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Área de Especialização de Sistemas Autónomos

Departamento de Engenharia Eletrotécnica
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Resumo

As competições de robótica móvel desempenham papel preponderante na difusão da
ciência e da engenharia ao público em geral. É também um espaço dedicado ao ensaio
e comparação de diferentes estratégias e abordagens aos diversos desafios da robótica
móvel. Uma das vertentes que tem reunido maior interesse nos promotores deste género
de iniciativas e entre o público em geral são as competições de condução autónoma.
Tipicamente as Competições de Condução Autónoma (CCA) tentam reproduzir um
ambiente semelhante a uma estrutura rodoviária tradicional, no qual sistemas autónomos
deverão dar resposta a um conjunto variado de desafios que vão desde a deteção da faixa
de rodagem à interação com distintos elementos que compõem uma estrutura rodoviária
t́ıpica, do planeamento trajetórias à localização.

O objectivo desta dissertação de mestrado visa documentar o processo de desenho e
concepção de uma plataforma robótica móvel do tipo 4-wheel skid-steer para realização
de tarefas de condução autónoma em ambiente estruturado numa pista que pretende
replicar uma via de circulação automóvel dotada de sinalética básica e alguns obstáculos.

Paralelamente, a dissertação pretende também fazer uma análise qualitativa entre o
processo de simulação e a sua transposição para uma plataforma robótica f́ısica. inferir
sobre a diferenças de performance e de comportamento.

Palavras-Chave: Condução Autónoma, Visão Computacional, Controlo,
Trajetória, Obstacle Avoidance
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Abstract

Mobile robotics competitions play an important role in the diffusion of science and
engineering to the general public. It is also a space dedicated to test and compare
different strategies and approaches to several challenges of mobile robotics. One of the
aspects that has attracted more the interest of promoters for this kind of initiatives and
general public is the autonomous driving competitions. Typically, Autonomous Driving
Competitions (CCAs) attempt to replicate an environment similar to a traditional road
structure, in which autonomous systems should respond to a wide variety of challenges
ranging from lane detection to interaction with distinct elements that exist in a typical
road structure, from planning trajectories to location.

The aim of this master’s thesis is to document the process of designing and endow
a 4-wheel skid-steer mobile robotic platform to carry out autonomous driving tasks
in a structured environment on a track that intends to replicate a motorized roadway
including signs and obstacles.

In parallel, the dissertation also intends to make a qualitative analysis between the
simulation process and the transposition of the developed algorithm to a physical robotic
platform, analysing the differences in performance and behavior.

Key words: Autonomous Driving, Computer Vision, Control, Path, Ob-
stacle Avoidance
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Chapter 1

Introduction

There is no denying the growing interest and popularity that advanced driving sup-
port systems and lately autonomous driving systems have achieved in recent years. As
one of the main focuses of interest of research teams around the world, autonomous
driving systems have experienced an exponential development in both complexity and
robustness of the proposed solutions. This development has shown consistently positive
results, anticipating in the short term their applicability in everyday life.

The development of autonomous driving systems is greatly contributed by several sci-
entific and research groups, both in an academic context and in a more entrepreneurial
perspective, groups that promote distinguished initiatives to stimulate creativity, re-
designing concepts that aim to address solutions to new and more complex challenges
associated to the autonomous driving. A clear example of this call for creativity is
the several competitions that have emerged over the last decade like Darpa’s Grand
Challenge [6], Audi’s Autonomous Driving Cup [7] or CARLA Autonomous Driving
Challenge [8].

Some of the currently existing competitions are fundamentally oriented towards en-
tertainment without a clear character in the development of new technologies and so-
lutions. However, many others are science-oriented, involving more relevant research,
development, and improvement of sub-systems necessary to support autonomous driving
solutions. Mobile robotics competitions bring many benefits, both to academia, industry
and to society in general [9].

Considering the national panorama, a relevant example of robotics competition, and
particularly the autonomous driving competition, is the Festival Nacional de Robótica
- Autonomous Driving Competition (FNR-ADC). This competition challenges competi-
tors to address solutions to the following problems: designing mechanical platform,

1



1.1. Motivation Chapter 1

defining and assembling hardware, designing and implementing modules like driving,
parking, and vertical traffic sign identification [10]. The driving challenge is composed
of four rounds with increasing difficulty, where, on each round, the robots must com-
plete two laps within the shortest time. In the first round, robots shall complete the
two laps at pure speed. In the following round, the robot shall complete the laps and
simultaneously react upon signal identification, such as stopping or changing lane. In
the third round, a tunnel is placed on the track and obstacles are also placed at unknown
locations. Finally, in the fourth round, a road working area is added.

Regarding the parking challenge, the robots must react after the parking signal is
switched on. When the signal is on, the robot must drive to one of the parking areas
- parallel parking zone or parking lot - with possible obstacles strategically placed to
difficult maneuvering and park in one of these places.

In the end, a special challenge is addressed to participants, where six from a group
of twelve possible vertical signs are positioned along the track. The robots shall identify
them successfully.

The ADC addresses relevant Educational Robotic topics, concerning important fields
of mobile robotics, like localization, motion control, path planning and following, map-
ping, perception, computer vision, machine learning, and several others equally impor-
tant and relevant.

Naturally, each of these topics feeding an autonomous driving system is vast and the
plurality of different strategies and solutions enriches the vast universe of autonomous
driving.

Taking as a starting point the race specifications known a priory, such as the track’s
topology, shape or dimensions of obstacles, and the signage used, this dissertation pro-
poses to design and implement possible strategies in response to some of the challenges
present in Festival Nacional de Robótica - Autonomous Driving Competition, more in
particular, parking, path-following and obstacle avoidance. To this end, modules of path
following, motion control, and computer vision will be developed and tested to support
the autonomous driving system.

1.1 Motivation

Autonomous Driving is a popular scientific topic. Today is undeniable the presence of
autonomous driving systems or as a lighter version, the Advanced Driving Assistance
Systems (ADAS). Advanced systems deal with cutting-edge algorithmics and disruptive
solutions, challenging the ever-increasing communities, academic, business and simple

2



Chapter 1 1.2. Objectives

passionate to embrace this field of robotics.
Participating in the next edition of FNR-ADC with an autonomous driving robot, and

with that develop robust and suited solutions capable to accomplish all the challenges
proposed by the Festival Nacional de Robótica.

1.2 Objectives

This dissertation aims the problematic of designing modules or sub-systems capable to
integrate an Autonomous Driving System capable to answer successfully each of the
challenges present in FNR-ADC. Therefore the development of this project requires the
following topics to be fulfilled:

• Characterization of autonomous driving competitions and their scope;

• Characterization of relevant platforms hardware and software;

• State-of-the art of the main participants of previous editions of FNR-ADC;

• Analysis of several strategies supporting autonomous driving systems;

• Development and implementation of the modules of computer vision, parking lot
identification, path-following and obstacle avoidance;

• Testing the modules in simulation environment designed and built with full com-
pliance to the ADC specifications;

• Analysis of the performance and defining possible improvements.

1.3 Structure

This dissertation is organized through seven chapters. In chapter two it is presented
the state-of-the-art where it is given an insight about the most advanced and relevant
autonomous driving competitions worldwide. Then, a further overview about the Fes-
tival Nacional de Robótica - Autonomous Driving Competitions is also provided and
this chapter ends with a full review about the solutions brought buy the most relevant
participating teams.

3



1.3. Structure Chapter 1

The chapter three provides a high-level overview about the project and the problem
definition. The topics discussed in this dissertations are further approached in chapter
4 with a detailed framing based theory concepts and strategy standards used in the
implementation of driving systems modules.

The project object of this dissertations is then detailed in chapter five, where it is
given an overview about the design strategies and functionalities. These designs and
then tested, as detailed in chapter six and the dissertation ends with a brief conclusion
in chapter seven.

4



Chapter 2

State of the art

This chapter presents examples of mobile robotics platforms, the respective compe-
tition scenarios and a brief description of the solutions presented. The section will start
by listing the most recent examples at the international level and will culminate in a
brief description of the context of the Autonomous Driving Competition of the National
Robotics Festival (FNR), reviewing the main solutions with participation in the most
recent editions of the FNR-PDC. This chapter will be the starting point for under-
standing the strategies used in the development of the 4W-SS mobile platform and the
sub-systems that support autonomous driving.

2.1 Audi Autonomous Driving Cup

The Audi Autonomous Driving Cup (AADC) is an example of a competition in mobile
robotics specially designed for autonomous driving. In this competition the participants
are invited to develop systems that will be tested both in iteration with other systems
developed by other participants as well as in task/mission oriented challenges. The
competition evaluates the overall system performance, the software robustness, and the
elegance of the solution presented by the participants.

Like other competitions of this kind, a distinguishing aspect of AADC is that partici-
pating teams compete with the same robots from a mechanical, structural and hardware
point of view. In the case of AADC, these are models of real Audi AG vehicles at a scale
of 1:8. The main highlight of this competition is the possibility of all participating teams
compete under equal conditions in terms of hardware, thus highlighting the robustness,
accuracy and reliability of the developed algorithms.

5



2.1. Audi Autonomous Driving Cup Chapter 2

Figure 2.1: Audi-Autonomous Driving Competition - Competition scenario

The basic software for operating the robotic platforms is specified by the BSD-
licensed [11] organizer (Berkeley Software Distribution, an operating system based on
Research Unix). The basic software provides the necessary means for communication
with sensors and actuators, but without any optimization either for control frequency
or accuracy.

The competition consists of a mandatory program of autonomous driving tasks, a
free style in which each team can demonstrate a special functionality or feature of the
developed solution and a final stage in which the teams must perform a priori unknown
autonomous driving tasks.

The platform is a 1:8 scale RC model of the Audi AG - Q2 range.
The robot’s power supply system consists of two independent circuits. A first circuit,

powered by a 22.2V 6-cell battery with a capacity of 5200mAh, is responsible for powering
the computer systems dedicated to the control and acquisition of information from the
sensors. This system has a high energy consumption and a battery at maximum charge
ensures the operation of the system only for one hour. The second power supply system
ensures the operation of the motors and speed control. This system is supported by a
2-cell battery with 7.4V and 5200mAh.

The platform is powered by a high torque brushless motor. A speed controller ensures
that the motor speed in both driving directions, forward or reverse, remains constant
according to the instructions of the high-level control layer. This controller also ensures
braking functions in both directions.

6



Chapter 2 2.1. Audi Autonomous Driving Cup

Figure 2.2: Audi-Autonomous Driving Competition - Competition mission and chal-
lenges

Turning actions are ensured by a digital servo motor. It is characterised by its high
actuation power and low reaction time or latency, which enables a fast and precise
steering reaction. This turning system eliminates the need of a feedback loop of the
turning angle due to an integrated control.

The robotic platforms used in AADC are equipped with a miniTX card that houses
a processed Intel Core i3, 8GB RAM, a 128GB SSD disk and an NVIDIA GeForce
GTX1050Ti graphics card. The miniTX card also features two Gigabit Ethernet ports,
several USB3.0 ports and one USB-C port. It also has a Bluetooth, WLAN (IEEE
802.11ac) module.

The system also has an extension of communication interfaces with the robotic plat-
form through the inclusion of a microcontroller that allows, for example, monitoring
batteries charge.

The 2018 version of AADC robotic platform features a set of sensors close to those
existing in real cars. One of the key innovations compared to the previous model is the
replacement of the Intel RealSense r200 3D camera with the new RPLIDAR A2 applied
to the front of the robot. This lists the main sensors that make up the robotic platform:

• RPLIDAR A2 (field of view >180, range <6m, refreshing rate 10Hz);
• Monocular front camera with 130°of field of view;
• Monocular rear camera with 80°of field of view;

7
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Figure 2.3: Robotic platform used in Audi-Autonomous Driving Competition - exterior
perspective

Figure 2.4: Robotic platform used in Audi-Autonomous Driving Competition - hardware

• Ultrasonic sensors (three at the rear and one at each side of the robot) with de-
tection limit of <4m and a refreshing rate of 40Hz;

• 6-axis IMU to monitor linear accelerations and angular velocities;
• All wheel have encoders to measure instant velocities.

The development of the software to support the autonomous driving system is based
on the environment Automotive Data and Time-triggered Framework. (ADTF) which
represents the automotive industry standard framework that supports the software de-
velopment process. This environment is stable and robust, used in today’s Advanced
Driver Assistance Systems (ADAS) with the possibility of including typical communi-
cation protocols such as CAN, FlexRAY, or Ethernet, as well as the attendance of any
raw data from different sources.
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2.2 Festival Nacional de Robótica - Autonomous Driving
Competition

2.2.1 Description of the autonomous driving competition

The Autonomous Driving competition (ADC) of the Festival Nacional de Robótica
(FNR) offers a set of challenges to mobile robotics with features that tend to replicate
real driving environments on a closed track.

The structured environment of the race is composed of a 8 shaped track – in some
editions in the form of B –, with lanes delimited by lines similar to a conventional road.
The track also counts with a crosswalk, luminous signs (displayed on screen), obstacles,
vertical signs, construction area and a tunnel. In addition to these characteristics of the
runway and its elements, there is also a delimited parking area with two spaces, one of
which will be occupied, as well as a parallel parking area.

Figure 2.5: Autonomous Driving Competition scenario – Festival Nacional de Robótica

The race is composed of three runs, and the degree of difficulty is increased at each
of these stages. The first run challenges the participants to make their robots drive
autonomously completing the entire track. The robot must complete two laps of the
circuit in the shortest possible time. Any situation the the robot exits the track can
count on penalties or even disqualification of the race.

In the second run, the robot must identify the light signals displayed on the screens
and act accordingly. The light panel shows five possible signals, which give order from
the direction, stop, move forward or park.

9
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Figure 2.6: Light signals shown on the screen

The robot should, at this stage, be able to carry out the parking manoeuvre in the
designated lot, with two parking areas but one them occupied, so the robot should be
able to identify the free space and park there.

Another challenge in this phase is related to the placement of an obstacle on the
road, simulating the presence of a vehicle. The robot should identify the obstacle and,
without leaving the track, overpassing it using the lane on its left.

In the third and final phase, the difficulty is increased with the incorporation of
a simulated construction area and a tunnel that influences sensors perception due to
low-light conditions. The construction area delimited by traffic cones interconnected
with ribbons presupposes a challenge of robustness and adaptability of the solution to
identify/estimate the lane to follow when the scene faces a sudden change in its structure.
The construction area is defined without prior knowledge, tracing a new route delimited
by traffic cones.

2.2.2 FNR-ADC participating platforms: hardware and software

In this section a review is made about the robotic platforms with relevant participation
in the last editions of Festival Nacional de Robótica – Autonomous Driving Competition
(FNR-ADC). In the following subsections, a survey of the hardware and software options,
developed by each participating team, to overcome the challenges that make up the
autonomous driving competition is carried out. For this purpose, contacts were made
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with the the different team managers in order to obtain the information described in
this chapter (see Appendix A).

A special thank you to Eng Manuel Silva — [mss@isep.ipp.pt] — for providing some
of these contacts.

2.2.2.1 N3E GT Team - Polytechnic Institute of Leiria

The N3E GT project of the team of the Polytechnic Institute of Leiria is based on
an RC platform with four-wheel drive and steering system with Ackerman geometry –
geometrical principle similar to the various steering systems seen on conventional cars
–, which allows greater control in curve (see figure 2.7). Another important aspect of
the platform adopted by the Leiria’s team is the existence of a transmission differential,
which ensures that the wheels have a different speed between them, suitable for the
turning path.

Figure 2.7: N3E GT Robotic platform - Polytechnic Institute of Leiria

In terms of hardware implemented, the N3E GT robot system is supported by 8 and
32-bit PIC microcontrollers dedicated to low-level control and acquisition of informa-
tion from some sensors. The low-level system is responsible for the activation of the
mechanical systems of gait, steering, and the system of pan of the front camera using
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motors and servos-motors. As mentioned, the low-level processing endows the system
with a feedback loop with the introduction of acquired information from encoders into
the system.

For high-level processing, the system features a conventional Intel Core i7 4700HQ
eight-core 2.5GHz PC with 8GB of RAM, featuring NVIDIA GeForce GT 745M graphics
card. The widely advantageous graphics card for parallel processing is based on Kepler’s
384-color 800MHz architecture supporting CUDA. The high-level layer is responsible
for image processing and extraction of features. The robot is equipped with two SCEE
SLEH-00203 cameras, commercially known as PlayStation EYE. These cameras offer
a resolution of 640x480 pixels with a maximum frame rate of 60-fps, however for a
resolution of 320x240 pixels it is possible to achieve a frame rate of 120-fps. The optical
group uses a 132.9°field of view lens, a customization made to the PlayStation EYE
camera [12].

The control system developed by the Leiria’s team consists of three subsystems;
a first subsystem directly associated with the extraction of information through the
cameras that are assembled in the robot (a camera for track analysis and another for
signage); another subsystem dedicated to sending commands to actuators and extracting
information from sensors; and a third subsystem dedicated to high-level control, namely
decision making 2.8.

These subsystems communicate with each other through the ROS middleware, with
the publication and subscription of topics.

As listed above, the low-level control subsystem constitutes a layer between the ac-
tuators/sensors, and the high level control. The low-level subsystem accommodates the
commands received from the high level control such as: speed, wheel turn angle, cam-
era tilt angle capturing the track and brake, converting these commands into actuator
parameters, for example their conversion into pulse width modulated (PWM) signals to
be applied to servo motors.

At the same time, low-level control is assigned the task of collecting information from
sensors, including an optical sensor, developed by the Polytechnic Institute of Leiria,
which performs the function of encoder, collecting information on angular movement
of each wheel, relevant information given that the platform, as already mentioned, has
a differential transmission. The collection of sensor data in the turning system, signal
voltage, is another aspect considered in the feedback loop of the high level control system.

Tasks such as image processing and decision making are associated with the high
level control layer. In the field of image processing, one of the fundamental tasks for the
robot to move within the range is the perception and tracking of the track. The system
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created by Leiria’s team is based on the existence, always visible, of the line delimiting
the strip to the right of the robot, i.e., the line that limits the exterior of the track.

Controlo de
Baixo-Nivel

EncodersDireçãoTravãoOrientação
da câmara

Controlador
de velociade

Sistema de 
segurança

Motor

Aquisição
de imagem

Controlo de
Alto-Nivel

SOFTWARE
Informação transferida 

atravésde envio de
mensagens entre

processos
(utilizando ROS)

HARDWARE
Acionamento e receção
de informação através

de sinais eléctricos

Figure 2.8: Robot N3E GT Control System block diagram??

The image processing starts with the definition of a region of interest (ROI), which is
then segmented on luminance, this is, by a grayscale converted image. Using a threshold,
pixel information with values below a certain luminance those pixels are eliminated.

