
 
 
 
 
 
 

 

Título artículo / Títol article: 

 

 

 

Manipulation primitives: A paradigm for 
abstraction and execution of grasping and 
manipulation tasks 

 

 

Autores / Autors 

 

 

 
Felip León, Javier ; Laaksonen, J. ; Morales 
Escrig, Antonio ; Kyrki, V.  
 

 

Revista: 

 

 

 
Robotics and Autonomous Systems Volume 61, 
Issue 3, March 2013 

 

Versión / Versió:  

 
Preprint de l’autor 
 

 

Cita bibliográfica / Cita 

bibliogràfica (ISO 690): 

 

 

 
FELIP, Javier, et al. Manipulation primitives: A 
paradigm for abstraction and execution of 
grasping and manipulation tasks. Robotics and 
Autonomous Systems, 2013, 61.3: 283-296. 
 

 

url Repositori UJI: 

 

 

 
http://hdl.handle.net/10234/84089 

 

http://repositori.uji.es/xmlui/browse?type=author&value=Felip%20Le%C3%B3n,%20Javier
http://repositori.uji.es/xmlui/browse?type=author&value=Laaksonen,%20J.
http://repositori.uji.es/xmlui/browse?type=author&value=Morales%20Escrig,%20Antonio
http://repositori.uji.es/xmlui/browse?type=author&value=Morales%20Escrig,%20Antonio
http://repositori.uji.es/xmlui/browse?type=author&value=Kyrki,%20V.
http://hdl.handle.net/10234/84089


Manipulation Primitives: A Paradigm for Abstraction

and Execution of Grasping and Manipulation Tasks

J. Felipa,∗, J. Laaksonenb, A. Moralesa, V. Kyrkib,c

aRobotic Intelligence Laboratory, Universitat Jaume I, 12006 Castellón, Spain
bDepartment of Information Technology, Lappeenranta University of Technology,

P.O. Box 20, 53851 Lappeenranta, Finland
cDepartment of Automation and Systems Technology, Aalto University,

P.O. Box 15500, 00076 Aalto, Finland

Abstract

Sensor-based reactive and hybrid approaches have proven a promising line of
study to address imperfect knowledge in grasping and manipulation. How-
ever the reactive approaches are usually tightly coupled to a particular em-
bodiment making transfer of knowledge difficult.

This paper proposes a paradigm for modeling and execution of reactive
manipulation actions, which makes knowledge transfer to different embodi-
ments possible while retaining the reactive capabilities of the embodiments.
The proposed approach extends the idea of control primitives coordinated by
a state machine by introducing an embodiment independent layer of abstrac-
tion. Abstract manipulation primitives constitute a vocabulary of atomic,
embodiment independent actions, which can be coordinated using state ma-
chines to describe complex actions. To obtain embodiment specific models,
the abstract state machines are automatically translated to embodiment spe-
cific models, such that full capabilities of each platform can be utilized.

The strength of the manipulation primitives paradigm is demonstrated
by developing a set of corresponding embodiment specific primitives for ob-
ject transport, including a complex reactive grasping primitive. The robust-
ness of the approach is experimentally studied in emptying of a box filled

∗Corresponding author.
∗∗Current address: Aalto University, Department of Automation and Systems Technol-

ogy, P.O. Box 15500, 00076 Aalto, Finland.
Email addresses: jfelip@uji.es (J. Felip), jonna.e.laaksonen@gmail.com (J.

Laaksonen), Antonio.Morales@uji.es (A. Morales), ville.kyrki@aalto.fi (V. Kyrki)

Preprint submitted to Robotics and Autonomous Systems February 19, 2014



with several unknown objects. The embodiment independence is studied by
performing a manipulation task on two different platforms using the same
abstract description.

Keywords: sensor-based grasping and manipulation, abstraction

1. Introduction

Robots operating in unstructured service scenarios need to operate ro-
bustly despite incomplete and uncertain information about their environ-
ment. Seminal works on reactive control [1, 2] demonstrated that the use
of several low-level perception/actuation loops enable robots to adapt to
unknown scenarios. These approaches were soon extended by incorporating
high-level planners prioritizing the available reactive behaviours, giving birth
to hybrid deliberative/reactive control [3, 4].

In complete contrast to reactive approaches, manipulation and grasping
has been traditionally addressed through planning of contact states. Meth-
ods, such as grasp quality metrics based on form and force closure, are very
powerful when the uncertainty in robot and environment models is minimal.
However, in service robotics manipulation scenarios, uncertainties appear in
many quantities, for example, inaccurate knowledge about the poses of ob-
jects and obstacles, incomplete models of object shape and physical proper-
ties, or inaccurate kinematics in flexible robots. To address these issues, there
are a few works using the reactive paradigm. One of the earliest works in
reactive grasping proposed the use of a light beam sensor to align the gripper
with an unknown object [5]. More recently, solutions such as IR proximity
sensors [6], tactile sensors [7, 8], and force and tactile feedback [9] have been
proposed. In contrast to traditional grasp planning, these approaches aim
to adapt the robot hand to the shape of the target object reactively instead
of placing contacts in planned locations. As a consequence, exact models
of objects are not required, which is a great strength of these approaches.
Reactive manipulation approaches are usually, however, specific to a partic-
ular embodiment, which makes it difficult to transfer plans between different
embodiments and even from humans to robots.

This paper proposes a paradigm for modeling and execution of reactive
manipulation which describes manipulation tasks in terms of atomic primi-
tives coordinated by a state machine. The approach extends earlier works by
introducing an embodiment independent layer of abstraction. The abstrac-

2



tion offers several advantages. Firstly, complex actions can be described in
terms of simple abstract primitives. Secondly, plans can be shared over dif-
ferent embodiments because the vocabulary of primitives is shared. Thirdly,
manipulation primitives offer high-level planners a vocabulary of reliable ac-
tions onto which build manipulation plans, thus simplifying and robustifying
planning. Finally, these abstract models can be translated to embodiment
specific models, constituting of reactive sensor-based controllers, such that
the full capabilities of each platform can be utilised.

While the idea of coordination of control primitives using a state ma-
chine has been known for a long time, few works have considered what kind
of primitives would be needed for typical manipulation tasks. To flesh out
the abstract primitives, we present a complete set of reactive manipulation
primitives for an arm manipulator equipped with a wrist force sensor and a
three-fingered hand equipped with tactile sensors. In particular, we present
a complex reactive grasping primitive for which the robustness against in-
accuracies in the planning of action is studied. Moreover, we study the use
of several primitives in solving a complex task in the scenario of emptying
a box filled with several unknown objects blindly. Finally, we look into the
power of the embodiment independent abstract primitives in the scenario
where two different platforms with different hardware capabilities are used
to complete a manipulation task using the same abstract description.

The experiments demonstrate the potentials of manipulation primitives
in two main aspects. Firstly, according to our experiments, primitives are
an effective way to address complex manipulation tasks in a robust man-
ner. Secondly, a primitive based vocabulary is an effective way of trans-
ferring knowledge and plans between embodiments. In practical terms, the
developed manipulation primitives are demonstrated to work robustly in the
presence of unknown conditions in the execution of a complex task, and the
transferring of a manipulation task to two different embodiments following
the paradigm of manipulation primitives is shown to be successful.

1.1. Related work

The idea of control primitives is not new in robotics, and particularly
in robot grasping. Earlier works propose individual control primitives for
different problems such as to control a hand [10], to define object movements
[11] and its relations [12] and to control a manipulator [13]. Despite different
definitions of primitives, all of them present a common trend, discretizing
and reducing the complexity of controlling a robotic setup by reducing the

3



search space for planning. Other similar approaches include Object Action
Complexes [14] and the physical interaction framework of [15]. However, in
contrast to this work, all of the above consider primitives which are specific
to a particular embodiment.

