that mapped the dynamics extracted from

multiple distributed video cameras from different videos of a scene onto the appro-

priate areas of a common static 3D model of the corresponding scene. Their method

allows the operator to see the projected scene dynamics in the context of the 3D model,

thus obtaining a 3D situational awareness of the current dynamic environment. Some

years later, a similar system was reported by Sawhney et al [10] with the added feature

that parts of the 3D model were texture-mapped with the projected live video images

from the cameras. The system was implemented on commodity graphics hardware.

At roughly the same time, another group [11] began the development of a similar

system called Augmented Virtual Environments (AVE) where GPS devices, orienta-

tion sensors and video cameras contained in a tracking backpack that can be carried

by a pedestrian were used to create augmented virtual environments. This system was

later enhanced [12] with the introduction of background subtraction-based detection

of moving objects followed by a pseudo-tracking step to extract track. More recently

in [13], the authors divided the problem into four scenarios based on the number of

cameras, overlap of their fields of view, and types of motion: direct mapping (pedestri-

ans), overlapping cameras with complex motion (sports), sparse cameras with simple

motions (traffic), and sparse cameras with complex motion (clouds). In that work, op-

tical flow-based tracking and planar homographies are used to augment Aerial Earth

Maps (AEM) with dynamic information from pedestrians and vehicles.

In practical video surveillance systems, the camera pose is often changed by the

9



operator. When this occurs, it is necessary to update the camera matrix in order to

re-compute the geolocation of tracked objects in the 3D model and potentially perform

automatic view updating of the model. None of the approaches discussed above fo-

cuses on this problem with the exception of [10] which describes a pose estimation

method based on video image correspondences. However that method requires manual

initialization and does not run in real-time.

In the 3DTown project, the goal was to develop a distributed system for sensing,

interpreting and visualizing the real-time dynamics of urban life within the 3D con-

text of a city. A clear advantage and main novelty in our system with respect to the

approaches mentioned above is the introduction of an automatic on-line single-view

method for updating the rotation matrix component of our virtual camera for the cases

when the operator changes the pose.

Scenes contain several types of dynamic information. However we focus on typ-

ical, useful urban dynamic information, specifically walking pedestrians and moving

vehicles captured by surveillance video cameras, and environmental signals coming

from indoor temperature and motion sensors. In order to achieve our goal we have

to integrate these different types of real-time dynamic information with a 3D virtual

environment corresponding to an urban scene.

As a test site, we have selected a university campus that has a diverse mixture

of building types, pedestrian, and vehicle traffic. Over a 3D texture-mapped terrain

surface model acquired from Google Earth, we have constructed both exterior and

interior models of all the campus buildings, using a diverse set of automatic, semi-

automatic, and manual techniques (see below). Both recorded and live video data are

acquired from pan-tilt-zoom (PTZ) video cameras situated at diverse sites over the

campus. Tracking algorithms provide trajectories of pedestrians and vehicles in image

coordinates. At a slower data rate, an automatic camera calibration algorithm computes

the current pose of each camera relative to a world coordinate frame, allowing tracks

10



to be back-projected to the 3D model. Intersections of these backprojections with the

ground plane determine the geolocation of tracked agents, which are then represented

as sprites,thus allowing the dynamics to be visualized in 3D within a web-based Google

Earth environment. We also introduce an on-line system for monitoring temperatures

in an indoor 3D building model which enables the temperature visualization of the

whole floor of a building at once. We describe our methods to create photo-realistic

indoor and outdoor 3D models of buildings, and our augmentation of Google Earth

3D urban models in real-time from surveillance cameras. In the current version of the

3DTown, our work is mainly focused on detecting, tracking, geolocating and rendering

agents within the field of view of a single camera rather than tracking agents between

cameras.

The rest of the chapter is structured as follows: Section 2.2 describes the overall

system architecture, Section 2.3 describes our virtual 3D world and how we create our

own virtual building models, Section 2.4 describes how we map the PTZ camera 2D

image points onto the virtual 3D world and how we automatically update the rotation

matrix, Section 2.5 explains how we track pedestrians and vehicles, Sections 2.6 and

2.7 show system integration details and results, Section 2.8 includes our qualitative

evaluation of the system, and Section 2.9 contains final comments and plans for future

work.

2.2 System Architecture Overview

Figure 2.1 shows the overall architecture of our system. The inputs to our system

are surveillance video images, signals from environmental sensors, terrain surface 3D

models provided by Google Earth, virtual 3D building models and geographic vector

data such as roads and parking lots from Geographic Information Systems (GIS) and

other map databases. The object tracking module produces image coordinates of the

tracked moving objects, and the camera projection matrix estimation module computes
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Figure 2.1: Simplified system architecture diagram.

an updated camera matrix that is used to map these image coordinates onto Universal

Transverse Mercator (UTM) coordinates in the 3D virtual world. Both camera pose

information and the object UTM coordinates are written asynchronously onto XML

(Extensible Markup Language) files on a webserver which are read by other modules

in order to perform the rendering. The inputs from the Google Earth map server are

virtual aerial 3D maps of the terrain. The inputs from the 3D building models module

are the building models that we created, and the GIS/Road map data are additional

inputs that we may use in the future. The rest of the blocks in the diagram are related

to data storage and rendering. The details of all these modules will be explained in the

later sections below.
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2.3 The Virtual 3D World

The Google Earth Plug-in and its Javascript Application Programming Interface (API)

provide a platform to develop various 3D applications by allowing users to incorpo-

rate their own 3D building models and other 3D data via KML files, thus enabling

users to create customized 3D virtual worlds. The 3D photo-realistic building model

is the most important component in the virtual world since buildings are the dominant

man-made objects in urban environments. During the last two decades, a number of

algorithms and systems have been developed to construct 3D building models using

various input data sources. With the development and wide application of Light De-

tection and Ranging (LIDAR) techniques, airborne and terrestrial laser scanning data

has proven to be a valuable source of information for the construction of 3D building

models. The 3D building models used in our system correspond to actual buildings

from a university campus.

2.3.1 Automatic Generation of 3D Photorealistic Prismatic Build-

ing Models

For 3DTown, we commissioned airborne LIDAR scans of a university campus from

an altitude of 2300m with a point distance density of about 1.9m. Terrestrial LIDAR

data was also collected with a mobile mapping system. We use these laser scanning

data to reconstruct 3D photorealistic prismatic building models using an established

processing pipeline [14] consisting of: (1) point cloud registration, (2) automatic tie

point collection, (3) geo-referencing, (4) surface modeling, and (5) texture mapping.

We used the Iterative Closest Point (ICP) algorithm [15] for the automatic registra-

tion of 3D point clouds from multiple scans. In order to ensure that the ICP solution

converged correctly, accurate tie points were collected automatically by generating 2D

images from 3D point clouds and performing automatic image matching. From these
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images, planar regions and their edges were extracted using a region growing method

described in [16]. Those 2D edges were then transformed back to 3D to construct 3D

planar surface [14]. For texture mapping, a photogrammetric collinearity condition

based method was used [17]. The optical images of the buildings used in the texture

mapping were captured using a digital camera. We solve for the position and orien-

tation of the camera via least squares and the collinearity condition. The tie points

between the photos and LIDAR data were collected by the user through an interac-

tive Graphical User Interface developed by our team. The textures are mapped to the

surface model using a nearest neighbour resampling algorithm. Figure 2.5 shows an

example of a reconstructed 3D building model.

2.4 Coordinate Transformation Between Cameras and

the 3D Model: Determining Camera Matrices

2.4.1 Back-Projection of Image Points onto the 3D World

In order to back-project tracked image locations ~xi to corresponding 3D positions ~Xi

in the world, we need to know both the internal and external parameters of the camera.

The parameters are captured by the projection matrix P : ~x = P ~X , which can be

written as P = [KR|~t], where K is a 3 × 3 calibration matrix containing the intrinsic

parameters of the camera, R is a 3× 3 rotation matrix and ~t is a translation vector.

We make the assumption that our cameras are installed at fixed and known loca-

tions, so that the translation vector t is known. However, computation of P is non-

trivial since for PTZ cameras, both K and R can change on the fly.

In the 3DTown we make the simplifying assumption that the focal length is fixed.

For offline camera data, we select video segments where the zoom was not changed,

and use an interactive calibration method [18] to estimate focal length and principal
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point. We make the assumption that skew is negligible and scaling parameters in x

and y directions are identical, allowing complete identification of the internal camera

matrix K. For the live camera, the camera focal length is fixed at its minimum value,

and the camera matrix K is estimated using a standard offline method [19].

To perform the back-projection, the remaining step is to compute the camera ro-

tation matrix R, which may change dynamically as the camera pans and tilts. We

describe our solution to this problem in the next section.

2.4.2 Estimating the Camera Pose via Manhattan Frames

We use a novel, automatic, on-line, model-free method to maintain a continuous es-

timate of the rotation matrix R of each camera. Our method estimates the rotation

independently for every frame by considering R as the product of two matrices

R = RM→UTM ·RM , (2.1)

where RM defines the rotation of the camera relative to the Manhattan frame (the

canonical coordinate system defined by the orthogonal man-made structures in the

scene), and RM→UTM defines the orientation of man-made structures with respect to

the UTM coordinate system. Since buildings are static, RM→UTM need only be com-

puted once. We now turn to the computation of RM .

We can estimate the pose RM of the camera with respect to the 3D scene structure

by exploiting the rectilinear structure of typical urban environments. In particular, we

exploit the so-called Manhattan assumption [20] , which states that an urban scene

is generally dominated by planar surfaces that conform to three mutually orthogonal

directions (e.g. vertical, streets and avenues). Under perspective projection, this reg-

ularity gives rise to convergence of the major lines of the urban environment onto a

trio of vanishing points on the image plane. Coughlan and Yuille’s algorithm [20] es-
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timated the three principal Manhattan directions by modeling using a mixture model

over the dense map of projected image gradients. Denis et al [18] later improved on

these results using a sparser edge-based formulation. Here we introduce a line-based

method that we find provides further improvement in accuracy and reliability.

All three of these methods optimize the rotation Ψ between the camera and the

Manhattan frame of reference by maximizing the likelihood function over a set of

linear perspective cues E = { ~E1, . . . , ~EN}:

Ψ∗ = arg max
Ψ

p(E|Ψ) =
∏
i

p( ~Ei|Ψ). (2.2)

The association of observations with the Manhattan directions is expressed through a

mixture model:

p( ~Ei|Ψ) =
∑
mi

p( ~Ei|Ψ,mi)p(mi), (2.3)

where mi is the ‘Manhattan cause’ of the line (vertical, horizontal(1), horizontal(2),

background) and p(mi) is the prior over causes.

To compute the linear perspective cues Ei, we first detect and localize image edges

to sub-pixel accuracy [21]. These edges are then grouped into lines using a Hough

transform technique [22] that uses a kernel-based voting scheme to propagate the

uncertainty of edge observations onto the parameter domain. A common problem

with Hough methods is the multiple response problem: multiple peaks detected in the

Hough map that correspond to a single linear structure in the scene. In our approach,

these multiple responses are avoided by employing a stepwise probabilistic subtraction

method [23] that subtracts off the contributions of edge observations that correspond

to previously detected lines.

The resulting set of detected image lines can be used to recover RM by considering

the Gauss sphere representation of the problem [24]. A detected line in the image

plane together with the optical centre of the camera define an interpretation plane.
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Figure 2.2: Estimating the camera rotation matrix.

The space formed by the normal vectors of all possible interpretation planes is called

the Gauss sphere. Under perspective projection, the interpretation plane normals of

parallel lines in the 3D scene are coplanar, and the normal vector to this plane lies in

the direction of these parallel lines. Thus a good choice for the observable Ei used

in the likelihood p( ~Ei|Ψ,mi) is the angular error formed between the interpretation

plane of an observed line and the putative 3D orientation vector of the corresponding

Manhattan direction.

We learn the values of the priors p(mi) and the parameters of the distribution of the

error functions using a public ground-truth database [18] and optimize the likelihood

over the unknonwn Euler angles Ψ using a multi-start version of a BFGS gradient-

descent algorithm [25]. Figure 2.2 summarizes the complete pipeline for camera pose

estimation. The output of this algorithm is the rotation matrix that defines the pose

of the camera with respect to the Manhattan frame, and the inverse RM of this matrix

thus defines the transformation from the camera coordinate system to the Manhattan
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Figure 2.3: Example of Manhattan frame estimation. The cyan and green lines correspond
to the two horizontal axes, red lines correspond to the vertical axis, and yellow lines are
“non-Manhattan” lines that do not conform to any of the three principal directions.

coordinate system. An example result from the algorithm is shown in Figure 2.3.

Estimation of camera pose takes roughly 8 seconds on a standard desktop computer.

In practice, we find this is sufficiently fast for typical surveillance cameras, where

cameras tend to stay in the same pose for minutes or even hours at a time. In order to

improve the robustness of the system to noise and illumination changes, we perform

time averaging of the computed rotations [26] over a window of 5 frames.