Then, the information remaining in the image is grouped into a type of cluster in
which the contours of the objects are gathered in order of proximity to the lower right
corner of the image. Only contours that meet a certain size/contiguity criteria are
grouped together in clusters, discarding smaller contours.

Once created, the clusters are later analyzed and retained those that have a larger
dimension, that is, those that cover a larger number of lines in the image. The cluster
with the largest dimension is considered to be lane’s delimiting line. Finally, using a point
on the image that Leiria’s team refers to as the center of focus, the distance between this
point and the identified contour/ clusters is calculated. This distance is nothing more
than the distance in pixels, in the same line of the image, between the center of focus
and the outline. Based on this distance, the robot’s trajectory error is determined and
the turning angle to be adopted is calculated so that the robot maintains a trajectory
centered in the lane.

The crosswalk recognition is also one of the functions assigned to high-level control.
The same luminance concept is also used in the process of identifying the crosswalk. After
discarding information that does not satisfy a minimum value of luminance threshold,
the number of white pixels in the image is counted. When the crosswalk is captured by
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the camera and as the robot approaches, the number of white pixels counted in the image
increases. The goal of the Leiria’s team is to provide the system with a simple white
pixel counter and to verify if a minimum value of pixels is counted. If this criterion
is met, then the system assumes that it is in front of the crosswalk. To increase the
robustness of the solution, the team included a cycle counter to check the consistency of
white pixel counter. Finally, the solution developed applies the same principle of white
pixel counting but with an inverse logic in the attempt to perceive when the crosswalk
is transposed.

All subsystems associated with the identification of light signals uses the same concept
of white pixel counter, which satisfies a minimum condition of luminance, and thus weigh
up whether the number of counted pixels satisfies a certain condition or not. The same
concept is also taken into account when identifying the screens in the captured image
captured. However, in this case, the criterion used is the absence of luminance. However,
according to a qualitative analysis done by Leiria’s team itself, this method proved to
be quite fragile, especially in the identification of the signals that indicates a change
of direction to the robot. The vulnerability of the system to the lighting conditions is
another negative aspect pointed out by Leiria’s team.

2.2.2.2 ROTA Team - University of Aveiro

The ROTA team (Robot Triciclo para Condução Autónoma) is the robotic platform
developed by the University of Aveiro and which has been present in FNR’s recent
editions (see figure 2.9). This platform succeeds another one well known as ATLAS that
participated in the 2000 editions with great success [13] [14] [15].

Figure 2.9: ROTA’s robotic platform - University of Aveiro

ROTA’s physical platform is a platform with one actuated wheel and two steered
wheels through a geometry system ackerman. With 12 kg weight and 50x33.4x28 cm
(LxWxH) in size, it is driven by a 12V/150W DC motor applied by a pinion/chain/racket
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assembly to the rear sprocket and a servomotor steering the two front wheels.
The entire system is powered by 2 12V/7200mAh batteries.
The high-level control system is provided by a single-board computer mini-ITX board

operating at 1GHz and with 512MB of RAM, which communicates with low-level control
subsystems via RS-232 ports. By the other hand, the two cameras communicate through
a Firewire port (IEEE 1394 type A). More recently, the mini-ITX card has been replaced
by a traditional laptop-PC.

The low-level control system presents a distributed structure, based on Microchip
microcontrollers of the PIC18 family, specifically PIC18F2580 and PIC18F4580 commu-
nicating with each other through a FTT-CAN bus developed by the Department of Elec-
tronics, Telecommunications and Computer Science from the University of Aveiro [16].
The low-level control system is responsible for the motor control, servo-motor coupled
to the steering mechanics and activate the LEDs for lighting the track. Simultaneously,
the low-lvel control system is engaged in obtaining and processing the hodometry.

The communication between the low-level distributed system and the high-level con-
trol system, is supported by a gateway RS-232-CAN that converts the frames of each
communication protocol enabling the high-level system, through the RS-232 communi-
cation protocol with a baud rate of 115200 bit/s receive information and disseminate
instructions to the actuators on the same FTT-CAN bus. For the implementation of
FTT-CAN, the module called Master is implemented to control synchronous traffic and
to trigger the execution of tasks recommended by the module of motor control and
hodometry [1].

Regarding the vision system endowing ROTA’s robotic platform, it is composed of
two cameras with a resolution of 640x480 pixel and a maximum frame rate of 30-fps.
Both cameras are connected directly to the high-level control system via the Firewire port
(IEEE 1394). One of the cameras positioned at the rear of the platform has a +25° tilted
orientation, supposedly more adequate for image acquisition parallel to the plane of
the screens where the light signals can be viewed as described in the subsection 2.2.1
dedicated to the description of the FNR-ADC. The second camera is located at the front
of the robot, this time with a tilt orientation of -25°.

As far as the control system implementation is concerned, the ROTA team from the
University of Leiria considers 3 blocks: vision, high-level control, low-level control. High-
level control consists of the implementation of a finite state machine (FSM) as shown in
the diagram in figure 2.10.

Regarding the algorithm dedicated to image processing, the ROTA team had a special
attention to time-constraints and algorithm optimization, trying as much as possible
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Figure 2.10: High-level control algorithm [1]

fast image processing and features extraction. To this end, the ROTA team opted for
an image resolution of 320x240 px permitting a higher frame rate, more suited to the
computer system available. In this sense, some strategic concessions/decisions were
adopted regarding the image processing. Starting by converting optical system’s native
color space (YUV422) to the HSV color space (Hue, Saturation, Value). This conversion
arises from two relevant factors associated with HSV color space: color space similar to
human perception of color and allowing the definition of color with only two values – hue
and saturation. To turn more expedite the color space conversion, a color look up table
was created where the conversion values for each triplet that defines the color space YUV
are associated.

To minimize the impact on image processing speed, image segmentation (binary image
conversion) is performed only to the most relevant chromatic values that are often present
in the FNR-ADC scenario.

In terms of navigation, the ROTA team maintained the strategy of previous editions
with Atlascar [17]. This consists of defining target points and a map of distances. In this
approach, targets and distance map coordinates are calculated. The map of distances
consists of a 320x240 matrix in which each position in the matrix (px,py) is an image point
corresponds to a coordinate (x,y) in the world, having as reference front of the robot (in
this case the center of the reference frame of the robot). It is therefore a Look-Up Table
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(LUT) for the direct conversion of a point in the image to a point in the world in relation
to the robot. All the movements contemplated in the displacement were then based on
real distances. In the new approach adopted by the team, the concept of distance map is
removed and the distances in pixel are now considered. The navigation process is based
on a reactive process in which the vision system tries to evaluate the distance between
robot and the centre of the lane and actuate over the steering whenever the robot moves
away from that centre of the lane.

Finally, in order to obtain a fast algorithm, it is defined something similar to regions
of interest ROI (regions of interest) but in a substantially simplified version. To avoid
processing the whole segmented image, the identification of lane’s delimiting limits is
performed by scanning some image lines (uaxis). When doing this scanning, the algo-
rithms search for transitions on the binary image, transitions from black to white and
then to black again. As the speed of the robot increases - v(x + k) > v(x) - this line
(vcoordinate) is relocated on the image in order to correspond to a point in the world
farther away from the robot, thus anticipating the need for possible changes in direction
and acting on time.

vel(x)

vel(x + k)

Figure 2.11: (left) Segmented image through a Color LUT; (right) Definition of lines of
interest [1]
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Regarding the location of the robot in the world, the method consists of calculating
its coordinates (x,y,θ) through the combination of three variables:

• distance travelled from the crosswalk where the coordinate is considered (0,0)
relatively to the world;

• robot’s offset regarding the center of the lane;

• angular position relatively to the lane.

The distance traveled is calculated with the data from odometry. Given the track’s
blueprint symmetry, the system uses the crosswalk identification to restart the counting
the travelled distance every half-turn. To control the count, the algorithm refers to the
21-metres that each half lap represents. In addition to the identification of the crosswalk
to control the longitudinal distance travelled, the system also uses the identification of
specific characteristics of the floor plan of the track to correct the positioning of the
track.

Regarding robot’s cross-track position relative to the lane width, the ROTA team
advances with a solution they call balancing. This process is nothing but mediating cross-
track error, which is the perpendicular offset of the robot in relation to the center of the
track. The center of the track is identified through the analysis of image lines, sensitive
to the transition of binary information from the segmented image. The transition from
0 to 255 or from 255 to 0 is assumed to have identified the lane delimiter. This process,
which the ROTA team calls a ”line sensor”. This technique performs its analysis (or
”sensing”) by scanning from the center to the left from the center to the right of image
specific lines in v−coordinates. In this approach, some precautions are taken to increase
robustness of the solution by dealing with some noise on the segmented image.

The ROTA team of the University of Aveiro has structured the navigation system
in blocks with specific tasks associated. The tasks in a broad sense are composed of
sub-blocks or basic/simple actions. These sub-blocks constitute tasks that can be as
nuclear as changing lanes, progressing on the track or acquiring information on the light
panel. This feature of the implemented solution allows better expandable properties
of the algorithm with the integration of new features or simply greater clarity of the
solution useful for debug.
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As the robot progresses on the track, different driving modes are adopted:

• line search driving;

• line following driving;

• obstacle avoidance

In line search driving mode, as shown in figure 2.12, the system relies on the concept
of ”line sensor” to identify the track boundaries and, depending on the robot’s cross-track
positioning, calculate the turning angle to bring it to the defined strategy.
CvPoint::pDireita

ponto delimitador da direita
CvPoint::pEsquerda

ponto delimitador da esquerda

Procurar  limite 
da faixa à esquerda

pEsquerda
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da faixa à direita
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Atualização do 
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ângulo de viragem

Atuar à velocidade
pretendida

CvPoint rtFindLine (IplImage *imgae, 
       CvPoint p,
       int angle,
       int length,
       IplImage *displayImage) int rtGetSteeringAngle (CvPoint pL, 

    CvPoint pR,
    int relDev,
    IplImage *displayImage) 

int rtSetAngle (int angle) 

int rtSetSpeed (speed) 

Figure 2.12: Line-searching driving mode [1]

In line tracking driving mode, the processing algorithm is more time performing when
compared with lane searching driving mode because it abdicates of the line sensors to
determine the position of lane delimiters. This driving mode is applied when continuous
lines are present on the scene and uses the position information of the delimiters obtained
in previous control cycles to infer their position in the next cycle. However, the line
tracking mode requires that a continuous line is permanently seen on the right of the
robot.

According to the ROTA team, the line tracking driving mode is mainly used in the
first run of the autonomous driving test - pure-speed challenge. One of the challenges
proposed in the FNR-ADC is the obstacle detection. The ROTA team from the Uni-
versity of Aveiro adopts the same concept of line sensors but this time these sensors
are projected radially over the image with a common starting point centered on the
image plane. These sensors progress in a radial way, with uniform angular spacing (see
figure 2.13).
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Figure 2.13: Radial line sensors schema

Radial line sensors evaluate the binary transition in the segmented image, this time
with obstacle’s green color segmentation. With the application of thresholding, the line
sensors evaluate the transition from black to white, estimating the position of the obsta-
cle. Depending on the evaluation made to its position, the system will return, undetected,
detected and in the lane, detected and in the other lane or detected but uncertain posi-
tion. As a result, the robot stops if it is too close to the obstacle, slows down or starts
the obstacle deviation route. The evasive maneuver for deviation from the obstacle is
performed using the balancing concept, i.e., the cross-track error is manipulated in order
to force the robot to change lanes. Once the robots changes lane, the computer vision
system recognizes/accepts this new lane, causing the system to stop handling the cross-
track error. The system then counts a distance of 2 meters, defined as being sufficient to
overpass the obstacle and restart the maneuver to bring the robot back into the initial
lane.

2.2.2.3 CONDE team - Faculty of Engineering, University of Porto

One of the most successful robots in recent editions of FNR-ADC is the robot developed
by the CONDE team from the Faculty of Engineering, University of Porto. However,
despite its presence, there is little information available on the physical platform, in
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particular on the hardware implemented. Nevertheless, the contacts established with
Eng Armando Sousa permitted some enlightenment about their robot.

Figure 2.14: CONDE team - Faculty of Engineering, University of Porto

However, its inclusion in this state-of-the-art review is not particularly owed to their
mechanical or hardware solutions but rather the algorithm developed to fulfill basic tasks
expected in a robot designed to perform autonomous driving tasks, at the FNR-ADC.

As a physical structure, the CONDE robot is a basic differential steering platform
with two drive wheels and a pivoting wheel at the rear. It features two commercial
cameras PlayStation EYE that capture images with a resolution of 320x240 pixels at 30
fps. The optical group is used in wide angle mode, which corresponds to a field of view
of 75°. However, CONDE team planned a customization of the optical group (lenses and
their housing) which changes the field of view to a wider angle of 112°.

As for the computer system, initially low-power hardware was planned to equip the
robot but they participated in the competitions with a laptop PC from which there are
no technical specifications available.

In the plan of the proposed algorithm solution, two important aspects are highlighted,
a fast track detection system and light signals so that it is compatible with the constraints
of an online processing system, robust to the environmental variables of the test such as
light conditions and precise to ensure a correct positioning and localization of the robot
on the track [2].

Regarding the identification of the track delimiters, the CONDE team applies the
concept of zero copy/one pass [18], process by which the relevant information contained
in an image is obtained in the first processing pass, avoiding successive copies to auxiliary
images or kernels. The process is organized in 6 steps as described in figure 2.15.

The process begins with the acquisition of an RGB image with 320x240 pixels. Later,
points are extracted from the gray-scaled image, this is, coordinates of the image that
may be associated with a range boundary line. In the next phase, the distortion caused
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Figure 2.15: Block diagram of lane boundary tracking process

by the lens is corrected. In response to the time constraints typically on real-time
solutions, the lens distortion correction is applied only to the image coordinates selected
in the previous step [19].

The process of identifying the lanes continues with the Inverse Homography of the
selected points and is followed by the Hough Probabilistic Transform [20]. At this stage,
the tracking of lane’s boundary lines is performed starting from the implementation
of the Hough’s Transformation available in the library OpenCV — HoughLines() and
in the probabilistic version HoughLinesP(). The option for the Hough Probabilistic
Transform is justified by using only a random selection of pixels from the image, which
makes the line tracking process substantially faster when compared with HoughLines()

version.
Proceeding to the next stage, the HoughLinesP() function returns a vector of detected

lines. The algorithm analyzes this identified vector for the line with the shortest distance
from the previously detected line and always within a tolerance limit. If no line meets
the tolerance limit criteria, the line identified in the previous iteration prevails.

From the process of identifying the line that delimits the lane or track, information
is extracted about the position of the robot — distance and angle — in relation to the
lane in which it is supposed to move.

As mentioned, the proposed solution is based on the concept of zero copy/one pass,
therefore the algorithm extracts this feature without the use of kernels as the common
application of a Gaussian Filter after converting an image from RGB to Greyscale.

Regarding the recognition of light signals, the CONDE team equipped its robot with
a second camera oriented upwards, dedicated to capture images from the signals shown
by the standing screens. The proposed solution maintains the principle of zero copy/one
pass. Starting from signalling specifications displayed on the screens (described in the
section 2.2 on page 9), the solutions initiates by making a color segmentation of the
image. This segmentation is done in yellow, green and red according to the equations 2.1.
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fR(x) = max(0,min(xR − xG, xR − xB)/S)

fG(x) = max(0,min(xG − xR, xG − xB)/S)

fY (x) = max(0,min(xR − xB, xG − xB)/s)

(2.1)

Where:

S = xR + xG + xB (2.2)

After the image segmentation by color, the region of interest (ROI) is defined, taking
into consideration the largest area for each of the segmented colors. Once the region
of interest is defined, then the area is divided into four equal portions and counted the
number of pixel inside each partition of the divided area as illustrated in figure 2.16.
The information obtained feeds a decision tree that will identify the sign displayed on
the screens.

Figure 2.16: The image acquisition, color segmentation and definition of region of interest
(ROI) [2]

Based on this strategy, decision trees are created that evolve accordingly to the fulfil-
ment of certain condition blocks, such as STOP through the set of conditions illustrated
in figure 2.17.

2.2.2.4 Remarks

This chapter included a research of solutions with a successful history in the last editions
of the Autonomous Driving Competition at Festival Nacional de Robótica. It will be
from the solutions presented, and also presenting other approaches to answer similar
challenges, that this dissertation report will continue in the following chapters. Other
solutions will be addressed to respond to the constraints in real-time solutions, not only
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Figure 2.17: High-level control algorithm

for the tracking of lines and detection of lanes but also, trajectory planning, control
and machine learning.

This dissertation will also tackle, in the next chapters, the importance and pertinence
of making available a solid simulation environment as an instrument to develop and do
preliminary testings of algorithms addressing solutions to specific autonomous driving
tasks.
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Project and High-level
Architecture

In this chapter the project is defined with a high-level overview of the systems pro-
posed to implement. It is also given focus to the simulation tool also developed in the
scope of the Autonomous Driving Competition from the Festival Nacional de Robótica.

The autonomous driving topic, beyond the mechanical and hardware issues, is a true
challenge in algorithmic science, demanding solutions to extremely wide subjects such
as perception, localization, camera-based localization, obstacle mapping, road mapping
(creation and representation), tracking of moving objects, traffic light detection and
identification, traffic signal detection and identification, pavement marking detection and
identification, decision making and route planning, path-planning and motion-planning,
control (path-tracking and actuators control) [21]. Disregarding mechanical strategies
or how robust a platform is, an autonomous driving solution, and in particular, those
solutions competing at FNR-ADC shall respond to five major blocks constituting an
autonomous driving vehicle system [22]:

Computer Vision Sensor FusionLocalizationPath-planning Control

Figure 3.1: Major blocks forming an autonomous driving system

So the system developed in the scope of master degree in Autonomous Driving Sys-
tems, ministered by the Laboratory of Autonomous Systems / Department of Electronic
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Engineering from Polytechnic Institute Engineering of Porto, can be synthesized through
the following high-level architecture:

Sensing

Data Association/ 
Matching/Perception

Pose Estimation

Map

Behavior

Motion control

L
oc

al
iz

at
io

n

Control

Environment (track)
Figure 3.2: High-level architecture

The robotic platform considered in the development of this study is a low budget
4-wheel Skid-Steer (4WSS) - see figure 3.3. Due to the absence of a directional steering
system, the change of heading processes by applying different velocities on the left and
right wheels, resulting in high maneuverability and mobility in different terrain con-
ditions. However, the change of heading implies slippage/skidding, which represents
important challenges to obtain an accurate and reliable dynamic/kinematics model and
subsequently compromising its controlability.

In this dissertation, possible solutions will be addressed answering to some of the
blocks stated above like computer vision (system configuration and features extraction),
trajectory-following taking into consideration the peculiar non-holonomic characteristics
of the platform (tracking and obstacle avoidance), behavior and control.

