716 research outputs found

    Exergetic and Economic Evaluation of a Transcritical Heat-Driven Compression Refrigeration System with CO2 as the Working Fluid under Hot Climatic Conditions

    Get PDF
    The purpose of this research is to evaluate a transcritical heat-driven compression refrigeration machine with CO2 as the working fluid from thermodynamic and economic viewpoints. Particular attention was paid to air-conditioning applications under hot climatic conditions. The system was simulated by Aspen HYSYS® (AspenTech, Bedford, MA, USA) and optimized by automation based on a genetic algorithm for achieving the highest exergetic efficiency. In the case of producing only refrigeration, the scenario with the ambient temperature of 35 °C and the evaporation temperature of 5 °C showed the best performance with 4.7% exergetic efficiency, while the exergetic efficiency can be improved to 22% by operating the system at the ambient temperature of 45 °C and the evaporation temperature of 5 °C if the available heating capacity within the gas cooler is utilized (cogeneration operation conditions). Besides, an economic analysis based on the total revenue requirement method was given in detail

    Advanced Exergy Analysis in the Dynamic Framework for Assessing Building Thermal Systems

    Get PDF
    This work applies the Dynamic Advanced Exergy Analysis (DAEA) to a heating and domestic hot water (DHW) facility supplied by a Stirling engine and a condensing boiler. For the first time, an advanced exergy analysis using dynamic conditions is applied to a building energy system. DAEA provides insights on the components’ exergy destruction (ED) by distinguishing the inefficiencies that can be prevented by improving the quality (avoidable ED) and the ones constrained because of technical limitations (unavoidable ED). ED is related to the inherent inefficiencies of the considered element (endogenous ED) and those coming from the interconnections (exogenous ED). That information cannot be obtained by any other approach. A dynamic calculation within the experimental facility has been performed after a component characterization driven by a new grey-box modelling technique, through TRNSYS and MATLAB. Novel solutions and terms of ED are assessed for the rational implementation of the DAEA in building energy installations. The influence of each component and their interconnections are valuated in terms of exergy destruction for further diagnosis and optimization purposes.BMWi, 03ET1218B, Anwendung exergiebasierter Methoden zur Verbesserung von Gebäudeenergiesysteme

    Advanced exergoeconomic analysis of a power plant with CO2 capture

    Get PDF
    Conventional exergy-based analyses reveal options for improving energy conversion systems, but they suffer from some limitations that are addressed by advanced exergy-based analyses. Advanced exergy-based methods are capable of (1) identifying interdependencies among plant components (endogenous / exogenous values), and (2) revealing the potential for improvement (avoidable / unavoidable values). Thus, data obtained from these methods pinpoint strengths and weaknesses of energy conversion systems and are of great importance when complex plants with a large number of interconnected components are considered. This paper presents one of the first applications of an advanced exergoeconomic analysis to a complex power plant. The plant includes a mixed conducting membrane for oxy-fuel combustion and CO2 capture. The results show that for the most influential components of the plant, the largest part of investment cost and of the costs of exergy destruction is unavoidable. Additionally, in most cases the interactions among the components are of lower importance and, for the majority of the components, the endogenous parts of the costs (related to the internal operation of each component) are significantly larger than the corresponding exogenous parts (related to component interactions). Nevertheless, relatively strong interactions have been found among the components that constitute the mixed conducting membrane reactor of the plant.EC/FP7/332028/EU/Green Energy for Islands/GENERGI

    Evaluation of an energy- and exergy-based generic modeling approach of combined heat and power plants

    Get PDF
    Reduced models of combined heat and power plants are required for different applications. Among other usages, they are implemented as mixed integer linear programs (MILP) in energy market models or price-based unit commitment problems to study the economic feasibility and optimal operation strategies of different units. Generic models are particularly useful when limited information is available for each considered plant. This paper presents a MILP modeling approach for combined heat and power (CHP) plants. The approach is based on energy and exergy balances and a few typical plant characteristics for different operating conditions. The reduction of electrical power output due to heat extraction is estimated by the transferred exergy to the district heating network. Furthermore, the accuracy, strengths and limitations of this approach are investigated for various CHP plant types with extraction condensing turbines designed for district heating systems. Therefore, detailed thermodynamic cycle simulations of CHP plants including part load operations are used to obtain the real plant operating conditions to compare them to the results of the described generic approach. The validation of the reduced, generic model shows that the accuracy mainly depends on the effectiveness of the heat extraction from the CHP plant. In addition, it can be seen that the main advantage of the presented exergy-based method is the inherent consideration of the feed flow temperature for the calculation of the power reduction due to heat extraction.BMWi, 03ET1188A, EnEff:Wärme - Der Beitrag thermischer Speicher zur Steigerung der Energieeffizienz, Flexibilität und Wirtschaftlichkeit der Fernwärme- und Stromerzeugung in KWK-Anlage
    corecore