34 research outputs found

    Potential of ALOS2 and NDVI to estimate forest above-ground biomass, and comparison with lidar-derived estimates

    Get PDF
    Remote sensing supports carbon estimation, allowing the upscaling of field measurements to large extents. Lidar is considered the premier instrument to estimate above ground biomass, but data are expensive and collected on-demand, with limited spatial and temporal coverage. The previous JERS and ALOS SAR satellites data were extensively employed to model forest biomass, with literature suggesting signal saturation at low-moderate biomass values, and an influence of plot size on estimates accuracy. The ALOS2 continuity mission since May 2014 produces data with improved features with respect to the former ALOS, such as increased spatial resolution and reduced revisit time. We used ALOS2 backscatter data, testing also the integration with additional features (SAR textures and NDVI from Landsat 8 data) together with ground truth, to model and map above ground biomass in two mixed forest sites: Tahoe (California) and Asiago (Alps). While texture was useful to improve the model performance, the best model was obtained using joined SAR and NDVI (R2 equal to 0.66). In this model, only a slight saturation was observed, at higher levels than what usually reported in literature for SAR; the trend requires further investigation but the model confirmed the complementarity of optical and SAR datatypes. For comparison purposes, we also generated a biomass map for Asiago using lidar data, and considered a previous lidar-based study for Tahoe; in these areas, the observed R2 were 0.92 for Tahoe and 0.75 for Asiago, respectively. The quantitative comparison of the carbon stocks obtained with the two methods allows discussion of sensor suitability. The range of local variation captured by lidar is higher than those by SAR and NDVI, with the latter showing overestimation. However, this overestimation is very limited for one of the study areas, suggesting that when the purpose is the overall quantification of the stored carbon, especially in areas with high carbon density, satellite data with lower cost and broad coverage can be as effective as lidar

    Airborne and spaceborne remote sensing for assessment of forest structural attributes across tropical mosaic landscapes

    Get PDF
    High-resolution, accurate, and updated forest structure maps are urgently required for the implementation of REDD+, payment of ecosystem services, and other climate change mitigation strategies in tropical countries. The collection of forest inventory data is usually labor intensive and costly, and remote sites can be difficult to access. Remote sensing data, for example airborne laser scanning (ALS), hyperspectral imagery, and Landsat data, complement field-based forest inventories and provide high-resolution, accurate, and spatially explicit data for mapping forest structural attributes. However, issues such as the effect of topography, pulse density, and the single and combined use of various remote sensing data on forest structural attributes prediction warrant further research. The main objective of this thesis was to assess airborne and spaceborne remote sensing techniques for modeling forest structural attributes across a montane forest landscape in the Taita Hills, Kenya. The sub-objectives focused on a) the effect of the topographic normalization of Landsat images on fractional cover (Fcover) prediction, aboveground biomass (AGB), and forest structural heterogeneity modeling using ALS and other remote sensing data and b) the analysis of the maps of forest structural attributes. In Study I, the effect of topographic normalization on ALS-based Fcover modeling was evaluated using common vegetation indices and spectral-temporal metrics based on a Landsat time series (LTS). The results demonstrate that the fit of the Fcover models did not improve after topographic normalization in the case of ratio-based vegetation indices (Normalized Difference Vegetation Index, NDVI; reduced simple ratio, RSR) or tasseled cap (TC) greenness; however, the fit improved in the case of brightness and wetness, particularly in the period of the lowest sun elevation. However, if TC indices are preferred, then topographic normalization using a Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) is recommended. In Study II, field-based AGB estimates are modeled by ALS data and a multiple linear regression. The plot-level AGB was modeled with a coefficient of determination (R2) of 0.88 and a root mean square error (RMSE) of 52.9 Mg ha-1. Furthermore, the determinants for AGB spatial distribution are examined using geospatial data and statistical modeling. The AGB patterns are controlled mainly by mean annual precipitation (MAP), the distribution of croplands, and slope, which collectively explained 69.8% of the AGB variation. Study III investigated whether the fusion of ALS with LTS and hyperspectral data, or stratification of the plots to the forest and non-forest classes, improves AGB modeling. According to the results, the prediction model based on ALS data only provides accurate models even without stratification. However, using ALS and HS data together, and employing an additional forest classification for stratification, improves the model accuracy considerably in the studied landscape. Finally, in Study IV, the potential of single and combined ALS and LTS data in modeling forest structural heterogeneity (the Gini coefficient of tree size) was assessed, and the difference between three forest remnants and forest types is evaluated based on predicted maps. If the LTS metrics were included in the models, then ALS data with lower pulse density yield similar accuracy to more expensive, high pulse-density data. Furthermore, the GC map presents forest structural heterogeneity patterns at the landscape scale a

