462 research outputs found

    A proposal for the development of adaptive spoken interfaces to access the Web

    Get PDF
    Spoken dialog systems have been proposed as a solution to facilitate a more natural human–machine interaction. In this paper, we propose a framework to model the user׳s intention during the dialog and adapt the dialog model dynamically to the user needs and preferences, thus developing more efficient, adapted, and usable spoken dialog systems. Our framework employs statistical models based on neural networks that take into account the history of the dialog up to the current dialog state in order to predict the user׳s intention and the next system response. We describe our proposal and detail its application in the Let׳s Go spoken dialog system.Work partially supported by Projects MINECO TEC2012-37832- C02-01, CICYT TEC2011-28626-C02-02, CAM CONTEXTS (S2009/ TIC-1485

    Spoken Language Interaction with Robots: Recommendations for Future Research

    Get PDF
    With robotics rapidly advancing, more effective human–robot interaction is increasingly needed to realize the full potential of robots for society. While spoken language must be part of the solution, our ability to provide spoken language interaction capabilities is still very limited. In this article, based on the report of an interdisciplinary workshop convened by the National Science Foundation, we identify key scientific and engineering advances needed to enable effective spoken language interaction with robotics. We make 25 recommendations, involving eight general themes: putting human needs first, better modeling the social and interactive aspects of language, improving robustness, creating new methods for rapid adaptation, better integrating speech and language with other communication modalities, giving speech and language components access to rich representations of the robot’s current knowledge and state, making all components operate in real time, and improving research infrastructure and resources. Research and development that prioritizes these topics will, we believe, provide a solid foundation for the creation of speech-capable robots that are easy and effective for humans to work with

    A Review of Verbal and Non-Verbal Human-Robot Interactive Communication

    Get PDF
    In this paper, an overview of human-robot interactive communication is presented, covering verbal as well as non-verbal aspects of human-robot interaction. Following a historical introduction, and motivation towards fluid human-robot communication, ten desiderata are proposed, which provide an organizational axis both of recent as well as of future research on human-robot communication. Then, the ten desiderata are examined in detail, culminating to a unifying discussion, and a forward-looking conclusion

    Research in the Language, Information and Computation Laboratory of the University of Pennsylvania

    Get PDF
    This report takes its name from the Computational Linguistics Feedback Forum (CLiFF), an informal discussion group for students and faculty. However the scope of the research covered in this report is broader than the title might suggest; this is the yearly report of the LINC Lab, the Language, Information and Computation Laboratory of the University of Pennsylvania. It may at first be hard to see the threads that bind together the work presented here, work by faculty, graduate students and postdocs in the Computer Science and Linguistics Departments, and the Institute for Research in Cognitive Science. It includes prototypical Natural Language fields such as: Combinatorial Categorial Grammars, Tree Adjoining Grammars, syntactic parsing and the syntax-semantics interface; but it extends to statistical methods, plan inference, instruction understanding, intonation, causal reasoning, free word order languages, geometric reasoning, medical informatics, connectionism, and language acquisition. Naturally, this introduction cannot spell out all the connections between these abstracts; we invite you to explore them on your own. In fact, with this issue it’s easier than ever to do so: this document is accessible on the “information superhighway”. Just call up http://www.cis.upenn.edu/~cliff-group/94/cliffnotes.html In addition, you can find many of the papers referenced in the CLiFF Notes on the net. Most can be obtained by following links from the authors’ abstracts in the web version of this report. The abstracts describe the researchers’ many areas of investigation, explain their shared concerns, and present some interesting work in Cognitive Science. We hope its new online format makes the CLiFF Notes a more useful and interesting guide to Computational Linguistics activity at Penn

    Low-level grounding in a multimodal mobile service robot conversational system using graphical models

    Get PDF
    The main task of a service robot with a voice-enabled communication interface is to engage a user in dialogue providing an access to the services it is designed for. In managing such interaction, inferring the user goal (intention) from the request for a service at each dialogue turn is the key issue. In service robot deployment conditions speech recognition limitations with noisy speech input and inexperienced users may jeopardize user goal identification. In this paper, we introduce a grounding state-based model motivated by reducing the risk of communication failure due to incorrect user goal identification. The model exploits the multiple modalities available in the service robot system to provide evidence for reaching grounding states. In order to handle the speech input as sufficiently grounded (correctly understood) by the robot, four proposed states have to be reached. Bayesian networks combining speech and non-speech modalities during user goal identification are used to estimate probability that each grounding state has been reached. These probabilities serve as a base for detecting whether the user is attending to the conversation, as well as for deciding on an alternative input modality (e.g., buttons) when the speech modality is unreliable. The Bayesian networks used in the grounding model are specially designed for modularity and computationally efficient inference. The potential of the proposed model is demonstrated comparing a conversational system for the mobile service robot RoboX employing only speech recognition for user goal identification, and a system equipped with multimodal grounding. The evaluation experiments use component and system level metrics for technical (objective) and user-based (subjective) evaluation with multimodal data collected during the conversations of the robot RoboX with user

    Spoken language interaction with robots: Recommendations for future research

    Get PDF
    With robotics rapidly advancing, more effective human–robot interaction is increasingly needed to realize the full potential of robots for society. While spoken language must be part of the solution, our ability to provide spoken language interaction capabilities is still very limited. In this article, based on the report of an interdisciplinary workshop convened by the National Science Foundation, we identify key scientific and engineering advances needed to enable effective spoken language interaction with robotics. We make 25 recommendations, involving eight general themes: putting human needs first, better modeling the social and interactive aspects of language, improving robustness, creating new methods for rapid adaptation, better integrating speech and language with other communication modalities, giving speech and language components access to rich representations of the robot’s current knowledge and state, making all components operate in real time, and improving research infrastructure and resources. Research and development that prioritizes these topics will, we believe, provide a solid foundation for the creation of speech-capable robots that are easy and effective for humans to work with

    Acquiring and Maintaining Knowledge by Natural Multimodal Dialog

    Get PDF

    Discourse markers activate their, <i>like</i>, cohort competitors

    Get PDF
    Speech in everyday conversations is riddled with discourse markers (DMs), such as well, you know, and like. However, in many lab-based studies of speech comprehension, such DMs are typically absent from the carefully articulated and highly controlled speech stimuli. As such, little is known about how these DMs influence online word recognition. The present study specifically investigated the online processing of DM like and how it influences the activation of words in the mental lexicon. We specifically targeted the cohort competitor (CC) effect in the Visual World Paradigm: Upon hearing spoken instructions to “pick up the beaker,” human listeners also typically fixate—next to the target object—referents that overlap phonologically with the target word (cohort competitors such as beetle; CCs). However, several studies have argued that CC effects are constrained by syntactic, semantic, pragmatic, and discourse constraints. Therefore, the present study investigated whether DM like influences online word recognition by activating its cohort competitors (e.g., lightbulb). In an eye-tracking experiment using the Visual World Paradigm, we demonstrate that when participants heard spoken instructions such as “Now press the button for the, like … unicycle,” they showed anticipatory looks to the CC referent (lightbulb)well before hearing the target. This CC effect was sustained for a relatively long period of time, even despite hearing disambiguating information (i.e., the /k/ in like). Analysis of the reaction times also showed that participants were significantly faster to select CC targets (lightbulb) when preceded by DM like. These findings suggest that seemingly trivial DMs, such as like, activate their CCs, impacting online word recognition. Thus, we advocate a more holistic perspective on spoken language comprehension in naturalistic communication, including the processing of DMs
    corecore