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Reactive Planning for Mobile Manipulation Tasks
in Unexplored Semantic Environments

Vasileios Vasilopoulos*, Yiannis Kantaros*, George J. Pappas and Daniel E. Koditschek

Abstract— Complex manipulation tasks, such as rearrange-
ment planning of numerous objects, are combinatorially hard
problems. Existing algorithms either do not scale well or assume
a great deal of prior knowledge about the environment, and
few offer any rigorous guarantees. In this paper, we propose a
novel hybrid control architecture for achieving such tasks with
mobile manipulators. On the discrete side, we enrich a temporal
logic specification with mobile manipulation primitives such as
moving to a point, and grasping or moving an object. Such
specifications are translated to an automaton representation,
which orchestrates the physical grounding of the task to
mobility or manipulation controllers. The grounding from the
discrete to the continuous reactive controller is online and
can respond to the discovery of unknown obstacles or decide
to push out of the way movable objects that prohibit task
accomplishment. Despite the problem complexity, we prove
that, under specific conditions, our architecture enjoys provable
completeness on the discrete side, provable termination on the
continuous side, and avoids all obstacles in the environment.
Simulations illustrate the efficiency of our architecture that can
handle tasks of increased complexity while also responding to
unknown obstacles or unanticipated adverse configurations.

I. INTRODUCTION

Task and motion planning for complex manipulation tasks,
such as rearrangement planning of multiple objects, has
recently received increasing attention [1]–[3]. However, ex-
isting algorithms are typically combinatorially hard and do
not scale well, while they also focus mostly on known
environments [4], [5]. As a result, such methods cannot
be applied to scenarios where the environment is initially
unknown or needs to be reconfigured to accomplish the
assigned mission and, therefore, online replanning may be
required [6], resulting in limited applicability.

Instead, we propose an architecture for addressing com-
plex mobile manipulation task planning problems which can
handle unanticipated conditions in unknown environments.
Fig. 1 illustrates the problem domain and scope of our
algorithm. Fig. 2 illustrates the structure of the architecture
and the organization of the paper. Our extensive simulation
study suggests that this formal interface between a symbolic
logic task planner and a physically grounded dynamical
controller - each endowed with their own formal properties
- can achieve computationally efficient rearrangement of
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Fig. 1: An example of a task considered in this paper, whose execution
is depicted in Fig. 5. A differential drive robot, equipped with a gripper
(red) and a limited range onboard sensor for localizing obstacles (orange),
needs to accomplish a mobile manipulation task specified by a Linear
Temporal Logic (LTL) formula, in a partially known environment (black),
cluttered with both unanticipated (dark grey) and completely unknown
(light grey) fixed obstacles. Here the task is to rearrange the movable
objects counterclockwise, in the presence of the fixed obstacles. Objects’
abstract locations (relative to abstract, named regions of the workspace) are
known by the symbolic controller both à-priori and during the entire task
sequence. Geometrically complicated obstacles are assumed to be familiar
but unanticipated in the sense that neither their number nor placement
are known in advance. Completely unknown obstacles are presumed to
be convex. All obstacles and disconnected configurations caused by the
movable objects are handled by the reactive vector field motion planner
(Fig. 2) and never reported to the symbolic controller.

complicated workspaces, motivating work now in progress to
give conditions under which their interaction can guarantee
success.

