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Abstract: Remote sensing supports carbon estimation, allowing the upscaling of field measurements
to large extents. Lidar is considered the premier instrument to estimate above ground biomass,
but data are expensive and collected on-demand, with limited spatial and temporal coverage.
The previous JERS and ALOS SAR satellites data were extensively employed to model forest biomass,
with literature suggesting signal saturation at low-moderate biomass values, and an influence of
plot size on estimates accuracy. The ALOS2 continuity mission since May 2014 produces data with
improved features with respect to the former ALOS, such as increased spatial resolution and reduced
revisit time. We used ALOS2 backscatter data, testing also the integration with additional features
(SAR textures and NDVI from Landsat 8 data) together with ground truth, to model and map above
ground biomass in two mixed forest sites: Tahoe (California) and Asiago (Alps). While texture
was useful to improve the model performance, the best model was obtained using joined SAR and
NDVI (R2 equal to 0.66). In this model, only a slight saturation was observed, at higher levels than
what usually reported in literature for SAR; the trend requires further investigation but the model
confirmed the complementarity of optical and SAR datatypes. For comparison purposes, we also
generated a biomass map for Asiago using lidar data, and considered a previous lidar-based study
for Tahoe; in these areas, the observed R2 were 0.92 for Tahoe and 0.75 for Asiago, respectively.
The quantitative comparison of the carbon stocks obtained with the two methods allows discussion
of sensor suitability. The range of local variation captured by lidar is higher than those by SAR and
NDVI, with the latter showing overestimation. However, this overestimation is very limited for one
of the study areas, suggesting that when the purpose is the overall quantification of the stored carbon,
especially in areas with high carbon density, satellite data with lower cost and broad coverage can be
as effective as lidar.
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1. Introduction

Forests have a major role in the exchange of carbon between the land surface and the atmosphere,
and can represent both carbon sinks and sources through forest growth and by means of deforestation
and degradation [1]. Forests are also rich in biodiversity, with higher diversity levels often associated
with higher above ground biomass (AGB) [2]. Forest carbon stock estimates are required for reducing
uncertainty in the global carbon budget, as well as for biodiversity conservation purposes and forested
area management and planning.

Satellite-based remote sensing is fundamental in forest biomass monitoring, as it can support the
extrapolation of local ground forest measurements to large extents [3]. The collection of ground data
is time and resource demanding, usually covers only limited areas and accessible locations, and is
organized in plots of relatively small areas.

Remote sensing of forest carbon stock can be considered a challenging task as the information
recorded by a remote sensing instrument is only indirectly related to carbon. Passive optical
instruments do not penetrate the dense forest canopy and do not sense the forest compartment
where most of the carbon is stored; usually they saturate at low biomass values, with their use being
strongly limited by cloud presence; however examples of successful optical-based AGB estimations
are reported, especially using high spatial resolution data [4].

Among active sensors, lidar (light detection and ranging) usually generates highly accurate
biomass estimates, thanks to its ability to provide detailed vertical forest structure information and
to consequently link the strong relationship between forest height and biomass. Lidar is at present
considered the premier instrument to quantify carbon stocks [5,6]. A common and successful method to
use lidar data for AGB estimation consists in the extraction of forest height measures from the lidar point
cloud, use these metrics with field data to build and validate a regression model, and apply the model
to the whole area covered by lidar data [7–10]. However, lidar data are presently collected only through
on-demand airborne surveys, and thus available only with limited spatial and temporal coverage.

The relationship between radar backscattering and biomass has been illustrated more than two
decades ago [11]. Since then, various studies focused on the retrieval of forest structural features
from synthetic aperture radar (SAR) due to several advantages, including: the availability of satellites
equipped with different SAR sensors, high spatial and temporal resolution of the datasets, extended
and often global coverage, and radar insensitivity to cloud cover [12]. The SAR system frequency
strongly influences the backscattering to biomass relationship, with the P-band characterized by major
sensitivity due to its greater penetration [13]. While waiting for the future launch of the P-band
European Space Agency BIOMASS satellite mission, specifically designed to monitor forests [14], AGB
could be estimated using SAR at different frequencies, including L-band SAR data.