At last, but equally important, the solutions here proposed were developed and tested
in simulation environment especially designed as an important instrument capable to
replicate on its full extent the Autonomous Driving Competition from the Festival Na-
cional de Robótica [23].
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Figure 3.3: 4WSS Platform - (left) Robot model and Reference Frame; (right) Real
platform

FNR-ADC Simulation Environment

The FNR-ADC Simulation Environment is built on top of Modular Open Robots
Simulation Engine (MORSE), an open-source simulator engine based on Blender Game
Engine [24]. The usage of MORSE brings important advantages like the possibility to
model components, environments, and robots in Blender. Blender is a free and open-
source 3D creation suite, supporting the entirety of 3D pipeline—modeling, animation,
simulation, rendering. Figure 3.4 illustrates the work developed to simulation the real
competition specifications.

Figure 3.4: FNR-ADC Simulation Environment - Competition Specifications
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Another important advantage using MORSE simulation engine is the access to Blender’s
3D Game Engine (see figure 3.5). The possibility of supporting multi-robots simulations,
large simulation scenarios, and better use of computational resources, are important ad-
vantages of MORSE. Finally and equally important, MORSE offers a clean installation
process when compared with other simulator engines [25] [26].

Figure 3.5: FNR-ADC Simulation Environment - Blender’s Game Engine

The simulation here presented and used to test the algorithms proposed, validating
the concept and its applications, as well as a test of the simulation environment as
sandbox where solutions are designed, developed and tested prior their implementation
to real platforms.

Figure 3.6: FNR-ADC Simulation Environment - full scenario set

Here beneath is described be interacting blocks that will constitute the simulated
solutions on all its components. The algorithm, developed in the scope of FNR-ADC
will use Robotic Operating System (ROS) framework and Open Source Computer Vision
Library (OpenCV) an open source computer vision. The figure illustrates the ROS
nodes subscribing and publishing information of relevant data stream that will support
the algorithms output.
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Figure 3.7: Autonomous Driving System - simulation and system interacting blocks

The following figure presents an overview from the FNR-ADC Simulation Environ-
ment ROS computation graph, with all publishing topics accessing sensors and sub-
scribing information required to control the robot. Moreover, a leaf node available with
information about the track’s map, a cost map provided by ROS Map Server.

The modules proposed to be implemented will make use of those highlighted topics as
illustrated in figure 3.8, with a more detailed intercommunication and relation between
the topics to be developed (figure 3.9).
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Figure 3.8: FNR-ADC Simulation Environment - data stream available (sensors and
actuators)

Figure 3.9: Projected blocks and communication with simulator
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Theoretical Concepts

In this chapter a theoretical study of important topics and modules integrating an
autonomous driving robot such as, Inverse Perspective Mapping for lane-detection and
land-mark detection, Classification and Machine-Learning of to detect features on the
track, Motion-Control and Path-Following to define pure maneuvers, Control as a be-
havioral management of the robot.

4.1 Inverse Perspective Mapping

Computer vision is an essential block to any autonomous driving system. The first
steps regarding the autonomous driving concept was precisely on the lane detection or
lane departure. In fact these components are the support of modern Advanced Driver
Assistance Systems (ADAS).

Today ADAS developed and implemented into commercial solutions are mostly based
on systems focused on the forward direction of the vehicle, this means that the major
feature to extract lane markings, detecting road boundaries and in exceptional cases
assisting on the detection of pedestrians. David Schreiber [27] proposed a robust lane
detection algorithm using a forward-looking monocular camera. Later, Joel C. McCall
and Mohan Trived [28] designed a lane departure system with a road model based on
parabolic approximation on a flat plane the tracking of the lane is done in Kalman
filtering, estimating lane marking on the road. Making use of homography defining one-
to-one relation between two coordinates system, Ho Jung [29] supported their design of
an automatic parking system with a monocular rear camera. Finally Yu-Chih Liu [30]
proposes a vehicle surrounding monitoring system using the bird’s-eye concept which is
implemented using homography transformations over fish-eye monocular cameras. The
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Figure 4.1: Pinhole camera model

use of Inverse Perspective Mapping (IPM) has been widely used on system designs of
several ADAS.

The IPM is a technique typically used to remove perspective distortion of a 2D image
captured from a 3D scene. This distorted projection, caused by a foreshortening factor,
has its genesis on the perspective projection geometry. An explanation is provided based
on the pinhole camera model is figure 4.1.

In the schematics above zc in the camera reference frame is pointing forward in
relation to the image plane (u, v). The captured image of an object in the world reference
frame Fw = 0w;Xw, Yw, Zw is being projected in its inverse orientation, perpendicular
to the optical axis and lies at a focal length f from 0w.

The image plane is defined by a 2D reference frame Fi : 0i;u, v whose axis are
parallel to Xc and Yc respectively. The captured image position can be described by the
expression 4.2.
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Figure 4.2: Model of camera and image frame

u

x
= fz (4.1)

Taking the expression above and expanding it to image’s mathematical components,
(u, v) is given by the expression:

(u, v) = (f x
z
, f
y

z
) (4.2)

The 3D pose of a moving camera’s reference frame FC in relation to the world refer-
ence frame FO is the transformation matrix goc (figure 4.1).

The transformation of 3D camera coordinates into its corresponding 2D point on the
image plane, both represented in homogeneous coordinates, is solved from equation 4.2,
achieving a geometrical relation between these to points - camera calibration matrix:

λ


u

v

1

 =


f 0 0 0
0 f 0 0
0 0 1 0



X

Y

Z

1

 (4.3)

Not always the origin of coordinate system is coincident with the main point (px, py)T ,
in this case the offset is considered in camera’s intrinsic properties:
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Figure 4.3: Offset of camera center and image frame
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 (4.4)

The relation between 3D camera coordinates and its scaling into the respective image
formed is association the the pixel resolution mu and mv which corresponds to the
number of pixels per millimeter or inch. The equation 4.4 relates a Pc expressed in
millimeters into pi expressed in pixels.

(u, v) = (mu(f x
z

+ px),mv(f
y

z
+ py)) (4.5)

The five camera’s intrinsic parameters [31] or internal parameters are intimately
related with the sensor and optical properties of the camera and these properties can be
represented by the matrix K:

K =


αx S
0 αy

0 0 1

 (4.6)

Where αx and αy is the product of the focal length f with size of an element of
the camera image, given in pixels/millimeter mu and mv. Pixels are usually square
and the sizes of the x and y generally are equal. The elements u0 and v0 represent
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the misalignment between the optical center and the coordinate center in the projected
image, and both are obtained by the product of offset px and py with mu and mv

respectively. Finally S = fytan(ω) represents skew-ration which, for the majority of the
cameras available this parameter tends to zero.


u

v

1

 = K


Xc

Yc

Zc

 (4.7)

The relation between the 3D coordinates in the camera’s reference frame and the
3D coordinates in the world reference frame is given by the extrinsic parameters which
represent the relative position of the camera to the world reference frame where the
object is physically located. The extrinsic parameters are composed by six external
parameters: three rotations in roll, pitch and yaw represented by the matrix R and
translations in X, Y and Z represented by a translation vector t [31].

As said before the extrinsic parameters describe the location of the camera in the
world reference frame and its attitude in relation to the world. The extrinsic matrix
assumes the form of a rigid transformation: a 3x3 rotation with a right block 3x1 with
the translation vector:

[
R t

]
=


r11 r12 r13

r21 r22 r23

r31 r32 r33

tx

ty

tz

 (4.8)

The extrinsic matrix defines the transformation of 3D world coordinates into 3D
camera coordinates. It is possible to consider translation vector t as the camera’s po-
sition relative to the world’s reference frame center. Additionally, the rotation matrix
R represents world reference frame orientation, taking into consideration the camera’s
coordinate system.

Contrary to a more intuitive interpretation, the extrinsic matrix describes how the
world is transformed relative to the camera reference frame.

The straightforwardness of the relationship between camera’s pose and extrinsic

parameters can be proofed as follows: taking as starting point the rigid transformation
describing camera’s pose in relation to the world reference frame, where the translation
vector C as the camera’s position relative to the world’s reference frame origin, and Rc
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the attitude of camera’s coordinate system relative to the world we have:

[
Rc

0
C

1

]
(4.9)

Taking into consideration the matrix above describes camera’s pose relative to the
world, the extrinsic matrix is the inverse of matrix 4.10:

[
R

0
t

1

]
=
[
Rc

0
C

1

]−1

(4.10)

Decomposing and solving the inverse matrix 4.10:

Rc C

0 1

 (4.11)

Rc C

0 1

−1

=

I C

0 1

 Rc 0
0 1

−1

=

Rc 0
0 1

−1 I C

0 1

−1 = (4.12)

RTc 0
0 1

 I −C
0 1

 = (4.13)

RTc −RTc C
0 1

 (4.14)

So the extrinsinc matrix parameter are

R = RTc (4.15)

t = −RTc C (4.16)

If Pw represents the homogeneous coordinate of a point in the world and pc represents
the homogeneous coordinates of the projection of that same points into the camera
reference frame, then these two points are related through the equation:
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Road Lane - actual shape Road Lane - perspective appearance

Figure 4.4: Object represented in Euclidean geometry (Left) and object represented in
Perspective geometry (right)

pc =

RTc −RTc C
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
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Zw

1

 =

RTc −RTc C
0 1

Pw (4.17)

The camera projection matrix – P = K[R|t] takes into consideration both intrinsic

and extrinsic parameters, permitting the mapping between 3D points in the world and
the 2D points in the image [32]:

sm̃ = K
[
R t

]
M̃ (4.18)

Where m̃ represents the homogeneous coordinates of a point on the image plane, and
M̃ represents the homogeneous coordinates of that point in the world coordinates. s is
an arbitrary scale factor. (R, t) are the extrinsic parameters – rotation and translation
– and K represents the intrinsic parameters.

4.1.1 Perspective Image

The Euclidean geometry describes the objects as they are, whose properties such as
lengths, angles and parallelism, remains unchanged independently of the rigid motion
affecting that object. By the other hand, Perspective geometry describes the objects
as they appear, whose lengths, angles and parallels appear ”distorted” when we look at
object.
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Figure 4.5: Geometrical model of camera system

Taking the example of an image capture from a road as illustrated in image 4.4,
in the actual shape lanes are rectangular and their limiting lines are parallel. Dashed
line dividing the track are evenly spaced along the tracks. However in their perspective
appearance, lanes converge to a point on the horizon, the dashes on the dividing line
become closer and closer towards the horizon.

4.1.2 Model plane

The Direct Perspective Transformation would relate the coordinate of a point in
the world reference frame into the image plane performed by the following closed form
equations.

u =
f
(
(x−X0) cos Θ + (y − Y0) sin Θ

)
−(x−X0) cos Ψ sin Θ + (y − Y0) cos Ψ cos Θ + (z − Z0) sin Ψ (4.19a)

v =
f
(
(x−X0) sin Ψ sin Θ + (y − Y0) cos Ψ cos Θ + (z − Z0) cos Ψ

)
−(x−X0) cos Ψ sin Θ + (y − Y0) cos Ψ cos Θ + (z − Z0) sin Ψ (4.19b)

4.1.3 Inverse Perspective Mapping (IPM)

The objective of the Inverse Perspective Mapping method (IPM) is to remap each pixel
of the image in 3D space and produce a new image in 2D space. This new image repre-
sents a top-view of the track, a commonly referred to as ”bird’s-eye-view”, eliminating
the perspective distortion characteristic of the perspective image.

The process to correct the image form perspective distortions using the IPM re-
quires, beforehand, the knowledge of camera projection matrix as stated in equation
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number 4.18 – the intrinsic and extrinsic parameters.
In the scope of autonomous driving systems, the usage of top-view images from the

track is particularly useful on lane detection. Some of those benefits are the correction
of the perspective effect. So, lanes that appear to converge to a vanishing point in the
horizon line, are now vertical and parallel (assuming the lanes are parallel or close to
that). Another important benefit is to limit the processing only to a sub-region of the
input image which reduces the run-time. To obtain the IPM from the input image it
is assumed the track is flat. There are additional work to apply IPM on non flat track
surfaces but once the problem herein approach only contemplates the track laying flat
world plane Z = 0.

The IPM can be described as projection of an object from a 3D Euclidean space
W = (x, y, z)3 into a 2D planar frame I = (u, v)2 respecting the geometric properties of
the 3D object is the world space. From the geometrical model representations in figure
it is possible to derive into a two equation (4.20) IPM model using triangulation and
trigonometry [32].

u(x, y, 0) = 2α
n− 1

(
ψ(x, y, 0)− (Ψ− α)

)
(4.20a)

v(x, y, 0) = 2α
m− 1

(
θ(x, y, 0)− (Θ− α)

)
(4.20b)

Where γ = tan−1 ( y
x

)
and θ = tan−1 ( h√

x2+y2

)
, as Θ representing Y aw angle of the

camera regarding to the world frame and Ψ representing camera’s Pitch angle relative to
the world frame. Typically these two parameters remain constant for system simplicity
in detriment of its robustness [33]. Additionally α represents camera’s field−of−view,
and m and n represents camera’s resolution.

Based on the flat world concept, the world reference frame is defined Fw = 0w;Xw, Yw, Zw,
the camera reference frame is defined Fc = 0c;Xc, Yc, Zc and the image frame is defined
Fi = u, v. The point C = (xc, yc, zc) represents the camera location in the world frame
Fw. The knowledge of camera geometry, estimated from a camera calibration process,
among other techniques, in respect to the local planar track scene permits to recover a
2D image form the locally imaged track – S = (x, y, 0) ∈ Fw donate the track surface
and the correspondence to Fi is given by the follow mapping.

(x, y, 0) ∈ S → (u, v) ∈ Fi (4.21)

A point in the scene represented in world frame coordinates corresponding to an
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image point can be calculated either by knowing the distance between the camera frame
and that point in the scene, or any other point in world coordinates – (Z = 0).

Z

X
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xc

yc

u

v

Image
coordinate 
system

World 
coordinate 

system

Figure 4.6: World and Image Coordinate System

So deriving from the equations in close form 4.20, and again assuming all points lies
on the floor (Z = 0), the Inverse Perspective Mapping is calculated as follows.

u∗ = X0 −
Z0xc cos Θ + (yc sin Ψ− f cos Ψ)(Z0 sin Θ

yc cos Ψ + f sin Ψ (4.22a)

v∗ = Y0 −
Z0xc sin Θ + (yc sin Ψ− f cos Ψ)(Z0 cos Θ

yc cos Ψ + f sin Ψ (4.22b)

Where (X0, Y0, Z0) are the camera’s position in the world reference frame a the mo-
ment when the scene was taken; f is the focal length.

Figure 4.7: Transformation from original image to IPM [3]
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4.2 Classifiers – Machine-Learning

4.2.1 Naive Bayes

The Naive Bayes classification method is a classification technique based on Bayes′

Theorem and lying on the assumption of independence between predictors. In a sim-
plistic approach, the Naive Bayes Classifier assumes that the presence of a certain
characteristic or feature in a class is not related to the presence of any other kid of feature
or characteristic, even if those characteristics depend on each other, or depend on the
existence of third-party features. The set of all these properties contribute independently
to the predictor probability [34].

Suppose we have two number generators following a normal distribution. If a number
k is generated, we may be capable to predict which of the generators produced that
number by predicting which class c best corresponds to the x features.

The Bayes Theorem offers the possibility to calculate the probability for a given
random event, the conditioned probability for a given feature when a relevant observation
is taken into account in the classification process.

argmax P (c|x) : c ∈ {1, ..., k} (4.23)

This way, it is possible to infer posterior probability P (c|x) of class c from the
predictor of x (features), taking into consideration class prior probability P (c) and the
feature predictive given a certain class P (x|c), normalized by the prior probability of the
predictor P (x).

P (c|x) = P (x|c)P (c)
P (x) (4.24)

However, it is frequently difficult to compute P (x|c), but the Naive Bayes classifier
simplifies the process by supposing the features are totally independent from their class.

P (x|c) =
n∏
i=1

P (xi|c) (4.25)

Naive Bayes model is simple to implement and particularly useful in scenarios in-
volving a large volume of data to process. The model has a fast algorithm that reveals
particularly suited to deal with real-time applications.
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As main advantages of Naive Bayes:

• Simple and fast method to predict a set of data from a testing class. It also have
a good performance when predicting multiple classes;

• When the the preposition of independent features prevails, the Naive Bayes clas-
sification model has better performance when compared with other classifiers. This
model also requires less learning data;

• Fair performance when classifying categories when compared with numeric classi-
fication. In these cases it is assumed a Gaussian distribution.

Main disadvantages:

• If a classifying category among the test dataset, was not observed during the
training process, that category will assume zero probability (Zero Frequency)
and the algorithm won’t be able to do any estimation. Some techniques are sued,
such as the Laplace smoothing or additive smoothing;

• Naive Bayes estimator is poor and its information shall not be considered relevant;

• The hypothesis of true independent predictors is hard to be found in real-world
scenarios, where nearly all predictors have some sort of dependency even if it is a
light one.

4.2.2 K-Nearest-Neighbors – KNN

The K−Nearest−Neighbors algorithm is a supervised learning classification algorithm,
popular in data-mining and machine-learning systems. The classifier learning process is
supported in the concept of proximity, likelihood, and neighborhood. It has a starting
point from a set of labeled features and uses them to learn how to label other new
features.

The learning dataset is composed of n-dimensional vectors and each element of that
vector is a point in n-dimensional space.

In the KNN model, to determine the class of a given feature that does not appear in
the learning dataset, the classifier searches in the dataset for k elements that are closer
to the unknown element (more concretely with shorter distance). These elements are
called k− neighbor and the assigned class will be the one that appears most frequently.

There are several methods to calculate the distance between the elements: Manhat-
tan, Minkowski or Euclidean, the latter being the most frequently used.
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Consider X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn) two points in R2

1. Manhattan distance between X and Y:

d(x, y) =
∥∥x1 − y1

∥∥+
∥∥x2 − y2

∥∥+ ...+
∥∥xn − yn∥∥ (4.26)

2. Euclidean distance between X and Y:

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + ...+ (xn − yn)2 (4.27)

3. Minkowski distance between X and Y:

d(x, y) = n

√
(x1 − y1)n + (x2 − y2)n + ...+ (xn − yn)n (4.28)

However, Minkowski’s distance is a generalization of the distance from Manhattan
and Euclidean, when q=1 the distance from Minkowski represents the distance from
Manhattan, and when q=2 assumes the Euclidean form.

There is also possible to each variable associate an weighting factor related to its
importance, and in this sense the Euclidean weighted distance assumes the format stated
through equation 4.29:

d(x, y) =
√
w1(x1 − y1)2 + w2(x2 − y2)2 + ...+ wn(xn − yn)2 (4.29)

However, this analysis method can easy escalate in such a way that can compromise
real-time applications. Assuming N − samples in D − dimensions the complexity of
calculating the distances increases in a rate of DN2 [35].