2.5 Scene Dynamics: Tracking Pedestrians and Vehi-

cles

Detection and tracking of pedestrians and vehicles is based upon a probabilistic back-

ground subtraction computation which is described in Appendix A.

In order to track moving objects of interest while ignoring environmental motion

(e.g. slow-moving trees), we have developed a simple but efficient and effective track-

ing algorithm. Let P n and P n−1 represent the foreground posterior probabilities cor-

responding to the current and previous frames. Then the algorithm consists of 5 com-

putational steps:

18



(a) (b)

(c) (d)

Figure 2.4: The stages of our tracking algorithm. a).-Input image, b).-Current foreground
posterior map, c).-Thresholded, smoothed, normalized absolute difference of current and
previous posterior maps, d).-Tracking boxes overlayed on the input image.
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1. We compute the absolute two-frame difference P n
d = |P n − P n−1|.

2. We zero out differences P n
d below a threshold T

3. We apply a 2D Gaussian low-pass filter to P n
d . This produces smooth blobs that

can be tracked relatively easily (Fig.2.4c).

4. We extract the set of image locations Sn = {~µ1, . . . , ~µKn} corresponding to the

maxima of each Gaussian-like blob, where Kn is the number of objects detected

in the current image. Note that Kn (and Sn) can change from image to image

depending upon the objects that enter or exit the camera’s field of view. Our ex-

periments have shown that Sn can be computed effectively using 5-10 iterations

of the Mean-Shift algorithm [27], however in practice, we find that a simple

peak detection algorithm produces very similar results in a fraction of the time.

5. The actual tracking of the ith object ~µi ∈ Sn at time n is performed by finding

the nearest neighbour ~µj∗ ∈ S(n−1) at time n − 1, which is done by finding its

index

j∗ = arg min
j
‖ ~µi − ~µj ‖,∀j ∈ {1, . . . , Kn−1}, (2.4)

from which we compute motion vectors ~vi = ~µi − ~µj∗ that can be used for

temporal smoothing of the tracks and for speed estimation of the moving objects.

Figure 2.4(d) shows an example frame of the algorithm tracking four pedestrians.

2.6 Monitoring of Environmental Signals in Indoor Mod-

els

One potential application of 3DTown technology is for monitoring and analyzing en-

ergy usage, and how that relates to the flow of people through the city. As an initial step
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toward this application, we have integrated within one of the buildings in our 3DTown

demonstration a distributed sensing network that monitors the ambient air temperature.

To visualize this information, we colour-code rooms of the building according to their

temperature, with blues representing cooler temperatures (from 16oC), and oranges

and reds representing warmer temperatures (to 30oC) - see Fig. 2.5(d).

2.7 Data Integration and Results

We have developed an intuitive web-based graphical user interface that allows the user

to select an available real-time surveillance video camera located in the 3D model, ac-

tivate the 3D visualization of tracked pedestrians and vehicles, change the 3D view of

the scene, and query indoor temperature. Estimated 3D pedestrian and vehicle coor-

dinates are stored in an XML file, which is read by the rendering program. Tracked

pedestrians are rendered as simple 2D sprites and vehicles and buses as simple 3D

models in DAE (Digital Asset Exchange) format that can be loaded and rendered di-

rectly in Google Earth. Figure 2.5 show examples of visualizations provided by our

web-based user interface.

2.8 Preliminary Evaluation

Prior systems for 3D dynamic visualization of urban scenes [9, 10, 11, 13] have gen-

erally not been systematically and quantitatively evaluated, and there is no standard

method for such an evaluation at this point. Ultimately, we intend to conduct a usabil-

ity study based on a human-in-the-loop process within the context of a specific set of

tasks. In this work, however, we can report some specific quantitative performance pa-

rameters for specific modules of our system, as well as qualitative observations gleaned

from demonstrations to hundreds of observers.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.5: Example outputs from the 3DTown system. a) and b): Two different views of
the 3D visualization of the four tracked pedestrians from Fig. 2.4-d. c) An example of ve-
hicles tracking in the 3D virtual world, d) Example of room temperatures visualization. e)
Example of camera pose update view before video camera pose change, f) Automatically-
updated view after the video camera pose change.
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The accuracy of our 3D building models is on the order of 5cm. The average

error of our automatic camera pose estimation module, measured on a standard public

dataset (YorkUrbanDB) is 2.5 deg, which compares favourably with other published

single-frame approaches [18].

While our tracking module operates at 8 frames per second on a standard PC, our

camera pose algorithm takes about 8 seconds to estimate the camera pose from a single

frame: thus it is useful for intermittent pan/tilt operation, but not for continuous smooth

pursuit.

We have received informal subjective feedback on the system as a whole from over

one hundred observers. The feedback was received from conference attendees during

our 3DTown demos, and was based on observing the outputs from our system, both in

live and off-line modes, and on our oral presentations. The most frequent observations

are:

1. The ability to maintain the 3D dynamic model through pan/tilt shifts of the cam-

era is seen as a very powerful and important capability.

2. Integration of outdoor with indoor models and environmental sensing is per-

ceived as novel, interesting and useful.

3. Delays are sometimes introduced when retrieving model information from Google

Earth, particularly when camera pose changes, and these delays are seen as ob-

jectionable. This suggests that a different geoserver framework optimized for

dynamic visualization is needed.

4. The sprites are too simplistic and should be upgraded to fully articulated avatars.

5. Automatic labeling of actions (e.g., walking, running.) is perceived as a valuable

feature for future versions of the system.

6. With only a single live camera, avatars appear and disappear when they enter
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and leave the field of view, and this is seen as objectionable. More convincing

live demonstration will depend upon a facility with multiple, ideally overlapping

fields of view.

2.9 Conclusions and Future Work

In this chapter, we have reported qualitative results from our prototype 3DTown dis-

tributed system which allows real-time 3D visualization and analysis of scene dynam-

ics for urban environments within a flexible distributed architecture. To demonstrate

the system, we created a 3D model of a university campus integrated with Google

Earth terrain data. Three-dimensionalization of data extracted from 2D video cameras

is achieved by an algorithm that uses the Manhattan structure of the urban scene to

automatically estimate the camera pose. This allows automatically tracked pedestrians

and vehicles to be geo-located and thus represented as sprites in the 3D model. Our

web-based interface allows the user to browse the 3D model and visualize the scene

dynamics of a particular site in real-time while changing the view of the 3D visualiza-

tion. If the pose of the video camera changes, our system will automatically update

the corresponding projection matrix to maintain accurate geo-location of the scene dy-

namics.

Demonstrations of the 3DTown system for hundreds of people have yielded sub-

stantial informal feedback that has been helpful in planning future work, which will

include 1) Expanding the system to include more cameras, thus providing complete

coverage of an entire building or thoroughfare, 2) Improvements to our tracker, 3)

Minimization of rendering delay by migrating the system to an OpenGL platform, cur-

rently under development, 4) Introduction of full-articulated avatars, 5) Incorporation

of automatic action labelling, and 6) Introduction of a standard method for evaluating

the efficacy of the system as whole.

The 3DTown project was an excellent starting point and motivator for the develop-
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ment of algorithms and methods that contribute to the automation of visual surveillance

systems, especially in the cases where the performance of traffic analytics systems

needs to be maintained while the camera pose is allowed to change, which is a com-

mon scenario in highway traffic surveillance as we shall see in the next chapter of this

dissertation.

25



Chapter 3

Second Contribution: Automatic

Single-View Traffic Camera

Calibration from Parallel Curves

An essential step toward the automation of vision-based traffic surveillance systems

where the pose of the camera can be changed by the operator is the automatic esti-

mation of the roadway geometry. Roadway estimation requires re-calibration of the

surveillance camera, both, intrinsically and extrinsically to enable the bi-directional

mapping between imaged objects and 3D world objects and ground plane. A second

important requirement is to be able to segment the road lanes and potentially use this

information as a prior for detecting and localizing vehicles traveling along their lanes.

In this chapter we present a novel and effective automatic single-view method [6]

that: 1) extracts the road lane lines/curves from highway images, and 2) exploits the

coplanarity and mutual parallelism between pairs of curves to iteratively estimate both

the tilt angle and the focal length of the camera, which together with pre-computed

intrinsic parameters, enable the mapping of points from image plane onto the ground

plane in the world.
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Typical methods for traffic camera calibration from a single view assume the ex-

istence of straight parallel lines from which vanishing points can be computed or an

orthogonal structure known to exist in the scene. However, there are practical situa-

tions where these assumptions do not apply. Moreover, from a single family of parallel

lines on the ground plane, there is insufficient information to recover a complete recti-

fication.

In this chapter, we generalize these methods to scenes known to contain parallel

curves. We establish an association between pairs of corresponding points lying on

the image projection of these curves and compute a least-squares estimate of the focal

length and the camera pose from the tangent lines of the associated points, allowing

the computation of a planar homography to map image points onto the ground plane,

which is needed in Chapter 4 to enable 3D modelling to improve traffic analytics. We

evaluate the method on highway and sports track imagery and demonstrate its accuracy

relative to a state-of-the-art vanishing point method.

3.1 Introduction and Prior Work

Automatic rectification of imagery to a dominant scene plane is an important subprob-

lem in many applications, including surveillance [28], geodatabases [29], autonomous

driving [30], and sports videography [31]. Single-view methods typically rely upon

prior knowledge of the features lying on these planar surfaces, such as straight lines

or orthogonal structures (e.g., [23, 32, 33, 34, 35]). However these methods fail

when orthogonal structures is not dominant in the image or when there are no straight

lines from which to extract vanishing points. Here we make the observation that it is

not the linearity of the visible features used in vanishing point methods that affords

information about the surface attitude, but rather their parallelism. This is important

because there are many practical cases where the features are parallel curved lines, e.g.,

highways, race tracks, railway tracks, industrial conveyor belts etc. In this chapter we
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introduce a technique to perform automatic traffic camera calibration in such cases.

As a target application, we focus on the problem of rectifying highway images taken

from pole-mounted cameras. Rectification in this application is an important step to-

ward accurate estimation of traffic flow and vehicle speed, and the associated estimated

camera parameters enable the mapping between image plane and ground plane, which

is useful for traffic analytics such as vehicle counting as will be explained in Chapter

4 of this dissertation document.

Traffic surveillance is one of the main applications for automatic camera rectifi-

cation [32, 36]. Some methods [37, 38, 39, 40] use vehicle motion trajectories in the

image to estimate the ground plane orientation; however, these have the disadvantage

that recalibration after a PTZ shift may take considerable time if traffic is sparse. The

majority of static methods assumes that straight lines or rectangular patterns or textures

are available for vanishing point estimation [32, 34, 41, 42, 43].

Prior work has explored concentric circle calibration rigs for multi-view camera

calibration [44, 45]. For roadway analysis, Masoud & Papanikolopolous [46] have re-

ported an interactive method for recovering camera parameters that includes the mod-

elling of concentric curves bounding traffic circles. While their work demonstrates

the potential for using curves to rectify roadway imagery, their approach was largely

manual: the number of curves was assumed known, and control points for each of the

curves were provided to the algorithm, sidestepping the difficult problems of feature

detection and grouping.

In this chapter we present a much more general and fully-automatic, non-parametric

single-image approach to projective rectification of planar scenes containing a system

of parallel curves, as arises commonly in highway traffic and sports track video. In

spirit, our approach is related to prior work on elations, which are projections of (nor-

mally rectilinear) coplanar features related by translation in the plane, from which van-

ishing points and lines can be inferred [19, 47, 48]. In our case, however, the features
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are not rectilinear but curved, and they are related not by translation but by systems of

dilations (see below).

To train and evaluate our method, we construct a human-labelled dataset of high-

way camera images in which the parallel curves in the image projecting from lane

dividers and highway markers in the scene are identified. Our algorithm proceeds in

three stages:

1) Local feature detection. Orientation features are detected using local eigenvector

analysis, and a classifier is trained to distinguish features lying on curvilinear roadway

boundaries from other local features in the scene. 2) Feature grouping. A set of prob-

abilistic grouping cues are learned to infer extended curves as connected components

of these local orientation features. 3) Rectification and outlier removal. Extracted

curves are assumed to comprise a subset of inliers that are mutually parallel when

back-projected, as well as a subset of non-parallel outliers. To estimate the camera

parameters, we form an objective function based upon the average deviation from par-

allelism between all pairs of inlier curves. Rectification then consists of minimization

of this objective, alternating with adjustments in the inlier/outlier assignments.

In summary, the primary contributions presented in this chapter are: 1) A prob-

abilistic method for extracting useful curvilinear features from highways and sports

tracks. 2) A novel, effective and fully automatic calibration and rectification algorithm

that applies to planar surfaces featuring general parallel curves. 3) Demonstration that

the method generalizes, without relearning, to a completely different application do-

main (a running track).