Data from the Japanese Earth Resources Satellite (JERS) and the Advanced Land Observing
Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR), the former operational
until 1998 and the latter until 2011, were extensively employed to estimate AGB in different forest
ecosystems [15–21]. Previous literature results suggests that there is a saturation level above which
there is a loss of sensitivity between AGB and backscattered signal [22]. This saturation point is
influenced by forest type and structure, environmental conditions, as well as sensor characteristics, with
the commonly observed saturation points usually occurring between 30 and 100 Mg/ha [13,23–25].

There is a recognized influence of plot size on AGB estimates, with larger size often resulting in
better accuracy of estimates. Using plots of reduced size and ALOS PALSAR data, AGB estimates
with moderate or even limited accuracy are usually obtained: a positive correlation of backscatter
at all polarizations with tropical AGB at 0.25, 0.5, and 1 ha scales was found by [17], but they noted
that the spatial variability of forest structure and speckle noise in SAR data contributed equally to
degrading the sensitivity of radar to AGB at scales less than 1.0 ha. In a Chinese forest, He et al. [26]
observed a poor relationship between SAR backscatter and AGB at plot level, while at stand level
a logarithm equation could be used to describe the relationship in different biomass ranges. A strong
monotonical statistical dependence between ALOS PALSAR and AGB was found by [27] in savanna
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pine woodlands using field data collected at 0.25, 0.5, and 1 ha, and a weak dependence using data at
0.1 ha. However, due to the high amount of resources needed to set up and monitor forest plots, it
is difficult to establish large sampling areas and obtain field datasets based on large plots [28]; thus,
small plots are much more used than large ones in biomass research and mapping activities.

Texture features extracted from SAR data have proved useful in some studies to improve
AGB estimates: using RADARSAT-2 C-band dual-polarization data in a complex subtropical forest,
Sarker et al. [29] found the Grey Level Co-occurrence Measure (GLCM; [30]) texture features more
effective than the original bands; in [31], they found that the addition of GLCM textures improved
a joined Landsat-ALOS PALSAR model for AGB estimation in Iranian forests; and Champion et al. [32]
found high correlation between GLCM textures extracted from airborne P-band cross polarization data
and AGB in a French Guyana forests characterized by high carbon density.

Another option to improve AGB estimates based on SAR could be the addition of multispectral
optical data, to exploit the response from different regions of the electromagnetic spectrum. In this
respect, Deng et al. [33] found beneficial the addition of WorldView-2 to ALOS PALSAR in mountain
Chinese forests; both Basuki et al. [34] and Fedrigo et al. [35] improved the ALOS PALSAR-based
estimation by integrating Landsat 7 ETM+ data in tropical forests.

The ALOS2 continuity mission was launched on May 2014 and currently produces dual and full
polarization data. Even if full polarization data are available only in selected regions, the availability of
polarizations ratio from dual-pol data, such as in this study, is recognized as an advantage when using
SAR for biomass estimation [33]. ALOS2 improvements with respect to the former ALOS satellite
include: the exploitation of a dual receiving antenna allowing to broaden the imaged swath, improved
spatial resolution with spotlight (from 1 to 3 m) and strip-map mode (from 3 to 10 m); a reduced
revisit time, from 46 to 14 days; and the possibility to provide both left and right looking for fast
coverage in emergency cases [36,37]. To the best of our knowledge, only one study has evaluated the
performance of this new sensor for AGB estimation [38]. Specifically, the improved spatial resolution
could represent an advantage to build regression models using small field plots.

In our study, we aimed at using small plots to develop regression models between remote sensing
derived data—SAR and NDVI (Normalized Difference Vegetation Index)—and ground measured
variables. We also used a lidar-based regression model, and developed a new one, for results
comparison purposes. Limited research quantitatively compared AGB estimates obtained using
SAR plus NDVI and lidar data types, which have quite different data acquisition costs. Through this
effort, the present research aims at providing useful insights for forest monitoring, focusing on two
different study sites that were chosen for the availability of accurate ground and lidar data, and for
representing two different types of mixed conifer forest.