A. Mobile Manipulation of Movable Objects

Planning the rearrangement of movable objects has long
been known to be algorithmically hard (PSPACE-hardness
was established in [8]), and most approaches have focused on
simplified instances of the problem. For example, past work
on reactive rearrangement using vector field planners such
as navigation functions [9] assumes either that each object is
actuated [10], [11] or that there are no other obstacles in the
environment [12]–[14]. When considering more complicated
workspaces, most approaches focus either on sampling-based
methods that empirically work well [15], motivated by the
typically high dimensional configuration spaces arising from
combined task and motion planning [1], [3], or learning
a symbolic language on the fly [16]. Such methods can
achieve asymptotic optimality [17] by leveraging tools for
efficient search on large graphs [18], but come with no
guarantee of task completion under partial prior knowledge
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Fig. 2: System architecture: The task is encoded in an LTL formula, trans-
lated offline to a Büchi automaton (symbolic controller - Section III). Then,
during execution time in a previously unexplored semantic environment,
each individual sub-task provided by the Büchi automaton is translated to a
point navigation task toward a target x∗ and a gripper command g, through
an interface layer (Section IV). This task is executed online by realizing
each symbolic action (Section V-B) using a reactive, vector field motion
planner (continuous-time controller, [7]) implementing closed-loop naviga-
tion using sensor feedback and working closely with a topology checking
module (Section V-A), responsible for detecting freespace disconnections.
The reactive controller, nominally in an LTL mode, guarantees collision
avoidance and target convergence when both the initial and the target
configuration lie in the same freespace component. On the other hand, if the
topology checking module determines that the target is not reachable, the
reactive controller either attempts to connect the disconnected configuration
space by switching to a Fix mode and interacting with the environment to
rearrange blocking movable objects, or the interface layer reports failure to
the symbolic controller when this is impossible and requests an alternative
action.

and their search time grows exponentially with the number
of movable pieces [19]. Sampling-based approaches have
also been applied to the problem of navigation among
movable obstacles (NAMO) [20], where the robot needs to
grasp and move obstacles in order to connect disconnected
components of the configuration space, with recent exten-
sions focusing on heuristics for manipulation planning in
unknown environments [21], [22]. Unlike such methods that
require constant deliberative replanning in the presence of
unanticipated conditions, this work examines the use of a
reactive vector field controller, with simultaneous guarantees
of convergence and obstacle avoidance in partially known
environments [7], endowed with a narrow symbolic interface
to the abstract reactive temporal logic planner whose freedom
from any consideration of geometric details affords decisive
computational advantage in supervising the task.

B. Reactive Temporal Logic Planning

Reactive temporal logic planning algorithms that can ac-
count for environmental uncertainty in terms of incomplete
environment models have been developed in [23]–[30]. Par-
ticularly, [23], [24] model the environment as a transition
system which is partially known. Then, a discrete controller
is designed by applying graph search methods on a product
automaton. As the environment, i.e., the transition system, is
updated, the product automaton is locally updated as well,

and new paths are re-designed by applying graph search
approaches on the revised automaton. A conceptually similar
approach is proposed in [25], [26]. The works in [27], [28]
propose methods to locally patch paths, as the transition
system (modeling the environment) changes so that GR(1)
(General Reactivity of Rank 1) specifications [31] are satis-
fied. Reactive to LTL specifications planning algorithms are
proposed in [29], [30], as well. Specifically, in [29], [30] the
robot reacts to the environment while the task specification
captures this reactivity. Correctness of these algorithms is
guaranteed if the robot operates in an environment that
satisfies the assumptions that were explicitly modeled in
the task specification. Common in all these works is that,
unlike our approach, they rely on discrete abstractions of the
robot dynamics [32], [33] while active interaction with the
environment to satisfy the logic specification is neglected.

C. Contributions and Organization of the Paper

This paper introduces the first planning and control ar-
chitecture to provide a formal interface between an abstract
temporal logic engine and a physically grounded mobile
manipulation vector field planner for the rearrangement of
movable objects in partially known workspaces cluttered
with unknown obstacles. We provide conditions under which
the symbolic controller is complete (Proposition 1), while
exploiting prior results [7] that guarantee safe physical
achievement of its sub-tasks when they are feasible, and
introduce a new heuristic vector field controller for greedy
physical rearrangement of the workspace when they are not.
We provide a variety of simulation examples that illustrate
the efficacy of the proposed algorithm for accomplishing
complex manipulation tasks in unknown environments.

The paper is organized as follows. After formulating
the problem in Section II, Section III presents a discrete
controller which given an LTL specification generates on-
the-fly high-level manipulation primitives, translated to point
navigation commands through an interface layer outlined in
Section IV. Using this interface, Section V continues with
the reactive implementation of our symbolic actions and the
employed algorithm for connecting disconnected freespace
components blocked by movable objects. Section VI dis-
cusses our numerical results and, finally, Section VII con-
cludes with ideas for future work.