An apparently similar concept are Dynamic Movement Primitives (DMPs)
introduced by Schaal et al. [16]. DMPs describe motion trajectories by means
of differential equations, which can be adapted to several situations by ad-
justing a few of the equation parameters and are deeply interlinked with
motor control. This framework has proved to be very effective to represent
standardized arm movements, which can be learned by human observation
or demonstration[17], and can even be adapted reactively as the scene is
observed to change. However, they are basically different idea of primitives
presented in this paper. DMPs are focused on motion description in a lower
level, while our primitives describe robot manipulation skills.

An alternative approach to address the problem of unknown environment
is to use sensors, for example vision, to build the necessary models. Vision
has been used to obtain the shape of unknown target objects [18, 19] and
to determine the location and pose of objects [20]. In both cases, visual
input was used to plan feasible grasps. Visual feedback can also be used
during reaching for an object. Murphy et al. [21] uses visual techniques to
correct the orientation of a four-finger hand while approaching an object to
improve contact locations. Once contact between object and robot has been
reached, tactile and force sensors can be applied. Tactile measurements can
be used to estimate the quality of grasps [22, 23, 24, 25] or the shape of
an object [26] with the purpose of reaching better contact locations through
a sequence of grasping/regrasping actions. Contact information can also
be used to program complex dexterous manipulation operations like finger
repositioning while holding the object [22, 27]. Several works have combined
the use of several sensors to complete the process of grasp planning and
execution [28, 29]. An early version of the grasping primitive presented in
this paper was presented in [9]. To our knowledge, this paper is the first
to consider primitives for the whole object transport cycle. Moreover, the
grasp primitive is the first to propose a reactive controller able to grasp
any type of rigid object, without taking any types of assumptions. It does
it by combining three different reactive phases: hand alignment, collision
with supporting surface, and grasp force adaptation. Please note that some
solutions to some of this problems have been recently presented [30].

Finally, few studies have addressed the issue of abstracting hardware from

4



action. Petersson and Christensen presented a somewhat similar framework
in [31] but to our knowledge that framework has never been demonstrated in
practice with multiple embodiments. Earlier version of the framework pre-
sented here appeared in [32]. Finally, Ellenberg et al. studied how algorithms
for humanoid robot walking can be transferred between embodiments [33].
Recently, the RoboEarth project has proposed a web platform for sharing
environment models as well as action “recipes” between multiple robots us-
ing Ontology Web Language (OWL) [34]. However, to our knowledge, the
work presented here is the most advanced in demonstrating in practice the
performing of abstract actions across multiple embodiments.

1.2. Paper outline

The paper is structured as follows. We now continue by defining the
concepts and terminology used through the paper in Sec. 2. Then, Sec. 3 de-
scribes the abstraction first conceptually and then its implementation. Sec. 4
presents manipulation primitives, that is sensor-based controllers, on a spe-
cific platform, the UJI robot embodiment. Experiments in Sec. 5 study the
different aspects of the proposed approach. In Sec. 6 we discuss about the
limitations and pitfalls. Finally, we conclude and give remarks for future
work in Sec. 7.

2. Manipulation primitives framework

We define a manipulation primitive as a single reactive controller designed
to perform a specific primitive action on a particular embodiment. Each
primitive is parameterized to allow it to be used in different situations. A
focused control policy which uses the available sensor feedback is then used
to achieve predefined success or failure conditions.

Primitives are parameterizable, thus, a task planner requires some in-
formation (i.e. parameters) to tune and instantiate actions to the specific
situation. The description of such a planner is out of the scope of this pa-
per but its outcome must be a composition of primitive instances to address
the current scenario. Finally, primitives can finish with several degrees of
accomplishment, which in its more simple expression would be a value from
the pair Success/Failure.

Primitives are the elementary symbols of a vocabulary that is used to
describe actions and tasks. A task is a semantically meaningful goal, such
as emptying a grocery bag, consisting of one or more actions. Each action

5



Abstract primitive Parameters Meaning
move trajectory, move type Move without object.

transport trajectory, move type Move with object.
place trajectory, move type Place down object.
push trajectory, move type Push object.
grasp preshape Grasp object.
release Release object.

Table 1: Abstract primitives and parameters (optional parameters in italic).

describes a single manipulation action, for example, moving an object from
one location to another, as a Finite State Machine (FSM) where the states
correspond to manipulation primitives. The transitions between states are
triggered by predefined events, which correspond to perceptual or internal
conditions. It must be noted that besides FSMs, other approaches exist for
combining primitives in sequences or in parallel.

Primitives are by definition embodiment specific. However, embodiments
with similar capabilities allow the definition of primitives with similar behav-
ior and purpose, which can be thought as abstract manipulation primitives.
The focused purpose of primitives simplifies the development of equivalent
primitives on several embodiments. This equivalence also enables the trans-
mission and execution of plans between different embodiments. The abstract
manipulation primitives can then be used to describe abstract actions. We
call this abstract representation of an action the Abstract State Machine
(ASM), which is a FSM composed of abstract primitives as their states. The
embodiment specific FSM can be automatically constructed from the ASM
using a mechanism we term translation. The next section describes the ab-
straction and the translation mechanism in more detail.

3. Embodiment independence through abstraction

The set of abstract primitives proposed in this work is shown in Table 1.
This set of abstract actions allows moving objects by grasping or pushing
them and has been found to support many common manipulation actions.
The primitives have required and optional parameters. When the primitives
are instantiated, the required parameters which describe constraints need to
be fulfilled but the optional parameters can be ignored if necessary as their
purpose is to serve as hints how to perform the task.

All primitives except grasp and release are related to arm motions. The
required parameters for these primitives define the target of the motion and

6



Abstract event Meaning
success Primitive successfully completed.

grasp stable Stable grasp detected.
grasp lost Grasp loss detected.
timeout Timeout for specified time.

hardware failure Hardware failure detected.

Table 2: Abstract events.

the type of the motion. The motion target can be a single waypoint or a
trajectory represented as a set of waypoints, but defining a strict trajectory
to be followed should be avoided when not made necessary by the task to
allow each embodiment to use its own capabilities in the best possible way.
Defining only the end waypoint is usually sufficient from the task perspective
and leaves the freedom for the embodiment to choose a collision free path
for that particular embodiment. In addition to the motion target, the type
of motion is specified. Supported motion types include free, guarded, and
constrained motions. In free motion, the embodiment is free to use any path
to reach the target. In a guarded motion, the embodiment is required to use
a Cartesian straight line path. In a constrained motion, rotational degrees
of freedom can be constrained to remain the same for the duration of the
motion. This is useful, for example, to transport containers with liquid. The
underlying idea in the required parameters is thus to constrain the effects of
a primitive rather than the ways to achieve them.

The grasp primitive allows to use an optional parameter to choose the
grasp preshape. Currently supported preshapes in the implementation in-
clude parallel and cylindrical grasps. Because the parameter is optional, it
can be ignored by a platform which does not support a particular grasp type.
In that case, the primitive is likely to be translated to the closest possible
grasp available.

To allow the embodiment independent description of series of primitives,
the state transitions need also to be described in an abstract fashion. This
is done using abstract events shown in Table 2. The events are related
to completing a primitive successfully (success), grasp stability (grasp stable,
grasp lost), and failure conditions (timeout, hardware failure). Each platform
is again free to use the available sensor set in any possible way to detect these
events.

It should be noted that the primitives and events at the abstract level are
not coupled to any particular embodiment. An important note here is that

7



the sets of abstract primitives and events need to be rich enough in order
to allow wide use of sensors in the embodiment specific controllers, while at
the same time it is important to keep the semantic meanings of the abstract
entities clear to allow the mapping between abstract and platform specific
sensor events and controllers.

3.1. Abstract State Machine

The abstract state machine is a hardware independent description of a
manipulation action. XML (eXtensible Markup Language) is used to describe
the relevant information, such as the states related to the abstract primitives
and the transitions related to the abstract events. In addition to states and
transitions, information about the environment such as obstacles and the
location, mass and approach direction to the target object are included in
the abstract state machine description. All the properties and definitions
in XML are hardware independent.