2. Materials and Methods

2.1. Field Data

The Asiago study site (Figure 1) is part of the Asiago plateau (Province of Vicenza—Italy), and
is located in a karstic plain area on the esalpic range of the north-eastern Alps. This site is divided
into two areas: the Boscon southern area has an extent of about 32 km2, while the Verena northern
area covers approximately 23 km2. Slopes are quite mild and elevation ranges come from about 1100
to 1300 m a.s.l. and from about 1300 to 1750 m a.s.l. in the northern and southern part respectively.
Vegetation is mixed conifer forest, composed mostly by spruce stands (Picea abies), with presence
of silver fir (Abies alba), beech (Fagus sylvatica), and larch (Larix decidua). In 2012, in the framework
of a national research project, 33 circular plots of 19.95 m radius (0.1256 ha) were set up, in which
height and diameter at breast height (DBH) were measured for each tree with DBH greater than 5 cm;
AGB was calculated according to species-specific allometric models [39,40]. Plots were set up according
to a stratified random sampling, with stratification based on height classes.
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Figure 1. The Asiago (top) and Tahoe (bottom) study sites. On the left side, the geographic location
of the areas are illustrated; on the right side a zoom over the area is shown, with red star symbols
indicating field plots.

The Tahoe study site is located on the eastern slope of the Sierra Nevada mountain range and is
named as the United States Department of Agriculture Forest Service (USDA-FS) Lake Tahoe Basin
Management Unit. The Tahoe site (Figure 1) covers about 936 km2, but in this analysis we considered
an area of 786.4 km2 after removal of all water bodies and a small southern area affected by cloud
presence in optical data. The elevation is between 1900 to 2500 m a.s.l. and slopes are usually mild,
although a stronger variability is present, especially in the eastern part of the area. The major vegetation
type in Tahoe is mixed conifer forest including: Jeffrey pine (Pinus jeffreyi), white fir (Abies concolor),
California red fir (Abies magnifica), lodgepole pine (Pinus contorta), incense cedar (Calocedrus decurrens),
quaking aspen (Populus tremuloides), western white pine (Pinus monticola), sugar pine (Pinus lambertiana),
western juniper (Juniperus occidentalis), and mountain hemlock (Tsuga mertensiana). At Lake Tahoe,
over 1000 trees were mapped in 2012 for 56 circular plots of 17.6 m radius (0.0973 ha) using a Nikon
DTM-322 total station. These plots were initially established through the Multi-Species Inventory
and Monitoring project and the Lake Tahoe Urban Biodiversity project. Plot locations were selected
using a combination of systematic/grid sampling and stratified random sampling. At each plot, all
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trees greater than 2 cm in DBH were measured. Tree measurements include species, DBH, tree height,
height to live crown, and tree status (live, dead, unhealthy, or sick) [9,41,42]. Tree AGB was calculated
according to the Component Ratio Method, adopted by the USDA-FS since 2012 [43,44].

The 89 plots were screened against vegetation changes that occurred between the 2012 field data
collection and the 2014 remote sensing datasets acquisition; additionally, plots in areas that were
affected by distortion effects (layover, foreshortening, shadowing) in SAR-processed images were
excluded. Vegetation changes were detected using very high resolution orthophotos (<1 m) and
additional Google Earth imagery. After the screening procedure, we reduced the ground dataset
to 75 plots, 52 from Tahoe and 23 from Asiago. The two areas significantly differ in terms of AGB
content: Tahoe’s AGB ranged between 21 and 305 Mg/ha, with an average of 146 Mg/ha and standard
deviation of 70 Mg/ha, while Asiago had between 210 and 530 Mg/ha, an average of 358 Mg/ha and
standard deviation of 83 Mg/ha.

2.2. Remote Sensing Data

We used four ALOS2 dual-pol stripmap SAR scenes, one for Asiago dated 8 October 2014, and
three for the Tahoe site, from 4 September and 2 October (two images) 2014. These scenes were selected
for being as temporally close as possible to field data collection, during days without precipitations.
Conversion from digital number (DN) to the backscattering coefficient (σ0 sigma-naught, in decibel or
dB) was performed according to the method described in [45]:

σ0 = 10 log10 Q2 + I2 + CF1 − A (1)

where CF and A are constants, respectively −83 dB and 32 dB and Q and I are the real and imaginary
part of the digital number.