II. PROBLEM DESCRIPTION

A. Model of the Robot and the Environment

We consider a first-order, nonholonomically-constrained,
disk-shaped robot, centered at x ∈ R2 with radius r ∈ R>0

and orientation ψ ∈ S1; its rigid placement is denoted by
x := (x, ψ) ∈ R2 × S1 and its input vector u := (v, ω)
consists of a fore-aft and an angular velocity command. The
robot uses a gripper to move disk-shaped movable objects of
known location, denoted by M̃ := {M̃i}i∈{1,...,NM} , with a
vector of radii (ρ1, . . . , ρNM

) ∈ RNM , in a closed, compact,
polygonal, typically non-convex workspace W ⊂ R2. The
robot’s gripper g can either be engaged (g = 1) or disengaged
(g = 0). Moreover, we adopt the perceptual model of our



recent physical implementations [7], [34] whereby a sensor
of range R recognizes and instantaneously localizes any fixed
“familiar” or “unfamiliar” obstacles; see also Fig. 1.

The workspace is cluttered by a finite collection of disjoint
obstacles of unknown number and placement, denoted by Õ.
This set might also include non-convex “intrusions” of the
boundary of the physical workspace W into the convex hull
of the closure of the workspace W , defined as the enclosing
workspace. As in [7], [34], [35], we define the freespace F as
the set of collision-free placements for the closed ball B(x, r)
centered at x with radius r, and the enclosing freespace, Fe,
as Fe :=

{
x ∈ R2 |x ∈ Conv(F)

}
.

Although none of the positions of any obstacles in Õ are à-
priori known, a subset P̃ ⊆ Õ of these obstacles is assumed
to be “familiar” in the sense of having a recognizable
polygonal geometry, that the robot can instantly identify
and localize (as we have implemented in [7], [34]). The
remaining obstacles in C̃ := Õ\P̃ are assumed to be strongly
convex according to [35, Assumption 2] (and implemented
in [7], [34]), but are otherwise completely unknown.

To simplify the notation, we dilate each obstacle and
movable object by r (or r + ρi when the robot carries an
object i), and assume that the robot operates in the freespace
F . We denote the set of dilated objects and obstacles derived
from M̃, Õ, P̃ and C̃, by M,O,P and C respectively.
For our formal results, we assume that each obstacle in C
is always well-separated from all other obstacles in both
C and P , as outlined in [7, Assumption 1]; in practice,
the surrounding environment often violates our separation
assumptions, without precluding successful task completion.

B. Specifying Complex Manipulation Tasks

The robot needs to accomplish a mobile manipulation
task, by visiting known regions of interest `j ⊆ W , where
j ∈ {1, . . . , L}, for some L > 0, and applying one of the
following three manipulation actions ak(Mi, `j) ∈ A, with
Mi ∈M referring to a movable object, defined as follows:
• MOVE(`j) instructing the robot to move to region `j ,

labeled as a1(∅, `j), where ∅ means that this action
does not logically entail interaction with any specific
movable object1.

• GRASPOBJECT(Mi) instructing the robot to grasp the
movable object Mi, labeled as a2(Mi,∅), with ∅
denoting that no region is associated with this action.

• RELEASEOBJECT(Mi, `j) instructing the robot to push
the (assumed already grasped) object Mi toward its
designated goal position, `j , labeled as a3(Mi, `j).

For instance, consider a rearrangement planning scenario
where the locations of three objects of interest need to
be rearranged, as in Fig. 1. We capture such complex
manipulation tasks via Linear Temporal Logic (LTL) speci-
fications. Specifically, we use atomic predicates of the form
πak(Mi,`j), which are true when the robot applies the action

1Although, as will be detailed in Section V, the hybrid reactive controller
may actually need to move objects out of the way, rearranging the topology
of the workspace in a manner hidden from the logical task controller.

ak(Mi, `j) and false until the robot achieves that action. Note
that these atomic predicates allow us to specify temporal
logic specifications defined over manipulation primitives and,
unlike related works [5], [36], are entirely agnostic to the
geometry of the environment. We define LTL formulas by
collecting such predicates in a setAP of atomic propositions.
For example, the rearrangement planning scenario with three
movable objects initially located in regions `1, `2, and `3, as
shown in Fig. 1, can be described as a sequencing task [37]
by the following LTL formula:

φ =♦(πa2(M1,∅) ∧ ♦(πa3(M1,`2)∧
♦(πa2(M2,∅) ∧ ♦πa3(M2,`3)∧
♦(πa2(M3,∅) ∧ ♦πa3(M3,`1))))) (1)

where ♦ and ∧ refer to the ‘eventually’ and ‘AND’ operator.
In particular, this task requires the robot to perform the
following steps in this order (i) grasp object M1 and release
it in location `2 (first line in (1)); (ii) then grasp object M2

and release it in location `3 (second line in (1)); (iii) grasp
object M3 and release it in location `1 (third line in (1)). LTL
formulas are satisfied over an infinite sequence of states [38].
Unlike related works where a state is defined to be the robot
position, e.g., [29], here a state is defined by the manipulation
action ak(Mi, `j) that the robot applies. In other words,
an LTL formula defined over manipulation-based predicates
πak(Mi,`j) is satisfied by an infinite sequence of actions
p = p0, p1, . . . , pn, . . . , where pn ∈ A, for all n ≥ 0 [38].
Given a sequence p, the syntax and semantics of LTL can be
found in [38]; hereafter, we exclude the ‘next’ operator from
the syntax, since it is not meaningful for practical robotics
applications [39], as well as the negation operator2.

C. Problem Statement

Given a task specification captured by an LTL formula φ,
our goal is to (i) generate online, as the robot discovers the
environment via sensor feedback, appropriate actions using
the (discrete) symbolic controller, (ii) translate them to point
navigation tasks, (iii) execute these navigation tasks and
apply the desired manipulation actions with a (continuous-
time) vector field controller, while avoiding unknown and
familiar obstacles, (iv) be able to online detect freespace dis-
connections that prohibit successful action completion, and
(v) either locally amend the provided plan by disassembling
blocking movable objects, or report failure to the symbolic
controller and request an alternative action.

III. SYMBOLIC CONTROLLER
In this Section, we design a discrete controller that gener-

ates manipulation commands online in the form of the actions
defined in Section II (see Fig. 2), and describe the manner
in which this symbolic controller extends prior work [40] to
account for manipulation-based atomic predicates. A detailed
construction is included in [41, Appendix I].

2Since the negation operator is excluded, safety requirements, such as
obstacle avoidance, cannot be captured by the LTL formula; nevertheless,
the proposed method can still handle safety constraints by construction of
the (continuous-time) reactive, vector field controller in Section V.



A. Construction of the Symbolic Controller

First, we translate the specification φ, constructed using
a set of atomic predicates AP , into a Non-deterministic
Büchi Automaton (NBA) with state-space and transitions
among states that can be used to measure how much progress
the robot has made in terms of accomplishing the assigned
mission; see [41, Appendix I]. Particularly, we define a
distance metric over this NBA state-space to compute how
far the robot is from accomplishing its assigned task, or more
formally, from satisfying the accepting condition of the NBA,
by following a similar analysis as in [40], [42]. This metric
is used to generate manipulation commands online as the
robot navigates the unknown environment. The main idea is
that, given its current NBA state, the robot should reach a
next NBA state that decreases the distance to a state that
accomplishes the assigned task. Once this target NBA state
is selected, a symbolic action that achieves it is generated,
in the form of a manipulation action presented in Section II
(e.g., ‘release the movable object Mi in region `j’). This
symbolic action acts as an input to the reactive, continuous-
time controller (see Section V), that handles obstacles and
unanticipated conditions.

When the assigned sub-task is accomplished, a new target
automaton state is selected and a new manipulation command
is generated. If the continuous-time controller fails to accom-
plish the sub-task (because e.g., a target is surrounded by
fixed obstacles), the symbolic controller checks if there exists
an alternative command that ensures reachability of the target
automaton state (e.g., consider a case where a given NBA
state can be reached if the robot goes to either region `1 or
`2). If there are no alternative commands to reach the desired
automaton state, then a new target automaton state that
also decreases the distance to satisfying the accepting NBA
condition is selected. If there are no such other automaton
states, a message is returned stating that the robot cannot
accomplish the assigned mission. A detailed description for
the construction of this distance metric is provided in [41,
Appendix I].