The abstract state machine is described through definition of states and
transitions between the states. Both states and transitions have properties
that can be used to further inform of the intended action. The most impor-
tant state property is type, corresponding to one of the primitives introduced
above, “success”, or “failure”. The two latter types indicate end states of
an action (terminating states of the state machine) with either success or
failure reported to the higher level controller. In addition, the parameters
of the primitives are specified as state properties. For example, the hand
preshape for grasping or the target position of the end-effector can be set
through state properties. The transition properties describe the set of ab-
stract events which trigger the transition. For example, the loss of a grasp
can trigger a transition to another state.

The attributes are the key factor in selecting the primitive controllers
during the translation process depicted in 3.2. An example abstract state
machine and its XML definition, describing a simple grasp and lift manipu-
lation, is shown in Figs. 1 and 2. Some of the elements have been left out for
brevity, e.g. properties of the object and some of the common transitions, e.g.
timeout to the failure state. It should be noted that the state machine does
not need to be a sequence or a tree but it can be any directed graph, how-
ever, the simple form in the example is used to limit the size of the associated
XML code shown.

8

























Figure 1: An abstract state machine.

<statemachine>
<s t a t e name=”approach ” type=”move”>

<movement>free</movement>
<hand shape>open</hand shape>

</ s t a t e>
<s t a t e name=”preshape hand ” type=”move”>

<movement>g u a r d e d</movement>
<hand shape>p i n c h _ g r a s p _ p r e s h a p e</

hand shape>
</ s t a t e>
<s t a t e name=” g r a sp ob j e c t ” type=”grasp ”>

<movement>g u a r d e d</movement>
<hand shape>p i n c h _ g r a s p</hand shape>

</ s t a t e>
<s t a t e name=” l i f t o b j e c t ” type=” t ran spor t

”>
<movement>g u a r d e d</movement>
<hand shape>p i n c h _ g r a s p</hand shape>
<path>

<po s i t i on>0 . 2 0 . 6 0.25</ po s i t i on>
</path>

</ s t a t e>
<s t a t e name=” succes s end ” type=” suc ce s s ”>
</ s t a t e>
<s t a t e name=” f a i l e n d ” type=” f a i l u r e ”>
</ s t a t e>

<t r a n s i t i o n o r i g i n=”approach ”
d e s t i na t i on=”preshape hand”>
<s ucc e s s />

</ t r a n s i t i o n>
<t r a n s i t i o n o r i g i n=”preshape hand”

d e s t i na t i on=” g r a sp ob je c t ”>
<s ucc e s s />

</ t r a n s i t i o n>
<t r a n s i t i o n o r i g i n=” g r a sp ob j ec t ”

d e s t i na t i on=” l i f t o b j e c t ”>
<s ucc e s s />
<g r a sp s t a b l e />

</ t r a n s i t i o n>
<t r a n s i t i o n o r i g i n=” l i f t o b j e c t ”

d e s t i na t i on=” f a i l e n d ”>
<g r a s p l o s t />
</ t r a n s i t i o n>
<t r a n s i t i o n o r i g i n=” l i f t o b j e c t ”

d e s t i na t i on=” succes s end ”>
<s ucc e s s />
<g r a sp s t a b l e />

</ t r a n s i t i o n>
</ statemachine>

Figure 2: An abstract state machine in XML.

9

























(a)


















 






(b)

Figure 3: (a) Translation process. (b) Relationship and communication of the translator
and factory.

3.2. Translation from ASM to FSM

The translation process connects the abstract state machine and the em-
bodiment specific state machine (FSM). The translation takes the abstract
state machine as an input, and translates the abstract state machine into
an embodiment specific state machine. The high-level translation process is
depicted in Fig. 3(a).

As can be seen in Fig. 3(a), the translation component needs input defin-
ing the configuration of the translation process, i.e., the target platform and
the platform specific transitions and primitive controllers used directly in the
embodiment specific state machine. The benefit of this arrangement is that
the only hardware dependent blocks shown in the figure are the primitive
controllers and transitions that are platform specific. The critical require-
ment of real-time operation for sensor-based control is also fulfilled as the
embodiment specific state machine can be run as is, without any additional
overhead from maintaining hardware independence.

The translation process requires a mapping component which produces
the embodiment specific state machine from the abstract automaton. In our
case the mapping component is constructed from two sub-components, shown
in Fig. 3(b). The first part, translator, consists of necessary book-keeping and
the internal logic that is independent from the embodiment. The translator

10



also constructs the final finite state machine which is used to execute the
desired abstract action. The second part, factory, handles the embodiment
specific construction of the states and the transitions of the finite state ma-
chine, i.e., the sensor based primitive controllers and transition conditions.
This division was made to reduce the implementation time of the factory,
which needs to be implemented for each different embodiment. The rela-
tion and the communication between these two sub-components are shown
in Fig. 3(b). The factory also receives object and environment information
of the ASM in addition to a particular state or event and its properties.
This gives the factory the complete information needed for the primitive
controllers and transition conditions. The translation process proceeds as
shown in the figure. First, each of the abstract states is mapped indepen-
dently by the factory to a suitable embodiment specific primitive controller.
Then, the abstract events (transitions) are processed in a similar fashion.

The embodiment specific factory uses abstract primitive parameters and
environment information to choose a suitable embodiment specific controller
and its parameters. Typically, each type of abstract primitive is mapped to a
certain corresponding embodiment specific primitive, although it is possible
that this relation is not one-to-one or even static. For example, it is possible
to map different abstract arm movement primitives to a single embodiment
specific primitive if that primitive can be parametrized in a suitable fashion,
as we show in Sec. 4. In addition to choosing the type of the controller,
the factory can deliver embodiment specific parameters to the controller.
These can be used, for example, to communicate a collision free path for
that particular embodiment. Thus, in this case, the factory will also act as
an embodiment specific path planner. A similar process is in place for the
transition events, that is, the factory produces computation nodes for sensor
processing which use the available sensors of each embodiment to detect the
events.

For free motions in a collision free space and guarded motions, common
primitive controllers can be used over several embodiments. This is possi-
ble by having common control and sensor interfaces for the arm, which in
our case perform either Cartesian or joint space velocity control. Thus, we
can use primitive controllers that use the arm velocity control for all hard-
ware platforms without modifications just by setting appropriate parameters
through the embodiment specific factory. The same applies to the transition
conditions, for example a timeout transition condition can be used across all
platforms as the condition relies on measurement of time which should be

11



available in every platform.
The rules that are observed in the translation process are simple:

• Each state in the ASM must correspond to one state in the FSM.

• Each transition in the ASM must correspond to one transition in the
FSM.

• Each transition condition in the ASM can be represented by one or
more transition conditions in the FSM.

These rules ensure that the execution of the FSM can be traced back to the
original abstract state machine. This allows the system to report back failures
to higher level so that the higher level system operating on the abstract
state machine is able to reason using the same concepts. The possibility
to represent an abstract transition condition by more than one embodiment
specific ones allows, for example, to check the success of multiple primitive
controllers, such as separate arm and hand controllers, with a single success
transition condition in the ASM.

While the translator component is universal across all embodiments, the
factory component needs to be built specifically for each platform. The
complexity of the factory affects the flexibility of the final system. A sim-
ple factory with fixed mappings between abstract and embodiment specific
primitives and events is sufficient for many relatively simple tasks. Complex
factories considering for example path planning for redundant manipulators
or the choice of a grasping primitive among several are possible and discussed
more in Sec. 6. If the factory is unable to find a suitable mapping for any
reason, the mapping fails which is reported back to the task level. However,
it should be noted that the factory is often fairly simple to implement be-
cause there are only a limited number of abstract primitives, event types and
parameters, and the factory needs to consider only one primitive or event of
an abstract action at a time.