The HH and HV scenes, having a resolution about 7 m in range and 3.5 m in azimuth, were
multi-looked (one look in range and two in azimuth) and filtered with a Lee Filter (7 × 7 window size)
in order to reduce the speckle noise. The images were then geocoded and radiometrically calibrated
by using the 30 m SRTM digital elevation model (DEM) for the SAR scenes acquired in Italy and
a 3 m lidar-derived DEM for the scenes acquired in California. The radiometric calibration, which
is the correction of the σ0 coefficient obtained considering a flat terrain assumption with the local
incidence angle θi, was computed using the DEM and orbital data. In particular, the terrain calibrated
normalized radar cross-section σ0

c is computed as:

σ0
c = σ0 sin θi

sin θF
(2)

where θF is the local incidence angle under the flat terrain assumption. After geocoding, the final
spatial resolution was set to 0.000083 degrees (approximately 9 m). The remote sensing processing
was conducted using the SARscape module in ENVI5.0 software (Exelis Visual Information Solutions,
Boulder, CO, USA).

Two atmospherically corrected and calibrated Landsat 8 images from September 2014 were
downloaded from the Google Earth Engine facility to cover the two study areas. The Normalized
Difference Vegetation Index (NDVI) was then computed for each image.

2.3. Lidar Data and Derived AGB Maps

For the Tahoe area, lidar data were acquired surrounding Lake Tahoe from 11 August to 24 August 2010
using two Leica ALS50 Phase II laser systems mounted in a Cessna Caravan 208B. The Leica systems
were set to a pulse frequency of 83–105.9 kHz, flight height of 900–1300 m, and scan angle of ±14◦.
The resulting point density is eight pulses per square meter. The airborne lidar data were processed
using the Toolbox for Lidar Data Filtering and Forest Studies (Tiffs) [46] to extract the lidar metrics
within each plot. A biomass prediction map was then calculated for the area, using the lidar quadratic
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mean height (QMH) selected with stepwise procedure as input in a power model (AGB = a × Hb
qm;

where a and b are coefficients and Hqm is the QMH of all returns), trained and validated (five-fold
cross validation) with the original 56 field plots, at a 31 m spatial resolution in agreement with the plot
size; the datasets and models are also documented by [41].

For the Asiago area, lidar data were collected on 5 June 2012, using a helicopter and an Optech
ALTM 3100 sensor with a scan angle ±29◦ and a scan frequency of 100 kHz. With a relative flight height
of 200–725 m, the resulting average point density was 10–12 pulses per square meter [47]. A biomass
prediction map at 31 m resolution was calculated, fitting the same model form used in Tahoe with the
QMH lidar metric, selected by stepwise procedure, and trained and validated (leave-one-out cross
validation) with the original 33 field plots; the full set of available plots were used because they were
collected at the time of lidar survey. We used LOO validation for the Asiago site, with respect to the
five-fold cross validation used in Tahoe, due to the fewer plots available in Asiago that would have
resulted in a limited number of folds and, consequently, less effective validation. However, unreported
tests indicated non-significant difference in results when using five-fold for Asiago.

2.4. Data Analysis

The SAR data for Tahoe, acquired in two different dates, were first masked to exclude water
pixels and then normalized. For Asiago and Tahoe areas, all the pixels having >70% of their area
inside the plot, thus the majority, were extracted from the ALOS2 scenes and weighted according to
the percentage of area included into the plot. A set of basic statistics per plot were computed: mean,
standard deviation, minimum and maximum backscattering per HH and HV polarizations, and their
difference and sum. Two Tahoe plots were covered by overlapping scenes: values from both scenes
were extracted and used to generate the statistics.

Similarly to the SAR data, Landsat 8 values from pixels inside the plot for >70% were extracted
by weighted average. Preliminary tests suggested that NDVI is not inferior to single bands for forest
biomass estimation, and thus the index was retained for the estimation phase. The following eight GLCM
texture features were generated for each NDVI, HH, and HV scenes: mean, variance, homogeneity,
contrast, dissimilarity, entropy, second moment, and correlation [30]. A 64-bit quantization level and
three different window sizes—3 × 3, 5 × 5, and 7 × 7—were used. The values from different offsets
(0,−1; −1,−1; 1,0; 0,1) were averaged assuming non-directional effects; then pixels included >70%
inside plot area and their weighted average was extracted.