B. Completeness of the Symbolic Controller

Here, we provide conditions under which the proposed
discrete controller is complete. The proof for the following
Proposition can be found in [41, Appendix I].

Proposition 1 (Completeness) Assume that there exists at
least one infinite sequence of manipulation actions in the
set A that satisfies φ. If the environmental structure and
the continuous-time controller always ensure that at least
one of the candidate next NBA states can be reached, then
the proposed discrete algorithm is complete, i.e., a feasible
solution will be found.3

3Given the current NBA state, denoted by qB(t), the symbolic controller
selects as the next NBA state, a state that is reachable from qB(t) and
closer to the final states as per the proposed distance metric; see also [41,
Appendix I]. All NBA states that satisfy this condition are called candidate
next NBA states. Also, reaching an NBA state means that at least one of
the manipulation actions required to enable the transition from qB(t) to the
next NBA state is feasible.

IV. INTERFACE LAYER BETWEEN THE
SYMBOLIC AND THE REACTIVE CONTROLLER

We assume that the robot is nominally in an LTL mode,
where it executes sequentially the commands provided by
the symbolic controller described in Section III. We use
an interface layer between the symbolic controller and the
reactive motion planner, as shown in Fig. 2, to translate each
action to an appropriate gripper command (g = 0 for MOVE
and GRASPOBJECT, and g = 1 for RELEASEOBJECT),
and a navigation command toward a target x∗. If the
provided action is MOVE(`j) or RELEASEOBJECT(Mi, `j),
we pick as x∗ the centroid of region `j . If the action is
GRASPOBJECT(Mi), we pick as x∗ a collision-free location
on the boundary of object Mi, contained in the freespace F .

Consider again the example shown in Fig. 1. The first step
of the assembly requires the robot to move object M1 to `2
which, however, is occupied by the object M2. In this case,
instead of reporting that the assigned LTL formula cannot
be satisfied, we allow the robot to temporarily pause the
command execution from the symbolic controller, switch to a
Fix mode and push object M2 away from `1, before resuming
the execution of the action instructed by the symbolic con-
troller. For plan fixing purposes, we introduce a fourth action,
DISASSEMBLEOBJECT(Mi,x

∗), invisible to the symbolic
controller, instructing the robot to push the object Mi (after
it has been grasped using GRASPOBJECT) toward a position
x∗ on the boundary of the freespace until specific separation
conditions are satisfied. Hence, an additional responsibility
of the interface layer (when in Fix mode) is to pick the
next object to be grasped and disassembled from a stack
of blocking movable objects BM, as well as the target x∗

of each DISASSEMBLEOBJECT action, until the stack BM
becomes empty4; see Section V-B. Note that if the robot
executes a RELEASEOBJECT action before switching to the
Fix mode, the interface layer instructs it to first disassemble
the carried object Mi and, after disassembling all objects in
BM, switch back to the LTL mode by re-grasping Mi.

Finally, the interface layer (a) requests a new action from
the symbolic controller, if the robot successfully completes
the current action execution, or (b) reports that the currently
executed action is infeasible and requests an alternative ac-
tion, if the topology checking module outlined in Section V-
A determines that the target is surrounded by fixed obstacles.

V. SYMBOLIC ACTION IMPLEMENTATION

In this Section, we describe the online implementation of
our symbolic actions, assuming that the robot has already
picked a target x∗ using the interface layer from Section IV.
As reported above, in the LTL mode, the robot executes
commands from the symbolic controller, using one of the
actions MOVE, GRASPOBJECT and RELEASEOBJECT. The
robot exits the LTL mode and enters the Fix mode when
one or more movable objects block the target destination

4The exclusion of the negation operator from the LTL syntax, as assumed
in Section II, guarantees that each DISASSEMBLEOBJECT action will not
interfere with the satisfaction of the LTL formula φ, e.g., the robot will not
disassemble an object that should not be grasped or moved.



x∗; in this mode, it attempts to rearrange blocking movable
objects using a sequence of the actions GRASPOBJECT and
DISASSEMBLEOBJECT, before returning to the LTL mode.