4. Sensor-based primitives for manipulation

In order to allow primitives to transfer plans between embodiments, all
the primitives appearing in Table 1 must be instantiated on each specific
embodiment. This section describes such an instantiation for a platform
consisting of an arm manipulator with a wrist force/torque sensor and a

12



Abstract UJI Other parameters Control and sensor requirements
Grasp Robust grasp Pregrasp size, grasp preshape Arm control, FT and tactile sensors
Move Transport - Arm control
Push Transport - Arm control

Transport Transport Obstacles, trajectory, constraints Arm control
Place Place Contact threshold Arm control, Force-torque sensor
Slide Slide Slide force threshold Arm control, Force-torque sensor

Release Release Hand position Arm control

Table 3: Mapping of abstract primitives to UJI’s implementation, parameters and require-
ments.

three-fingered hand with tactile sensors. A more detailed description of the
platform can be found in Sec.5.

The result of the instantiation of the abstract primitives defined in Table
1 is a set of sensor-based primitives which can be found in Table 3. In this
table it can be noted that three abstract primitives Move, Push and Trans-
port have been instantiated through a single embodiment specific primitive,
Transport. The behaviour of the latter primitive can be modulated through
the parameters to produce the behaviour expected for each abstract primi-
tives. More details of this primitive are given in Sec. 4.2.

All of the embodiment specific primitives accept the parameters specified
in Table 1. In addition, some of implemented primitives accept several op-
tional parameters which have not been specified in the abstract description.
The purpose of these parameters is to provide more complete and flexible
primitives. In any case the translation process will not use them.

The abstract events shown in Table 2 are mapped one to one, there are
no parameters that can be tuned to change their behavior or meaning. The
platform dependent implementation, exploits where possible, the available
sensors to detect the events. On the other hand, as explained in Sec. 3.2,
there are events that can be platform independent and can use the same
implementation for any platform, e.g. timeout.

The rest of the section is devoted to describing the sensor-based primitives
in detail.

4.1. Grasp primitive

The simplest implementation of grasp primitive would consist of closing
the robot hand. It has, however, been demonstrated that by using sensor
based methods the success rate of this primitive can be increased significantly

13




















































Figure 4: Robust grasp primitive. Fz is the force in the Z hand axis, Ty is the torque
on the Y hand axis, T t is the Y torque threshold, Ft is the Z Force threshold, V z is a
velocity in the Z hand frame. V x is a velocity in the X hand frame

[9]. We propose a new sensor based controller that performs several corrective
movements in order to get a stable grasp.

The optional parameters for the implemented grasp primitive are the
pregrasp type (cylindrical, spherical, hook) and size. The instantiation of
the abstract grasp primitive would directly convert the preshape parameter
values into different combination of the pregrasp type and size.

The initial assumption of the grasp primitive is that the hand is facing
the object, at a close distance. If the approaching direction of the hand
would have been carefully planned and the positioning in the vicinity of the
object executed accurately, the hand should only move forward and close to
obtain a stable grasp of the object. This is not often the case, so a series of
corrective movements are performed in order to obtain a robust grasp, see
Fig. 4. These movements are divided into three phases: alignment, sliding
grasp and force adaptation.

The corrections are performed depending on the estimation of the location
of the detected contact, the implementation of this primitive is preshape
independent.

14



(a) (b) (c)

Figure 5: Grasp primitive: Alignment phase. (a)Arm moving towards the object.
(b)Contact generates torque in the wrist. (c)Correction movement is performed.

4.1.1. Alignment
In some situations, the initial approach vector is not pointing to the center

of the object, and thus there is a premature collision during the approaching.
This contact can be detected using a force-torque sensor mounted on the
wrist. Using the torque, the contact point is estimated and a correction is
performed to center the object.

!v =











!vx − !vz if Ty > Ttreshold

−!vx − !vz if Ty < −Ttreshold

!vz otherwise

(1)

Eq. 1 shows the controller that performs the alignment phase of the robust
grasp primitive. Where !v is the resultant velocity that is applied by the
controller to the hand (w.r.t hand frame) and is a combination of !vx =
(Vx, 0, 0) and !vz = (0, 0, Vz). Where Vx and Vz are the parameters that
control the speed of the corrections produced by the controller movements.
Ty is the torque around y-axis from the force sensor. The alignment is finished
when a contact is detected and −Ttreshold ≤ Ty ≤ Ttreshold

An example of this is depicted in Fig. 5. The contact can also be detected
using tactile sensors. Alignment correction improves grasping of objects with
location uncertainty by allowing the hand to align its center with the object.

4.1.2. Sliding grasp
When approaching, the hand makes contact in occasions with the sup-

porting surface instead of the object (See Fig. 6(a)). In this case, closing
the hand can result in unsuccessful grasps especially for small objects. To

15



counter this problem, a sliding correction is used. The corrective movement
consists of moving the hand forwards or backwards depending on the force
sensed along its Z axis while the fingers are closing (see Fig. 6) to maintain
stable, light contact with the supporting plane. When the fingers are no
longer able to close, because the object is grasped or the fingers reach their
joint limits, the sliding grasp control ends. The correction allows grasping
small objects by sliding the fingers on the supporting plane until the object
is securely grasped. Equation 2 describes the arm cartesian velocity control
used meanwhile the fingers are closing where !v is the velocity control sent to
the arm, !vz is a velocity in the Z axis of the hand. Fzsensor is the current
force in Z axis of the hand read by the sensor and Fzthreshold is the force
threshold.

!v =











−!vz if Fzsensor <= −Fzthreshold

0 if − Fzthreshold < Fzsensor < Fzthreshold

!vz if Fzsensor >= Fzthreshold

(2)

The behavior of this correction phase is shown in Fig. 6. The hand starts
closing and when the fingers make contact with the surface, the force they
are applying is detected in the wrist, thus the arm moves back (Fig. 6(a)).
The fingers continue closing and because no contact force is detected, the
arm moves forward (Fig. 6(b)). In Fig. 6(c) the fingers are not able to close
anymore and the sliding grasp ends. In a recent work a similar strategy is
used by Kazemi et. al.[30]

It may happen, if the error is big enough, that the hand closes and one of
the external fingers loose contact with the object. If this happens, the finger
lost corrective movement is triggered, the hand opens and shifts towards the
detected contacts in order to place all the fingers on the object.

4.1.3. Force adaptation
The force of the fingers is increased to improve grasp stability. The prim-

itive ends with a success if at the end the object is still in the hand, detected
with joint angles or contact information.

4.2. Transport primitive

The purpose of the transport primitive is to move the arm to a specified
target position while the hand holds an object. The primitive can also be
used to move the arm without an object.

16



(a) (b) (c)

Figure 6: Grasp primitive: Sliding grasp phase. (a)The fingers contact the table while
closing. Thus the controller sets the velocity to move the hand back. (b)The fingers are
closing and the contact with the table is lost. Vz is set forwards. (c)The hand contacts
the table again but the object is already grasped.

As discussed in Sec. 3.2 this primitive is used in Tombatossals to map
the move, transport and push abstract states to the embodiment dependent
states.

The trajectory to move the arm from the starting point to the target
can be constrained by specifying optional parameters. A trajectory can be
specified as a list of joint positions that define the state of each joint during all
the transport primitive execution. A less restrictive constraint is to specify
the end-effector Cartesian trajectory. Instead of defining the exact trajectory
that the robot must follow, it is also possible to specify position, velocity or
acceleration limits. Equation 3 shows the use of a force-torque threshold
parameter that is used to stop the movement if a collision is detected where
xtarget and xcurrent are the target and current 6D pose vectors.

!v =

{

xtarget − xcurrent if ||Fsensor|| < Fthreshold

0 if ||Fsensor|| >= Fthreshold

(3)

Optional parameters can also be used to describe environment obstacles
as an obstacle point cloud, in which case a force-field [35] based collision
avoidance strategy is used to generate a collision free trajectory from current
to target position maintaining the hand orientation.