We tested a set of progressively more complex inputs, performing stepwise regression for feature
selection and linear regression (or multiple linear regression when multiple inputs were selected)
for each set of inputs. The results, validated with leave-one-out (LOO) and 10-fold cross validation,
applied at plot level and with plots from both areas, indicate the selected inputs and the accuracy of
the model based on those inputs. The inputs were:

1. the SAR statistics (minimum, maximum, mean, standard deviation per HH and HV; HH and HV
sum and difference; total 10 inputs);

2. the SAR statistics plus SAR-GLCM textures per HH and HV (total 26 inputs);
3. the SAR statistics plus NDVI and NDVI-GLCM textures (total 19 inputs);
4. SAR HH + HV selected by Test 1 plus the SAR-GLCM texture type selected by Test 2 and the

NDVI feature type selected by Test 3 (totaling three inputs).

Applying the best model derived from the aforementioned tests, after resampling the NDVI
texture to the same spatial resolution of the SAR data, two AGB prediction maps were generated for
the Tahoe and Asiago area. The AGB maps were masked to ensure full overlapping in area extent with
the corresponding lidar-derived AGB maps, and resampled to meet their spatial resolution. Finally,
the AGB maps derived from multispectral and SAR inputs were compared to those generated using
lidar data. Considering that for one of the study areas the AGB model was previously developed
using the stepwise approach [40], for comparison purposes we preferred to maintain this method
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over more complex statistical ones. All the data analyses were conducted using MATLAB [48] and
R [49] software.

3. Results

With the aim of comparing the different tested datasets, we first introduce the results obtained by
lidar: the AGB map for Tahoe (Figure 2, left), based on a power regression model using QMH as input,
was characterized by a R2 of 0.92 and RMSE of 23.6 Mg/ha, obtained using field values and five-fold
cross validation. The Asiago AGB map, realized with the same model form and input feature, was
characterized by a R2 of 0.75 and RMSE of 62.3 Mg/ha (Figure 2, right), obtained using field values
and leave-one-out validation.
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Figure 2. Lidar-derived AGB map for Tahoe area (left) and Asiago area (right).

For the other SAR and NDVI combined datasets, the inputs for the different tests were selected
via stepwise procedure. Cross-validated accuracies for each test allowed selection of the best model
for AGB estimation; results are presented in Table 1. In the first (a) test based on SAR data, we used as
stepwise regression inputs the statistics derived from HH and HV channels averaged at plot level; the
stepwise procedure selected the sum of HH and HV backscattering values, and the linear regression R2

resulted equal to 0.59 with RMSE equal to 78.76 Mg/ha with LOO validation, and 0.59 and 78.33 Mg/ha
with 10-fold validation.

Table 1. Results of the tests conducted with different SAR and optical inputs, using stepwise selection
and multiple linear regression, validated with ground truth. RMSE is expressed both in Mg/ha and
as percentage.

Inputs for Tests Selected via
Stepwise Criteria R2 LOO

RMSE LOO
(Mg/ha) R2 10-Fold

RMSE 10-Fold
(Mg/ha)

(a). SAR HH and HV various statistics HH + HV 0.59 78.76 (0.15%) 0.59 78.33 (0.15%)

(b). SAR HH and HV various statistics +
GLCM HH and HV textures

HH + HV
5 × 5 HHmean 0.65 71.95 (0.14%) 0.65 72.09 (0.14%)

(c). SAR HH and HV various statistics +
NDVI + GLCM NDVI textures

HH + HV
5 × 5 NDVImean 0.66 71.62 (0.14%) 0.66 71.59 (0.14%)

(d). SAR HH and HV various statistics +
5 × 5 HHmean + 5 × 5 NDVImean

HH + HV
5 × 5 NDVImean 0.66 71.62 (0.14%) 0.66 71.59 (0.14%)
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In the second (b) test, we used as input the SAR statistics and the different SAR GLCM features,
using textures calculated with a different window size each time. The stepwise procedure always
selected the HH + HV sum and the mean texture derived from HH SAR polarization, but the model
using the 5 × 5 mean SAR texture performed better than those using textures calculates with the
other window sizes; the multiple linear validated regression showed a R2 of 0.65 (both with LOO and
10-fold) and a RMSE of 71.95 (LOO) and 72.09 (10-fold) Mg/ha.