For performance optimization purposes, the KNN classifier offers the user a free and
controllable element (K − elements).

Despite in certain circumstances the KNN algorithm might be computationally heavy,
its performance is adequate on some real-time applications, when the range of data to
classify is not wide.

In those scenarios with much data to classify and to classify with, with the impli-
cation in the loss of computational performance, some patches may help to reduce this
computational effort, namely the possibility to let the user define hyper-spheres where
the algorithm shall look to and compute only these elements lying inside the sphere.
The risk is the possibility of getting one or more empty spheres.
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There are other examples of techniques to improve computational performance by
reducing the number of distance calculations. One of those improvements is the K −
DTree technique. Simplistically, this technique consists on a basic idea that if a point
A is far from point B and close to point C then it is fair to conclude that points B and
C are far one from another. This reduces the computational cost to DN ∗ log(N) which
is a significant improvement compared with the standard algorithm [35].

The main advantages of K −Nearest−Neighbors:

• The KNN algorithm is simple to implement;

• It is not necessary to modeling the classifier;

• Reduced number of tuning parameters;

• Versatile algorithm: classifier, regression and search.

Main disadvantages:

• Great computational effort and efficiency loss as the number of predictors and
elements increase.

4.2.3 Support Vector Machine – SVM

The classifier Support Vector Machines (SVM) is a discriminating classifier specially
oriented to solve problems where pattern recognition is needed. Initially introduced by
Vladimir Vapnik and Alexey Chervonenkis, the concept of this algorithm lies in the
definition of an optimal hyper-plane for linearly separable patterns, which categorizes
new features. In 2D space, the hyper-plane is a line that divides the space into two parts
attributed to each class.

The SVM algorithm has been extended in order to define patterns that are not linearly
separable, by using transformations of original data into a new space through a kernel
function.

The SVM algorithm computes a line or a plane depending if dealing with a problem
with two or more dimensions. The SVM classifier is mainly a geometric approach to the
classification problem [36].

Consider N training elements {xi, yi} : i = 1, 2, . . . , N where xi ∈ RM is a vector rep-
resentation of a trained object and yi ∈ {−1, 1} its class, given an unknown probability
distribution Pr(x, y) from where data from training are picked.
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Figure 4.8: Support Vector Machine - Hyper-plan optimization

Training the classifier endows the system with the ability of mapping x 7→ y through
training examples {xi, yi} permitting the classification of new data that follows the same
probability distributions from previously trained examples [36].

The support vectors consist in the data points that lie close to the hyper-plane.
The hyper − plane is the decision surface. The SVM finds the optimal solution for the
hyper-plane that separates classes.

Support V ectors are critical elements from the training set. Those elements would
change positions if the hyper-plan is removed. The process of defining the optimal hyper-
plane is characterized as an optimization problem that could be solved with optimization
techniques like the use of Lagrange multipliers which permits to find the maximum and
minimum of a multi-variable function.

Considering D training elements {xi, yi}, i = 1, 2, ..., D where xi ∈ R is a vector
representation, and yi ∈ {−1, 1}; its corresponding class, it is possible to define an
hyper-plane w · x + b = 0 where x are elements over that hyper-plane. In figure 4.8,
w is orthogonal to the hyper-plane, and −b

|w| defines the orthogonal distance from the
hyper-plane to the origin.

The perpendicular distances from the separating hyper-plane to the positive and
negative side are defined by d+ and d−. The hyper-plane margin is defined by d+ + d−.
If the training set is possible to be linearly separated, then the SVM algorithm will
attempt to achieve a separating frontier whose margin is maximum:

xi · w + b ≥ +1 para yi = +1 (4.30)

45



4.2. Classifiers – Machine-Learning Chapter 4

xi · w + b ≤ −1 para yi = −1 (4.31)

Combining equations 4.2.3 it is obtained:

yi(xi · w + b) ≥ 0 , i = 1, 2, ..., D (4.32)

Taking into consideration the elements that return true to the expression 4.30 those
elements will lay over the hyper-plane defined by xi ·w+ b = 1, normal to vector #»w at a
perpendicular distance of |1−b|‖w‖ ; by the other hand, those elements that respect condition
in 4.31 will be over the hyper-plane xi ·w+b = −1, normal to vector #»w at a perpendicular
distance of |−1−b|

‖w‖ .
Therefore, through this geometrical approach, d+ = d−1 = 1

‖w‖ and both distances
represents the margin width ( 2

‖w‖). Recalling the distance of a point (x0, y0) to a line
Ax+By+C = 0 is given by the expression |Ax0+By0+C|√

A2+B2 . Therefore, the distance between
the hyper-plane x ·w+ b = 0 and x ·w+ b = 1 is |x·w+b|

‖w‖ which is 1
‖w‖ . The total distance

between x·w+b = −1 and x·w+b = 1 is, as referred before, 2
‖w‖ . Under this concept the

algorithm computes two hyper-planes that maximizes the margin width by minimizing
the ‖w‖2.

The SVM algorithm ensures that if dataset is linearly separable, there is a single global
minimum (‖w‖). Ideally the SVM should produce a hyper-plane capable to separate
the vectors into two non-overlapping classes. However, on real-world scenarios such
complete separation may not achieved and lead to misclassifications. There are cases
that separation is only possible through a non-linear function. In these situations the
SVM uses kernels of non-linear functions in order to map the data into a different
space and from there compute the hyper-plane. In short: non-linear functions can be
learned by a linear classification algorithm in a high-dimensional space while the system
is controlled by a parameter that does not depends on the dimensional characteristic of
the space.

The main advantages of Support V ector Machine:

• Algorithm particularly suited to classify uncharted data;

• Performs reasonably with unstructured or partially structured data like text, im-
ages and trees;

• The kernel concept is a plus and with an adequate kernel function, the system can
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solve any complex problem;

• Contrarily to neural networks, the SVM is not solved for local optima.

• Performs well on high-dimensional data

The main disadvantages:

• Difficult to choose an appropriate kernel function;

• Requires longer training time for large datasets;

• Result on a bewildering model and therefore small calibrations may nearly impos-
sible to do;

• Difficult to fine-tune SVM parameters as cost and gama because it is difficult to
visualize their impact.

4.2.4 Decision Trees

The process the designing and implementation of computational classifying models make
use on one of the following concepts:

• Top-down: getting the classifying model from information introduced by the user

• Bottom-up: getting the classifying model from information the relation between
dependent and independent variables present in tagged datasets.

As the other examples before, the decision tree is another example of a classifier
based on the bottom-up paradigm. Therefore the decision tree integrates the basic
classifiers supporting machine learning, supervised and non-parametric. Decision trees
are data-structures formed by a set of elements that gathers information, called in the
scope of this algorithm as nodes. On the bottom (up) of the decision tree there is the
root which is tree’s starting point and has the highest hierarchical level. A branch is a
test outcome and connects nodes one to another, or it connects the root to a node. A
node that does not have any branch leaving is called leaf which correspond the decision
to be taken. A leaf node is a terminal node that predicts the outcome and it represents
itself the class label or class distribution.

In the Decision Tree algorithm, the decision takes the path from the root till one of
the leaf nodes or targets. The creation of a Decision Tree algorithm is directly related
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Figure 4.9: Decision Tree classifier example

with the type of elements that is intended to classify. These elements may assume a
discrete form as the example illustrated in figure 4.9 or continuous data types. This
kind of elements dictates to type of Decision Trees to consider: classification tree for
discrete elements or regression tree for continuous elements.

ADiscrete Decision Tree is built through a process of binary recursive partitioning.
This is an iterative way of partitioning data recursively, splitting it into different branches.
These node can be further split into new classifications levels until a maximum depth
defined in order to avoid overfitting. The splitting criteria, starting form the root node
follows the concept of Largest Information Gain (IG). as said before, this process is
iterative so it is repeated to each child node. The IG ensures that the nodes are split at
the most informative feature and this function maximizes the information gain at each
split.

IG(Dp, f) = I(Dp)− (Nleft

Np
I(Dleft) + Nright

Np
I(Dright)) (4.33)

Where f represents the feature to perform the split; Dp, Dleft and Dright are the
data sets of the parent and child nodes, and I represents the impurity measure. Np,
Nleft and Nright represents the number of samples at the parent and child nodes.

The concept of impurity, specially important on Regression Decision Trees, is on
the base on the calculus of information gain, which is the difference between the impurity
of parent node and the child nodes. The lower the impurity of child node the higher
is the information gain. One the the most common impurity measure is the entropy
which is defined as follows:

E(t) = –
c∑
i=1

p(i|t) log2 p(i|t) (4.34)
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Where p(i|t) is the frequentist probability of a sample belonging to a class c for a
specific node t. The entropy is measured between 0 and 1. it may get values higher than
1 but those cases are associated with high level of impurity.

Building a Regression Decision Tree suited for continuous data, follows basically
the same structure as modeling a Classification/Discrete Decision Tree. However the
impurity measure shall be redesigned for continuous variables. In this case, the impurity
measure assumes the form of weighted mean squared error (MSE), applicable on the
child node only:

MSE(t) = 1
Nt

∑
i∈Dt

(yi – ŷt)

ŷt = 1
Nt

∑
i∈Dt

yi

With Nt still the number of training samples at node t, Dt is the training subset of
node t, yi the true target value, and ŷt the predicted value.

The main advantages Decision Trees:

• Inexpensive to construct;

• Fast classification of unknown records;

• Easy to interpret small-sized trees; Excludes irrelevant features.

Disadvantages of Classification with Decision Trees:

• Easy to overfit;

• Decision tree models are often biased on splitting features with large number of
levels;

• Small changes in training data may represent important changes on the decision
logic;

• Large trees can be difficult to interpret and may seem counter intuitive.
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4.3 Motion and Path Planning

In modern robotics, Path P lanning is one of the most researched topics. Several ap-
proaches have been proposed addressing particular solutions to a universe of difficulties
and constraints. Generically, navigation strategies can be classified into two major ap-
proaches: classical approach and reactive or heuristic approach.

Classical Approach Heuristic Approach
Potential Field [37] Neural Network Technique [38]
Roadmap Cell Decomposition [39] Fuzzy Logic Technique [40]
Grid Based [41] Genetic Algorithm Technique [42]
Probabilistic Roadmap [43] Ant Colony Optimization Technique [44]
Rapidly Exploring Random Tree [45] Particle Swarm Optimization Technique [46]
Virtual Impedance Method [47] Bacterial Foraging Optimization [48]
Convex Hull and Local Search Method [49] Bee Colony Optimization Technique [50]
Divide and Conquer Method [51]

Initial work developed in the field of mobile robotics has grounded on classical ap-
proaches. These classical methods present some shortcomings, namely: the frequent
need of high computational effort, the difficulty of dealing with high degrees of uncer-
tainty, the need for precise information on the environment often associated with the
request for sensors that provide equally precise and detailed information at a suitable
rate for real-time systems, and without information about the global environment, the
convergence to the finish/goal point is not guaranteed by the path planner, therefore,
it may be stuck at some local minima needing to recalculate waypoints during the
movement of the mobile robot [52], and much more.

On those systems whose Path Planning techniques follow a classical approach, it
remains a latent doubt if whether a solution will be found, or facing the incapacity to
find a solution, the system will assume the solution does not exist [53] .

The unpredictable nature of classical approaches makes their use fragile in a context
of real-time processing constraints. Despite many researchers continue to fill gaps in
the classical approaches, developing more refined strategies as an ”upgrade” of classi-
cal strategies, such as Adaptative Potential F ields and other hybrid algorithms, these
strategies hardly achieve better performance, in real-time applications, when compared
with reactive approaches.

Given the central characteristics of the model itself, the classical approaches are
more suited for navigation in known and static environments. In opposition, reactive
approaches are used in navigation contexts where the environment is unknown. Reactive
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approaches reveal particularly suited to find a solution even if the limited knowledge of
the environments is highly affected by uncertainty.

Typically, reactive approaches offer relatively easy implementation, have more sophis-
ticated and efficient algorithms, are often used in real-time navigation situations, and
offer better results when compared to classic approaches. Although reactive approaches
have several advantages when compared with classical approaches, they still have impor-
tant disadvantages such as longer computational time, complex design, the need for an
initial learning process and, in some situations, substantially larger memory requirements
when compared with the typical requirements to support classical approaches [54].

Regardless of the approaches listed, the overall performance of Path Planning tech-
niques is closely dependent on available information, in particular the map.

It is not in the scope of this section to describe each path-planning technique dis-
regarding the context of its application. Herein will be tackled the strategies specially
oriented to perform path-planning in a structured, defined, known environment with the
possibility to encounter with dynamic obstacles.

To allow a better understanding where Path − Planning and Motion − Planning
system fits in a whole autonomous driving system, it is necessary to bring the line of
focus far to understand its context.

Autonomous driving vehicles are, basically, autonomous decision-making systems,
wheres the decision is supported by a set of information provided by sensors such as
cameras, LIDAR, radar, GPS / INS, encoders as well as the knowledge of the road map,
the rules governing it, the dynamics of other vehicles, etc.

Map

Route

Predictions

Behavior
planner

Suggested
maneuver

source: Udacity self-driving course

Figure 4.10: Behavioral planning overview
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The behavioral planner is responsible for:

Suggest ”states” or maneuvers which are:Feasible Efficient Safe Legal

However the behavioral planner is not responsible for:

••••• Execution details

• Collision avoidance

The approach often taken to address this decision problem is to divide and organize
the perception and decision making tasks into a hierarchical structure. Information
gathered from the observation systems is used by the perception system to provide an
estimate of the vehicle’s condition and the context in which it is inserted. Subsequently,
based on the information produced about the vehicle state and its surroundings, the
decision-making system monitors the vehicle to meet its defined goals.

Autonomous vehicle decision systems are generally distributed in four components:

1. Path Planning

2. Behavioral Layer

3. Motion Planning

4. Control System

At the highest level is Path Planning. It is considered as the process of finding the
best route to follow globally from the starting point to the goal point, integrating, in
more refined models, information on the current state of road traffic.

At a lower level is the Behavioral Layer by some authors it also referenced as Maneuver-
Choice which defines the context-appropriate driving task at a given point in time. It
is a high-level method for describing vehicle movement, taking into account its current
position and speed on the road. Behavioral Layer focuses mainly on high-level decision
making such as moving forwarding, left turn, right turn, overtaking, detour, etc., taking
into account the planned route.

Then, at the next level is the Motion Planning component that chooses the appro-
priate set of configurations to execute the outlined path and act accordingly to the
Behavioral Layer directives. Addressing to critical real-time issues, plans the transition
from the current state to a new state, in a feasible way, respecting the holonomic and
dynamic constraints of the vehicle, the specific rules in that particular section of road,
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and road boundaries. In this way, the trajectory is represented as a set of vehicle states
until reaching the goal point, parameterized by time, viability and speed.

Finally, at the lowest level is the Control System that monitors the system feedback
loop, correcting the errors of execution of the planned movement.

Figure 4.11: Model Predictive Controller [4]
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Figure 4.12: Autonomous Driving System [5]
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4.3.1 Path Planning

As noted earlier, the Path Planning occupies at the high-level the autonomous decision
system. This system has the responsibility of selecting the path through the road network
from the robot’s current location to the destination point (goal).

Typically both Localization and Path Planning uses a global Cartesian coordinate
system to define location on the map (xrobot, yrobot).

Directed graphs, with route costs associated to their end, represent road maps. These
costs associated with the ending extremity of each graph may, as an example, define the
cost of crossing the subsequent road segment.

The route can be defined or computed based on different criteria such as minimum
cost (distance, energy, holonomic constraints, etc.) on a road network chart. As referred
in the preamble of this section, there are many approaches and techniques to define the
optimal path. However, given the complexity of today’s road network, applying classic
Path Planning algorithms, such as Dijkstra or A-Star, becomes impracticable [55]. Route
planning in road networks has attracted the interest of the scientific community and
currently available algorithms are capable of calculating an efficient path at a continental
scale trajectory in a fraction of seconds. [56].

The Path Planning of autonomous vehicles becomes possible at the moment when
the structured urban environment is transformed into a digital configuration of space
or a state space. Path Planning seeks to find between the available or accessible space
a set of trajectories that allow the vehicle to drive autonomously avoiding collision with
obstacles.

The concept of Path Planning shall be defined: given a current robot localization
and goal/endpoint, find a path that allows the robot the reach that goal. During the
Path Following the robot shall avoid any encountered obstacle (Obstacle Avoidance),
initially unknown and further mapped, as long as the robot progresses on the defined
path. Typically, the Obstacle Avoidance requires path redefinition by keeping the goal
as the desired destination and yet over passing the obstacle, respecting the holonomic
constraints at a minimum cost possible.

As the starting point, it is necessary to define the configuration space (C) [57] which
translates as all possible system settings. The configuration space (C) is composed in
two parts: the free space (Cfree) part characterized by the absence of obstacles, which
the robot may or not occupy, and where is frequently top-layered the defined path; and
the occupied space (Cobst) normally berried space by the existence of an obstacle. When
defining paths it is frequent in many techniques to reduce the configuration space by
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reducing the size of the robot to a single point. To this end, the existing obstacles shall
be expanded in a way that the path defined to to robot avoids leading the robot into a
collision condition cause by this manipulation of the configuration space [58].

Once defined the configuration space, path planning techniques are used in order to
obtain the optimal path that allows the robot to move to the desired point.

4.3.1.1 Roadmap

The Roadmap algorithm builds its concept on the definition of nodes representing lo-
calization, and links connecting these nodes representing possible paths between them.
Roadmaps are links from the initial to the goal point, taking place on the free space -
(Cfree = C − Cobst) - through a network of one-dimensional curves. If exists a path
connecting the initial point to the goal point, then this path will the combination of
three subpaths: a first one connecting the initial point to the roadmap network; a second
subpath defined by the roadmap; and the third linking the roadmap to the goal point.

This representation is specially convenient because it resumes the trajectory planning
problem into a set o links between a starting and ending configuration. Generically the
output of this technique is the production of graphs which will constitute support on
the identification of the best route.

4.3.1.2 Voronoi Diagram

The Voronoi Diagram concept is a simple and intuitive technique. It consists of a set
of equidistant points between two obstacles. Considering a finite number of objects in
the space, all locations in that space are associated with the closet member of the object
set. This results in partitioning the space into regions

So the Voronoi Diagram algorithm, for each discrete set of points bounder polygons
encloses all the intermediate close points, one to another, herein the set. For the set of
polygons originated from a point set is defined as the Voronoi diagram.