3.2 Datasets and Geometry

In this section we describe both, the geometry and the image datasets that we used in

this project. The main dataset includes highway traffic surveillance images captured by

actual pan-tilt-zoom (PTZ) cameras installed at highway poles and overpass bridges.
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A secondary evaluation set of images from running tracks (sports) was also used for

validation and generalization testing purposes.

3.2.1 Geometry

We assume a projective pan-tilt-zoom (PTZ) camera model where the camera can be

expressed by a 3×4 homogeneous camera matrix P = KR[I | −C] [19], where C =

[0, 0, D]T is the camera centre, D is the distance of the optical centre of the camera

from the ground plane along the optic axis (Fig. 3.2(a)), I is the 3× 3 identity matrix,

and K and R are the 3 × 3 instrinsic parameter and rotation matrices respectively,

expressed as follows:

K =


αx s px

0 αy py

0 0 1

 , (3.1)

R =


1 0 0

0 cos(φ) sin(φ)

0 sin(φ) − cos(φ)




cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)




cos(γ) sin(γ) 0

− sin(γ) cos(γ) 0

0 0 1

 .
(3.2)

Here, αx and αy are the horizontal and vertical focal lengths in pixels, s is the skew

factor, (px, py) is the principal point, φ, θ, and γ are the tilt, pan (or yaw), and roll

angles respectively, all in radians.

We consider the problem of rectifying to a ground plane, where the visible features

consist of smooth coplanar parallel curves, and let the camera rotate about the ground

plane X-axis as shown in (Fig. 3.2(a)). Without loss of generality, we identify the

X-axis of the world coordinate system with the x-axis of the camera, so that the y-

axis of the camera is the projection of the Y -axis of the world coordinate system (Fig.
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3.2(a)), which corresponds to setting θ = 0 and γ = 0 in eq. (3.2). This assumption is

reasonable given that the horizon line in typical highway traffic surveillance images is

approximately horizontal as can be seen in Fig. 3.1. We assume zero skew (s = 0),

square pixels (αx = αy = α), and we locate the principal point at the centre of the

image: (px, py) = (0, 0). Given these assumptions, the matrices K and R reduce to:

K =


α 0 0

0 α 0

0 0 1

 , R =


1 0 0

0 cos(φ) sin(φ)

0 sin(φ) − cos(φ)

 . (3.3)

Under these conditions, points [X, Y ]T on the ground plane project to points [x, y]T

on the image plane according to λ[x, y, 1]T = H[X, Y, 1]T , where λ is a scaling factor,

and the homography H (obtained from P , see [19]) is given by

H =


α 0 0

0 α cosφ 0

0 sinφ D

 . (3.4)

Here α is the focal length in pixels, D is the distance of the optical centre of the

camera from the ground plane along the optic axis, and φ is the tilt angle of the camera

relative to the ground plane: φ = 0 when the camera points straight down at the ground

surface and increases to π/2 as the camera tilts up toward the horizon, as it rotates

about the ground plane X-axis (Fig. 3.2(a)). Conversely, points in the image can be

backprojected to the ground plane using the inverse of this homography, [X, Y, 1]T =

λH−1[x, y, 1]T , where

H−1 =


α−1 0 0

0 (α cosφ)−1 0

0 −(αD)−1 tanφ 1
D

 . (3.5)
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Figure 3.1: Example highway images provided by the Ministry of Transportation of On-
tario.
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(a) (b) (c) (d)

Figure 3.2: (a) Camera setup - see text for details. (b) Parallel curves in the scene plane.
(c) Compression in the y-dimension preserves the 1:1 mapping of parallel tangent lines
but breaks the constraint that the tangents be orthogonal to the line connecting the points.
(d) Only rectification with the correct tilt angle φ and the correct focal length α will fully
restore parallelism.

Substituting, in Euclidean coordinates this backprojection becomes: X

Y

 =
fs

1− fpy

 x

fey

 , (3.6)

where fs = α−1D, fp = α−1 tanφ and fe = 1/ cosφ. Here, fs is a scaling factor that

determines the isotropic scaling of the backprojection into metric scene coordinates.

fe is the affine vertical expansion factor that determines the extent to which the image

is vertically stretched to undo the foreshortening. fp is the perspective factor that

reverses the effect of linear perspective, restoring affine properties, e.g., that parallel

lines remain parallel.

As a final step, we can apply the homography H of Eqn. (3.4) with a tilt angle of

φ = 0 to the scene points [X, Y ]T computed using (3.6), transferring these scene points

to image points [xr, yr]
T taken by a “bird’s eye” virtual camera, yielding a rectified plan

view of the ground surface seen from a height D: xr

yr

 =
1

1− fpy

 x

fey

 . (3.7)
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This rectification equation can alternatively be expressed in terms of a homography:

λ[xr, yr, 1]T = Hr[x, y, 1]T , where

Hr =


1 0 0

0 1
cosφ

0

0 −α−1 tanφ 1

 . (3.8)

Note that based on the geometrical assumptions described above, this homography

has two degrees of freedom (i.e. α and φ), which are sufficient for transforming the

input data in such a way that parallel curves on the ground plane become parallel on a

virtual bird’s eye camera view as will be explained in Section 3.3.2.

To understand how projection will transform parallel curves visible on the ground

surface, we appeal to the definition typically attributed to Leibniz (1692-4) [49]: two

curves are considered parallel if one is a constant distance d along the normal from

the other. In the language of mathematical morphology, one curve is the erosion or the

dilation of the other. (Note that the curves are not related by a translation, and hence the

theory of elations [19, 47, 48] does not directly apply.) This means that for every point

on the first curve, there is a corresponding point on the second curve such that 1) the

line connecting the two points is normal to both curves and 2) the tangent lines through

the two points are parallel [50]. Understanding the projection of smooth parallel curves

thus entails understanding the projection of these pairs of parallel tangent lines.

A tangent line L on the ground plane can be represented by the normalized homo-

geneous vector L = [A,B, 1]T . The projection l = [a, b, 1]T of this line to the image is

given by [19] l/λ = H−TL→ λL = HT l. Substituting (3.4) into this equation allows

us to express the tangent line [A,B, 1]T on the ground plane in terms of its projection
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(a, b, 1)T on the image plane:

λ


A

B

1

 =


aα

bα cosφ+ sinφ

D

 . (3.9)

Now consider two tangent lines L and L′ from corresponding points on two parallel

curves. To be parallel, the coordinates of the two lines must satisfy the relationA′/A =

B′/B. Substituting from (3.9), we have:

a′

a
=
b′α cosφ+ sinφ

bα cosφ+ sinφ
, (3.10)

and rearranging, we obtain:

fp = α−1 tanφ =
ab′ − a′b
a′ − a

. (3.11)

Thus we observe that the perspective factor fp can be computed directly from the

image coordinates of the two tangent lines projecting from corresponding points on

the parallel ground plane curves. From Eqn. (3.6) it can be seen that this is sufficient

information to restore the scene curves to their parallel state. However, on its own,

Eqn. (3.11) is insufficient to uniquely determine the tilt angle φ and focal length α. In

particular, there remains a one-dimensional family of solutions corresponding to the

unknown vertical expansion factor fe.

In principle, it is possible to estimate the internal parameters of a pan-tilt camera,

including the focal length α, using point correspondences from a set of images taken

with different pan-tilt settings [51]. However, for applications such as traffic surveil-

lance, requiring a series of large pan-tilt shifts to recalibrate every time the focal length

changes is undesirable, as it may interrupt the normal control protocol and real-time

video analytics.
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Fortunately, if the curves are not straight we have not exhausted the information

available from a single image. Recall that for the curves to be parallel, not only must

the corresponding tangent lines be parallel, they must also be orthogonal to the line

connecting the corresponding points (Fig. 3.2(b-d)). In particular, letting (X, Y )T and

(X ′, Y ′)T be the Euclidean representation of the two corresponding tangent points, we

must have [X ′ −X, Y ′ − Y ] [B,−A]T = 0. Substituting from Eqns (3.6) and (3.9),

and simplifying, we obtain:

cos2φ =
δya

δx (b+ fp)
, (3.12)

where δx = w′x′ − wx, δy = w′y′ − wy, w = (1− fpy)−1 and w′ = (1− fpy′)−1.

With the constraint that 0 ≤ φ ≤ π/2 (Fig. 3.2), Eqn. 3.12 uniquely determines the

tilt angle φ, allowing the focal length α to be computed directly from Eqn. (3.11).

An example may make this computation clearer. Suppose that the two curves are

concentric (parallel) circles in the scene plane (Fig. 3.2(a)). On projection, these circles

appear as ellipses compressed along the y axis in the image, and these ellipses are not

parallel (Fig. 3.2(b)) since the lines connecting pairs of points with parallel tangents

are not normal to the curves. The curves will remain non-parallel ellipses even after

correction for the perspective factor fp, due to the uncorrected expansion factor fe.

The only solution to the rectification problem that will make all tangent pairs parallel

and orthogonal to the line connecting them must use the correct tilt angle φ and the

correct focal length α to correct for both perspective fp and expansion fe. In general,

the parallel curves may be much more complex, but the same principle applies.

Thus the presence of parallel curvature on the ground plane represents an opportu-

nity for more complete rectification. The flip side is that as the curvature decreases and

the curves become straight, the problem becomes ill-posed. Although the image can

still be rectified up to the vertical compression factor, the estimates for focal length α̂

and tilt φ̂ will generally be unreliable.
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Without some metric knowledge, the scaling factor fs must remain unknown. How-

ever, for many applications (e.g., highway surveillance), camera height is known, so

that given both tilt angle φ and focal length α, knowledge of the sensor dimensions

(pixel pitch) will in principle suffice for metric estimation on the ground plane. We

leave this as future work.

Due to noise, a single pair of corresponding tangents will in practice be insufficient

to render an accurate rectification. Instead, we seek a least-squares solution over a

large number of corresponding tangent pairs over multiple parallel curves. We turn to

this problem now.

3.2.2 Highway Dataset

The first and main dataset used in this chapter was created based on a set of long videos

provided by the Ministry of Transportation of Ontario (http://www.mto.gov.

on.ca/english/). The 480 × 640 pixel resolution color images were captured

by traffic surveillance pant-tilt-zoom (PTZ) cameras installed at different highway in-

tersections as shown in Fig. 3.1. This dataset is challenging: 1) The cameras are

uncalibrated. No information about the cameras was provided to us, 2) The images are

originally analog, then digitized and compressed, 3) Pan, tilt and zoom vary widely, 4)

Quality of the road markings varies widely, 5) Light conditions vary widely.

We randomly partitioned 20 highway videos into training and test datasets of 10

videos each. From each video we extracted and hand-labeled 10 images, sampled

sparsely in time. For each of these sampled images, a binary mask was produced,

which contains the binary labels of the pixels belonging to road curves and markings

(foreground) and backround, which were used to train a binary classifier as described

later in this chapter.
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3.2.3 Running Track Dataset

We created a second, very short image dataset using our own camera to capture images

of a running track that contain coplanar parallel curves. The main goals of this dataset

were: 1) to validate the algorithms presented in this chapter using a calibrated camera

(intrinsic and extrinsic parameters), and 2) to evaluate how the algorithms trained with

highway data generalize with images from a different domain (sports). Here 712×1072

pixel resolution color images were captured with a Nikon D90 camera, which was

mounted on a tripod at a height of 3.74 m from the ground, and the camera roll was

minimized (i.e. approx. zero roll) using a level. A total of 7 images of the running track

were captured. These images were taken from a variety of locations in the stadium

stands, at tilt angles φ of 60, 65 and 70 deg. One example of these images is shown in

Fig. 3.10. The camera was calibrated (intrinsic parameters) in the lab using a standard

method [52]: the focal length was estimated at α = 812 pixels, and the principal point

was estimated at (px, py) = (4, 8) with respect to the centre of the image. These

parameter values were used in subsection 3.4.3.

3.3 Algorithm

Given a single image I and a scene plane containing parallel curves, we wish to es-

timate the camera parameters φ and α in order to rectify the image data by means of

the homography Hr from Eqn.(3.8). This estimate will be based on maximizing the

parallelism of rectified image curves. To compute this objective, we need to detect and

group local features into extended curves, and associate pairs of curves hypothesized

to be parallel.

For the sake of concreteness, we will focus here on highway imagery. To optimize

accuracy and make our assumptions explicit, we adopted a probabilistic supervised

learning approach, randomly partitioning 20 640 × 480 highway videos captured by
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various highway cameras into training and test datasets of 10 videos each. From each

video we extracted and hand-labeled 10 images, sampled sparsely in time. A risk here

is that we will over-learn the statistics specific to this dataset. To assess this, we will

also apply the method, without relearning, to a completely different application domain

(sports videography).

Our automatic rectification algorithm has two main stages: 1) curve extraction, and

2) rectification.

3.3.1 Curve Extraction

Curve extraction consists of local feature detection and grouping. The parameters for

both stages are learned from manually labeled lane marks and lane dividers in our

highway dataset.