    Height Extraction and Stand Volume Estimation Based on Fusion Airborne LiDAR Data and Terrestrial Measurements for a Norway Spruce [Picea abies (L.) Karst.] Test Site in Romania

    Get PDF
    The objective of this study was to analyze the efficiency of individual tree identification and stand volume estimation from LiDAR data. The study was located in Norway spruce [Picea abies (L.) Karst.] stands in southwestern Romania and linked airborne laser scanning (ALS) with terrestrial measurements through empirical modelling. The proposed method uses the Canopy Maxima algorithm for individual tree detection together with biometric field measurements and individual trees positioning. Field data was collected using Field-Map real-time GIS-laser equipment, a high-accuracy GNSS receiver and a Vertex IV ultrasound inclinometer. ALS data were collected using a Riegl LMS-Q560 instrument and processed using LP360 and Fusion software to extract digital terrain, surface and canopy height models. For the estimation of tree heights, number of trees and tree crown widths from the ALS data, the Canopy Maxima algorithm was used together with local regression equations relating field-measured tree heights and crown widths at each plot. When compared to LiDAR detected trees, about 40-61% of the field-measured trees were correctly identified. Such trees represented, in general, predominant, dominant and co-dominant trees from the upper canopy. However, it should be noted that the volume of the correctly identified trees represented 60-78% of the total plot volume. The estimation of stand volume using the LiDAR data was achieved by empirical modelling, taking into account the individual tree heights (as identified from the ALS data) and the corresponding ground reference stem volume. The root mean square error (RMSE) between the individual tree heights measured in the field and the corresponding heights identified in the ALS data was 1.7-2.2 meters. Comparing the ground reference estimated stem volume (at trees level) with the corresponding ALS estimated tree stem volume, an RMSE of 0.5-0.7 m3 was achieved. The RMSE was slightly lower when comparing the ground reference stem volume at plot level with the ALS-estimated one, taking into account both the identified and unidentified trees in the LiDAR data (0.4-0.6 m3)

    Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission

    Get PDF
    NASA's Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI's footprint-level (similar to 25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI's waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available

    Woody biomass increases across three contrasting land uses in Hurungwe, mid-Zambezi valley, Zimbabwe

    Get PDF
    Globally, Miombo woodlands store important quantities of carbon, with tree cover and carbon stocks strongly determined by human use. We assessed woodland cover and aboveground carbon (AGC) stocks of miombo along a utilisation gradient on three different land use types, that is, a national park, a buffer zone and a communal area. Woodland cover and carbon stock changes were assessed through mapping of AGC between 2007 and 2017 using Phased Array L-Band Synthetic Aperture Radar observations (ALOS-PALSAR 1 and 2). Woodland cover was higher in the national park and the buffer zone than in the communal area for both 2007 and 2017. In 2007, mean AGC stock was not significantly different (p = 0.005) across all three land use types. However, in 2017, mean AGC was significantly lower (p < 0.001) in the buffer zone and communal area than in the national park. In all three land use types, Miombo woodland cover and mean AGC gains outweighed losses over the 10-year period. AGC gains were significantly higher (p < 0.001) in the national park than in both the buffer zone and the communal area. Results of the study indicate that woodland cover and aboveground carbon increased in all three land use types despite the observed human disturbance over the study period. Both variables recorded a lower increase with elevated utilisation. The study concluded that sustainable resource utilisation is possible without loss of such ecosystem services as carbon sequestration and climate change mitigation

    Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission

    Get PDF
    NASA’s Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI’s footprint-level (~25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI’s waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available.Additional co-authors: Scott J. Goetz, Hao Tang, Michelle Hofton, Bryan Blair, Scott Luthcke, Lola Fatoyinbo, Alfonso Alonso, Hans-Erik Andersen, Paul Aplin, Timothy R. Baker, Nicolas Barbier, Jean Francois Bastin, Peter Biber, Pascal Boeckx, Jan Bogaert, Luigi Boschetti, Peter Brehm Boucher, Doreen S. Boyd, David F.R.P. Burslem, Sofia Calvo-Rodriguez, Jérôme Chave, Robin L. Chazdon, David B. Clark, Deborah A. Clark, Warren B. Cohen, David A. Coomes, Piermaria Corona, K.C. Cushman, Mark E.J. Cutler, James W. Dalling, Michele Dalponte, Jonathan Dash, Sergio de-Miguel, Songqiu Deng, Peter Woods Ellis, Barend Erasmus, Patrick A.Fekety, Alfredo Fernandez-Landa, Antonio Ferraz, Rico Fischer, Adrian G. Fisher, Antonio García-Abril, Terje Gobakken, Jorg M. Hacker, Marco Heurich, Ross A. Hill, Chris Hopkinson, Huabing Huang, Stephen P. Hubbell, Andrew T. Hudak, Andreas Huth, Benedikt Imbach, Masato Katoh, Elizabeth Kearsley, David Kenfack, Natascha Kljun, Nikolai Knapp, Kamil Král, Martin Krůček, Nicolas Labrière, Simon L. Lewis, Marcos Longo, Richard M. Lucas, Russell Main, Jose A. Manzanera, Rodolfo Vásquez Martínez, Renaud Mathieu, Herve Memiaghe, Victoria Meyer, Abel Monteagudo Mendoza, Alessandra Monerris, Paul Montesano, Felix Morsdorf, Erik Næsset, Laven Naidoo, Reuben Nilus, Michael O’Brien, David A. Orwig, Konstantinos Papathanassiou, Geoffrey Parker, Christopher Philipson, Oliver L. Phillips, Jan Pisek, John R. Poulsen, Hans Pretzsch, Christoph Rüdiger, Sassan Saatchi, Arturo Sanchez-Azofeifa, Nuria Sanchez-Lopez, Robert Scholes, Carlos A. Silva, Marc Simard, Andrew Skidmore, Krzysztof Stereńczak, Mihai Tanase, Chiara Torresan, Ruben Valbuena, Hans Verbeeck, Tomas Vrska, Konrad Wessels, Joanne C. White, Eliakimu Zahabu, Carlo Zgragge

    Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission

    Get PDF
    NASA's Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI's footprint-level (~25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI's waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available

    New insights on above ground biomass and forest attributes in tropical montane forests

    Get PDF
    Despite the potential of tropical montane forests to store and sequester substantial amounts of carbon, little is known about the above ground biomass (AGB) and the factors affecting it in these ecosystems, especially in Africa. We investigated the height-diameter allometry, AGB, and related differences in AGB to taxonomic and structural forest attributes in three distinct forest types (dry, mixed species and elfin) in three mountains of northern Kenya. We established 24 permanent plots (20 m × 100 m) and sampled all trees ≥10 cm diameter following standard Rainfor protocols. We identified that different height-diameter allometric models could be used for different forests types, with the exception of the Michaelis–Menten model. In our study area, model choice had little effects on AGB estimates. In general, mixed forests had greater AGB than other forest types: in Mt Nyiro AGB estimates were 611, 408 and 241 Mg ha−1 for mixed, elfin and dry forests respectively. Forests in Mt Nyiro, the highest mountain had greater AGB than in the other mountains. In our study area, differences in AGB were related to forest structure attributes, with little influence of taxonomic attributes. The mixed and elfin forests in Mt Nyiro, dominated by Podocarpus latifolius and Faurea saligna contained comparable AGB to lowland rainforests, highlighting the importance of tropical montane forests as large carbon stock, which could be released if converted to another land cover type
    corecore