The “backbone” of the symbolic action implementation is
the reactive, vector field motion planner from prior work [7],
allowing either a fully actuated or a differential-drive robot to
provably converge to a designated fixed target while avoiding
all obstacles in the environment. When the robot is gripping
an object i, we use the method from [43] for generating
virtual commands for the center xi,c of the circumscribed
disk with radius (ρi+ r), enclosing the robot and the object.
Namely, we assume that the robot-object pair is a fully
actuated particle with dynamics ẋi,c = ui,c(xi,c), design our
control policy ui,c using the same vector field controller, and
translate to commands u = (v, ω) for our differential drive
robot as u := Ti,c(ψ)

−1 ui,c, with Ti,c(ψ) the Jacobian of
the gripping contact, i.e., ẋi,c = Ti,c(ψ)u.

This reactive controller assumes that a path to the goal
always exists (i.e., the robot’s freespace is path-connected),
and does not consider cases where the target is blocked
either by a fixed obstacle or a movable object5. Hence,
here we extend the algorithm’s capabilities by providing
a topology checking algorithm (Section V-A) that detects
blocking movable objects or fixed obstacles, as outlined in
Fig. 2. Based on these capabilities, Section V-B describes
our symbolic action implementations. Appendix II in [41]
includes a brief overview of the reactive, vector field motion
planner, and Appendix III in [41] includes an algorithmic
outline of our topology checking algorithm.

A. Topology Checking Algorithm

The topology checking algorithm is used to detect
freespace disconnections, update the robot’s enclosing
freespace Fe, and modify its action by switching to the
Fix mode, if necessary. In summary, the algorithm’s input
is the initially assumed polygonal enclosing freespace Fe

for either the robot or the robot-object pair, along with all
known dilated movable objects in M and fixed obstacles in
PI (corresponding to the index set I of localized familiar
obstacles). The algorithm’s output is the detected enclosing
freespace Fe, used for the diffeomorphism construction in
the reactive controller [7], along with a stack of blocking
movable objects BM and a Boolean indication of whether
the current symbolic action is feasible. Based on this output,
the robot switches to the Fix mode when the stack BM be-
comes non-empty, and resumes execution from the symbolic
controller once all movable objects in BM are disassembled.
A detailed description is given in [41, Appendix III].

B. Action Implementation

We are now ready to describe the used symbolic actions.
The symbolic action MOVE(`j) simply uses the reactive
controller to navigate to the selected target x∗, as de-
scribed in [41, Appendix II]. Similarly, the symbolic action
GRASPOBJECT(Mi) uses the reactive controller to navigate

5The possibility of an entirely unknown blocking convex obstacle is
precluded by our separation assumptions in Section II.
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Fig. 3: Demonstration of local LTL plan fixing, where the task is to navigate
to region 1, captured by the LTL formula φ = ♦πa1(∅,`1) where `1 refers
to region 1 in the figure. (a) The robot starts navigating to its target, until
it localizes the two rectangular obstacles and recognizes that the only path
to the goal is blocked by a movable object. (b) The robot switches to the
Fix mode, grips the object, and (c) moves it away from the blocking region,
until the separation assumptions outlined in Section V-B are satisfied. (d) It
then proceeds to complete the task.

to a collision-free location on the boundary of object Mi,
and then aligns the robot so that its gripper faces the
object, in order to get around Brockett’s condition [44].
RELEASEOBJECT(Mi, `j) uses the reactive controller to
design inputs for the robot-object center xi,c and translates
them to differential drive commands through the center’s
Jacobian Ti,c(ψ), in order to converge to the goal x∗.

Finally, the action DISASSEMBLEOBJECT(Mi,x
∗) is

identical to RELEASEOBJECT, with two important differ-
ences. First, we heuristically select as target x∗ the middle
point of the edge of the polygonal freespace F that maxi-
mizes the distance to all other movable objects (except Mi)
and all regions of interest `j . Second, in order to accelerate
performance and shorten the resulting trajectories, we stop
the action’s execution if the robot-object pair, centered at xi,c

does not intersect any region of interest and the distance
of xi,c from all other objects in the workspace is at least
2(r +maxk∈BM ρk), as this would imply that dropping the
object in its current location would not block a next step of
the disassembly process. Even though we do not yet report
on formal results pertaining to the task sequence in the Fix
mode, the DISASSEMBLEOBJECT action maintains formal
results of obstacle avoidance and target convergence to a
feasible x∗, using our reactive, vector field controller.