For instance, if the task is to transport a mug full of water without pouring
the liquid, acceleration should be constrained to a low value on all axes and
the rotation velocity of the table plane axes should be set to 0 to prevent
tilting the mug. If the target position cannot be reached without breaking
the specified constraints, the primitive ends with a failure. In Fig. 7(c) an

17



(a) (b) (c)

Figure 7: Place (a-b) and transport (c) primitives. (a)Arm moving the object towards the
surface. (b)Contact is detected by force/torque sensor. (c)Example of execution of the
constrained transport primitive from the starting point a to the target point b. Red line:
Standard trajectory. Blue line: Position constrained trajectory.

example of a position constrained trajectory is shown. The convex hull of
the box is defined as forbidden space to define position constraints.

4.3. Place primitive

The place primitive is used to place an object on a supporting plane while
detecting the support on-line using sensor feedback. The arm moves down-
wards until a contact is detected with a force sensor. Equation 4 describes
the control action taken depending on the force sensor readings where !xz

represents a constant predefined velocity on the Z axis of the world. The
primitive ends when the arm stops. This primitive can be configured with
an optional parameter Fthreshold defining the force threshold needed to detect
a contact. An example execution of this primitive is shown in Fig. 7.

!v =

{

!−xz if ||Fsensor|| < Fthreshold

0 if ||Fsensor|| >= Fthreshold

(4)

4.4. Release primitive

Releasing an object can be difficult because the fingers can, while opening,
collide with the supporting plane or other parts of the object (see Fig. 8(a)).
To handle this problem, the release primitive opens the hand slowly while
the arm moves back. The movement of the arm is force-controlled and the
arm only moves back if there is a contact detected between the opening

18



(a) (b) (c)

Figure 8: Release primitive. (a)Hand before opening the fingers. (b)The hand cannot
release the object, the fingers are blocked by the surface. The normal force Fn in each
finger propagates to the wrist. (c)The hand moves back and continues opening the fingers.
The object is released successfully.

fingers and the surface (see Equation 5). The sequence of movements that
this primitive performs is shown in Fig. 8. This primitive can be configured
by setting the target hand position after release and the Fthreshold parameter.

!v =

{

!−vz if Fzsensor < −Fthreshold

0 otherwise
(5)

4.5. Slide primitive

The purpose of the slide primitive is to push an object from the top and
slide it on a surface to a target position.

Equation 6 shows the control law that keeps the force applied to the
object in a desired range while it moves the arm towards the target position.
Only the target position is a required parameter, but the applied force can
be configured by setting a desired force range defined by Fmin and Fmax.

!v =



















xtarget − xcurrent if Fmin < ||Fsensor|| < Fmax

!−xz if ||Fsensor|| <= Fmin

!xz if ||Fsensor|| >= Fmax

0 otherwise

(6)

Fig. 9 shows more graphycally the behavior of this primitive: Using force
control the arm applies a desired force (Fn) to the object, then moves towards

19



(a) (b)

Figure 9: Slide primitive. (a)From the starting position with a hook preshape, the arm
moves down until it touches the object, then it starts moving towards the target. (b)The
object slides over the table from Pi to Pf . The primitive keeps the applied force stable.

a set target, keeping the applied force constant (Fig. 9(a)). The contact fixes
the arm and object movement allowing the robot to slide the object on the
surface from the starting to the target position (Fig. 9(b)).

5. Experimental results

Three experiments have been implemented to validate and illustrate the
usefulness of the manipulation primitives paradigm: validation of the robust
grasp primitive, completion of a manipulation task using a set of the prim-
itives described, and the mapping of the same abstract state machine for
different embodiments. The two first experiments are focused in illustrating
the design of a manipulation primitive and the resolution of a complex task
under this paradigm. The last case is focused on showing that action plans
can be easily transferred between different platforms following the principles
of the manipulation primitives paradigm.

All the experiments have been tested on real robot systems. In all of them
the main experimental platform is Tombatossals, an anthropomorphic torso
with 29 DOF shown in Fig. 13. The platform is composed of two 7 DOF
Mitsubishi PA10 arms. The right arm has a 4 DOF Barrett Hand and the left
arm a 7DOF Schunk SDH2. Both hands are endowed with Weiss Robotics
tactile sensors on the fingertips. Each arm also has a JR3 force-torque sensor
mounted on the wrist. The visual system is composed of a TO40 4 DOF
pan-tilt-verge head unit with two Imaging Source DFK 31BF03-Z2 cameras
and a Microsoft Kinect. For the third experiment a second robot platform

20



consisting of Melfa RV-3SB 6-DOF arm with a Weiss Robotics WRT-102
parallel jaw gripper equipped with tactile sensors has been used.

In the attached video1, we show all the experiments. First the highlights
of the corrections performed by the robust grasp primitive, secondly the
uncut execution of the empty the box task and finally the execution of an
abstract state machine on two different platforms.

5.1. Validation of robust grasp primitive

In order to compare the robust grasp primitive with a non adaptive grasp
controller, we have designed a naive grasping strategy that does not react to
tactile and force data. The naive grasping primitive behaves as follows: The
arm moves forward 10cm or until a contact is detected. Then the hand closes
stopping each finger that detects contact. Finally force is slightly increased
on the distal phalanxes to establish the final grasp.

In order to grasp the objects, the robot needs to detect their pose and plan
a trajectory. For this experiment we have implemented a simple approach
that is well known, fast, stable but not very precise. Using this object pose
estimation will allow the controllers to show its performance under some
uncertainty.

To determine the object position, Kinect RGBD images in combination
with algorithms from the Point Cloud library have been used: The table
plane is segmented out and the remaining points are clustered, the target
object position is determined by the centroid of the leftmost cluster. The
approach vector orientation and its roll are fixed to a top grasp, the approach
vector position is shifted 20cm away from the highest point of the object.

The testbench for both controllers consisted on grasping 10 different
household objects (see Figure 10) 20 times. 10 using the approach vector
given by the visual system and 10 introducing a random uniform error to the
approach vector generated by the visual system. Thus, each controller has
tried 200 grasps.

The error that we have introduced to the approach vectors is uniformly
distributed, 5cm in each axis and 15 degrees around each axis. Figure 11
shows a set of 10 approach vectors for an object after adding the uniform
error.

1A high resolution version of the attached video can be found here: http://jemma.
hut.fi/irgroup/felip_laaksonen_kyrki_morales.mp4

21

http://jemma.hut.fi/irgroup/felip_laaksonen_kyrki_morales.mp4
http://jemma.hut.fi/irgroup/felip_laaksonen_kyrki_morales.mp4


(a) Ball (b) Box (c) Car (d) Cylinder (e) Speaker

(f) Spray (g) Stapler (h) Tape (i) Weight (j) Wood

Figure 10: Set of 10 objects used for testing the robust grasp primitive.

Figure 11: Set of 10 approach vectors after adding the uniform error.

22



stable grasps failures %success
naive 88 12 88%
robust 99 1 99%

naive + error 19 81 19%
robust + error 59 12 59%

Table 4: Grasping experiments overall results after 100 attempts.

Table 4 shows the overall performance of each controller with and without
the additional error. The performance of the robust controller has shown
to be better especially under error conditions. Although the results without
additional error are quite good for both controllers, the robust grasp primitive
outperforms the naive one by more than 10% of success rate.

Figure 12 shows the performance of each controller, with and without
error, for each object of the test set. Under controlled conditions both con-
trollers are able to perform 10 successful grasps out of 10 attempts on eight
of the objects. On the other hand, for some objects, e.g. speaker and weight,
the performance of the naive controller is dramatically reduced (5/20) while
the robust controller keeps its good performance almost intact (19/20). The
main reason of that low performance is that those objects have some prop-
erties, assymetry and thinness, that make them difficult to grasp. On the
other hand the robust grasp primitive is able to adapt to those properties
that cause the naive controller to fail.