This technique permits to define a path linking those set of points. The algorithm
has implicit the concept of maximizing the distance of the robot to the obstacles, hence
to each bisecting point is calculated the distance to the nearest obstacle. The robot will
follow these points equidistant to the surrounding obstacles until it reaches the goal.
A robot equipped with range finder can incrementally build a Voronoi diagram of the
unknown distance.

This technique has an important fragility: distance sensors (range finders) have a
limited range of perception. Sensors with a short-range can misguide the robot.
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Figure 4.13: Voronoi Diagram

4.3.1.3 Probabilistic RoadMap

The planning of the path takes place in two separate stages: a preprocessing stage
defining a roadmap in the free-space (Cfree); and a second stage, the query, which
defines a path among the mapped nodes connecting the starting point to the goal point.

The preprocessing stage, also considered a learning phase, consists of randomly dis-
tribute points over Cfree, to be posteriorly linked in the next stage.

The preprocessing stage also divided into two phases: a roadmap construction phase
and a roadmap enhancement phase. In the roadmap construction, random configurations
are generated over the Cfree and connected by a simple deterministic planner. The
connection of the neighbor node is done by distance criteria inferior to a defined limit
distance. These connections only link straight neighbor points and only if this link does
not intercept the occupied-space by obstacles.

So the planner only tries to interconnect nodes that satisfy this maximum distance
criterion. Each connection made yields itself an edge of the roadmap. Once a significant
number of nodes are generated, the algorithm then performs the roadmap enhancement,
which is a heuristic evaluation of space close to obstacles, generating more nodes. The
second phase has the purpose to tune roadmap elements suited to the Cfree.

The query stage aims to link the starting to the goal point trough the roadmap
laying on the Cfree built by the preprocessing stage. Then after, through a graph search
algorithm, it is established a path that permits to go from the starting point to the goal
point.
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The query stage aims to link the starting and the goal point to the roadmap built
on Cfree by the preprocessing stage. Then, through a graph search algorithm, a path is
computed from the initial node to the destination node.

In detail, the query stage specifies the beginning and goal configurations of the robot.
It first connects the starting point to the closest node in the roadmap.

An important fragility of probabilistic roadmap technique is the difficulty to define a
path (find a solution) through narrow Cfree (between obstacles close to each other)

To improve the performance of this Probabilistic RoadMap and decrease the execu-
tion time when searching for the path, some improvements were developed such as the
Rapidly-exploration Random Tree (RRT) which differs from the PRM on the saved node.
As mentioned earlier, the PRM saves the randomly generated node, whereas in RRT the
saved node is a node that stays in the direction of the randomly generated node and the
nearest existing node, respecting a previously defined distance. This refinement allows
a faster search as the nodes become more concentrated and therefore less or absence of
redundant paths.

Figure 4.14: Probabilistic Roadmap

4.3.1.4 Visibility Graph

The Visibility Graph is a two-dimensional graph consisting of nodes representing the
start, goal points, vertices defined by the obstacle configuration space, and edges joining
nodes together describing a path.

Edges are line segments connecting two nodes belonging to each other’s visible field.
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All nodes and edges are defined in free space (Cfree), so the given path will not intersect
obstacles. This way, the path is formed by graphs containing edges representing the
shortest distances between nodes. However, it is important to notice that edges formed
by obstacles (Cobst) in the configuration space, and supporting the robot’s traveling
path between start and goal point, make the robot moving too close to the obstacles,
increasing the probability of collisions.

The further techniques improved the Visibility Graph method by removing edges that
will never be used on the path planning.

As an example is the technique called Reduced Visibility Graph (RVG). In RVG, new
supporting line-segments are generated;

1. Supporting line-segments, tangent to two obstacles, are computed in a way that
both obstacles are on the same side of this line;

2. Separating line-segments, also tangent to both obstacles but separating them one
to each side of the line.

Therefore, the RVG path is formed by the supporting lines and separating lines,
and those edges formed in the standard Visibility Graph, which are not supporting or
separating lines, are removed. This technique reduces the time spent to compute the
path.

4.3.2 Motion Planning

Once selected the best path and the best maneuver, the problem is now addressed to find
the best motion/trajectory respecting robot’s kinematic and dynamic model, ensuring
simultaneously an optimal performance in comfort and safety.

The motion planning, is the task of continuously searching for a collision free path,
where that path starts at an initial configuration point, and ends at a goal configuration
point. The basic motion planning problem also known as the piano movers problem [59].

The motion-planning problem is addressed locally and does not have a global reach.
Relies mainly on sensor information to produce secure orders[60]. There are several
techniques to locally plan the robot’s motion.

4.3.2.1 Potential Fields

This method defines an objective function that gives to obstacles the configuration of
fields with great potential and the trajectory points fields with low potential[61]. The
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main element on a Potential F ield algorithm is the action vector which corresponds, in
a simplified concept, to velocity and orientation of the robot at each configuration on the
space. Each behavior produces an output vector. As a basic example is the GoalSeek,
which gives the robot the task of moving towards the goal. If the robot passes through
every possible cell on the configuration space, the snapshot of all those possible output
vectors would resemble the figure 4.15.

Goal

Goal

Obst

R

Figure 4.15: Potential Fields - (left) Goal attractive field force on the configuration
space; (right) Obstacle repulsive forces and Goal attractive forces on a 2D configuration
space

To the set of vector seen in figure 4.15[left] it is called vector field because it resemble
potential energetic field that robot tries to follow.

The potential feel associated to the Goal is an example ofAttractive Potential field
because it makes to robot attracted to it (all the vectors computed on the free space
aims towards the goal. Taking into consideration a 2D configuration space, the algorithm
process relies on the mapping of one vector v into a gradient vector ∇f(x, y) where f is
a function of v [61]:

v = [x, y]T and ∇f(x, y) =
[
∂f

∂x
,
∂f

∂y

]T
(4.35)

• Consider (xG, yG) as the position of the goal point, with radius rG;

• Consider v = [x, y]T the position of the robot;
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• Compute the distance between goal and robot:

dG =
√

(xG − x)2 + (yg − y)2

• Compute the angle between agent and goal:

θG = arctan
(
yG−y
xG−x

)
• Set the values for ∇f(x, y) as follows:

if dG < rG
∂f
∂x = ∂f

∂y = 0

if rG≤ dG < s+ rG
∂f
∂x = α(dG − r) · cos(θG) and ∂f

∂y = α(dG − rG) · sin(θG)

if dG≥ s+ rG
∂f
∂x = αs · cos(θG) and ∂f

∂y = αs · sin(θG)

The process above – GoalSeek – describes a goal point with radius rG and when
the robot reaches the goal point no forces will act upon it because when dG < rG the
gradient vector ∇f(x, y) will be set to zero. The potential field area spreads by s and
robot reaches the limit of the extent of s when dG = s+ rG. When the robot is located
inside the extent area, the force exerted is proportional to the distance between the robot
and the goal, scaled by a factor α > 0.

The combination of GoalSeek with a AvoidObstacle is processed as follows:

• Consider (xO, yO) as the position of the obstacle, with radius rO;

• Consider v = [x, y]T the position of the robot;

• Compute the distance between obstacle and the robot:

dO =
√

(xO − x)2 + (yO − y)2

• Compute the angle between agent and Obstacle:

θO = arctan
(
yO−y
xO−x

)
• Set the values for ∇g(x, y) as follows:

if dO < rO
∂g
∂x = –sign(cos (θO))∞ and

∂g
∂x = –sign(sin (θO))∞

if rO ≤ dO < sO + rO
∂g
∂x = –β(sO + rO − dO) · cos(θO) and

∂g
∂y = –β(sO + rO − dO) · sin(θO)

if dO ≥ sO + rO
∂g
∂x = ∂g

∂y = 0
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Within the obstacle area, the repulsive forces are infinite, pointing out from the center
of the obstacle. Outside the circle with radius sO+rO the force is null. Within obstacle’s
influence area, the repulsive force grows as long as the robot gets close to the obstacle
boundary (dO = rO).

β(sO + rO − dO) = 0 when dO = sO + rO

β(sO + rO − dO) = β(sO) when dO = rO

As the attraction field, in the repulsive field, β refers as a scale factor to adjust the
effects of this force. The forces inside the influence extent have a negative sign (–sign).
The combination of multiple fields the done but its sum.

U(x, y) = ∇f(x, y) +∇g(x, y) (4.36)

Obst

R

Goal

ObstObstObst

Figure 4.16: Potential Fields - (left) Obstacle repulsive field force on the configuration
space; (right) Obstacle repulsive forces and Goal attractive forces on a 2D configuration
space

In this case, the problem is limited to an optimization issue which tries to define
commands that drives the robot through a local potential minimum. This technique
is robust on collision avoidance maneuvers due to the use of proximity sensors once
it does not require detailed knowledge about the obstacles. However, this technique
requires a considerable computational effort on calculations that may compromise real-
time navigation applications.
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To overcome some constraints, namely the relatively heavy computation effort, some
improvements are presented such as virtual force fields and vector field histograms, vector
field histograms [plus] and vector field histograms [asterisk].

4.3.2.2 Model Predictive Control

This technique merges control theory elements into motion-planning modules. The Model
Predictive Control (MPC) uses the robot’s dynamic module and through it, samples
control inputs regarding the vehicle’s motion on the next control step. It is a feedback
control method to get an adequate control input. Supported by the dynamic model and
control inputs, the optimization problem to find the best trajectory is solved.

The performance of the MPC is not directly related to the number of obstacles present
on the scene. However, the trajectory optimization gets more complex and difficult to
perform as long as more variables are introduced to model the vehicle [62].

The MPC predicts the next N-step waypoints according to the vehicle model (dynamic
and kinematic), and calculates the cost functions to reach each of these waypoints.

At each control time-step, the MPC controller makes estimations about future posi-
tions of the vehicle. To allow the robot to drive along the defined trajectory, as close
as possible to the referential trajectory, the MPC redefines the controlled as an opti-
mization problem. The algorithm attempts to minimize the cross-track errors between
positions as well as the angles of steering wheel.

k k+1 k+2 k+3 ... k+p
sample time

......

prediction horizon

FuturePast

Figure 4.17: Model Predictive Control - prediction sliding window [4]

On the initial time-step (tn), the MPC controller considers only the first configuration
and disregards the further configurations (tn+1, . . . , tp). On the next time-step (tn+1), a
new reading from the sensors is obtained and a new position is computed. The prediction
horizon moves a step further and a new calculation cycle initiates to define next steering
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and acceleration configurations, based on the system model:

xtn+1 = xtn + vtn · cos θ4t (4.37)

ytn+1 = ytn + vtn · sin θ4t (4.38)

θtn+1 = θtn + vtn
CCoffset

· δtn4t (4.39)

Where xtn represents the X coordinate a ytn the Y coordinate of the vehicle’s location
at time instant tn. xtn+1 and ytn+1 predicts the vehicle’s location at the next time instant
tn+1 based on the velocity vtn at the current time instant and the changing of heading
ratio θ4t. The CCoffset is the length between the front axle of the vehicle and its
center of gravity and δtn is the steering angle. Considering the physical constraints of
the vehicle:

δ ∈
[
− steer◦lim,+steer◦lim

]
Ua ∈

[
− accelmax,+accelmax

]
vtn+1 = vtn + Uatn4t

(4.40)

Where δ represents the steering limits in angles to the left and right turns, Ua rep-
resents the acceleration (from throttling to accelerating) accordingly with vehicle’s lim-
itations. The vertical axis in figure 4.17 reflects the current time (tn). The values on
the left reflects the past, and values to the right predicts the future. At tn, the MPC
controller uses the car model to simulate the car’s path for the next p time-steps 4.37.
The parameter p defines how far ahead the control looks into the future (prediction hori-
zon). The MPC controller puts on the equation multiple future scenarios in a systematic
way. It is at this point the optimization problem arises. When solving the optimization
problem, the MPC controller tries to minimize the error between reference and predicts
path.

δεtn+1 =
(
θtn − θdestn

)
+ vtn
CCoffset

· δtn4t

CTεtn+1 =
(
f(xtn)− ytn

)
+ vtn · sin θεtn+14t

(4.41)
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The cost function J of this optimization problem, includes both errors – cross-track
error and steering error – and it is a weighted squared sum of the errors against the
reference value.

J =
n∑
t=1

(
δεt − δreft

)2
+
(
CTεt − CT reft

)2
(4.42)

Model Predective Controller (MPC)

Reference

Plant

Longitudinal speed

Lateral position
Oprimizer Car

model

Velocity

Steering

Figure 4.18: Model Predictive Control - controller

4.3.2.3 Geometric Curves

The use of Geometric Curves is, probably, the most frequently used technique in the
implementation of autonomous driving solutions. Based on a local planning model, the
techniques have its starting point on the following premise: given a local space, ex-
ists a geometric curve and a set of other adjutants defining possible trajectories. Each
curve itself is a candidate route, as such assessed through a cost function with various
considerations such as distance and time costs, acceleration and collision checking. Ge-
ometric representations of trajectories include polynomials, Bezier curves, spline curves,
and clothoid.

There are several different algorithms of trajectories generators, optimizing a set of
possible candidates to trajectories. Frequently these trajectories are generated by second-
order polynomials, computed based on the error between final state and the desired final
state. Vehicle’s configurations (velocity and accelerations) are computed for each point.
However, the first enunciations of this technique did not take into consideration the
obstacles and the complexity increases when required convergence points are yet far
from the initial state or unreachable due to dynamic constraints of the vehicle [63].

Other approaches on geometric curves consider higher-order polynomials to endow
the system, with more information about the trajectory. In certain developments, there
is the distinction of overtaking trajectories or car-following, defining to each scenario own
cost functions taking into account different parameters such as safe distance, etc. [64].
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The Cubic Bezier curves constitute another approach associated with Geometric
Curves technique to define a local trajectory. In this particular technique, the cost
function used considers weight parameters such as trajectory length, smoothness, and
cross-track error against the reference trajectory. In this solution, the obstacles, consid-
ered as circles, are taken into account when selecting the best candidate. Making use
of circle abstraction to define obstacles, it permits the algorithm to discard candidates
after performing a collision inspection over the proposed trajectories. However, despite
this algorithm also draw solutions for the scenario with obstacles, these are considered
to be static, which is not common in a real application [65].

B(t) =
n∑
i=0

n
Cni(1− t)n−1 · ti · Pi (4.43)

Where n describes if the Bezier curve is linear, quadratic, cubic or any other higher
orders. Bezier is a parametric curve form and t is the parameter that stays between 0
and 1. and Pi represents the anchor waypoints and the handles or control points.

Fourth-order Cubic Bezier curves are also used the generate trajectories, bring to the
system more information and better results. However dynamic constraints are considered
such as velocity and acceleration, the majority of the techniques proposed consider low
velocities and static obstacles [66].

Another technique to produce Geometric Curves is the use of Spline. The Splines
are used to generate trajectories attending to waypoints defined or provided by the high-
level path-planning and taking also into account the transit signs. Each trajectory is
then evaluated by its distance, time to reach the next waypoint (or control point), and
collision probability [67]. Further developments driven into this concept, proposes the
generation of spline trajectories between the waypoints defined by the path-planning
module, but these trajectories are constrained to curvature, speed, and acceleration.

An spline is a polynomial of degree k that is continuously differentiable k− 1 times.
Take an example of a cubic spline that is two times differentiable. A cubic spline is
considerably more stable than 2nd-order polynomial in the way it oscillates less between
points.
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source: Numerical Methods in Engineering with Matlab, 2ed by Jan Kiusalaas

Figure 4.19: Concept of implementing cubic spline

Given a n waypoints defined as (xi, yi) where i = 1, ..., n, assume that xi < ... < xn,
there is an unique solution f(x) to the problem that satisfies the following conditions:

1. f(x) is a polynomial of 3rd-order on each interval of (xi, Xi+1);

2. f(x), f ′(x), f ′′(x) are continuous:
• f(x) — fi−1,i(xi) = fi,i+1(xi);

• f ′(x) — f ′i−1,i(xi) = f ′i,i+1(xi);

• f ′′(x) — f ′′i−1,i(xi) = f ′′i,i+1(xi) = ki;

Where ki is the second derivative of the segment at waypoint i. This last condition
is important to make the curve described by the function to connect each waypoint of
the segment.

Other alternatives of splines lie on learning methods of the human driving behavior,
but these methods require an extensive volume of data capable to realistically replicate
the human driving behavior [68].

The Circular Line fit is also a technique used in the scope of Geometric Line.
In this technique, an optimum trajectory is defined as the example of manoeuvrer to
overtake the vehicle ahead. The line fit is chosen in a trade-off between efficiency and
comfort. The combination of two circular arcs generates the trajectory [69]. Regarding
the probability of collision, both arcs are evaluated with a significant degree of confidence
the candidate trajectories by estimating possible obstacles’ trajectories.

The candidate trajectories may also be called as tentacles [70] because the method is
inspired by the behavior of an insect that uses its antennas to perceive the environment
and avoid obstacles. An important weakness of this technique is to consider all generate
tentacles generated to a certain velocity as possible trajectory candidates, even if the
curve represented by those tentacles does not respect the physical constraints as the
steering capabilities of the vehicle.

66



Chapter 4 4.3. Motion and Path Planning

rk =


ρk Rj :k = 0, ..., m2 − 1

∞ :k = m
2

−ρk−
m
2 +1Rj :k = m

2 + 1, ..., l

(4.44)

Where r represents the radius the k−th tentacle. The exponential factor ρ defines the
number of tentacles with small curvatures and a coarser distribution at larger curvatures.
Rj represents the initial radius of speed set j = 0, ..., n−1, taking into consideration the
length l of the outmost tentacle and the angle 4φ of the outmost tentacle at the lowest
speed [70]:

Rj = l

4φ(1− j
n−1)

(4.45)
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Chapter 5

Strategy and Implementation

In this chapter, a description of the adopted approach, with an explanation of the
concept in response to the high-level architecture presented in Chapter 3, as well as,
the corresponding algorithm implementation. The enunciation particularizes the system
to a lower-level, describing step-by-step the process implemented on each block. Each
implementation description ends with algorithm snippets.

5.1 Inverse Perspective Mapping

Autonomous driving systems rely heavily on data provided by optical sensors/cam-
eras, whether these are configured as monocular cameras, stere-cameras/multi-camera,
or omnidirectional cameras, and on the information that feature extraction algorithms
can obtain from captured images. As it was referred in chapter 2 dedicated to the study
of art, common solutions of lane-detection, crosswalk detection, and signals identifica-
tion typically incorporating autonomous driving systems, are invariably based on the
information produced by algorithms dedicated to computational vision.

One of the relevant information in computational vision is related to the measurement
of distances to objects or land-marks relevant to the navigation process. In this context, a
monocular camera system for image processing is often applied in vehicles to identify and
determine the distance of an object. The Inverse Perspective Mapping (IMP) method is
an implementable solution to perform this function.