Local feature detection. We use a standard corner detector [53] to extract image

features. At each image location i, we construct the 2 × 2 matrix Ci and compute its

eigenvectors e1
i and e2

i and associated eigenvalues λ1
i and λ2

i . For a smooth curve, the

eigenvectors e1
i and e2

i encode the normal and tangent vectors, respectively. We define

an appearance vector di = [ηi, λ
1
i , bi]

T where ηi = λ2
i /λ

1
i is the ratio of the eigenvalues

and bi is the pixel brightness.

We use this appearance vector to determine whether a feature lies on (ωi = 1) or off

(ωi = 0) a smooth curve on the scene plane. Assuming conditional independence of the

appearance features, the likelihoods are approximated as the product of the marginals

(Fig. 3.3), and the likelihood ratio L can be written as

Li =
p(λ1

i |ωi = 1)p(bi|ωi = 1)p(ηi|ωi = 1)

p(λ1
i |ωi = 0)p(bi|ωi = 0)p(ηi|ωi = 0)

. (3.13)

After discarding features for which logLi < 0, we thin the features using non-maximum

suppression in the e1
i direction, normal to the curve. The result is a sparse set of local
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features (Fig. 3.4 (a)).

Feature grouping. In spirit, our rectification method is local, as it relies only

upon pairs of local tangent vectors. In practice, however, grouping the local features

into global curves is important, for two reasons. First, for some applications, the local

features are not aligned. For example, in the highway imagery shown in Fig. 3.4(c-

d), the lane marks are offset, so that a normal from one will not necessarily intersect

another. If we first group these lane marks into curves, these intersections can be

determined by interpolation.

A second benefit of grouping is outlier removal. In practice, only some of the local

features will lie on parallel curves from the dominant scene plane, and identifying out-

liers is an important part of making the method work. Outlier identification is greatly

facilitated by first grouping the local features into curves, as normally a curve will be

either wholly an inlier or wholly an outlier.

We found that a simple grouping method was sufficient for this application. From

the training dataset, we learn the minimum-area L × W rectangular search window

(Fig. 3.4(b)) that, when based at each ON curve feature, is guaranteed to include

at least one other feature from the same curve, which helps determine the maximum

angle θ0 between the leading eigenvectors of these two features. (Learned parameters:

L = 10 pixels, W = 5 pixels, θ0 = 39 deg.) The grouping algorithm then proceeds

in three stages: 1) We instantiate a graph G(V,E), where vertices V represent the

local features and the edge set E is initially empty. 2) We tour the graph, searching the

window based at each local feature and adding an edge to any other vertex representing

a feature within the search window and satisfying the maximum angle constraint. 3)

We extract curves C = {C1, C2, . . . , CM} as connected components of G.

Figure 3.4(c) shows the resulting curves for an example highway image. Note

that the lane marks are segmented as individual, short curves. In order to group these

into global curves, we repeat the same procedure using a larger search window, again
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Figure 3.3: Likelihood distributions for local features.
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(a) (b) (c) (d)

Figure 3.4: Curve extraction. (a) Local features before and after thinning. Each vector
indicates the direction of the leading eigenvector. (b) Processing window used in the curve
segmentation process, (c) First-level segmentation, (d) Second-level segmentation. Each
color represents a subset of grouped feature vectors.

learned (independently) from the training data (Learned parameters: L = 145 pixels,

W = 25 pixels, θ0 = 20 deg.). Figure 3.4(d) shows the resulting global curves for the

same highway image.

3.3.2 Rectification: Iterative Estimation of Tilt Angle and Focal

Length

The input to our rectification algorithm is a set C of curves, each consisting of a set of

local features fi = (ri, li) represented by their location ri = (xi, yi, 1)T in the image

and tangent line li = (ai, bi, 1)T , in homogeneous form. Our goal is to estimate the

camera parameters φ and α, and therefore the homography Hr, which can be used

to rectify the input image (Eqn.(3.8)). Each iteration t of the algorithm consists of

four main steps: 1) Transformation of local features using the current estimate Hrt of

the homography, 2) Pairwise association of local features on parallel curves, 3) Re-

estimation of the homography, and 4) Outlier removal. The steps are interdependent:

feature association and outlier removal depend upon the estimated homography, and

the estimated homography depends upon feature association and outlier removal. In

this sense, our rectification algorithm can be considered a generalization of the iterative
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(a) (b) (c)

Figure 3.5: Tangents association (a)- Association of feature vectors from different curves
- see text for details. (b)- Example synthetic input with localization noise σr = 1 pixel
and no angle noise. (c)- Rectified output. Note the noise amplification along the rectified
curves. .

closest point method [54, 55].

Transformation. The current estimate of the homography Hrt is applied to the

local feature map to yield approximately rectified features: p∗i = Hrtpi, l∗i = H−Trt li.

Association. The goal of this step is to associate each local feature fim on a curve

Ci with one other local feature fjn on each of the other curves Cj, j 6= i in the image.

Roughly speaking, we wish to select the feature fjn that lies nearest the normal line

for fim (Fig. 3.5 (a)). In practice, we measure this distance along the tangent line for

fjn, which takes into account the curvature of Cj . If no feature on Cj lies within an

association tolerance of Ta = 41 pixels (learned from training images) of the normal

line for fim, no association is made. The outcome of this process is, for each pair of

curves (Ci, Cj) , j 6= i in the image, a bipartite matching between a number Kij of

local features on the two curves. The critical property of each match is the angular

deviation θijk, k ∈ [1, . . . , Kij] between the associated tangent lines.

Re-estimation. Were the homography Hrt correct, and in the absence of noise, all

of the associated features would be parallel. Thus to estimate the focal length α and tilt

angle φ we minimize the sum of squared angular deviations θijk over all corresponding

tangent lines and all pairs of curves in the image using a standard iterative nonlinear
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(a) (b)

Figure 3.6: Outlier removal Example highway feature vectors before (a) and after (b)
outlier removal. .

optimization method. To initialize the optimization we evaluated two methods: 1)

Coarse grid search and 2) Mean of the parameters estimation from the training set

(φ̄ = 70 deg, ᾱ = 788 pixels). Both methods proved equally accurate, but of course,

using a single, well-chosen initial estimate is faster.

Outlier removal. The re-estimation process can fail if there are many outlier

curves. In this work, an outlier curve is a curve that is not approximately parallel

to the rest of the curves in the image. To detect and remove outliers, we define a sim-

ple, yet effective measure of total deviation εi for each of theM curvesCi in the image:

εi =
1

M − 1

∑
j 6=i

1

Kij

Kij∑
k=1

|θijk| . (3.14)

Curves Ci for which εi exceeds a threshold of 30 deg are discarded, and the total

deviation εi is recomputed for the remaining curves. This process is repeated until all

curves lie within the threshold. We find that this method works reasonably well in

practice (Fig. 3.6).
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3.4 Results

We evaluated our algorithm on three datasets: 1) Synthetic data consisting of parallel

curves with added noise and known ground truth, 2) Highway images taken by a vari-

ety of uncalibrated highway cameras (unknown α and φ), and 3) Images of a curved

running track taken by a calibrated camera (known α and φ). Dataset 3 was acquired

with a Nikon D90 camera, calibrated using a standard method [52]: the focal length

was estimated at α = 812 pixels. We used this camera model when generating the

synthetic Dataset 1.

3.4.1 Experiment 1. Synthetic Data

For our first experiment, we assumed a viewing distance D = 40m and a 640 × 480

pixel image, and simulated 6 concentric circular arcs centred at the origin of the scene

plane, with equally-spaced radii ranging from 30 to 55 m, and angular subtense of 90

deg. The rotation of the arcs around the origin of the scene plane was randomized

over samples. Each of these arcs was projected analytically to the image using our

camera model, and then represented by a field of feature vectors localized to sub-pixel

accuracy with an arc length spacing of 1 pixel. We used this dataset to verify the

method and assess sensitivity to additive Gaussian iid noise in in both the position and

angle of the local features, as a function of tilt angle. Fig.3.5 (b-c) shows an example

stimulus before and after rectification.

Fig. 3.7 shows results for noise (Figs. 3.7(a-b)) and tilts (Figs. 3.7(c-d)). The

method produced estimates of tilt angle φ̂ and focal length α̂ that are unbiased and ac-

curate. However, with high levels of noise and/or small tilt angles, the method becomes

biased: both tilt angle and focal length are underestimated.

We believe that this bias is due to amplification of noise in the objective function

induced by rectification. From Eqn. 3.7, one can see that the perspective factor fp will
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Figure 3.7: Experiment 1 results. Top plots show estimated tilt angle φ̂, bottom plots
show estimated focal length α̂. Red dashed curves indicate ground truth values, blue
curves indicate estimated values. (a) Variation with std. dev. of position noise σr. (b)
Variation with std. dev. of angle noise σθ. (c) Variation with tilt angle φ for position noise
of σr = 1 pixel. (d) Variation with tilt angle φ for angle noise of σθ = 3 deg.
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cause noise to be attenuated or amplified depending upon the sign of y. However, noise

in the rectified y coordinate yr will increase monotonically with the vertical expansion

factor fe, inducing a bias to smaller values, and hence smaller tilt angles φ. Since tilt

angle and focal length α are inversely coupled through the perspective factor fp =

α−1 tanφ, this induces a compensating decrease in the estimate of focal length α.

This effect becomes more pronounced for smaller tilt angles, where the perspective

distortion does not impose as strong a constraint on the rectification. In future work,

we hope to correct for this high-noise bias by explicitly modelling the propagation of

noise across rectification.

3.4.2 Experiment 2. Highways

For our second experiment, we applied our algorithm to the highway test dataset,

which is quite challenging: 1) The images are originally analog, then digitized and

compressed, 2) Pan, tilt and zoom vary widely (see Fig. 3.1), 3) Quality of the road

markings varies widely, 4) Weather and light conditions vary widely. This dataset thus

forms a realistic test of the algorithm’s potential.

We compare our curvilinear method against a state-of-the-art method for linear

vanishing point extraction [23]. This method extracts the vanishing points from the

detected families of imaged parallel lines assumed to lie on the ground plane and the

resulting horizon line, which can be used to estimate the projective factor fp. We

emphasize that while the linear method should work well for straight highways, it is

not expected to work well for curved highways.

Since we do not have ground truth here, we are somewhat constrained with respect

to quantitative evaluation. However, two forms of evaluation are still possible. 1) We

can qualitatively evaluate whether rectification correctly parallelizes the curves. 2) We

can compare parameter estimates for the fully automatic algorithm against parameters

estimated with our curvilinear rectification algorithm but given hand-labelled curves as
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(a) (b) (c) (d)

Figure 3.8: Highway rectification examples. Top row: estimated features, bottom row:
resulting rectified image. (a-b) Linear [23] and proposed curvilinear method applied to
straight road. Both methods perform well. (c-d) Linear [23] and proposed curvilinear
method applied to curved road. While the linear method fails completely, the curvilinear
method computes a reasonable rectification.

input. While this second method serves to estimate errors induced by the segmentation

and grouping stages, we emphasize that it does not evaluate errors introduced in the

rectification stage.

We divided the test dataset into a subset of straight highway segments, and a subset

where the highway is curved. For the straight subset, simultaneous estimation of both

tilt angle φ and focal length α is under-constrained. To evaluate the methods, we

therefore estimate the perspective factor fp and use a nominal value for the vertical

expansion factor of fe = 1 in Eqns. 3.6 and 3.7 in order to rectify the imagery.

Fig. 3.8(a-b) shows example rectifications for linear and curvilinear methods.

While results appear satisfactory in both cases, a paired t-test [56] comparing the

error in the estimated perspective factor fp for 30 different images reveals that the

curvilinear method is significantly more accurate, t(69) = 4.4, p = .00004.

Fig. 3.8(c-d) shows example rectifications of a curved highway for both linear and
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Figure 3.9: Experiment 2 results (highway images): comparison of error in the estimated
perspective factor fp using the linear and curvilinear methods. Errors were computed with
respect to ground-truth estimated with hand-labeled data.

curvilinear methods. In this case, the linear method fails catastrophically, while the

curvilinear method succeeds in computing a reasonable rectification. Quantitatively

over the curved roads in our dataset, the curvilinear method again performs signif-

icantly better, t(29) = 2.5, p = .02, (Fig. 3.9). Mean accuracy of the estimated

parameters for the curvilinear method applied to curved highways in our test dataset

is shown in Table 3.1. We emphasize that these errors are relative to estimated ground

truth, computed using our rectification algorithm on hand-labeled data. Average run-

ning time of our non-optimized Matlab implementation on a standard dual-core laptop

computer was 15.3 sec for curve extraction, and 41.1 seconds for rectification (30 iter-

ations). We expect run time could easily be improved by an order of magnitude with

some optimization.

3.4.3 Experiment 3. Running Track

For our final experiment, we used a calibrated camera to acquire 7 images of a running

track. These images were taken from a variety of locations in the stadium stands, at
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Table 3.1: Mean absolute errors for estimated tilt and focal length for curvilinear method.
Road results are for curved highways only and are relative to estimated ground truth, using
our rectification algorithm on hand-segmented data. Track results are based on actual
ground truth.