Under uncertainty conditions, the robust primitive is able to perform
better than the naive one. As shown in Table 4 under error conditions the
performance of the naive controller drops to 19% while the robust primitive
holds a 59% of robust grasps achieved.

5.2. Emptying a box: Execution of a complex task

To demonstrate that the paradigm is valid for executing complex sensor-
based tasks, we chose the task of emptying a box with no previous information
about the number, location and pose of the objects inside. More precisely, the
assumptions are that the object positions inside the box are not restricted,
objects can be in any position and orientation inside the box, except that
there is some clearance between the objects and the sides of the box. The
object size is defined by the robot hand dimensions so that the objects fit
inside the hand and are thus graspable. The box is set on an even plane inside
the arm workspace. Tombatossals is used as the experimental platform.

23



(a) Grasping performance without error. (b) Grasping performance with error.

Figure 12: Grasping performance after 10 trials per object. Blue: Naive controller, Red:
Robust controller

Figure 13: The experimental robotic platforms, Left: Tombatossals, the UJI humanoid
torso. Right: MELFA robotic setup.

24



The task is solved using a pick and place loop executed for each object.
This loop consists of a sequence of primitives structured and executed as a
Finite State Machine (FSM) as described in Sec. 3.2. The FSM shown in
Fig. 14 includes several of the sensor based manipulation primitives described
in Sec. 2 which are instantiated to direct the robot to pick up an object
from a starting position and place it to a destination position. The required
parameters are the starting approach vector to a target object and the target
position to place it. This procedure is repeated until the box is empty.









































Figure 14: State machine for a pick and place task. Primitives are represented by circles.
External processes are depicted using boxes. Diamond boxes represent conditions that are
checked inside the parent primitive to determine the next transition. Inside each primitive,
some examples of parameters are written in italics.

A key part of this loop is the generation of initial approach vectors. Three
strategies were implemented: random blind, blind exploration and a vision-
based method. In the first one, top-grasp approach vectors are generated
uniformly at random inside the known location of the box. In this case,
ending the whole process is decided by a human observer.

In the blind exploration strategy, the arm moves down until a contact is
detected. If the contact is an object, the approach vector is generated over
that contact location. If the contact is the box bottom the hand starts moving
along the bottom until it detects a contact using the tactile and the force-
torque sensor. As the position of the box is known, proprioception is used
to determine whether the contact is with an object or with the box bottom.
The exploration trajectory followed by the hand is shown in Fig. 16(a). The
task ends after exploring the whole box without finding an object.

25



(a) Original 3D image. (b) Original 3D point
cloud read from
Kinect sensor.

(c) Virtual box back-
ground filtering.
Background points
are colored in gray
and objects are in
green.

(d) Object clustering
and selection.
Background points
are marked in gray,
objects in green, and
the selected cluster
is labeled in red

Figure 15: 3D point cloud segmentation phases.

(a) Hand preshape for exploration and ex-
ploration trajectory.

(b) A possible object layout

Figure 16: Exploration trajectory and object layout.

In the vision-based strategy, the Kinect sensor is used in the same fashion
as in Sec.5.1. Objects are segmented from the environment using a pass-
trough filter using the known box boundaries and clustered as shown in
Fig. 15. The approach vector is determined to approach the centroid of a
randomly chosen cluster from the top. The task ends when there are no
clusters left.

In order to validate the approach we carried out a total of 30 experiments
of emptying a box filled with five unknown objects (see Fig. 16(b)). 10
experiments were performed for each approach vector generation method.
All the methods were able to empty the box successfully 10 times out of 10.
However, several attempts were sometimes needed to grasp an object. The
number of attempts needed to lift an object was recorded. Fig. 17 shows the

26



12345

2

4

6

8

10

12

14

16

18

20

22

24

Objects Remaining

A
tt
e
m

p
ts

 

 

Blind random method
Blind exploration method
Vision method

Figure 17: Average and standard deviation of required attempts depending on the number
of objects remaining. The standard deviation for the blind random method when there is
only one object left is truncated in the picture, its value is 39.32

average number of required attempts depending on the number of objects
remaining in the box as well as the standard deviation.

It is evident from the figure that the vision-based approach vector genera-
tion improves the results over the blind methods, which is hardly surprising.
However, the interesting result is that the blind methods were also able to
complete the task successfully every time. It is important to note that the re-
active grasping primitive plays a crucial role because the generated approach
vectors are quite inaccurate.

5.3. Action mapping to different embodiments

We demonstrate the mapping of the abstract state machine by showing
a pick and place task that needs first clearing the path to the object to be
grasped. This is achieved by developing two simple abstract state machines,
the first to push an object away (see Fig. 18(a)) to clear the path to perform
the second action: a simple pick and place (see Fig. 18(b)). To enable
mapping of the ASM, we implemented the translation component described
in Section 3.2 for two different platforms, Tombatossals and a 6-DOF Melfa
RV-3SB arm with a 1-DOF WRT-102 gripper from Weiss Robotics. The

27



Abstract primitive Control primitive Other parameters Control and sensor requirements
Grasp Grasp Grasp preshape Arm control, tactile sensors
Move Move Trajectory Arm control
Push Move Trajectory Arm control

Transport Transport Trajectory, constraints Arm control, tactile
Place Transport Trajectory, constraints Arm control, tactile
Slide -

Release Release Hand position Arm control

Table 5: Primitives for the Melfa platform.

WRT-102 gripper is based on the PG-70 parallel jaw griper from Schunk.
The implementation included the required platform specific controllers for
the different states in the ASM and the platform specific transitions, as well
as the required configuration information.

While the translation and the different requirements for the primitives
are shown for Tombatossals in Table 3, the same information is available
for the Melfa platform in Table 5. When comparing the two tables, the
Melfa platform does not utilize as much sensor feedback in the primitives
due to the difference in hardware. The primitives for the Melfa platform are,
in general, different from the primitives presented in Section 4 as the SDH
hand integrated into Tombatossals is much more capable in terms of DOFs
for example. The effects of the use of different embodiments can be seen, for
example, in the grasp primitive. The Melfa robot is not able to do any of the
corrections that Tombatossals does, it is only possible to perform the force
adaptation using the tactile sensors.

As a result, shown in Fig. 19, we were able to push away one object
and grasp the second one based only on the sensor data from the hand and
the arm, when given estimates of the pose of the objects. Using the same
abstract state machines for both platforms shows clearly that we are able to
use abstraction and then turn this abstract information to platform specific
primitives and transitions used in the sensor-based control.

In the context of the demonstration we used the same Cartesian con-
trollers for both arms. On the other hand, the hands are too different in
terms of kinematics and sensors so that each hand had its own implemen-
tation of control. Also the transitions for grasp stability or instability were
customized for each of the platforms in order to effectively use the different
sensor capabilities available on the platforms. It should be noted that the
task was nevertheless described using only the abstract description, without
any embodiment specific information.

28




  



(a) Push object abstract state machine.


 











(b) Pick and place abstract state machine.

Figure 18: Abstract state machines tested on UJI and LUT platforms.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 19: Action execution on different platforms, (a)-(e) Melfa RV-3SB with PG70,
(f)-(j) Tombatossals : (a,f) Approach; (b,g) Push; (c,h) Grasp; (d,i) Lift; (e,j) Release.

29



6. Discussion

In the approach presented in this paper, the primitives have been imple-
mented manually for each embodiment. Though all of them are intended
to have the same behaviour and effects, following the principles described in
Sec. 2, their implementation can vary significantly due to the mechanic, kine-
matic, and perceptual differences between embodiments. Especially in the
case of the grasping primitives, the differences in hand construction (number
of fingers, number of joints, number of actuators) and available sensors are on
a level which makes automatic construction of primitives a grand challenge.
In order to better exploit the advantages of each embodiment, it would be
possible to use a more detailed abstract description of the grasping primitive,
for example, differentiating between grasp types such as enveloping grasps,
power grasps, precision grasps, or hook grasps. Nevertheless, the state-of-the
art in grasping does not currently allow this level of abstract information to
be used automatically and therefore each of the grasp flavors would need to
be adapted manually, depending on the hand characteristics. This is the case
especially if the full reactive capabilities of the embodiment are to be used.