Although other techniques can be used to obtain a birds-eye-view image, used in
computer vision systems to correct the distortion caused by the camera perspective,
such as the homography decomposition, provides an image whose image pixel match to
a point in the world is not directly obtained.
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To operate the system, it is necessary, first, to calibrate the camera to obtain the in-
trinsic and extrinsic parameters. While evaluating the proposed solution in a simulation
environment, the calibration was performed using different setups of the rectangular-
shaped calibration plane (checkered standard following Matlab recommendations in https:

//www.mathworks.com/help/vision/ug/single-camera-calibrator-app.html) as the
starting point.

Figure 5.1: Calibration images captured from FNR-ADC Simulation Environment

The calibration process through the images acquired from the simulator is then used
to obtain the calibration parameters through Matlab’s Calibration Toolbox. Although
both Matlab and OpenCV use essentially the same calibration algorithm, Matlab uses
Levenberg-Marquardt’s non-linear least-squares method [71] for the optimization pro-
cess, while OpenCV uses gradient descent methods. The main advantage of using the
available Matlab calibration method – estimateCameraParameters() – is that it mini-
mizes the error when compared to OpenCV – calibrateCamera().

Once obtained the camera calibration parameters (intrinsic, extrinsic) these param-
eters are compiled in a YAML file allow an easy update of the algorithm in case some
parameter may change on the robot (i.e. changing the tilt angle of the camera).
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Figure 5.2: Calibration accepted plans and calibration errors

Figure 5.3: Calibration plan for extrinsic parameters

The implementation algorithm for the IPM, as the others implemented and detailed in
this dissertation, was developed in C++ making use of all potentialities of object-oriented
programming. In addition, the algorithm uses OpenCV framework and ROS middleware.
The blocks that integrates the system, work as a system library that permits an easy
adaptation of the IPM algorithm to other functionalities.

The implementation algorithm for the IPM, as the others implemented deserving
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Standard Errors of Estimated Camera Parameters
----------------------------------------------

Intrinsics
----------
Focal length (pixels): [ 398.0146 +/- 0.9886 397.8414 +/- 0.9782 ]
Principal point (pixels):[ 401.1549 +/- 0.3759 301.0476 +/- 0.4019 ]
Radial distortion: [ -0.0024 +/- 0.0018 0.0009 +/- 0.0013 ]

Extrinsics
----------
Rotation vectors:
[ -0.6947 +/- 0.0014 -0.0024 +/- 0.0012 -0.0059 +/- 0.0007 ]
[ 0.2250 +/- 0.0021 -0.0027 +/- 0.0019 -0.0001 +/- 0.0007 ]
[ 0.2219 +/- 0.0027 0.0009 +/- 0.0021 0.0001 +/- 0.0007 ]
[    ...                      ...                      ...                ]
Translation vectors (mm):
[ -7.9168 +/- 1.1231 -353.1003 +/- 1.1795 1179.7393 +/- 2.9202 ]
[ 189.5524 +/- 0.9368 -630.2315 +/- 1.1102 957.2922 +/- 2.6936 ]
[ -344.5125 +/- 0.9122 -630.0656 +/- 0.9839 957.2297 +/- 2.8028 ]
[  ...                      ...                      ...                  ]

further detailed explanation in this dissertation, was developed in C++ making use
of all potentialities of object-oriented programming. In addition, the algorithm uses
OpenCV framework and ROS middleware. The blocks that integrating the system,
work as a system library that permits an easy adaptation of the IPM algorithm to other
functionalities.

Regarding the algorithm dedicated to perform the IPM, once it is possible that several
ROS-nodes composing the autonomous driving system, in particular those blocks related
to computer vision, will use this functionality, the ImageReader.hpp class allows the
system to subscribe a a ROS-Topic to receive the image from the camera and provide
as the output warped image corrected from perspective distortion only by making use
of camera parameters loaded through YAML files.

The process of correcting the distorted image starts by obtaining the camera-center –
(xc, yc, zc) – which corresponds to the 3D coordinates of camera’s reference frame center
in relation to the world – (xw, yw, zw).

The inverse of the camera intrinsic matrix (K−1) is used to transform undistorted
image points into lines from the camera center. With (K−1):

K−1 = 1
f2 · α


f · α −s py · s− px · f · α

0 f −py · f
0 0 f2 · α

 = 1
fx · fy


fy −s py · s− px · fy
0 fx −py · fx
0 0 fx · fy

 (5.1)
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Algorithm 1 Compute IPM Transformation Matrix — preparing the image
1: Input: R [3×3], t [3×1], distortion coefficients, focal-length, principal point
2: Output: IPM Warped image size
3:
4: procedure ComputeIPMmatrix . Parameters loaded in class variables
5: camera center ← –R× t . 3D Cc coordinates
6: directional vector ← R×K−1 . Relate points in the image to vectors towards the world
7: image limits← image size . Matrix 4×2 getting image corners
8: for image limits do
9: limit directional vector ← directional vector × image limits

10: track′s plan Z ← –camera center/limit directional vector
11: warped image limits← camera center + limit directional vector × track′s plan Z

12: return warped image limits . Warped image new dimension

At this stage, a new dimension for the warped image is obtained and from this point
it is necessary to compute the offset existing between the the distorted original image
and the new warped image. This is necessary taking into consideration the output from
the extrinsic parameters extracted when the calibration plane was laying down at an
known position of the track (figure 5.3).

Algorithm 2 Compute IPM Transformation Matrix — computing offset
1: Input: R [3×3], t [3×1], distortion coefficients, focal-length, principal point
2: Output: IPM Warped image size centered
3:
4: procedure ComputeIPMmatrix . Parameters loaded in class variables
5: warped image size← MaxMin

(
warped image limits

)
. Warped image size (u,v)

6: swarp ← uorigin/
(
uwarpedmax − uwarpedmin

)
7: return warped image size,scaling factor

After computing the warped image size from the warped image limits, it is possible
to obtained both, warp translation matrix a T[4×3] matrix that will correct the offset
between the Cc and the warped image center. Finally, a scaling factor S[3×3] is obtained
that will also relate the size of perspective image to warped image:

Twarp =


1 0 uwarpmin
0 1 vwarpmin
0 0 0
0 0 1

 Swarp =


1/swarp 0 0

0 1/swarp 0
0 0 1

 (5.2)

The final step to obtain the IPM transformation matrix is combining the intrinsic
and extrinsic camera parameters with the scaling and translation corrections that relate
the the perspective image with the warped image.

The IPM transformation matrix assumes the following form:
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Algorithm 3 Compute IPM Transformation Matrix — transformation
1: Input: R [3×3], t [3×1], distortion coefficients, focal-length, principal point
2: Output: IPM Transformation Matrix
3:
4: procedure ComputeIPMmatrix . Parameters loaded in class variables
5: Rt← Concatenate

(
R, tbig)

6: IPM ← K×Rt×Twarp×Swarp
7: return IPM

IPM[3×3] =


A B C

D E F

G H I

 (5.3)

A =
r31·
(
fx·px−py ·s

)
fx·fy − r11

fx
+ r21·s

fx·fy
swarp

B =
r32·
(
fx·px−py ·s

)
fx·fy − r12

fx
+ r22·s

fx·fy
swarp

C = tx
fx
− umin·

(r31·
(
fx·px − py·s

)
fx·fy

− r11
fx

+ r21·s
fx·fy

)
−vmin·

(r32·
(
fx·px − py·s

)
fx·fy

− r12
fx

+ r22·s
fx·fy

)
−
tz·
(
fx·px − py·s

)
fx·fy

− s·ty
fx·fy

D = r21
fy
−

py ·r31
fy

swarp
E = r22

fy
−

py ·r32
fy

swarp

F = ty
fy

+ umin·big(r21
fy
− py·r31

fy
big) + vmin·big(r22

fy
− py·r32

fy
big)− py·tz

fy

Finally the ImageReader.hpp also provides three class methods: one that permits
to convert a coordinate in the world into a pixel coordinate in the warped image –
(xw, yw, zw) 7→(uwarp, vwarp) – WordCoordinate2WarpedImagePoint(world coordinate);
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and another that converts a pixel coordinate in the warped image into a world coordinate
– (uwarp, vwarp) 7→(xw, yw, 1) – WarpedImagePoint2WorldCoord(pixel coordinate).

Algorithm 4 IPM coordinate transformation
1: Input: homogeneous coordinate
2: Output: homogeneous coordinate
3:
4: procedure WordCoordinate2WarpedImagePoint(world coordinate)
5: imgcoord ← IPMW2w × worldcoord
6: return imgcoord
7: procedure WarpedImagePoint2WorldCoord(pixel coordinate)
8: worldcoord ← IPMw2W × imgcoord
9: return worldcoord

Where:

IPMW2w =


swarp 0 −umin

0 swarp −vmin
0 0 0
0 0 1

 IPMw2W =


1

swarp
0 umin

0 1
swarp

vmin

0 0 0
0 0 1

 (5.4)

The third class method is refers to distance measurement Distance2Robot(pixel

coordinate. Taking into consideration the calibration parameters estimates the world
reference frame rotated in pitch and yaw in relation to the true World reference frame
of FNR-ADC Simulation Environment. So the calculation process shall take this into
account.

Algorithm 5 IPM image distance calculation
1: Input: homogeneous coordinate
2: Output: distance
3:
4: procedure Distance2Robot(pixel coordinate)
5: Ccoord ← R× t
6: θ ← π
7: ψ ← − 1

π
8: Rref ← Rθ ×Rψ
9: distance← Rref × Ccoord + WarpedImagePoint2WorldCoord(pixel coordinate)

10: return distance

5.2 Trajectory following and Motion Planning

As mention in chapter 3, the scope of this project is to propose a trajectory-planning
and a trajectory tracking for a 4-wheel skid-steer (4WSS) platform. Despite the many
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physical and construction advantages, the 4WSS platform locomotion model brings
added difficulties in terms of motion control and odometry.

The change of direction - heading - is achieved by controlling the speed of the left
and right groups of wheels. But, as the wheel-set is aligned longitudinally with the sides
of the platform, resembling the crawler configuration, the change of direction implies the
existence of sliding at the wheel contact point (non-ideal rolling).

The skid-steer platform kinematics model is not intuitive, and it is not possible to
accurately predict the actual movement of the robot with only the control inputs due to
the strong effect of friction strongly correlated with each specific wheel-floor interface.

Assumptions such as the ideal rolling and non-slippage considered in the most typ-
ical kinematic models of non-holonomic platforms are not applicable in the skid-steer
platform kinematic model.

In this context, an algorithm is proposed observing the kinematic properties of a
skid-steer-type robotic platforms, based on the projection of arc-circle trajectories. The
proposed solution produces a continuous trajectory, which is adjusted to a certain path
defined by local parameters [72].

5.2.1 Control Inputs

One of the central problems concerning autonomous robotic systems is the definition of
control instructions from which low-level commands are produced such as linear and/or
angular speeds. The complexity of the skid-steer platform dynamic model makes it un-
feasible to apply it, in real-time, to the formulation of control instructions and navigation
solution based on dead-reckoning.

The control inputs defined for the platform are linear and angular velocity. The
control inputs are then translated to angular speeds for the left and right wheel-set
using the formulations of the kinematic model.

v = vr + vl
2 (5.5)

w = vr − vl
2b (5.6)

v = v + bw (5.7)

v = v − bw (5.8)
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Figure 5.4: 4-Wheel skid-steer kinematic model

5.2.2 Skid-steer platforms kinematic model

The picture 5.4 shows the kinematic model of the skid-steer platform. In this model
the following assumptions are considered:

• Center of mass is coincident with the geometric center of the robot;

• The two wheels on each side of the robot have the same angular speed (mechanically
coupled together);

• The 4 wheels are in permanent contact with the floor.

The robot’s reference frame (x, y) moves in the track’s reference frame (X,Y ) at
a linear velocity expressed by v = [vx, vy, 0]T and an angular velocity expressed by
w = [0, 0, ω]T . Where q = [X,Y, θ]T is the state of the robot in the track reference
system (robot configuration), q′ = [Ẋ, Ẏ , θ̇]T corresponds to the combination of linear
and angular velocities of the robot in relation to the track reference frame system is
obtained by:
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
Ẋ

Ẏ

θ̇

 =


cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1



vx

vy

vz

 (5.9)

By decomposing the control instructions into angular velocity of left and right pair
of wheels, we have: wl = w1 = w2 e wr = w3 = w4. The control instructions will then
take the following structure:


vx

vy

wz

 = f

[
wl

wr

]
(5.10)

When the robot is moving, Instant Rotation Centers (ICR) are set to the left and
right of the traction – ICRL and ICRR respectively – and in relation to the robot’s
reference frame – ICRG. ICRL, ICRR and ICRG are on a line parallel to the X axis
of the robot reference frame [72].

The change of the heading of skid-steer platforms describes circular paths. The
movement described has the center of rotation (ICRG) coincident to the center of circle.
In opposition, the robot describes a straight line when the angular velocity (ω) tends to
zero. In this case, there is no change in the robot’s heading.

lim
ω→0

ICR =∞ (5.11)

The relationship between the circular movement of radius R and the velocity on each
wheel group is described by the function:

R = b

2

(
vr + vl

vr − vl

)
(5.12)

If the angular velocity is other than zero (vr 6= vl), the robot describes a circu-
lar arched-path with center in ICR. Thus, we can consider that the arc and linear
movements constitute the set of primitive maneuvers of a robotic platform of the type
skid-steer [73].

5.2.3 Arc model with dynamic adjustment

The dynamically adjustable arc model is intended, based on the primitive models of
locomotion (rectilinear path and arc of circumference), to establish control instructions
that allow the robot to follow a path in a continuous and fluid manner.
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An arc-shaped trajectory is a consistent approach to the trajectory described by the
skid-steer robot. Thus, basic forms of circumference produce arc-shaped trajectories
defined by the centers of curvature and radii dynamically projected along the local path
or path segment – path segment.

Given the competition assumptions, the system is initialized with knowledge of the
geometric map of the track. In the same way, the missions associated to the competition
runs, defines intrinsically the starting and finishing points of each run – Wstart and
Wfinish – as well as the constraints of how the platform should reach Wfinish, respecting
one or several paths defined by the geometry of the track. These assumptions allow the
definition of waypoints that characterize the basic path to travel [74].

In the proposed model, the path consists of waypoints that correspond to a set of
local settings. In addition to the coordinates information in the global reference frame
– X, Y – each waypoint integrates information relative to the robot’s distance to the
local target (Dn), the robot’s projection distance on the path to the local target (dn),
Boolean information regarding the accessibility of the local target (accessn), information
regarding the volatility of the target (permanentn) and indexn the order number of the
waypoint.

waypointn = (xn, yn, Dn, dn, accessn, permanentn, indexn) (5.13)

5.2.4 Path Following

The proposed path following algorithm is based on the dynamic arc circumference ad-
justment that allow to keep the robot in the path to travel. With this strategy it is
possible to reduce the control instructions to the appropriate velocities – linear and an-
gular – in such a way that minimal slippage is obtained and yet ensure a smooth and
fluid path.

Two consecutive waypoints define a segment of the path to be traveled. Each path
segment traveled consists of a starting point, waypointn (Wn) with coordinates (Xn, Yn)
and an end point Wn+1 with coordinates (Xn+1, Yn+1).

A set of waypoints are loaded into the system at a sufficient number suitable for the
pure− speed run. In the presence of obstacles, the algorithm generates new waypoints,
redefining the trajectory, and in some cases, initial waypoints may be considered inac-
cessible by the overlapping obstacles.

This initial set of waypoints will be adjusted in real-time as waypoints may get
considered inaccessible as long as the system detects overlapping obstacles. Under these
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circumstances, new waypoints – temp waypoints – will be generated in the process of
collision checker and obstacle avoidance.

The linear and rotational speeds in the workspace are described by the function:

[
v

w

]
= f(xw1, yw1, xw2, yw2) (5.14)

Trajectory tracking approaches the pure pursuit model [75]. Thus a local target
Pr = (xr, yr) is defined by projecting the position of the robot PR = (xR, yR) at an
anticipated distance lahead. The parameter lahead will affect the robot’s trajectory type,
such that a reduced lahead implies a more reactive trajectory, but potentially closer to
the defined path, while a larger lahead implies a greater distance for stabilization and
consequently a smoother trajectory, however this larger lahead may allow the robot to
get more distant form the desired path.

Pr is obtained by calculating the internal product between the unit vector that de-
scribes the path segment ~u = 〈Wn+1 −Wn〉, direction of the path to follow, and the vec-
tor that describes the movement of the robot as a function of the path ~a = 〈Pr −Wn〉.
To the internal product is added the scale lahead which corresponds to the anticipation
distance.

Pr = ~u · ~a+ lahead = ||a| | cos θ + lahead (5.15)

It is defined as workspace W all the space where the robot can operate. The white
area shown in the figure 5.5 represents the blocked B space and is interpreted as an
obstacle. The gray area (B space) represents a hybrid zone and can be converted to free
space F (in black) if an obstacle is identified.

The workspace W corresponds to all the space where the robot can operate. Inter-
preted as an obstacle, the white area shown in the figure 5.5 represents the blocked
space. The gray area (B space) represents a hybrid zone and can be converted to free
space F (in black) if an obstacle is identified.

In the proposed model, the robot with position PR pursues its projection on the path
segment at a distance of lahead. Pr is permanently located on the path, in particular
on the path segment defined by Wn and Wn+1 or, eventually, on the subsequent path
segment, if |Pr,Wn+1| < dn+1.

The algorithm updates the Pr position every time a new robot localization is received
from the Localization Sub − System and calculates the arc between PR and Pr (see
figure 5.6). This new arc is tangent to the unit vector with an equal orientation of
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Figure 5.5: Definition of workspace (W ) and prohibited space (B) - possible configura-
tions

Algorithm 6 Path-Following — target
1: Input: PR, Wn, Wn+1, lahead, indexseg
2: Output: Pr
3:
4: procedure ComputeTarget(indexseg)
5: pseg ← Points2Segment(Wn,Wn+1) . Converts 2 points into a segment
6: dirvec ← Points2Segment(Wn, PR)
7: Pproj ← p̂seg × dirvec
8: Pr ← Pproj + lahead
9: return Pr

the θR robot and origin at PR and is limited by PR and Pr. This strategy based on
the primitive movements characteristic of the skid-steer platforms allows a smooth and
continuous trajectory, with permanent correction of the θR as well as the cross-track
error, this is, the distance between robot’s position and its orthogonal projection on the
path segment.

The robot tries to hit the target Pr, taking into consideration its heading given by
θR in the W workspace. The correction of θR to reach Pr with the arc-circle projection
that intersects PR and Pr, tangent to the unit vector starting on PR and angle θR.

