5,895 research outputs found

    Reactive Planning for Mobile Manipulation Tasks in Unexplored Semantic Environments

    Get PDF
    Complex manipulation tasks, such as rearrangement planning of numerous objects, are combinatorially hard problems. Existing algorithms either do not scale well or assume a great deal of prior knowledge about the environment, and few offer any rigorous guarantees. In this paper, we propose a novel hybrid control architecture for achieving such tasks with mobile manipulators. On the discrete side, we enrich a temporal logic specification with mobile manipulation primitives such as moving to a point, and grasping or moving an object. Such specifications are translated to an automaton representation, which orchestrates the physical grounding of the task to mobility or manipulation controllers. The grounding from the discrete to the continuous reactive controller is online and can respond to the discovery of unknown obstacles or decide to push out of the way movable objects that prohibit task accomplishment. Despite the problem complexity, we prove that, under specific conditions, our architecture enjoys provable completeness on the discrete side, provable termination on the continuous side, and avoids all obstacles in the environment. Simulations illustrate the efficiency of our architecture that can handle tasks of increased complexity while also responding to unknown obstacles or unanticipated adverse configurations. For more information: Kod*la

    Realtime State Estimation with Tactile and Visual sensing. Application to Planar Manipulation

    Full text link
    Accurate and robust object state estimation enables successful object manipulation. Visual sensing is widely used to estimate object poses. However, in a cluttered scene or in a tight workspace, the robot's end-effector often occludes the object from the visual sensor. The robot then loses visual feedback and must fall back on open-loop execution. In this paper, we integrate both tactile and visual input using a framework for solving the SLAM problem, incremental smoothing and mapping (iSAM), to provide a fast and flexible solution. Visual sensing provides global pose information but is noisy in general, whereas contact sensing is local, but its measurements are more accurate relative to the end-effector. By combining them, we aim to exploit their advantages and overcome their limitations. We explore the technique in the context of a pusher-slider system. We adapt iSAM's measurement cost and motion cost to the pushing scenario, and use an instrumented setup to evaluate the estimation quality with different object shapes, on different surface materials, and under different contact modes

    The NASA/OAST telerobot testbed architecture

    Get PDF
    Through a phased development such as a laboratory-based research testbed, the NASA/OAST Telerobot Testbed provides an environment for system test and demonstration of the technology which will usefully complement, significantly enhance, or even replace manned space activities. By integrating advanced sensing, robotic manipulation and intelligent control under human-interactive supervision, the Testbed will ultimately demonstrate execution of a variety of generic tasks suggestive of space assembly, maintenance, repair, and telescience. The Testbed system features a hierarchical layered control structure compatible with the incorporation of evolving technologies as they become available. The Testbed system is physically implemented in a computing architecture which allows for ease of integration of these technologies while preserving the flexibility for test of a variety of man-machine modes. The development currently in progress on the functional and implementation architectures of the NASA/OAST Testbed and capabilities planned for the coming years are presented

    Manipulation primitives: A paradigm for abstraction and execution of grasping and manipulation tasks

    Get PDF
    Sensor-based reactive and hybrid approaches have proven a promising line of study to address imperfect knowledge in grasping and manipulation. However the reactive approaches are usually tightly coupled to a particular embodiment making transfer of knowledge difficult. This paper proposes a paradigm for modeling and execution of reactive manipulation actions, which makes knowledge transfer to different embodiments possible while retaining the reactive capabilities of the embodiments. The proposed approach extends the idea of control primitives coordinated by a state machine by introducing an embodiment independent layer of abstraction. Abstract manipulation primitives constitute a vocabulary of atomic, embodiment independent actions, which can be coordinated using state machines to describe complex actions. To obtain embodiment specific models, the abstract state machines are automatically translated to embodiment specific models, such that full capabilities of each platform can be utilized. The strength of the manipulation primitives paradigm is demonstrated by developing a set of corresponding embodiment specific primitives for object transport, including a complex reactive grasping primitive. The robustness of the approach is experimentally studied in emptying of a box filled with several unknown objects. The embodiment independence is studied by performing a manipulation task on two different platforms using the same abstract description
    corecore