On the other hand, primitives related primarily to control of arm motions
can be general so that the same primitive controller can be used on multi-
ple embodiments, as we demonstrated experimentally. However, in order
to enable the full capabilities of an embodiment to be used, the path plan-
ning of the arm motions needs to consider the particular embodiment. This
means that the factory component of the translation process is embodiment
dependent, at least to some extent. Nevertheless, the planning collision free
paths between end-effector poses can be performed using openly available
software libraries and therefore the implementation of the factory is possible
with reasonable effort.

The position of the factory component is central in the approach. While
being outside the scope of this paper, the framework would allow things
such as the choice of a grasp type to be performed by the embodiment spe-
cific factory. Differing capabilities of different embodiments, for example
the size of the workspace, have the effect that there is no way to guarantee
that an abstract plan would be translatable to any embodiment. Without
requiring certain capabilities, it cannot be known with a certainty that a spe-
cific abstract plan can be executed on a specific embodiment. In the longer
term, general principles on how embodiments could automatically instantiate
sensor-based primitives would offer great benefits. This is a grand challenge

30



in itself and possible solutions are outside the scope of the present paper.
However, a complete solution would need to 1) analyse and abstract a skill
performed by an existing system and 2) be able to map the abstract skill to
the present embodiment.

7. Conclusion

This paper studied the capabilities of reactive control primitives in an ab-
straction framework allowing multiple embodiments. From a practical point
of view, the main contributions are threefold. Firstly, a robust reactive grasp
primitive was presented. Experiments verified that the reactive control was
able to recover successfully from significant planning errors. Secondly, it was
shown that the combination of several manipulation primitives could be used
successfully to complete a complex task, emptying a box of unknown objects.
The experimental results showed, not surprisingly, that increased perceptual
capabilities improved the performance. However, a more interesting find-
ing is that even under the worst conditions, in the blind grasping approach
with only tactile feedback, the combination of reactive primitives was usually
able to complete the task successfully, even though the time required was in-
creased. The third and final main contribution is the abstraction framework
and translation mechanism. We showed experimentally that the transfer of
action plans was possible between different system setups while retaining the
specific reactive capabilities of each embodiment.

The results support the paradigm based on reactive manipulation primi-
tives as a good way to not only generate and execute plans in unstructured
and uncertain scenarios, but also as a way to share plans, and more generally,
knowledge, between different embodiments. These results complement recent
results from the RoboEarth project, where similar results have been shown
for the higher level planning without the viewpoint of reactive primitives pre-
sented in this paper. The results encourage us to believe that manipulation
problems can be solved in complex, unstructured scenarios while retaining
hardware independence on a higher level. However, immediate feedback ca-
pabilities seem essential in coping with the complexity of the world.

Many interesting open issues remain for the future. Firstly, the embod-
iment specific primitive controllers currently require careful design for each
embodiment. Procedures which could automatically at least bootstrap the
building of the controllers, or even construct the controllers, would be very
valuable. It seems that the use of machine learning techniques would be an

31



interesting and possibly profitable avenue of research in this direction. This
approach would most likely require high quality simulations of the embodi-
ment in order to provide training data for the learning approaches.

Secondly, unstructuredness and uncertainty can appear at different levels
and in different aspects. The primitives presented here are mostly related
with tolerating uncertainty in object pose and shape. In order to design prim-
itives for other types of uncertainties and unexpected events, other primitive
designs would be necessary, and most importantly a scheme to coordinate
and group different strategies, for example hierarchically, would be necessary.

Over the years, the approaches of robot grasping have split into two
groups of approaches. On one hand, object and planning based robot grasp-
ing focuses on considering a grasp as a set of contact locations on the object
shape, through which manipulation forces are exerted on the object. On
the other hand, hand and control based approaches rely on the capabilities
and constraints of the robot embodiment, focusing on control aspects. The
proposed manipulation primitives paradigm belongs to the latter approach,
considering grasps as starting conditions for the action and letting the con-
trol loop and the real world itself guide the execution. It is the authors’ firm
belief that the inclusion of reactive capabilities is essential in coping with the
whole scope of complexity present in the real world.

Acknowledgements

The research leading to these results has received funding from the Eu-
ropean Community’s Seventh Framework Programme FP7/2007-2013 un-
der grant agreement ICT-215821 and from Academy of Finland under grant
250932.

References

[1] R. Brooks, A robust layered control system for a mobile robot,
Robotics and Automation, IEEE Journal of 2 (1) (1986) 14 – 23.
doi:10.1109/JRA.1986.1087032.

[2] J. Connell, A behavior-based arm controller, Robotics and Automation,
IEEE Transactions on 5 (6) (1989) 784 –791. doi:10.1109/70.88099.

[3] J. Connell, Sss: a hybrid architecture applied to robot navi-
gation, in: Robotics and Automation, 1992. Proceedings., 1992

32

http://dx.doi.org/10.1109/JRA.1986.1087032
http://dx.doi.org/10.1109/70.88099


IEEE International Conference on, 1992, pp. 2719 –2724 vol.3.
doi:10.1109/ROBOT.1992.219995.

[4] R. C. Arkin, Behavior-Based robotics, The MIT Press, 1998.

[5] M. Teichmann, B. Mishra, Reactive algorithms for grasping using a mod-
ified parallel jaw gripper, in: Robotics and Automation, 1994. Proceed-
ings., 1994 IEEE International Conference on, 1994, pp. 1931 –1936
vol.3. doi:10.1109/ROBOT.1994.351179.

[6] K. Hsiao, P. Nangeroni, M. Huber, A. Saxena, A. Y. Ng, Re-
active grasping using optical proximity sensors, in: IEEE Interna-
tional Conference on Robotics and Automation, 2009, pp. 2098 –2105.
doi:10.1109/ROBOT.2009.5152849.

[7] K. Hsiao, S. Chitta, M. Ciocarlie, E. Jones, Contact-reactive grasping
of objects with partial shape information, in: IEEE International Con-
ference on Robotics and Automation, 2010.

[8] D. Gunji, Y. Mizoguch, S. Teshigawara, A. Ming, A. Namiki,
M. Ishikawa, M. Shimojo, Grasping force control of multi-fingered robot
hand based on slip detection sing tactile sensor, in: SICE Annual Con-
ference, 2008, 2008, pp. 894 –899. doi:10.1109/SICE.2008.4654781.

[9] J. Felip, A. Morales, Robust sensor-based grasp primitive for
a three-finger robot hand, in: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems,, 2009, pp. 1811 –1816.
doi:10.1109/IROS.2009.5354760.

[10] T. Speeter, Primitive based control of the utah/mit dextrous
hand, in: Robotics and Automation, 1991. Proceedings., 1991
IEEE International Conference on, 1991, pp. 866 –877 vol.1.
doi:10.1109/ROBOT.1991.131697.

[11] P. Michelman, P. Allen, Forming complex dextrous manipulations from
task primitives, in: Robotics and Automation, 1994. Proceedings.,
1994 IEEE International Conference on, 1994, pp. 3383 –3388 vol.4.
doi:10.1109/ROBOT.1994.351050.

[12] J. Morrow, P. Khosla, Manipulation task primitives for composing
robot skills, in: Robotics and Automation, 1997. Proceedings., 1997

33

http://dx.doi.org/10.1109/ROBOT.1992.219995
http://dx.doi.org/10.1109/ROBOT.1994.351179
http://dx.doi.org/10.1109/ROBOT.2009.5152849
http://dx.doi.org/10.1109/SICE.2008.4654781
http://dx.doi.org/10.1109/IROS.2009.5354760
http://dx.doi.org/10.1109/ROBOT.1991.131697
http://dx.doi.org/10.1109/ROBOT.1994.351050


IEEE International Conference on, Vol. 4, 1997, pp. 3354 –3359 vol.4.
doi:10.1109/ROBOT.1997.606800.