Mean tilt err ∆φ Mean focal length err ∆α

deg % pixels %

Roads 2.8 4.0 13.7 1.7

Track 1.2 1.8 14.4 1.8

tilt angles of 60, 65 and 70 deg. We applied the same algorithm used for the highway

images in Experiment 2, except for omitting the second grouping step, since the curves

of the running track are continuous. Importantly, we did not relearn the statistical

parameters for feature detection and grouping. Given the substantial differences in the

quality of the imagery and the application domain, Experiment 3 provides a good test

of how well the method generalizes.

An example result is shown in Fig. 3.10, where (a) shows the results of curve

segmentation, and (b) and (c) show the results after outlier removal and rectification.

Here we have ground truth tilt and focal length, allowing us to evaluate the accuracy

of the method in absolute terms. Table 3.1 shows these results. Mean absolute tilt

angle error ∆φ was 1.2 deg (1.8%) and mean absolute focal length error ∆α was 14.4

pixels (1.8%). We believe that the improved accuracy relative to the highway dataset

is primarily due to the superior image quality.

3.5 Conclusions

Methods for single-view traffic camera calibration and image rectification generally

assume systems of parallel lines or an orthogonal structure in the scene. In this chap-

ter, we have introduced a method that applies to scene planes that may not contain

linear structure, but do contain parallel curves. We have shown that these curves pro-

vide sufficient information for the estimation of both focal length and tilt angle. Our
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(a) (b) (c)

Figure 3.10: Experiment 3 results. (a) Output from curve segmentation stage prior to
outlier removal. (b) Rectified image with inlier curves. (c) Rectified image.

experiments have demonstrated the efficacy of the method, particularly in situations

where conventional methods fail.

Although highway surveillance is our main target application, we have shown that

the method generalizes well to sports tracks without relearning. In fact, the proposed

method was evaluated recently by Elassal & Elder [57] in different scenarios, where

the reported absolute tilt angle error was 0.55 deg for highway images, and 1.45 deg for

an indoor pedestrian dataset. Other potential application domains include autonomous

driving, curved conveyor systems for industrial automation and non-contact fingerprint

analysis.

Future work may address 1) the analysis of small biases induced by nonlinear prop-

agations of error, 2) estimation of additional camera parameters (e.g., camera roll), 3)

estimation of metric properties based upon prior knowledge of sensor placement or

object size and 4) generalizations to scenes with multiple systems of parallel curves,

e.g., highway interchanges. 4) evaluate RANSAC [58] outlier rejection and explore

whether performance for RANSAC would justify the added complexity.

The probabilistic curve extraction method and the iterative estimation of the ho-

mography parameters (α and φ) can be coupled with other computer vision techniques

to enable automatic visual traffic analytics applications such as vehicle counting, as

will be explained in Chapter 4.
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Chapter 4

Third Contribution: Slot Cars: 3D

Modelling for Improved Visual Traffic

Analytics

The method introduced in Chapter 3 enables us to automatically extract road lines

and curves from highway images and compute estimates of the camera tilt angle and

focal length (if the road has curvature). In this chapter, we couple these estimates with

a foreground extraction-based traffic object detection method (described in Appendix

A), to build an end-to-end vision-based traffic analytics prototype system that can count

vehicles in the scene.

A major challenge in visual highway traffic analytics is to disaggregate individual

vehicles from clusters formed in dense traffic conditions as illustrated in Fig. 4.1. In

this chapter, we introduce a data-driven 3D generative reasoning method to tackle this

segmentation problem. The proposed method is comprised of offline (learning) and

online (inference) stages. In the offline stage, given camera intrinsic parameters and

height, we use the parallelism method described in Chapter 3 to estimate highway

lane structure and camera tilt to project 3D models to the image. In the online stage,
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Figure 4.1: Example vehicle clusters formed in dense traffic conditions (Top row), and
corresponding results from a 2D segmentation algorithm (Bottom row).

foreground vehicle cluster 2D segments are extracted using the motion and background

subtraction method described in Appendix A. For each 2D segment, we use a data-

driven MCMC method to estimate the vehicles’ configuration and dimensions that

provide the most likely account of the observed foreground pixels. We evaluate the

method on two highway datasets and demonstrate a substantial improvement on the

state of the art.

4.1 Introduction and Prior Work

In many traffic surveillance installations, camera placement is oblique. As a conse-

quence, vehicles project to the image in clusters and are often only partially visible

due to occlusion. Disaggregating these clusters into individual vehicles is central to

attaining accurate vehicle counts. Tracking and appearance cues are highly fallible, as

vehicles may move at similar speeds and have similar colours (Fig. 4.1). Size cues

are also tricky, as vehicle size can vary by an order of magnitude, from motorcycles to

tractor-trailers.

Attempts have been made to solve this problem using 2D spatiotemporal con-

straints. One idea is to use variations in velocity within a segment or variations in
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the shape of an image segment over time to identify the multiple vehicles within a

cluster [59, 60, 61]. Unfortunately, since highway speeds are highly regulated, ve-

locity is not a very effective segmentation cue for highway traffic: it is very common

for neighbouring vehicles to be travelling at the same speed and in the same direc-

tion. An image segment projecting from a single vehicle may also vary in shape over

time due to shadows, specularities and projective distortions, making this a weak cue

as well. Bouvié et al. [59, 60] attempt to strengthen this method with the constraint

that local image features projecting from each vehicle form a convex group in the im-

age. However, this approach is also limited, since an individual vehicle could project

a non-convex group, while a cluster of vehicles could project a convex group.

To overcome these limitations, we propose a 3D approach. 3D model-based meth-

ods for object verification (motorcycles, horses) [62] and for make/model vehicle

recognition [63, 64] have recently proven effective on datasets where the objects are

fairly isolated and already localized in the image. However, these methods do not

address the thorny problem of detecting and individuating multiple mutually occlud-

ing objects in highly cluttered scenes, which is the problem we must solve to achieve

accurate traffic analytics in rush-hour conditions.

The 3D method from [29] fuses geographic data (streets and static elements) from

a specific urban environment with thousands of internet geotagged images of the same

scene that are processed using Structure from Motion [65, 66], and refined using pub-

licly available LIDAR point clouds of the urban environment. The resulting 3D model

is used to generate labels for 3D vehicle detection. Although effective, the method is

relatively complicated in the sense that it requires multiple sensors and images of the

same location, and is limited to operate on specific urban areas for which LIDAR and

geographic information is available.

To address these problems, we take as inspiration the earlier work of Song & Neva-

tia [67]. Their insight was that 3D models of common vehicles combined with knowl-
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edge of intrinsic and extrinsic camera parameters could be used to reason about the

3D configuration of vehicles most likely to account for observed clusters in the image.

This is a powerful approach, and has the advantage that vehicle categorization and

traffic volume measurement can potentially be solved simultaneously.

However, there are two main limitations of this 3D model approach that we address

in this dissertation. The first is how the 3D models are defined. The Song & Neva-

tia algorithm employed three categories of vehicle (sedan, SUV, truck), and assumed

they occur with equal probability. This is clearly unrealistic for highway traffic, where

diverse vehicle categories are possible. For example, in our datasets, we have enumer-

ated 13 different semantic vehicle categories and found that the prior distribution is far

from uniform (Fig. 4.2). To address this challenge, we propose an automatic cluster-

ing approach, optimizing the number of clusters to maximize the accuracy of traffic

volume measurements.

The second limitation is the complexity of the configuration space. In the Song &

Nevatia approach, the unknowns included the number, category, location and orienta-

tion of the vehicles in the scene. The combinatorial complexity of this configuration

space led them to propose a rather complex coarse-to-fine search, terminating in a fine-

grained MCMC stage. To address this problem, we take advantage of recent methods

for automatically recovering the lane structure of the highway [6] (Chapter 3). Exist-

ing lane detection methods such as [68] extract curves from bird’s eye view images

using a homography computed from manually-defined control points, and use spline

curve models and probabilistic frameworks to detect lanes. Here we use the method

presented in Chapter 3, which estimates the homography parameters automatically,

and couple it with a baground subtraction method to automatically extract active road

lanes. This allows us to fix the pose of each 3D vehicle proposal, and to limit the search

over location to a 1D space. As a result, a single MCMC search stage is sufficient to

recover optimal configurations. We refer to our method as ‘Slot Cars’ because the
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Figure 4.2: Distribution of vehicle classes for our training dataset.
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12 

26’ Moving Truck cuboid.  The actual moving truck may be shorter  
(there are moving trucks of different lengths: 24’, 22’, etc….). 

Figure 4.3: Example 3D cuboid model.

MCMC algorithm slides the 3D models one-dimensionally along each lane to identify

the most probable configuration.

While Song & Nevatia employed complex 3D CAD models for their vehicles, we

elect to employ simpler cuboid models (Fig. 4.3) that have been used effectively in

recent work on camera calibration [69], vehicle detection [70] and fined-grained ve-

hicle recognition [71]. In addition, while Song & Nevatia relied on an orthographic

projection approximation, we assume full perspective projection, as it adds negligable

complexity and should provide more accurate results. The most important difference

in our method with respect to Song & Nevatia, is the coupling of our method from

Chapter 3 with 3D modelling to improve visual traffic analytics.

4.2 Datasets and Geometry

We recorded two highway traffic datasets at different highways and on different days.

Both datasets were recorded with a Sony Nexus 6 camera at 1440× 1080 pixel resolu-

tion and 30fps. For Dataset 1, we labeled (2D bounding boxes and IDs) 1,072 frames

(∼ 36 sec), and for Dataset 2, we labeled 494 frames (∼ 16 sec). We employed the
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Figure 4.4: Camera geometry. Both the X-axis of the world frame and the x-axis of the
image frame point out of the page.

first 566 labelled frames of Dataset 1 as training data and used the last 506 labelled

frames for evaluation. Dataset 2 was used solely for evaluation, serving to assess the

ability of the algorithm to generalize to different conditions.

The camera was calibrated in the lab using standard procedures [52]: The focal

length was estimated to be f = 1, 142 pixels and the principal point (px, py) was found

to be centred vertically and displaced by only 3.5 pixels to the right horizontally. Skew

was assumed to be zero, and pixel aspect ratio was assumed to be unity. For both

datasets, the camera was mounted on a tripod on an overpass overlooking a highway;

Fig. 4.4 shows the geometry in profile. We measured the camera height above the

ground plane to be approximately D = 8.01 meters for Dataset 1, and D = 8.36

meters for Dataset 2. The roll angle of the camera was minimized using the camera’s

internal electronic levelling gauge, and we assume it to be zero in the following. We

down-sampled the video to 360 × 270 pixel resolution prior to processing to reduce

computation time. Both datasets were hand-labelled to identify a bounding box and

semantic category for each vehicle in each frame. A unique ID was assigned to each

unique vehicle, tracked across frames.
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We assume a planar horizontal ground surface and adopt a right-hand world coordi-

nate system [X, Y, Z] centred at the camera, where the Z-axis is in the upward normal

direction (Fig. 4.4). Without loss of generality, we align the x-axis of the image co-

ordinate system with the X axis of the world coordinate system (both out of the page

in Fig. 4.4). For notational simplicity we locate the centre of the image coordinate

system at the principal point.

Under these conditions, a point [X, Y ]T on the ground plane projects to a point

[x, y]T on the image plane according to

λ[x, y, 1]T = H[X, Y, 1]T , (4.1)

where λ is a scaling factor and the homography H is given by ([72], Page 328, Eqn.

15.16):

H =


f 0 0

0 f cosφ −fD sinφ

0 sinφ D cosφ

 (4.2)

where φ is the tilt angle of the camera relative to the ground plane: φ = 0 when the

camera points straight down at the ground surface and increases to π/2 as the camera

tilts up toward the horizon.

Conversely, points in the image can be back-projected to the ground plane using

the inverse of this homography, [X, Y, 1]T = λH−1[x, y, 1]T , where

H−1 = (fD cos 2φ)−1


D 0 0

0 D cosφ fD sinφ

0 − sinφ f cosφ

 (4.3)
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In Euclidean coordinates this backprojection can be written as: X

Y

 =
D

f cosφ− y sinφ

 x

y cosφ+ f sinφ

 (4.4)

This inverse homography will be used to back-project the lane boundaries detected and

grouped in the image back to the ground plane.

Our method will also involve projection of 3D cuboid vehicle models resting on the

ground plane to the image for comparison with detected foreground segments. For this

comparison, we employ the 3×4 homogeneous camera projection matrix P : x = PX,

where P = KR[I | 0], and K and R are the 3 × 3 instrinsic parameter and rotation

matrices respectively. Given our assumptions, the intrinsic matrix K reduces to:

K =


f 0 px

0 f py

0 0 1

 (4.5)

and the rotation matrix R reduces to:

R =


1 0 0

0 cos(φ) sin(φ)

0 sin(φ) − cos(φ)

 (4.6)

We measured ground truth values for the tilt angle φ using an SPI digital protractor:

φ = 81.2 deg for Dataset 1, φ = 73.4 deg for Dataset 2. These ground truth values

will be used to validate the camera tilt estimates made automatically from the imagery

(see below).
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Figure 4.5: Algorithm overview.