The circle in which the arc PR and Pr belongs to, has a secant with length dsec (see
figure 5.6). This way, the center of the circle carc will correspond to the intersecting
point between the bisecting line passing through darc and the orthogonal segment to
robot’s direction vector and passing through PR.

The angle formed by ∠ PR carc Pr corresponds to the turning angle necessary for the
robot to reach Pr.
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Figure 5.6: Path-Following based on arc-model with dynamic adjustment

Since the control inputs are linear and angular velocity, it is possible to determine,
at each control clock cycle, the new position of the robot in the arc defined by PR and
Pr.

Algorithm 7 Path-Following — arc-fitting
1: Input: PR, Pr, Rθ, Rvel
2: Output: PRω

3:
4: procedure ComputeAngularVelocity
5: dsec ← TrajectoryFromPoint(Slope(PR, Pr)) . Segment(M,b) between robot and target
6: dsecbisect ← dsec/2 . Bisector point of segment robot target
7: dsecorth ← TrajectoryFromSlope(−1/Slope(PR, Pr), dsecbisect ) . Orthogonal to dsec
8: rdirorth

←Make1st4thQuadrant(PRω + π
2 ) . Robot’s orthogonal heading – [−π2 ,

π
2 ]

9: carc ← SegmentIntersect(dsecorth , rdirorth
)

10: r ←‖ PR, carc ‖ . Distance of curving center
11: PRω ← r = 0?BodyCenteredRotation() : Rvel / r
12: return PRω

With the new position of the robot P ′R a new target P ′r is recalculated that progresses
on the segment of the path defined by Wn and Wn+1.

Once the new robot and target positions, the P ′R and P ′r respectively, are calculated,
then their are evaluated if these same locations fall inside the Wn+1 neighborhood area.
This is the same to say, if the distance of P ′R to Wn+1, and P ′r to Wn+1 is less than Dn+1

and dn+1 respectively (both defined in the waypoint configuration).

If the locations of P ′R and P
′
r, independently evaluated are:

∣∣∣P ′R −Wn+1(x, y)
∣∣∣ < Dn+1 (5.16)
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Algorithm 8 Path-Following — path progression
1: Input: PR, Pr, Wn, Wn+1, Dn+1, dn+1
2: Output: Pr, indexseg
3:
4: procedure ComputeNeighbourhood
5: Prcoord ← Pr × p̂seg +Wn

6: dPR
←‖ Points2Segment(PR,Wn+1) ‖

7: dPr ←‖ Points2Segment(Pr,Wn+1) ‖
8: Pr ← dPr ≤ dn+1 ? ComputeTarget(indexseg + 1) : Pr
9: indexseg ← dPR

≤ Dn+1 ? indexseg + 1 : indexseg
10: return Pr, indexseg

∣∣∣P ′r −Wn+1(x, y)
∣∣∣ < dn+1 (5.17)

If the neighbourhood/proximity conditions stated in the equations 5.16 and 5.17 are
verified, then the trajectory segment to be considered in the following control cycles is
defined by Wn+1 and Wn+2 until the neighbourhood conditions – Dn+2 and dn+2 – are
verified again.

In the transition process for following trajectory segments, the pass-through offset
of PR and Pr is given by the distance of lahead. As said before, this offset will allow a
greater or lesser smoothness in the trajectory traveled by the robot.

5.3 Obstacle Avoidance

Based on the algorithm proposed for path following, a solution of obstacle avoidance
was developed so that, in the presence of obstacles in the track directly interfering the
path, could redefine the trajectory taking into consideration the constraints of the track
and the specific challenges of the race.

As said before, the proposed obstacle avoidance solution is based on the path-
following model described on the previous section, and as such respects the primitive
manoeuvres of the skid-steer platforms – linear and arc-circle movements.

The obstacle avoidance process is based on the detection of obstacles through LiDAR
readings (ranges). When a minimum number of readings – whose range is less than a
certain limit – is collected, then the hypothesis of an existing obstacle in the vicinity
of the robot raises, and the obstacle avoidance algorithm initiates. Once this condition
is met, the algorithm starts the process of positioning the obstacle and verifies if the
presence of this object interferes with the defined path or not.

According to the assumptions of the Autonomous Driving Competition of the Na-
tional Robotics Festival, the obstacle is in the form of a cube with a 400 mm edge
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(obstwith). Based on the specifications provided by the regulations and based on the
range measures from the LiDAR, an algorithm was developed based on geometric as-
sociations of the most significant readings to identify and estimate the position of the
obstacle on the track (obstcenter).

The process of obstacle fitting initiates when LiDAR’s range-finder readings meet the
proximity criteria, this means, if the readings, based on current’s robot location, place
a potential obstacle on the track and at a collision course. If this happens, an obstacle
bounding estimation process starts. First, it calculates the slope of the line-segment
composed by the left (rngL) and right range (rngR) readings with the control range
(rngC). Finally it estimates box’s nearest corner using the reading with the smallest
range (rngN ). A simple geometric relation described in algorithm 9 is presented as a
way generate circular boundaries on obstacles.

Algorithm 9 Obstacle Avoidance — obstacle fitting
1: Input: LiDARdata , eqthreshold
2: Output:
3:
4: procedure ComputeObstacleFit(LiDARdata)
5: rngL ← RangeData(LiDARdata, left)
6: rngR ← RangeData(LiDARdata, right)
7: rngN ← RangeData(LiDARdata,near)
8: rngC ← RangeData(LiDARdata, control) . 4th value between near and most distant bearing
9:

10: slpL↔C ← FaceSlope(rngL, rngC) . Slope between Range Left and Range Control
11: slpR↔C ← FaceSlope(rngR, rngC)
12: slpL↔N ← FaceSlope(rngL, rngN ) . Slope between Range Left and Nearest
13: slpR↔N ← FaceSlope(rngR, rngN )
14:
15: if |slpR↔C − slpR↔N | ≤ eqthreshold then . {rngR, rngC , rngN} ∈ box face A
16: if |slpR↔C − slpL↔N | ≤ eqthreshold then . {rngR, rngC , rngN , rngL} ∈ same box face
17: rngext ← RangeData( LiDARdata , bearingn(max) ) . Distant range bearing from rngN

18: obstcenter ← ObstacleFitControid( rngext , obstspec )
19: else
20: obstcenter ← ObstacleFitControid( slpR↔N , rngL , rngN , obstspec )
21: else if |slpL↔C − slpL↔N | ≤ eqthreshold then . {rngL, rngC , rngN} ∈ face B
22: if |slpL↔C − slpR↔N | ≤ eqthreshold then . {rngL, rngC , rngN , rngR} ∈ same face
23: rngext ← RangeData( LiDARdata , bearingn(max) ) . Distant range bearing from rngN

24: obstcenter ← ObstacleFitControid( rngext , obstspec )
25: else
26: obstcenter ← ObstacleFitControid( slpL↔N , rngR , rngN , obstspec )
27: else
28: No obstacle centroid computed
29: return obstcenter

Once the position of the obstacle has been estimated, a circle is adjusted with the
center coincident with the center of the obstacle obstcenter = (xobst, yobst) and radius
Tradius given by the expression:
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Figure 5.7: Visual solution used on obstacle’s circular fit

obstcenter obstcirc_fit

Figure 5.8: Visual solution used on obstacle’s circular fit - aligned LiDAR points

Tradius = obstwith√
2

+ b (5.18)

where obstwith corresponds to the edge of the obstacle (cube) and b corresponds to
the base of the robot wheels. The radius Tradius represents the turning radius or the
minimum distance at which the robot must initiate an evasive maneuver.

With estimated obstcenter and Tradius, the following conditions are tested:

1. Waypoints accessibility: If the next waypoint (Wn+k) to the current waypoint
(Wn) is inaccessible given the presence of an obstacle in the proximity:

|obstcenter −Wn+k(x, y)| < Tradius (5.19)

If the previous condition is verified, it implies that the path intercepts the obstacle
in such a way that it prevents its transposition by the robot, according to Fig. 5.9.
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2. Evaluate the interception by obstacles on path-segments: If the segment of the
path defined by the current waypoint (Wn) and subsequent Wn+1 (both accessible)
intercepts the circle with center obstcenter and radius Tradius in two different points,
it is concluded that the obstacle interferes with the path initially defined for the
robot.

wn

wn+1 wn+2

wn+3

w’1

w’2

w’’2

w’’1w’’’

w’’’’

Figure 5.9: Obstacle Avoidance - inaccessible waypoints

The trajectory is redefined with the addition of four (4) new waypoints. Two (2)
of them correspond to the intersection points between one (1) or two (2) trajectory
segments and the circle describing the obstacle – W ′ and W

′′ . These segments have to
obey the condition of an accessible waypoint, process illustrated by Fig. 5.10.

wn

wn+1w’
w’’

w’’’
w’’’’

Figure 5.10: ObstacleAvoidance - accessible waypoints

Later, the smallest arc between W
′ and W

′′ is defined, and two (2) new waypoints

– W ′′′ and W
′′′′ – are projected on it.

The trajectory is validated if the new waypoints W
′′′ and W

′′′ are located in free
space F . Otherwise, it is considered the largest arc with a new projection of waypoints,
W
′′′ and W

′′′′ .
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Pathi Pathi+1 Pathi+2
Wn Wn+1(access = false) Wn+2(access = false)
Wn+1(access = false) Wn+2(access = false) Wn+2(access = true)

Table 5.1: Waypoints accessibility

Validated set of new waypoints – W ′
,W

′′
,W

′′′
,W

′′′′′ – these are included in the set
of waypoints that defines the path, but these added waypoints take on temporary form
and they are eliminated at each run (permanent = false).

5.4 Parking lot classification

The autonomous driving competition from the Festival Nacional de Robótica is an
important mean to evaluate the capacity of competing systems to perform more complex
maneuvers that show the robustness of solutions in aspects such as motion-planning or
behavior/decision-making. One of the tasks is to carry out parking maneuvers. For this
purpose, as already mentioned in chapter3, the competition has two specific areas for
this task: parallel parking in a place adjacent to the track; another, which at the level
of the track plan is detached from it, bringing with it other challenges and which will be
the object of a possible solution for implementation.

To be able to park in the parking lot where, taking into consideration to track’s
blueprint, is located in an independent/disclosed area, it is necessary to develop specific
routines that allow its identification with a high degree of confidence. Another aspect
that deserves attention for the development of the proposed algorithm is related to the
identification of free parking space (if any) and to estimate which change of heading is
necessary to place the robot in the proper parking place and define a set of maneuvers
to perform this same parking.

The strategy developed to identify the car parking lot, in particular, its location on
the track map, is based on the identification of the letter P inscribed on a rectangu-
lar delimiter as illustrated in figure 5.11, as being the most distinctive factor in the
identification of this characteristic of the track scenario.

For this purpose, we opted for the use of machine learning techniques and classifiers
appropriate to the process of feature recognition and data analysis, in particular, the
recognition of symbols. Another advantage of endowing the system with a machine
learning algorithm is that it allows easily adapt the system to other contexts and other
analyses, not being limited to a solution developed for a specific problem. The machine
learning implemented is based on the K-Nearest Neighbors (KNN). The algorithm caches
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Figure 5.11: Parking lot top view from FNR-ADC Simulation Environment

all the training samples, and predicts the response for a new sample by analyzing a
certain number K of the nearest neighbors of the sample, using concepts such as voting,
calculating weighted sum, etc.. The KNN method is sometimes referred as ”learning by
example”, this means that, for prediction it looks for the feature vector with a known
response that is closest to the given vector.

Opting for features’ identification using machine learning techniques will allow the
system to be sensitive only to a set of features clearly defined and relevant to the solution.
This reduces the possibility that environmental aspects like brightness or background
noise, lead to false positives and therefore identifying features wrongly in other possible
scenarios of the competition.

On the other hand, this process will also allow identifying which of the tow parking
areas is available for parking since, according to the race regulations, it is possible that,
one of the available spaces may be occupied.

In order to implement the machine learning based on the supervised learning classifi-
cation algorithm K-Nearest Neighbor, it is necessary to develop two distinguished stages:
building the training set and the classification algorithm it self to identify the parking
lot.

5.4.1 Creating the training set

Suppose that for the identification of important symbolic features of the competition
such as: P character, left-arrow right-arrow and up-arrow to turn left, right or move
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forward respectively, including vertical signs, can be approached considering each one of
this graphic signage (containing each one of them important information about the type
of behaviour that is intended to be observed on the robot), that is, consider each one of
these graphic elements as a character.

P

P

Figure 5.12: Possibles classes to identify all relevant signs present on FNR-ADC Simu-
lation Environment

For each character proposed in figure 5.12, 50 training images of the system will be
produced.

It is typified that each image that will support the classifier training will have 20x30
pixels. The training-set building process will produce two data-structures.

• a first data-set that indexes which group or classification the classified images
correspond to — output values;

• a second data-set with the classified images for the knn-training process — feature-
vector.

So the implementation has two distinct functionalities: a fist one to develop a training-
set process to allow the classifier to train with classification examples necessary to pos-
terior start to classify new objects; and a second functionality with the practical imple-
mentation o signs/signals identification.

Likewise the other algorithms already implemented, the coding of this makes also
use of OpenCV framework and ROS middleware. The algorithm starts by using the In-
verse Perspective Mapping focused on the previous section, and the class developed for
the feature identification, inherits from the class ImageReader where is implemented all
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the the class methods necessary to correct acquired images from projection distortion,
as well as making available dimensional correspondence between image and real world.
The FeaturesTrainig also inherits from the class ColorSegmentation to prepare the
image to optimally extract features (illustrated through figure 5.13). Below it is tran-
scribed in detail the training algorithm used to build the classifiers and tagging that
supports the parking lot identification.

Step 1: Inverse Perspective Mapping Step 2: Color Segmentation (keeping white lines)

Step 3: Gray scalled image masked Step 4: Imeage prior feature identification

Figure 5.13: Preparing the IPM image for feature extraction

As mentioned before, the output of this algorithm is two data-set in Extensible
Markup Language (XML), a markup language that defines a set of rules to describe
and identify information accurately and unambiguously, in a way that computers can be
programmed to interpret the information.

Listing 5.1: Output file with list of classification values
1 <opencv_storage >
2 <classifications type_id ="opencv - matrix ">
3 <rows >20</rows >
4 <cols >1</cols >
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5 <dt>i</dt>
6 <data >
7 120 120 112 120 120 120 112 120 120 120 112 120 120 120 112←↩

120 120 120 112 120
8 </data >
9 </ classifications >

10 </ opencv_storage >

The classification are defines in a [1× k] where k is the number o training sequences
done. In this example it is 20.

Listing 5.2: Output file with list features-vector
1 <opencv_storage >
2 <images type_id ="opencv - matrix ">
3 <rows >20</rows >
4 <cols >600 </cols >
5 <dt>f</dt>
6 <data >
7 154. 4. 4. 4. 4. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ←↩

0. 255. 255. 255. 255. 255. 13. 13. 13. 13. 13. 0. 0. 0.←↩

0. 0. 0. 0. 0. 0. 0. 255. 255. 255. 255. 255. 255. ...
8 </data >
9 </ images >

10 </ opencv_storage >

Due to practicability purposes, the output of the images training process is not com-
plete but it possible to understand its structure:

Feature identification over the track scene Identified feature

"PARKING_LOT"

Feature tag Classified image

Figure 5.15: K-Nearest Neighbor learning process

Once the creation of the training-set is completed it is possible to move on to the
second stage: parking-lot identification using classification methods.
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5.4.2 Parking-lot identification

The method used to identify the parking-lot trains a statistical model using a set of
input features-vector as illustrated in XML listing 5.2 and the corresponding output
values (classes) as in the XML listing 5.1. Both input and output vectors/values are
passed as matrices. As said, the input feature vectors are stored as train data rows, that
is, all features of the training vector are stored continuously. The train data must have
the CV 32FC1 (32-bit floating-point, single-channel) format. The classes are also stored
in a 1D row vector in CV 32SC1 or CV 32FC1 format.

The solution for the parking-lot identification fits the criteria associated to classifi-
cation problems, therefore the responses are discrete class labels. As Machine Learning
(ML) models, K-Nearest Neighbor is trained on a selected feature of the training-set
(kNearest->train).

After the training has been done, it is possible the system to start identifying the
parking-lot among other features captured by the cameras. The images are acquired and
processes (color space, color segmentation, filtering, binarization) and thereafter checking
if any feature captured by the camera matches with the parking-lot characteristics. The
mathematical method described in Section 4.2 (Subsection: 4.2.2) is then used to find if
there is a positive match or not (kNearest->find nearest).

In case of positive mach, in this particular solution the sign on the floor P marking the
parking-lot is found, the algorithm estimates the parking area rectangular boundaries
Plot(xn, yn) and finds its center P (x, y) following the expression 5.20. The center found
will be used as a temporary waypoint (see Section 5.2 expression 5.13 in Chapter 5).
Alongside with the parking-lot’s center calculation, an orientation of the parking-lot
based robot’s position is also estimated – θR→P .

[h!]P (x, y) =
∑
n∈[1,4] Plot(xn, yn)

4 (5.20)
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Save training data
[Classes and Classified images - XML format]

Flatten Classified Image
[1D float array]

Image Binarization

Minimum 
contour area?Find Outer Contours Region Of Interest

[20x30 pixel resized ROI]

Gaussian Noise Reduction
[5x5 pixel kernel]

Image Color Space 
[8-bit grayscale]

no

yes

yes

no

Classifiable?

Class?\>

features_training.hpp

IPM Image Transformation

Masking

Segmentation Control
[HighH, HighS, HighV, LowH, LowS, LowV]

Parameters
available?

Morphological Closing
(fill small hole in the foreground)

Morphological Opening
(remove small objects from foreground)

Mask Filtering

no

yes

color_segmentation.hpp

Classifications Training-Set (XML file)

Features Training-Set (XML file)

More features
to classify?

Image captured [Callback "/robot/camera_track"]

image_reader.hpp

ROS node handler
ROS Topic Subscribing "/robot/camera_track"

Start Training-Set Building Process

Finish Training-Set Building Process

no

yes

Image Color Space 
[HSV]

Figure 5.14: Low-level implementation of training-set build algorithm

93



5.4. Parking lot classification Chapter 5

Start Parking-Lot 
Identification Process ROS node handler

ROS Topic Subscribing  "/robot/camera_track"
ROS Topic Publishing    "/robot/FSM_parking_lot"
ROS Topic Publishing    "/robot/parking_lot_coord"

Until ROS handler is active

Parking-lot's angular orientation

Minimum Area Boundary
[Rectangle corners limiting the parking-lot]

Minimum 
contour area?Find Outer Contours Region Of Interest

[30x30 pixel resized ROI]

yes

yes

no

features_training.hpp

IPM Image Transformation

Image Color Space 
[HSV]

Image Binarization

Gaussian Noise Reduction
[5x5 pixel kernel]

Image Color Space 
[8-bit grayscale]

Segmentation Control
[HighH, HighS, HighV, LowH, LowS, LowV]

Parameters
available?