For the third (c) test, we used as input the SAR statistics, the NDVI and the GLCM NDVI textures,
using each time textures calculated with different window size. The NDVI in the two areas showed
different averaged values. Namely, 0.52 for Tahoe and 0.69 for Asiago. The stepwise procedure always
selected the HH + HV backscattering and the mean NDVI texture, but the model using the 5 × 5 mean
NDVI texture performed better than those using NDVI textures calculated with the other window
sizes; R2 for multiple linear regression was equal to 0.66 for both LOO and 10-fold validation, and
RMSE to 71.62 (LOO) and 71.59 (10-fold) Mg/ha.

In the fourth (d) test, we used as input the 5 × 5 window mean texture from HH SAR data
selected in (b), the 5 × 5 window mean NDVI from Landsat 8 data selected in (c), and the HH + HV
backscattering value selected in (a); the stepwise procedure selected only HH + HV and the 5 × 5
window mean NDVI texture, with multiple linear regression having a R2 (coefficient of determination)
and a RMSE (root mean square error) equal to those obtained with test (c).

Among test results, we considered as the best the one produced by the fourth (d) test, having
the same results of (c) but being based on much reduced number of input data; selected inputs were
HH + HV (dB sum) and the 5 × 5 mean NDVI texture, with the related equation and scatterplot of the
predicted vs. observed AGB values presented in Figure 3.
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To visualize the dynamic range of the SAR input, the scatterplot AGB and HH + HV backscattering
values are presented in Figure 4. The backscatter range is included between approximately −11 and
−30 dB, with saturation occurring approximately over 350 Mg/ha.

The statistical comparison of the AGB maps produced with different datasets, namely the
multispectral and SAR dataset and the lidar one, are summarized in Table 2. The maps generated
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applying the model that uses SAR and NDVI as inputs are presented in Figure 5; Figure 6 illustrates
the difference in the AGB distributions of the two maps, and Figure 7 shows the difference of
the SAR + NDVI AGB estimate with respect to the lidar map AGB intervals. Based on Table 2,
we calculated the difference of total AGB stored in Asiago according to the SAR plus NDVI and lidar
map, which is equal to 1.00 × 105 and represents 6.4% of the AGB amount estimated by lidar. Similarly,
for Tahoe this difference is equal to 2.3 × 106 and corresponds to 23.7% of the lidar-based estimated
AGB. The number of 31 × 31 m pixels in the maps are 54,299 for Asiago and 818,315 for Tahoe.Remote Sens. 2017, 9, 18  9 of 16 
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Table 2. Comparison of the lidar-derived and the SAR + NDVI derived AGB maps for the two
study areas.

Asiago SAR + NDVI Asiago Lidar Tahoe SAR + NDVI Tahoe Lidar

Mean AGB (Mg/ha) 321 301 153 117
Standard deviation of AGB (Mg/ha) 49 117 64 94

Total AGB (Mg) 1.67 × 106 1.57 × 106 1.20 × 107 0.97 × 107
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4. Discussion

The lidar-derived AGB maps are characterized by high (Asiago) to very high (Tahoe) accuracies,
with differences expected for operating distinct instruments over different sites. For Tahoe, the used
linear model was developed and published by Chen [41]. For Asiago, the same model form was
adopted as preliminary unreported tests indicated it as the most accurate option; as in Tahoe, the
QMH resulted to be the most useful regression input. Both models explain the majority of the AGB
variability in the areas, but they are characterized by differences in accuracy. High variability in the
accuracy of lidar-based estimates obtained by different studies has been previously observed [50].
It is known that different sources of error, generated while propagating from the ground tree level to
the landscape estimation level, may affect lidar-based AGB predictions [51], and it is reasonable to
consider that the impact of these errors differs according to the study site. Even if at both sites mixed
forests are present, the sites and the collected data are characterized by relevant differences, such as:
the lidar systems used, the aerial and field survey characteristics, the species communities, the tree
cover density, the biomass density—with significantly larger values of AGB found in Asiago with
respect to Tahoe—and the allometric relationships adopted. All these factors are reported as possible
sources of error in AGB estimations [51] and may explain the observed difference in accuracy. Overall,
the accuracies are in a high range, adding evidence to the value that lidar has for biomass studies.