4.3 Algorithm

Our method consists of a 3D modelling stage and an inference stage (Fig. 4.5). The 3D

modelling stage runs in off-line mode, and the goal is to pre-compute active road lanes,

homography parameters, and 3D models for different vehicle classes. The inference

stage runs in on-line mode, and uses these pre-computed quantities to compute 2D

vehicle segments and disaggregate these segments into individual vehicles using image

projections of 3D models. These stages are explaned next.
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4.3.1 3D Modelling Stage

In the 3D Modelling Stage, the geometry of the ground plane lane structure of the

highway is first established. This is then used to learn the image appearance of 3D

cuboid vehicle models populating these lanes.

3D Roadway Geometry Estimation

Our goal is to facilitate traffic analytics by automatically estimating the projective re-

lationship between the highway ground plane and the image, and to automatically

recover the lane structure of the roadway. To achieve this, we use a ‘preview video’

consisting of the 200 frames immediately preceding each labelled dataset to burn in an

online mixture model background subtraction algorithm [73] in order to estimate a re-

liable background image that clearly shows the lane structure, without occlusions from

vehicles (Fig. 4.6(a)). We then employ the parallelism method presented in Chapter 3

for automatic single-view calibration and rectification. This algorithm first detects and

groups local oriented structure into longer curve segments (Fig. 4.6(b)). (Although the

highway shown here is straight and the focal length is known, the method can handle

curved highways). These segments are then used together with knowledge of the cam-

era height and intrinsic parameters to automatically estimate the camera tilt angle φ

that maximizes the parallelism of the curve segments when they are back-projected to

ground plane coordinates using the inverse homograph H−1. (Fig. 4.6(c)).

Note that the extracted curve segments include the lane boundaries but also other

parallel curves generated by the meridian, parallel lane markings for the HOV lanes,

shoulder, etc. In order to distinguish the traffic lanes from these other structures, we

first identify as candidate lanes the curvilinear strips between all adjacent pairs of par-

allel curves. We then use the foreground segments detected in the preview video to

identify which of these candidate lanes is active. Due to the oblique pose of the cam-

era, the lowest point in each of these segments tends to lie close to the ground plane.
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Figure 4.6: 3D roadway geometry estimation for dataset 1 - (a) Background image
recovered from initial 200 frames, (b) Line segments detected and grouped in the back-
ground image, (c) Rectified background image with initial lane boundary estimates over-
laid, (d) Rectified background image with vehicle locations used to identify active lanes,
(e) Distribution of traffic over lanes, (f) Labelling of active lanes in the image.
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We therefore identify the ground plane location of each segment by the back-projection

of its lowest point in the image and then accumulate these points over time for each

of the candidate lanes (Fig. 4.6(d)). Since some of these foreground segments will

actually correspond to multiple vehicles spanning multiple lanes, the frequency distri-

bution of these points (Fig. 4.6(e)) cannot be taken as an accurate estimate of traffic

volume, but it is sufficient to identify the active lanes. In our system, we treat as active

any lane containing more than 10 points (Fig. 4.6(f)).

3D Vehicle Projection Pre-Computation

The estimation of 3D roadway geometry gives us the potential to transfer observations

and hypotheses between the 3D scene and the 2D image . We will use this technique to

implement an analysis-by-synthesis approach in which 3D hypotheses of vehicle con-

figurations on the roadway are evaluated in terms of how well their image projections

align with detected image foreground segments. The first step is to determine the exact

3D vehicle models to employ.

3D Vehicle Classes

In their 3D modelling approach, Song & Nevatia employed CAD models for three

vehicle categories (sedan, SUV, truck). For highways, the distribution of vehicles types

is more diverse (Fig. 4.2), and there is considerable variation in dimensions and shape

within each class. For these reasons, we elect to use simpler 3D cuboid models and

to learn optimal dimensions for these models from training data. Specifically, we first

manually identify the subset of segments in the training dataset that involve only one

vehicle that is fully-contained within a rectangular processing region of interest (See

white rectangle in Fig. 4.10 (a) and (b)). The next step is to determine the lane for each

segment by the lowest point in the segment. We then define a ground plane origin for

the modelling of the segment as the back-projection of the projection of the centroid of
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the image segment onto the midline of the lane. Next, we instantiate a set of 3D cuboid

models uniformly sampling a range of plausible dimensions and locations, centred at

the origin (Table 4.1). Finally, we identify the set of parameters that maximized the

intersection-over-union (IOU) of the image projection of the cuboid with the observed

image segment. The model dimensions for the larger vehicles, such as trucks, were

also estimated manually following a similar procedure.

Table 4.1: 3D cuboid model sampling on training data. Locations are relative to ground
plane origin (see text).

Parameter Min (m) Max (m) Resolution (m)

Location -3.0 3.0 1.0

Length 2.2 23.0 0.2

Width 0.8 2.6 0.2

Height 1.1 5.0 0.2

Figures 4.8 and 4.8 show the distribution of the 3D vehicle model dimensions for

the test set 1, and test set 2 datasets respectively. And Fig. 4.7 shows the resulting

distribution of cuboid dimensions over the training dataset. Note the broadness of

the distribution, particularly in the length dimension. To partition the distribution into

more compact categories, we ran the k-means algorithm [74] for k = [1 . . . 10], repeat-

ing n = 1000 times with random initial conditions for each value of k and selecting

the solution for each value of k that minimizes the average intra-cluster variance. The

number k of vehicle categories was selected to optimize the accuracy of traffic volume

estimates on our training dataset: we found that k = 4 yields optimal performance

(Fig. 4.7). We discuss this optimization in more detail in Section 4.4.

Table 4.2 shows the vehicle dimensions for the four cluster centres. Although there

is not a 1:1 mapping between these clusters and semantic vehicle categories, Class 1

corresponds roughly to a compact car, Class 2 to an SUV, passenger van or pickup

truck, Class 3 to a cube van and Class 4 to a semi-trailer.
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Figure 4.7: K-means clustering of labeled vehicle dimensions in the training dataset.
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Figure 4.8: Labeled vehicle dimensions in the test set 1.
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Figure 4.9: Labeled vehicle dimensions in the test set 2.
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Table 4.2: Dimensions for the four vehicle classes automatically learned from our training
data.

Class Length (m) Width (m) Height (m)

1 4.2 1.7 1.5

2 5.7 1.8 1.7

3 9.2 2.6 4.6

4 23.0 2.6 4.0

Projection of 3D Models to the Image

Having estimated the camera matrix P and the homography H relating the ground

plane to the image, the lane structure in ground plane coordinates, and the 3D cuboid

model classes, we can now pre-compute an estimate of the expected image appearance

(silhouette) of each vehicle class for each traffic lane and for each location along each

lane. For the sake of efficiency, we assume that each vehicle will be centred within a

lane. We sample lane locations at 1m resolution.

4.3.2 Online Inference Stage

Foreground Image Segmentation

We restrict our analysis to vehicles lying within or at least intersecting a region of

interest in the lower portion of the video frame, to avoid very distant vehicles near the

horizon (Fig. 4.10(a)).

We employ the foreground segmentation method described in Chapter A.2. The

goal is to independently label each pixel in the image as foreground or background.

The background subtraction component of the algorithm is based on a 2D adaptive

Gaussian mixture model for pixel colour that ignores the luma channel to minimize

responses to shadows. The motion component is a simple two-frame difference. The

probabilistic combination of these two cues imbues the algorithm with a degree of

invariance to traffic speed, since the background subtraction works well for slower
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(a) (b)

(c) (d)

Figure 4.10: Online inference (a) Example frame from the training dataset. The white
box indicates the ROI. (b) Foreground image segments computed using the GMM algo-
rithm. (c-d) Maximum probability configuration of cuboids returned by our MCMC algo-
rithm.
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speeds and the motion detection works well for higher speeds. Note, however, that for

stalled traffic, the background subtraction algorithm will eventually begin to interpret

the stopped vehicles as background.

Marginal conditional likelihoods for the two cues were learned from the labelled

training data and combined under a naı̈ve Bayes assumption, and priors were learned

from the proportion of the image occupied by ground truth bounding boxes. An initial

segmentation is then determined by applying a threshold p0 = 0.08 to the posterior

ratio, and the resulting 8-connectivity [75] foreground components that exceed a cri-

terion area A0 = 60 pixels are identified as foreground segments. These thresholds

were optimized to maximize the IOU of detected segments with ground-truth bound-

ing boxes on the training dataset. Fig. 4.10(b) shows the detected foreground segments

for an example video frame. In the following we will use the label GMM (Gaussian

Mixture & Motion) to identify this foreground segmentation method.

3D Vehicle Configuration Optimization

Given a foreground image segment we wish to estimate the number of vehicles most

consistent with the shape and size of the image segment, as well as the lane, location

and class of each of these vehicles. As a measure of consistency we employ the inter-

section over union (IOU) of the image segment with the union of projected 3D cuboid

vehicle models.

We first identify the lanes overlapped by the image segment and compute the cen-

troid of each lane’s portion of the segment. These centroids are then back-projected to

the ground plane using our inverse homography H−1 (Eqn. 4.4) and the closest sam-

ple point on each lane’s ground plane midline is identified as the origin for the search.

The search space consists of seven locations, centred on the origin and spaced at 1m

intervals along the midline.

If we knew that a certain image segment was created by k vehicles in k specific
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lanes, there would still be a total of (7× 4)k = 28k possibly configurations, given 7

locations per lane and 4 vehicle classes. Thus, given a foreground image segment that

overlaps n lanes, the total number N of possible configurations is given by

N =
n∑
k=1

28kn!

(n− k)!k!
(4.7)

We find that foreground image segments can overlap up to five active lanes, result-

ing in a total of more than 20 million possible configurations: too many to explore

exhaustively, especially online. Instead, we employ a Markov Chain Monte Carlo

(MCMC) [67, 74, 76] method to explore the more probable regions of the configura-

tion space within a reasonable amount of time.

We initialize the chain with a configuration computed using a simple greedy algo-

rithm (Fig. 4.11). We first identify the lane with the largest overlap with the foreground

image segment. We then exhaustively search the 28 possible location/class solutions

within this lane, committing to the solution that maximizes the IOU with the whole

segment. We then proceed to the lane intersecting the largest remaining unexplained

portion of the foreground image segment and determine the solution in this lane that

maximizes the IOU of the foreground image segment with the union of the two se-

lected model projections. Note that it may be the case that for a particular lane no

solution increases the IOU; in this case we assume no vehicle exists in this lane. This

process continues until all intersected lanes have been considered.

Given this initial solution, we run MCMC, using the IOU as a model for the prob-

ability of each proposed configuration. Possible moves include: adding a vehicle in

an unoccupied lane overlapped by the image segment, removing a vehicle, moving a

vehicle to an adjacent location within a lane, and incrementing or decrementing the

class of a vehicle by 1. Given this list of possible moves it is clear that any possible

configuration can be reached. We imposed a time budget of 1 second per segment,

which we found can accommodate 506 iterations of MCMC. We take as our solution
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(a) (b)

Figure 4.11: Greedy initialization of our MCMC algorithm - (a) Green x show sampled
traffic lane midline points and red dots indicate the centroids of the intersection of the
foreground image segment with each lane. (b) The initial configuration selected by the
greedy algorithm - Green area corresponds to the segment’s area. Note that the furthest
lane remains unoccupied since adding a vehicle there reduces the total IOU.

the maximum probability configuration in the chain. Fig. 4.10(c-d) shows the configu-

rations selected for the segments (4.10(b)) in an example frame of the training video, in

image and ground plane coordinates. We label our algorithm GMM3D to capture the

combination of our GMM foreground segmentation algorithm with our 3D analysis-

by-synthesis optimization of the vehicle configuration for each foreground segment.

4.4 Results

We evaluate our proposed GMM3D method for traffic counting and compare against

the state of the art on two test video clips. Camera tilt angles were automatically

estimated to be φ = 78.3 deg. (error = -2.9 deg.) for Dataset 1, and φ = 69.5 deg.

(error = -3.9 deg) for Dataset 2. We use three measures of performance: 1) Accuracy

of the total traffic flow over the duration of the clip (unique vehicle count), 2) Mean

absolute error (MAE) per frame, and 3) Accuracy of estimated vehicle dimensions.
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4.4.1 Total Traffic Volume

We employ our GMM3D system to estimate total traffic volume (unique vehicle count)

over our two test datasets, and compare against the particle method of Barcellos et

al. [60]. The Matlab code is available online (obtained from https://www.researchgate.

net/publication/278714978_Matlab_code_A_Novel_Video_Based_

System_for_Detecting_and_Counting_Vehicles_at_User). In the Bar-

cellos method, a vehicle is detected and tracked as a group of particles, approximated

by its convex hull. For each lane, a ‘virtual loop’ on the image is identified by hand.