Masking

Morphological Closing
(fill small hole in the foreground)

Morphological Opening
(remove small objects from foreground)

Mask Filtering

no

yes

color_segmentation.hpp

Image captured [Callback "/robot/camera_track"]

image_reader.hpp

Finish Parking-Lot 
Identification Process

Find K Nearest Neighbor

no

Positive 
match with

parking
lot?

Training data

Minimum Area Centroid
[Parking-lot geometric center]

Publishing ["/robot/FSM_parking_lot"] - std_msgs/String: PARKLOT_ON
Publishing ["/robot/parking_lot_coor"]  - geometry_msgs/PoseStamped: X,Y, θ

K Nearest Neighbor Training
Classifications Training-Set (XML file)

Features Training-Set (XML file)

Figure 5.16: Low-level implementation of parking-lot classification algorithm
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Results

This chapter will describe the results obtained from the various proposals imple-
mented in response to the problems described in chapter 3, namely: inverse perspective
mapping and obtaining direct information about distances; path-following and obstacle
avoidance based on dynamic arc fitting; and parking-lot identification and estimate its
pose concerning robot’s position. The results will be based on data with sufficient rele-
vance for the validation of the concept as well as, whenever possible, enunciate potential
weaknesses.

6.1 Path Following and Obstacle Avoidance

The current section will be dedicated to present the results regarding the performance
of the path following and obstacle avoidance algorithm implemented.

To evaluate the path following strategy implemented, the algorithm was tested in
simulation run-time, validating the capacity to running the entire track with a dynamic
arc fitting technique.

Relatively to the evaluation of the obstacle avoidance strategy, due to computational
limitations, it becomes unfeasible to simulate the algorithm with the FNR-ADC Simu-
lation Environment. Because of the high-computation requirements, it was not possible
to enable the emulated LIDAR from the MORSE simulation engine and yet having a
reasonable resolution and refresh rate. To overcome this limitation, the obstacle avoid-
ance algorithm was tested using Matlab. For evasive maneuver simulation, a LIDAR
and its perception block were recreated, providing the basic feature associated with this
kind of sensor.
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6.1.1 Path-following

The algorithm developed for the Path-following of a 4WSS platform, based on the dy-
namic arc fitting, was tested with FNR-ADC Simulation Environment at several speeds,
without obstacles. The performance was observed and the validation criterion was to
ensure the robot performs the whole track with an average velocity stipulated, without
leaving the lane boundaries.

The following visualizations acquired from RVIZ, a 3D visualization tool for ROS,
illustrates the performance of making the robot traveling at 2-meters per second on
a pure-speed run.

Figure 6.1: Path-following simulation - RVIZ visualization

As it is possible to visualize from the top-view visualization (figure 6.4, there is a slight
deviation from the optimal course due to incorrect mapping of 2 waypoints defining the
pre-established path. This is a correction to be made on the core-waypoints set.

The overall behavior is stable although, in certain situations the robot acts abnor-
mally, maybe due to some sort of bug caused by the mesh of the track scene. In fact,
on certain occasions, the existing bug on the simulation scenario forces the robot to flip
over, a situation that does not occur with other simulation scenarios.

It was also possible to verify that it is critical the adjustment between the Motion-Control

node rate and the Path-Following node rate, to turn the system capable to achieve
higher velocities.
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Figure 6.2: Path-following simulation - RVIZ visualization (full run)

Figure 6.3: Path-following simulation - RVIZ visualization (Top View)

Likewise, the PID Controller responsible to control the robot’s running velocity at a
target set requires better tuning to ensure a more stable behavior at higher speeds.
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Figure 6.4: Path-following simulation - RVIZ visualization (Top View

6.1.2 Obstacle Avoidance

The following Matlab plots illustrate the obstacle avoidance strategy getting into ac-
tion. To ensure more lean behavior, the algorithm only processes LIDAR ranges inferior
to 3 meters. As more readings feed the system, more accurate is the obstacle fitting.
The closer the reading, the denser is the data received from the LIDAR, also making the
obstacle fitting more accurate.

When the simulated LIDAR coded in Matlab obtains a range inferior of 3 meters it
starts to estimate the position of the obstacle and to understand if it interferes with the
defined path. This moment is possible to verify on figure 6.5 when the vector defining
robot’s heading changes color from red to blue.

In this particular example, the obstacle, complying with the FNR-ADC regulations,
was placed on the track, with the condition that one of the original waypoints that
establishes the path becomes inaccessible. Through figure 6.5 and with more detail in
figure 6.9 , it is possible to visualize the inaccessible waypoint, close to the center of the
green box, and also the newly generated waypoints necessary to overpass the obstacle
and return to the original path once saved.

In these simulated conditions, the newly generated waypoints represent both, the
shortest path to overpass the obstacle and yet keeping the robot inside the track.

The new waypoints shall obey to the criterion that all of them shall be located in a

98



Chapter 6 6.1. Path Following and Obstacle Avoidance

Figure 6.5: Obstacle identification and new waypoints produced

free and accessible workspace, in short, inside the track.

Figure 6.7: Obstacle identification and new waypoints produced

99



6.1. Path Following and Obstacle Avoidance Chapter 6

Figure 6.6: Robot over-passing the obstacle using the smooth path through dynamic arc
fitting

Figure 6.8: Obstacle identification and new waypoints produced
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Figure 6.9: Obstacle identification and new waypoints produced

6.2 Parking Lot Identification

In this section, it is pointed out some relevant criteria for a qualitative evaluation
of the parking’s lot identification algorithm developed. It is also to presented results
concerning those criteria. The results are obtained in a simulation procedure using the
developed FNR - Autonomous Driving Competitions Simulation Environment, which
allows validating the utility and versatility of the developed simulation environment. The
criteria considered important for evaluating the performance of the developed algorithm
are the following:

1. consistency: in identical scenarios they should produce identical results;

2. speed: ability to analyze the features and present results on time;

3. accuracy: coordinates and other measurements should be close to the actual
references;

Concerning the criterion consistency of results, it expects that results produced or
algorithm’s output should be similar if the same characteristics of a given feature can
be seen in a given set of image planes captured by the camera. The algorithm shall
allow parking lot validation regardless of the perspective in which the image containing
the parking symbol is acquired. This perspective is the one resulting from the robot’s
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position and heading on the track. However, it is plausible that there will be a moment,
associated with a given robot’s configuration in the work space, when the output of the
algorithm will be different. In this case, it is important to assess the extent to which the
system fails to correctly position the parking lot.

Regarding speed, the aim is to assess the extent to which the system supports a
real-time processing evaluation and whether the system remains stable in the results
obtained even if the robot is running. For this purpose, the ROS scheduler will be
used to compare the processing time of the car park identification process. Finally,
the third criterion associated with precision is also evaluated, comparing the results
obtained in a simulation environment with the data obtained in the floor plan of the
track. This comparison will provide a basis for comparison with the reliability of the
obtained measurements.

With the testing of the parking lot identification algorithm in a simulation environ-
ment, it will be possible to validate the Inverse Perspective Mapping (IPM) process as
a facilitating strategy for the extraction of relevant features to support the autonomous
driving system, in this particular case, for an expeditious and robust process for the
parking lot identification.

It will also be possible to verify the direct relationship, involving rapid algebraic
manipulation, between the coordinates of the top-view image and the world coordinates.

Finally, the versatility of the algorithm proposed for the identification of other rele-
vant features in the scenario of the autonomous competition will be explored, and the
activation of such features will be based only on a classification process appropriate to
each of the characteristics in question.

6.2.1 Consistency

Regarding the consistency of the algorithm, a special training set was prepared with 100
images captured from different angles, from close to 90º in both directions (having the
parking lot in both sides, left and right) to facing forward images.

The acquired images produced a total of 761 features. From those acquired features,
only the parking lot feature, graphically perceived by the letter P, was tagged. All the
remaining features were also kept in the training set but without a sensitive tagging or
relevant classification. So such features are meant to be neglected by the algorithm.

During the preparation of the training set, some features were tagged as false positives
and other as false negatives - in total 5 features were incorrectly tagged to test some
robustness on the K-Nearest Neighbor and the capacity to handle the discrete evaluation

102



Chapter 6 6.2. Parking Lot Identification

of assorted images.
The mosaic in the figure 6.10 illustrates how the algorithm is capable to detect the

parking lot from different robot configurations. Nevertheless, it is possible to notice
that, in some images captured, there was a situation that clear sight of the parking lot
sign was not sufficient to get an identification. In one of the situations, a false match
was also produced, which might reflect that errors present in the training may influence
the classifications produced.

Figure 6.10: Parking lot detection with different robot configuration

6.2.2 Speed

Another criterion considered in the evaluation of the proposed solution and its applica-
bility to real-time processing is the processing speed. The objective is to understand how
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fast the algorithm processes the captured images and obtains an output from them.

The ROS node [TOBOR vision parking lot] responsible for the parking lot identifi-
cation, is bounded by a ROS-loop typically working at a 30 Hz rate. This loop performs
the IPM transformation, color segmentation, feature acquisition, and classification.

To measure the speed of the algorithm and a possible variation depending on the
scene, the analysis took into consideration two possible situations: one performing the
parking lot identification (centroid coordinate in world coordinate referenced to the robot
and distance)in a stable scenario with the robot stopped; and another situation dynamic
with the robot moving around the track.

The table 6.1 summarizes the results obtained in the experiment made. Theoretically,
each loop should take 0,033 milliseconds, which corresponds to the 30 Hz ROS loop rate
defined. However, it is possible that some extra computing operations that persist no
matter if visualization is active or not may implicate extra computing time directly
proportional to the number of features encountered on each image.

Table 6.1: Time elapsed per each parking lot identification loop - in milliseconds

Nr of features
Time 1 2 3 4 5 6 7 8 9 10
Average 0,0339 0,0341 0,0356 0,0368 0,0399 0,0383 0,0384 0,0409 0,0448 0,0528
Std Dev 0,0035 0,0059 0,0060 0,0067 0,0070 0,0074 0,0076 0,0092 0,0088 0,0111
Min 0,0189 0,0187 0,0182 0,0187 0,0202 0,0211 0,0206 0,0215 0,0209 0,0228
Max 0.0603 0,0606 0,0817 0,0699 0,0721 0,0622 0,0757 0,0722 0,0678 0,0782

6.2.3 Precision

To evaluate precision, the robot is placed in a know configuration — position and heading
relatively to the world — making sure the camera is capable to capture the parking lot
sign, not necessarily on a straight forward position. This particular testing was made
placing the robot on the track, in a plausible position to initiate parking procedures,
and yet making sure the parking lot is captured even on significant angular positions.
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Figure 6.11: (left) Parking lot feature identified; (right) Image captured by the camera

The following Python code snippet extracted from Morse launch file illustrates the
configuration given to the robot:

Listing 6.1: Robot configuration in FNR-ADC Simulation Environment
1 from math import pi
2 from morse . builder import ∗
3 # Plac ing the Robot r i g h t in f r o n t o f the parking l o t
4 my_robot . translate ( (−2.4) , 0 . 7 , 0 . 0 ) # in Morse un i t s [m]
5 my_robot . rotate ( 0 . 0 , 0 . 0 , (−pi/2 + 30∗ pi /180) ) # heading [ rads ]

As illustrated by the code snippet 6.1, the robot was placed in the world having as
coordinates (−2400, 0700) [millimeters], with a heading related to world reference frame
of −π3 .

The figure illustrates the setting prepared to evaluate the precision in the calculation
of the distance between the robot and the parking lot. The figure combines the snapshot
took from FNR-ADC Simulator Environment, over placed on the track’s blueprint with
a scale of 1:1.

Important remark: despite the configuration given to the robot through Python’s
builder file (see code snippet 6.1), the precise location received by the FNR-ADC Sim-
ulator Environment subscribed topic ”/my robot/pose” is (−2407, 722) [millimeters].

Despite the small difference between the robot’s location settled by Python builder
and simulation output received in the subscribed topic, the evaluation relatively to the
precision offered by the algorithm considers the robot’s location received in simulation
run-time. Therefore, calculating the distance between the robot’s position (−2407, 722)
and the parking lot ground-truth center point coordinates (−1350,−1220), it is possible
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to calculate a distance of 2211mm.
The algorithm developed calculates distance between the camera’s reference frame to

a point on the image plane converted to a world coordinate in relation to the robot. The
distance calculated does not take into account the offset between the camera’s frame and
robot’s frame (correction that is made by the tf transform a ROS package responsible
to maintain the relation between the frames composing the system - robot, camera,
gyroscope, odometry, etc).

Figure 6.13: Distance measured

Therefore, to assess a correct evaluation about the precision of the system, to the
distance computed by the algorithm – 2019 mm – it shall be added the camera’s offset
in relation to the robot’s frame (227.895, 0) [millimeters] which results into a computed
distance of 2246,895 mm, a distance with an error of 35,874 mm compared with the
ground-truth.
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Figure 6.12: System measuring distance to parking lot

107



This page was intentionally left blank.



Chapter 7

Conclusions and Future Work

The work developed in the scope of master’s degree on Autonomous Systems resulted
in a scientific paper – Teaching Robotics with a Simulator Environment Developed for
the Autonomous Driving Competition – published at RiE2019, the 10th International
Conference on Robotics in Education that took place in Vienna (Austria) [76].

It is inevitable to conclude that designing and implementing a consistent and robust
Autonomous Driving System is a huge task, plenty of different challenges. It is also clear
that multiple approaches can be addressed to the same problem, differing on simplic-
ity, robustness, possibility of scaling or applicability scope. Either way, it is also clear
that the level of complexity increases exponentially as long as the solution attempts
to embrace wider range of different possibilities or situations present in any common
autonomous driving scenario.

The FNR-ADC Simulation Environment proved to be a resourceful instrument
to design, develop and test different systems and modules such as motion control or
path planning, feature extraction, and decision making, position estimation or sensor
fusion [23]. With handy high-level abstraction possibilities, it became easy to test each
subsystem individually, allowing focused error debugging or performing analysis, without
the risk of dispersing our attention to other modules that are not in the loop.

However, it was possible to encounter some awkward behaviors of the simulated
robotic platforms, jeopardizing the simulation run-time. The observed anomalies diverge
on the effects produced and occurs times-to-times, which turns difficult the task of
debugging. The primary hypothesis as a potential cause for this odd behavior is the
vector mesh used to design the track that might have some incompatibilities with Physics
Engine or Game Engine.

Despite the punctual problems encountered in the FNR-ADC Simulation Environ-
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ment, it was possible to test the developed algorithms. The Inverse Perspective Mapping
proved to be useful for an undistorted feature analysis using computer vision. Despite
the IPM developed is suited to FNR’s Autonomous Driving Competition constraints, it
may bring some fragility when applied to scenarios where the track/road has slopes (as-
cending or descending). This fact changes the transformation parameters between the
image plane and the real-world and, under these circumstances, the IPM may not correct
the perspective distortion. As future work, the Inverse Perspective Mapping shall take
into account the slopes as a possible readjust of the extrinsic parameters accordingly
the angled terrain. This tuning might be achieved with the introduction of concepts as
Vanishing Point or even taking into account the typical parallelism of lines limiting the
lane.

It was also possible to prove that Machine Learning is inevitable when developing
autonomous driving systems. Despite the simplicity of the K-Nearest Neighbors algo-
rithm, it proved to be a satisfactory option and resourceful technique when simple and
discrete classification is required. The use of Machine Learning techniques is an efficient
solution when it is necessary to extract complex features from computer vision systems.
As future work, a possible upgrade of feature extraction using Support Vector Machine
or Decision Trees, both mature algorithms with the potential to deal with discrete data
with optimal performance when dealing with many classification groups.

Finally, the dynamic arc fitting proved to be a possible approach to model the local
motion of a 4-wheel skid-steer platform, as its geometric principle fairly represents the
primitive maneuvers of a platform of this kind. The PID controller implemented, also
included a Twiddle algorithm to allow a fine auto-tuning of the Proportional, Integrative
and Derivative gains. However, the results were not satisfactory, and future work must
be done to ensure a more stable motion behavior. Nevertheless, the PID control only acts
over linear velocity and despite the effects of the Physics Engine present in the FNR-ADC
Simulation Environment, the arc fitting algorithm proved to be capable to perform a full
round at a stable velocity of 2-meters per second without PID control on the change of
heading. As future work, the waypoint definition shall include more detailed information
about the local maximum and optimal speed which should constitute refined information
to ensure a dynamic and fitted robot’s motion.

Due to computational limitations, it was not possible to test the Obstacle Avoid-
ance algorithm using the FNR-ADC Simulation Environment. The algorithm developed
makes use of the LIDAR sensor to estimate the obstacle position on the track. Enabling
the emulated LIDAR represented a high computational cost which turned impossible
any sort of simulation due to the lag created. Therefore, the algorithm was tested in
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Matlab, with both, track and sensors, coded simulated.
The approach to characterize the obstacle, obeying to the primitive maneuvers of the

robot and the local motion planning created, proved to be efficient under the competition
constraints. However, the approach deeply relays on an accurate definition of the obstacle
and the correct positioning of the robot. However, due to the possibility of successive
readjustments of the evasive waypoints created to avoid the collision, it turns the solution
more flexible and less sensitive to miscalculation regarding the obstacle position. As
future work, despite the arc trajectory fits the characteristics non-holonomic of a 4WSS
robot, describing the arc yet represents a skidding of the platform and therefore it is not
guaranteed the trajectory described is a perfect arc.

These are sub-systems integrating a more vast system which is the Autonomous
Driving. As future work is the development of complementing modules in order to set
a minimum autonomous driving system capable to perform all the tasks composing the
FNR-Autonomous Driving Challenge.

111



This page was intentionally left blank.



Bibliography
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David Obdržálek, editors. Robotics in Education, volume 81. Springer Nature
Switzerland, Vienna, 1st editio edition, 2016.

120



Appendix A

FNR-ADC participating Teams

List of participating teams of latest FNR-ADC editions, an corresponding leaders
contacted in order to compile the design and solutions implemented with relevant out-
come in the scope of the autonomous driving competition:

• N3E GT Team - Polytechnic Institute of Leiria

– Eng Hugo Costelha — [hugo.costelha@ipleiria.pt];

– Eng Carlos Couceiro Neves — [carlos.neves@ipleiria.pt];

• ROTA Team - University of Aveiro

– Eng Artur Pereira — [artur@ua.pt];

– Eng José Lúıs Azevedo — [jla@ua.pt];

– Eng Ricardo Dias — [ricardodias@ua.pt];

• CONDE Team - Faculty of Engineering, University of Porto

– Eng Armando Sousa — [asousa@fe.up.pt].
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