VI. ILLUSTRATIVE SIMULATIONS

In this Section, we implement simulated examples of dif-
ferent tasks in various environments using our architecture,
shown in Fig. 2. All simulations were run in MATLAB
using ode45, leveraging and enhancing existing presentation
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Fig. 5: An illustrative execution of the problem depicted in Fig. 1. The
task, specified by the LTL formula (1), requires the counterclockwise rear-
rangement of 3 objects in an environment cluttered with some unanticipated
familiar (initially dark grey and then black upon localization) and some
completely unknown (light grey) fixed obstacles.

infrastructure6. The discrete controller and the interface
layer are implemented in MATLAB, whereas the reactive
controller is implemented in Python and communicates with
MATLAB using the standard MATLAB-Python interface.
For our numerical results, we assume perfect robot state
estimation and localization of obstacles using the onboard
sensor, which can instantly identify and localize either the
entirety of familiar obstacles or fragments of unknown ob-
stacles within its range7. The reader is referred to the accom-
panying video submission for visual context and additional
simulations.

A. Demonstration of Local LTL Plan Fixing

Fig. 3 includes a demonstration of a simple task, encoded
in the LTL formula φ = ♦πa1(∅,`1), i.e., eventually execute
the action MOVE to navigate to region 1, demonstrating how

6See https://github.com/KodlabPenn/semnav_matlab.
7The reader is referred to [7], [34] for examples of physical realization of

such sensory assumptions, using a combination of an onboard camera for
obstacle recognition and pose estimation, and a LIDAR sensor for extracting
distance to nearby obstacles.

the Fix mode for local rearrangement of blocking movable
objects works.

B. Executing More Complex LTL Tasks

Fig. 4 includes successive snapshots of a more complicated
LTL task, captured by the formula

φ = ♦(πa1(∅,`1)∧♦(πa1(∅,`2)∧♦(πa2(M1,∅)∧♦πa3(M1,`3))))

which instructs the robot to first navigate to region 1, then
navigate to region 2, and finally grasp object 1 and move it to
region 3, in an environment cluttered with both familiar non-
convex and completely unknown convex obstacles. Before
navigating to region 1, the robot correctly identifies that the
movable object disconnects its freespace and proceeds to
disassemble it. After visiting region 2, it then revisits the
movable object, grasps it and moves it to the designated
location to complete the required task. The reader is referred
to the video submission for visual context regarding the
evolution of all planning spaces [7] (semantic, mapped and
model space) during the execution of this task, as well
as several other simulations with more movable objects,
including (among others) a task where the robot needs to
patrol between some predefined regions of interest in an
environment cluttered with obstacles by visiting each one
of them infinitely often.

C. Execution of Rearrangement Tasks

Finally, a promising application of our reactive architec-
ture concerns rearrangement planning with multiple movable
pieces. Traditionally, such tasks are executed using sampling-
based planners, whose offline search times can blow up
exponentially with the number of movable pieces in the envi-
ronment (see, e.g., [19, Table I]). Instead, as shown in Fig. 5,
the persistent nature of our reactive architecture succeeds
in achieving the given task online in an environment with
multiple obstacles, even though our approach might require
more steps and longer trajectories in the overall assembly
process than other optimal algorithms [17]. Moreover, the
LTL formulas for encoding such tasks are quite simple to
write (see (1) for the example in Fig. 5), instructing the robot
to grasp and release each object in sequence; the reactive
controller is capable of handling obstacles and blocking
objects during execution time. Our video submission includes
a rearrangement example with 4 movable objects, requiring
more steps in the assembly process.

VII. CONCLUSION

In this paper, we propose a novel hybrid control architec-
ture for achieving complex tasks with mobile manipulators
in the presence of unanticipated obstacles and conditions.
Future work will focus on providing end-to-end (instead
of component-wise) correctness guarantees, extensions to
multiple robots for collaborative manipulation tasks, as well
as physical experimental validation.
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