Any intersections between the convex hull representation of a vehicle and one or more

virtual loops are identified. While one vehicle may intersect with more than one virtual

loop, only the lane with the greatest intersection has its counter incremented. Barcellos

et al. do not provide detailed rules for determining the location and width of these vir-

tual loops. We therefore defined them to be qualitatively similar to those shown in their

paper ([60], Figs. 8-9). Since our GMM3D model assigns each vehicle to a specific

lane, traffic counting is more straightforward. For each lane we identify a virtual gate

in the image that is the projection of a ground plane line orthogonal to the lane bound-

aries. For each identified 3D vehicle model, we extract its footprint, i.e., the contact

surface between the 3D model and the ground plane, which lies entirely within one

lane (see Fig. 4.12(c)). A lane counter is then incremented whenever a frame with a

footprint on the gate follows a frame with no footprint on the gate. (This method works

as long as two different vehicles never cross a line in two consecutive frames, which

would require vehicles speeds that exceed speeds we observe in our datasets). We

optimized the placement of these gates by maximizing their overlap with the ground

truth boxes over the test datasets. Quantitative results are summarized in Table 4.3

and Figure 4.13. Our 3D method generates an average error of 12%, much lower than

the mean error of the 2D method of Barcellos et al. (31%). Note that the 2D method

consistently underestimates the traffic volume, due to a failure to disaggregate multi-
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(a) (b) (c)

Figure 4.12: Virtual gates example. (a) Crop of example video frame showing vehicles
and 2D bounding boxes. (b) GMM Foreground segment and (c) GMM3D cuboid foot-
prints, with virtual gates shown in white.

ple vehicles that appear as a single image segment (Fig. 4.12(b)). This highlights the

importance of 3D modelling for accurate traffic analytics.

Table 4.3: Total traffic volume estimation results.

Count Error %

Test set Ground-truth Barcellos et al. [60] GMM3D Barcellos et al. [60] GMM3D

1 75 53 85 -29% 13%

2 59 39 53 -34% -10%

4.4.2 Per-Frame Traffic Volume

To assess the value of 3D modelling for traffic analytics, we compare the performance

of two variations of a 2D method against two variations of our 3D method. In the

2D methods, the number of foreground segments is used as an estimate of the num-

ber of vehicles in the frame. We consider two foreground segmentation algorithms:

the 2D method described in Appendix A, and the Principal Component Pursuit (PCP)

method [77] that has been reported in previous work to outperform Gaussian mix-

ture background subtraction algorithms; code obtained from sites.google.com/

a/istec.net/prodrig/Home/en/pubs/incpcp. Against these we compare

two versions of our 3D algorithm: one using the GMM foreground segmentation as
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Figure 4.13: Total traffic flow evaluation.

input, labelled GMM3D, and the second using the PCP foreground segmentation as

input, labelled PCP3D.

Table 4.4 and Figure 4.14 report the results from our proposed 3D method com-

pared to those produced by using the 2D method described in Appendix A. Similarly,

Table 4.5 and Figure 4.15 report the comparison against the 2D PCP method from

[77]. Overall, we observe that the 3D modelling stage consistently helps achieve lower

error levels, which meets our expectations in terms of contributions from 3D modeling.

Table 4.4: Per-frame traffic volume mean absolute error (MAE %). Our proposed
GMM3D method against the 2D method described in Appendix A

Test set 1 Test set 2

2D 14.8% 30.9%

3D 10.1% 20.2%
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Figure 4.14: Per-frame traffic volume evaluation (MAE %). Our proposed 3D method
against the 2D method described in Appendix A.
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Figure 4.15: Per-frame traffic volume mean absolute error (MAE %). Our proposed 3D
method against the Principal Component Pursuit (PCP) method [77]
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Table 4.5: Per-Frame Traffic Volume Mean Absolute Error (MAE %). Our proposed 3D
method against the Principal Component Pursuit (PCP) method [77].

Test set 1 Test set 2

2D 14.2% 26.6%

3D 14.7% 14.6%

4.4.3 Vehicle Classification and Dimensions Estimation

In addition to improving the accuracy of traffic volume estimates, the proposed GMM3D

method produces a rough estimate of the vehicle dimensions using the four size classes

shown in Table 4.2. To evaluate the accuracy of these estimates, we analyze the classes

assigned to vehicles at the time when they cross a virtual gate (as explained in Section

4.4.1). We compare against ground truth estimates of vehicle dimensions, estimated

by hand, and employing two measures of accuracy.

First, we consider categorical accuracy. Here we identify the ground truth cate-

gory as the cluster whose centre lies closest to the ground truth dimensions in a Eu-

clidean sense. Table 4.8 shows the confusion matrices for our two test sets. Results

are fairly good, and most errors involve assignment to an adjacent category. We note

that confusions between Categories 1 and 2 are not surprising, given that that the two

corresponding training data clusters appear to be contiguous (Fig. 4.7). This motivates

our second measure of performance. Here we measure the average error in estimated

vehicle dimensions, compared with a baseline estimate that uses the mean dimensions

over the training set for every test vehicle (See table 4.6 and Fig. 4.16 for test set 1,

and table 4.7 and Fig. 4.17 for test set 2). Our GMM3D method can be seen to gen-

erally produce surprisingly accurate estimates, within 24cm in all cases except for the

length estimation in Test Set 1, which may be due to the quantization of the length

dimensions of a few larger vehicles. See Table 4.8, and compare the dimensions of the

longest vehicles in Test Set 1 (Fig. 4.8) against the closest mean dimensions in Fig.

4.7.
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Figure 4.16: Vehicle dimensions estimation error for test set 1.
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Figure 4.17: Vehicle dimensions estimation error for test set 2.
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Table 4.6: Mean absolute error (MAE) for estimated vehicle dimensions on test set 1.

Length(mm) Width(mm) Height(mm)

Baseline 2.72 0.23 0.67

3D 1.66 0.08 0.24

Table 4.7: Mean absolute error (MAE) for estimated vehicle dimensions on test set 2.

Length(mm) Width(mm) Height(mm)

Baseline 1.37 0.15 0.33

3D 0.23 0.02 0.03

Table 4.8: Confusion matrix for vehicle classification.

Test Set 1 GMM3D 1 GMM3D 2 GMM3D 3 GMM3D 4

GT 1 0.73 0.26 0 0

GT 2 0.24 0.72 0.04 0

GT 3 0.09 0.09 0.63 0.18

GT 4 0.09 0.09 0.27 0.54

Test Set 2 GMM3D 1 GMM3D 2 GMM3D 3 GMM3D 4

GT 1 0.88 0.11 0 0

GT 2 0.22 0.77 0 0

GT 3 0 0 1 0

GT 4 0 0 0 1

4.5 Conclusions and Future Work

In this chapter, we successfully coupled our method from Chapter 3 with 3D mod-

elling, and have demonstrated that our 3D analysis-by-synthesis approach can be used

effectively to disaggregate clusters of vehicles in highway traffic video, leading to im-

proved estimates of traffic volume and vehicle dimensions. Future improvements may

derive from the incorporation of learned likelihoods and priors into the MCMC search,

tracking over time, accommodating lane changes, training and evaluation on larger

and more diverse datasets such as [71] and [78], and efficient implementation to

allow real-time deployment.
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On the other hand, the proposed system has limitations. The adopted 2D segmenta-

tion methods assume that the vehicles move. Therefore the system would stop working

if the traffic becomes stationary for a relatively long time, perhaps due to a traffic jam.

The system would also fail in snow conditions or very high traffic density when the

lane markings become occluded. Using four vehicle classes limits the accuracy of

vehicle dimension estimates. However, with a larger labelled training dataset, I am

hopeful that more fine-grained classification would be possible.
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Chapter 5

Discussion and Future Work

In this dissertation, I have proposed computer vision algorithms and methods that

contribute to the automation of visual traffic surveillance for Advanced Traffic Man-

agement Systems. In particular, the algorithms presented in Chapter 3 (Automatic

Single-View Calibration and Rectification from Parallel Curves) are desirable in the

cases where the remote camera operator changes the pose of the camera. The algo-

rithm clearly relies on the assumption that a road contains lane markings and that these

markings are visible (i.e. that there is no traffic jam with several stationary vehicles

occluding the markings on the image, or that there is no snow covering the road). In

these cases, other image cues and techniques could be utilized such as vehicle motion

cues (e.g. integrated motion responses over time), and detection and segmentation of

stationary vehicles (i.e. traffic jams), perhaps using deep learning approaches. The

method could also be extended to use multiple views and temporal information.

In addition, the Slot Cars method (Chapter 4) makes use of the results from this sin-

gle view parallelism method, and assume that each vehicle is centered and aligned with

a lane. This greatly simplifies the problem of finding the vehicles’ configuration (i.e

number of vehicles, their classes, and locations along their identified lanes). However,

this constraint is a problem when vehicles change lanes. In these cases, the method
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oversegments (usually two smaller vehicles are detected in these cases) the data in the

frames where the vehicle transitions from one lane to another. A refinement step could

be introduced where the orientation and location of the vehicles are allowed to vary

perhaps using learned prior distributions or regression methods. We confirmed the ad-

vantage of reasoning in 3D to produce improved estimates of the number of vehicles,

their classes, and their locations.

The 3DTown system proposes a framework where the information from multiple

cameras can be integrated into a single virtual 3D environment where the operator can

visualize the information of all cameras and sensors in a single interface as opposed

to having large panels with separate monitors from each camera where it is difficult to

understand and track moving objects that exit the field of view of one camera and enter

the field of view of a different camera. In 3DTown, the same moving object would be

rendered as a single avatar making it easy for human operators to track visually.

5.1 Improving Run Time

Most of the algorithms described in this dissertation were implemented in Matlab.

The main focus was on the validation of the theoretical concepts discussed in this

dissertation. Although vectorization was used in some cases, the code includes several

for loops that often encapsulate a relative large number of operations, and Matlab is

known to become slow when for loops are used.

More specifically, in Chapter 3 (Automatic Single-View Calibration and Rectifica-

tion from Parallel Curves), the average run time of our non-optimized Matlab imple-

mentation on a standard dual-core laptop computer was 15.3 sec for curve extraction,

and 41.1 seconds for rectification (30 iterations).

In Chapter 4 (Slot Cars: 3D Modelling for Improved Visual Traffic Analytics) we

pre-computed (to reduce the run time) the projections of individual vehicles given the

pre-selected classes and dimensions. The most computationally intensive stage is the
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MCMC sampling. This is because the process is iterative: in each iteration a vehi-

cle configuration is sampled and projections merged to compute the intersection over

the union with the input 2D image segment. We used 506 iterations, which required

roughly 1 second per segment of compute time.

In the 3DTown contribution, the tracking module operates at 8 frames per second

and the camera pose algorithm takes about 8 seconds to estimate the camera pose from

a single frame; thus it is useful for intermittent pan/tilt operation, but not for continuous

smooth pursuit. There were also delays related to retrieving model information from

Google Earth, particularly when camera pose changed.

In general, we would like the algorithms described in this document to run in real

time. To achieve this goal a number of improvements are required:

Software implementation

1. Translate the Matlab code into C.

2. Make use of multiple cores for parallel processing.

3. Use CUDA C [79] implementations for GPU processing.

4. Use vectorization or libraries for hardware-accelerated matrix operations.

5. Use integral images [80] whenever possible.

Architectural modifications

1. In Chapter 3, the use of corner detector and eigenvectors could potentially be

replaced with standard image gradients. However this would require learning

the likelihood terms for the gradients.

2. In Chapter 4, each 2D segment in the image is processed sequentially by MCMC.

Instead, multiple instances of the MCMC algorithm could be run to process each

of the 2D segments in parallel.
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3. In Chapter 2 (3DTown project), the use of a different geoserver framework that

is optimized for dynamic visualization needs to be explored (e.g. Unity 3D).

5.2 Improving Accuracy

There are a number of improvements that could be made to improve the accuracy of

the proposed algorithms:

1. Improvements to probabilistic framework for the MCMC algorithm. Currently

the MCMC uses the Intersection Over the Union (IOU) as an objective that has to

be maximized. Incorporating a probabilistic mechanism that takes into account

learned likelihood functions and priors could produce more accurate results and

faster convergence. We leave this for future work.

2. Simplification of the vehicle configuration optimization mechanism by using an-

chors followed by 3D cuboid regression as in [81].

3. Tracking over time. The Slot Cars method counts vehicles when they intersect

defined virtual gates. At the same time, the method performs vehicle classifica-

tion (dimensions); however, no tracking system is in place at this point. Having a

tracking system would help improve the tracked classes and vehicle dimensions

over time as the vehicles move in the image.