[13] Y. Hasegawa, M. Higashiura, T. Fukuda, Object manipulation co-
ordinating multiple primitive motions, in: Computational Intelli-
gence in Robotics and Automation, 2003. Proceedings. 2003 IEEE
International Symposium on, Vol. 2, 2003, pp. 741 – 746 vol.2.
doi:10.1109/CIRA.2003.1222273.

[14] N. Krger, C. Geib, J. Piater, R. Petrick, M. Steedman, F. Wrgtter,
A. Ude, T. Asfour, D. Kraft, D. Omrcen, A. Agostini, R. Dillmann,
Object-action complexes: Grounded abstractions of sensori-motor pro-
cesses, Robotics and Autonomus Systems 59 (2011) 740 – 757.

[15] M. Prats, P. Sanz, A. del Pobil,
A framework for compliant physical interaction, Autonomous Robots
28 (2010) 89–111, 10.1007/s10514-009-9145-8.
URL http://dx.doi.org/10.1007/s10514-009-9145-8

[16] S. Schaal, Dynamic movement primitives. a framework for motor control in humans and humanoid
Adaptive Motion of Animals and Machines (2006) 261?280.
URL http://www.springerlink.com/index/k132j167h0825381.pdf

[17] S. Schaal, J. Peters, J. Nakanishi, A. Ijspeert, Learning movement prim-
itives, in: P. Dario, R. Chatila (Eds.), Robotics Research, Vol. 15 of
Springer Tracts in Advanced Robotics, Springer Berlin / Heidelberg,
2005, pp. 561–572.

[18] A. Morales, P. Sanz, A. del Pobil, A. Fagg, Vision-based three-finger
grasp synthesis constrained by hand geometry, Robotics and Autonomus
Systems 54 (6) (2006) 496–512.

[19] D. Aarno, J. Sommerfeld, D. Kragic, N. Pugeault,
S. Kalkan, F. Wörgötter, D. Kraft, N. Krüger,
Early reactive grasping with second order 3D feature relations, in:
IEEE Conference on Robotics and Automation (submitted, 2007.
URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.
1.73.2176

34

http://dx.doi.org/10.1109/ROBOT.1997.606800
http://dx.doi.org/10.1109/CIRA.2003.1222273
http://dx.doi.org/10.1007/s10514-009-9145-8
http://dx.doi.org/10.1007/s10514-009-9145-8
http://www.springerlink.com/index/k132j167h0825381.pdf
http://www.springerlink.com/index/k132j167h0825381.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.73.2176
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.73.2176
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.73.2176


[20] P. Azad, T. Asfour, R. Dillmann, Combining appearance-based
and model-based methods for real-time object recognition and 6D-
localization, in: International Conference on Intelligent Robots and Sys-
tems, Beijing, China, 2006.

[21] T. Murphy, D. Lyons, A. Hendriks, Stable grasping with a multi-fingered
robot hand: A behavior-based approach, in: IEEE/RSJ International
Conference on Robotics and Intelligent Systems, Vol. 2, Yokohama,
Japan, 1993, pp. 867–874.

[22] J. Coelho Jr., R. Grupen, A Control Basis for Learning Multifingered
Grasps, Journal of Robotic Systems 14 (7) (1997) 545–557.

[23] R. Platt, A. H. Fagg, R. Gruppen, Nullspace composition of control
laws for grasping, in: IEEE International Conference on Robots and
Intelligent Systems, Lausanne, Switzerland, 2002, pp. 1717–1723.

[24] T. Mouri, H. Kawasaki, S. Ito, Unknown object grasping strategy imitat-
ing human grasping reflex for anthropomorphic robot hand, Journal of
Advanced Mechanical Design, Systems, and Manufacturing 1 (1) (2007)
1–11.

[25] Y. Bekiroglu, J. Laaksonen, J. Jorgensen, V. Kyrki, D. Kragic, Assessing
grasp stability based on learning and haptic data, IEEE Transactions
on Robotics 27 (3) (2011) 616–629.

[26] P. Allen, K. Roberts, Haptic object recognition using a multi-
fingered dextrous hand, Robotics and Automation, 1989. Pro-
ceedings., 1989 IEEE International Conference on (1989) 342–347
vol.1doi:10.1109/ROBOT.1989.100011.

[27] M. Huber, R. Grupen, Robust finger gaits from closed-loop controllers,
IEEE/RSJ International Conference on Robotics and Intelligent Sys-
tems 2 (2002) 1578–1584 vol.2. doi:10.1109/IRDS.2002.1043980.

[28] P. Allen, A. T. Miller, P. Oh, B. Leibowitz, Using tactile and visual sens-
ing with a robotic hand, in: IEEE International Conference on Robotics
and Automation, Albuquerque, New Mexico, 1997, pp. 677–681.

[29] B. J. Grzyb, E. Chinellato, A. Morales, , A. P. del Pobil, Robust grasping
of 3D objects with stereo vision and tactile feedback, in: International

35

http://dx.doi.org/10.1109/ROBOT.1989.100011
http://dx.doi.org/10.1109/IRDS.2002.1043980


Conference on Climbing and Walking Robots and the Support Tech-
nologies for Mobile Machines (CLAWAR), Coimbra, Portugal, 2008, pp.
851 – 858.

[30] M. Kazemi, J.-S. Valois, J. A. D. Bagnell, N. Pollard, Robust object
grasping using force compliant motion primitives, Tech. Rep. CMU-RI-
TR-12-04, Robotics Institute, Pittsburgh, PA (January 2012).

[31] L. Petersson, M. Egerstedtt, H. Christensen, A hybrid control architec-
ture for mobile manipulation, in: Proc. IEEE/RSJ IROS’99, 1999, pp.
1285–1291.

[32] J. Laaksonen, J. Felip, A. Morales, V. Kyrki, Embodiment indepen-
dent manipulation through action abstraction, in: Proceedings of the
IEEE International Conference on Robotics and Automation, Anchor-
age, USA, 2010, pp. 2113 –2118.

[33] R. Ellenberg, R. Sherbert, P. Oh, A. Alspach, R. Gross, J. Oh, A com-
mon interface for humanoid simulation and hardware, in: Humanoid
Robots (Humanoids), 2010 10th IEEE-RAS International Conference
on, 2010, pp. 587 –592. doi:10.1109/ICHR.2010.5686325.

[34] M. Tenorth, A. Perzylo, R. Lafrenz, M. Beetz, The roboearth language:
Representing and exchanging knowledge about actions, objects, and en-
vironments, in: IEEE International Conference on Robotics and Au-
tomation, Saint Paul, MN, USA, 2012.

[35] O. Khatib, Real-time obstacle avoidance for manipulators and
mobile robots, in: Robotics and Automation. Proceedings. 1985
IEEE International Conference on, Vol. 2, 1985, pp. 500 – 505.
doi:10.1109/ROBOT.1985.1087247.

36

http://dx.doi.org/10.1109/ICHR.2010.5686325
http://dx.doi.org/10.1109/ROBOT.1985.1087247

	Introduction
	Related work
	Paper outline

	Manipulation primitives framework
	Embodiment independence through abstraction
	Abstract State Machine
	Translation from ASM to FSM

	Sensor-based primitives for manipulation
	Grasp primitive
	Alignment
	Sliding grasp
	Force adaptation

	Transport primitive
	Place primitive
	Release primitive
	Slide primitive

	Experimental results
	Validation of robust grasp primitive
	Emptying a box: Execution of a complex task
	Action mapping to different embodiments

	Discussion
	Conclusion