4. Accommodating lane changes. As explained above, the system needs to allow

the orientation and lateral location of each vehicle to vary. Currently, in the

system, if a vehicle changes lanes, it will be likely oversegmented as two small

vehicles on adjacent lanes.

5. Larger and more diverse labeled data sets. The amount of (labeled) data used

in this work is quite limited, especially the number of images and scenarios
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used in the Slot Cars method. In the future, we need to collect and label many

more images from more highways and illumination/weather conditions. Datasets

created by other research labs [71, 78] should be used as well.

6. Deep Learning implentation. Deep convolutional neural networks could poten-

tially be trained to estimate tilt angle and focal length and count vehicles. Future

work will involve comparing the performance of this approach with the approach

I have taken here, and determining whether and how the two approaches could be

combined, for example by combining the presented algorithms with deep learn-

ing pixel-level semantic segmentation methods such as [82] to segment both the

road and the vehicles, or even 2D bounding box methods such as [81] or [83].
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Appendix A

Foreground Extraction-Based 2D

Segmentation of Traffic Objects

In this dissertation, I employed the foreground extraction method proposed by Elder et

al. [73] to segment pedestrians and vehicles from traffic video. This chapter focuses on

the work done to adapt that method to pedestrian detection application [5] and vehicle

detection application [7].

A.1 Overview of the Elder et al. Foreground Extrac-

tion Method

The foreground extraction method proposed by [73] is part of a biologically-inspired

solution that combines pre-attentive low-resolution sensing for detection with shiftable,

high-resolution, attentive sensing for confirmation and further analysis that was devel-

oped in the context of indoor human face detection.

The system employs layered probabilistic modeling and spatial integration of rel-

atively simple but complementary cues, namely, foreground extraction, image differ-

ences (i.e. motion), and color.
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Figure A.1: Pre-Attentive system diagram taken from [73].

As shown in Figure A.1, the system has three modalities: Motion (two-frame im-

age difference), Foreground extraction, and Skin (Color). For each modality, the first

processing stage is the computation of pixel-level posterior probabilities, which are

then integrated spatially over a rectangular window using Lγ normalization [73]. Fi-

nally, the likelihood distributions for the spatially-integrated cues are modelled by a

mixture of 3 Gaussians. These likelihoods are then combined in a Bayesian fashion to

produce a posterior probability map.

In the foreground extraction modality, each image pixel color is modelled as a mix-

ture of two multivariate normals η(~µi,Σi), i ∈ {1, 2} corresponding to background and

foreground processes. The system uses Principal Component Analysis (PCA) [74] to

perform image color space dimensionality reduction from 3D (RGB) to 2D to improve

robustness to brightness variations.

Maximum likelihood estimates of the mean ~µi, covariance matrix Σi and mixing

coefficient ωi of both mixture components are updated on each frame using an incre-

mental approximation of the EM algorithm [84]. Note that the mixing coefficients ωi
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for a specific pixel represent the prior probability of foreground and background at that

pixel. It is assumed that on average, over time, each pixel corresponds more frequently

to background than foreground, and thus the larger mixing coefficient is associated

with the background process.

Representing foreground and background hypotheses as H and H̄ respectively, the

prior probabilities are thus given by

p(H) = min (ω1, ω2) , p(H̄) = max (ω1, ω2) . (A.1)

For each pixel of every incoming image, the posterior probability of the hypothesis

H that a pixel belongs to the foreground given its colour ~X is computed as follows:

P (H| ~X) =
P ( ~X|H)P (H)

P ( ~X|H)P (H) + P ( ~X|H̄)P (H̄)
. (A.2)

A.2 Adaptation to Pedestrian and Vehicle Detection

A number of modifications were necessary to apply this algorithm to long-range pedes-

trian and vehicle detection:

1. Removal of color modality. After evaluating the system with highway traffic

surveillance video, it was determined that the color modality was not useful in

the traffic surveillance application due to the high variation in the color of the

vehicles (unlike human face colors).

2. Removal of spatial integration. After extensive experimentation with highway

traffic videos, it was determined that the integration window stage used in [73]

was causing vehicles to be merged into single segments.

3. The likelihood functions for the motion modality were re-learned from traf-

fic training data. Non-parametric representations of the ON and OFF likeli-
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hood functions were learned using ground-truth 2D bounding boxes.

4. The mixture model parameters were re-learned. The 3-component mixture

model parameters for the motion and foreground posterior distributions were

re-learned.

5. Adjustments to the foreground extraction method. The foreground extrac-

tion stage modifications were: 1) Burn-in: The initial Gaussian mixture model

parameters (mean, variance, and mixture weights) were re-learned using a video

segment from the training dataset (see Section 4.2), 2) In the PCA option [73],

the eigenvectors were re-learned from traffic data using the training set and

the ground-truth 2D bounding boxes, and no dimensionality reduction was per-

formed. Instead, the image pixel color rotations were performed using all three

eigenvectors.

A.2.1 Computing 2D Image Object Segments

To compute 2D traffic object segments, I binarized the posterior map produced by the

modified version of the Elder et al. method using a threshold T = 0.0867: Any pixel

locations with probability greater than this threshold were set to 1, otherwise, they were

set to 0. The threshold was determined by maximizing the area of the precision-recall

curve using the training set ground-truth bounding boxes. The connected components

from the binary array were then labeled using the Matlab function bwlabel, followed by

one iteration of boundary removal (function bwboundaries), both with 8-connectivity

kernel on each connected component. Small fragments were removed using a segment

area threshold of Ta = 60 pixels, also learned by maximizing the precision-recall curve

area. Only the segments that intersected the ROI were considered. Figure A.2 shows

an example pedestrian detection application [5] of the modified Elder et al. method.

Further, Figure A.3 shows example results for traffic vehicle segmentation.
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(a) (b)

(c) (d)

Figure A.2: Adapting the Elder et al. foreground extraction method to a pedestrian de-
tection and tracking system used in the 3DTown project [5]. a) An image captured by a
surveillance PTZ camera, b) Posterior probability map computed using the modified ver-
sion of Elder et al., c) A smoothened version of the posterior map (See Chapter 2 for
details), d) pedestrian 2D bounding boxes .
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(a)

(b)

(c)

Figure A.3: Adapting the Elder et al. foreground extraction method to the highway vehi-
cle detection method from [7]. Top: An image captured by a traffic surveillance camera,
Middle: The corresponding posterior probability map computed using our modified ver-
sion of Elder et al. The colors represent probabilies, and Bottom: 2D segmentation and
rectangular region of interest (ROI) shown in lighter blue.

92



References

[1] ONTARIO TRAFFIC MANUAL COMMITTEE. Advanced Traffic Management

Systems. In Book 19. Ministry of Transportation Ontario, 2007. 1, 2, 3

[2] FEDERAL HIGHWAY ADMINISTRATION (FHWA). Freeway Management and

Operations Handbook. Final Report. U.S. Department of Transportation,

2003. 1

[3] HONGSHENG HE, ZHENZHOU SHAO, AND JINDONG TAN. Recognition of Car

Makes and Models From a Single Traffic-Camera Image. IEEE Transactions

on Intelligent Transportation Systems, 16[6]:3182–3192, 2015. 2

[4] CHRISTOS NIKOLAOS E ANAGNOSTOPOULOS, IOANNIS E ANAGNOSTOPOU-

LOS, VASSILIS LOUMOS, AND ELEFTHERIOS KAYAFAS. A License Plate-

Recognition Algorithm for Intelligent Transportation System Applications.

IEEE Transactions on Intelligent transportation systems, 7[3]:377–392, 2006. 2

[5] EDUARDO R. CORRAL-SOTO, RON TAL, LANGYUE WANG, RAVI PERSAD,

LUO CHAO, CHAN SOLOMON, BOB HOU, GUNHO SOHN, AND JAMES H EL-

DER. 3D Town: The Automatic Urban Awareness Project. In Computer and

Robot Vision (CRV), 2012 Ninth Conference on, pages 433–440. IEEE, 2012. 4,

6, 87, 90, 91

93



[6] EDUARDO R. CORRAL-SOTO AND JAMES H ELDER. Automatic Single-View

Calibration and Rectification from Parallel Planar Curves. In European Con-

ference on Computer Vision, pages 813–827. Springer, 2014. 5, 26, 55

[7] EDUARDO R. CORRAL-SOTO AND JAMES H. ELDER. Slot Cars: 3D Mod-

elling for Improved Visual Traffic Analytics. In The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) Workshops, July 2017. 5, 87,

92

[8] T. KANADE, R. COLLINS, A. LIPTON, P. ANANDAN, AND P. BURT. Cooper-

ative Multisensor Video Surveillance. Proc. of DARPA Image Understanding

Workshop, pages 3–10, 1997. 9

[9] T. KANADE, R. COLLINS, A. LIPTON, P. BURT, AND L. WIXSON. Advances

in Cooperative Multi-Sensor Video Surveillance. Proc. of DARPA Image Un-

derstanding Workshop, pages 3–24, 1998. 9, 21

[10] H.S. SAWHNEY, A. ARPA, R. KUMAR, S. SAMARASEKERA, M. AGGARWAL,

S. HSU, D. NISTER, AND K. HANNA. Video Flashlights - Real Time Ren-

dering of Multiple Videos for Immersive Model Visualization. Thirteenth

Eurographics Workshop on Rendering (2002), pages 157–168, 2002. 9, 10, 21

[11] U. NEUMANN, S. YOU, J. HU, B. JIANG, AND J. LEE. Augmented Virtual

Environments (AVE): Dynamic Fusion of Imagery and 3D Models. VR03,

March 2003, 2003. 9, 21

[12] I.O. SEBE, J. HU, S. YOU, AND U. NEUMANN. 3D Video Surveillance with

Augmented Virtual Environments. IWVS03, November 7, 2003, Berkeley, Cal-

ifornia, USA, pages 107–112, 2003. 9

[13] K. KIM, S. OH, J. LEE, AND I. ESSA. Augmenting Aerial Earth Maps

with Dynamic Information. IEEE International Symposium on Mixed and Aug-

94



mented Reality 2009, Science and Technology Proceedings, pages 19–22, 2009.

9, 21

[14] J. LI-CHEE-MING, D. GUMEROV, T. CIOBANU, AND C. ARMENAKIS. Gener-

ation of Three-Dimensional Photo-Realistic Models from LIDAR and Image

Data. Proceedings 2009 IEEE Toronto International Conference - Science and

Technology for Humanity, pages 445–450, 2009. 13, 14

[15] P.J. BESL AND N.D. MCKAY. A Method for Registration of 3-D Shapes.

IEEE Trans. Pat. Anal. and Mach. Intel., 14[2]:239–256, 1992. 13

[16] D.G.BAILEY. Raster Based Region Growing. in Proceedings 6th New Zealand

Image Processing Workshop, Lower Hutt, New. Zealand, pages 21–26, 1991. 14

[17] F. H MOFFIT AND E. M. MIKHAIL. Photogrammetry. Harper & Row, Inc.,

1980. 14

[18] P. DENIS, J.H. ELDER, AND F.J. ESTRADA. Efficient Edge-Based Methods

for Estimating Manhattan Frames in Urban Imagery. European Conference

on Computer Vision, pages 197–210, 2008. 14, 16, 17, 23

[19] RICHARD HARTLEY AND ANDREW ZISSERMAN. Multiple View Geometry in

Computer Vision. Cambridge University Press, second edition, 2004. 15, 28, 30,

31, 34

[20] J.M. COUGHLAN AND A.L. YUILLE. Manhattan World: Compass Direc-

tion from a Single Image by Bayesian Inference. International Conference on

Computer Vision., 2:941–947, 1999. 15

[21] J. H. ELDER AND S. W. ZUCKER. Local Scale Control for Edge Detection and

Blur Estimation. Transactions on Pattern Analysis and Machine Intelligence,

20[7]:699–716, 1999. 16

95



[22] R.O. DUDA AND P.E. HART. Use of the Hough Transformation to Detect

Lines and Curves in Pictures. Communications of the ACM, 1[15]:11–15, 1972.

16

[23] O. BARINOVA, V. LEMPITSKY, E. TRETIAK, AND P. KOHLI. Geometric Im-

age Parsing in Man-Made Environments. European Conference on Computer

Vision, pages 57–70, 2010. 16, 27, 47, 48

[24] S. T. BARNARD. Interpreting Perspective Images. Artificial Intelligence,

21[4]:435–462, 1983. 16

[25] M. AVRIEL. Nonlinear Programming: Analysis and Methods. Prentice Hall,

1976. 17

[26] C. GRAMKOW. On Averaging Rotations. Int. J. Comput. Vision, 42[1-2]:7–16.

18

[27] COMANICIU DORIN AND PETER MEER. Mean Shift: A Robust Approach

Toward Feature Space Analysis. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 24[5]:603–619, 2002. 20

[28] JAKUB SOCHOR, ROMAN JURÁNEK, JAKUB ŠPAŇHEL, LUKÁŠ MARŠÍK,
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