With respect to results from SAR tests, the sum of HH and HV backscattering values was
always selected as input in stepwise procedure, even if this input performed only slightly better
in regression than the single channel cross-polarized backscattering value usually used for AGB
estimations. Previous research showed that L-band cross-polarized backscatter is more sensitive
to biomass variations, whereas the co-polarized signal better captures differences in forest cover
fraction [52]. High resolution imagery used in the initial screening phase, as well the difference in
NDVI average values found in the two areas, confirms a difference in forest cover, with Asiago having
a higher density of trees. The cover information brought by HH polarization, together with the fact
that the sum of the two channels reduces the extreme backscattering values and acts as an additional
filter effect, may be the reason for the selection in our models of the HH and HV sum.

The use of SAR GLCM features in test (b) consistently improved the accuracy of the model:
the stepwise selected texture was the GLCM mean, which is a statistical feature useful to describe
homogeneous regions and that further suppress the noise in the data. The NDVI information added
to the SAR data in the third (c) test also improved the accuracy of SAR data alone, slightly more
than that done by the SAR mean texture. This indicates a complementarity of the SAR and optical
datatypes, as already shown by other researches [31,33–35,53], and underlines the importance of forest
cover information especially when considering simultaneously different vegetation communities, as in
this study. When—in test (d)—both mean NDVI and mean HH SAR textures are added to the SAR
backscattering statistics, only the first input is selected by the stepwise procedure, possibly due to the
redundant cover information present in both HH and NDVI datasets. However, the result from using
SAR data with texture and SAR + NDVI are not so different; considering the broad and free availability
of NDVI data from multiple sensors, as well as the extra resources needed to compute texture (with
large increase of features in input) we support the use of NDVI as a way of improving accuracy of
SAR estimates.

The AGB variation explained by SAR inputs only (test (a)) is in the range of the results obtained
by other studies based on ALOS PALSAR data [53–55]. The best model, having HH + HV and mean
NDVI texture as input features, shows an accuracy higher than some results obtained by studies using
small field plots [17,27,56]. These results support the view that ALOS2 is a valuable tool for AGB
estimation, and that its potential can be boosted by the integration of an optical feature such as NDVI.

The scatterplot of the observed vs. predicted values obtained with the most accurate model
(Figure 3) reveals that slight saturation effects are present at the high Asiago biomass values. However
our results, also according to Figure 4, do not clearly show the usual 100–150 Mg/ha saturation limit
reported in literature [1,57,58]; and it is difficult to understand if at higher AGB levels there is a scarce
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saturation effect or increased error in model. These results from a single research might be caused
also by environmental characteristics of the study areas (e.g., soil and forest structure). Several sensor
improvements suggest that ALOS2 is a valuable tool, able to characterize biomass in dense forests
and offering continuity to ALOS. Some of the improved features to consider, with respect to the
previous ALOS, are: higher geolocation accuracy, generating a better correspondence between remote
sensing and ground data; the higher spatial resolution, allowing the collection of multiple backscatter
information, and reducing noise, even from plots of reduced size; and the improved radiometric
accuracy, resulting in finer backscattering response at different AGB levels. For full sensor details see
the information available online: https://directory.eoportal.org/web/eoportal/satellite-missions/
a/alos-2. Even if additional study is needed to evaluate the use of this sensor for AGB research, and
its response in different forests, our research indicates the suitability of the new ALOS2 for AGB
estimation, even using small field plots as ground truth.

The availability in our study areas of lidar-derived AGB prediction maps allowed the comparison
of the estimates obtained using this on-demand data or satellite data. The evaluation of results obtained
with different instruments, which acquire data at very different costs, can be of high relevance for forest
and natural resources management, especially in areas where repeated carbon density monitoring
is requested.

In terms of total AGB stored in each area, SAR and NDVI data overestimated the total AGB
of 6.4% for Asiago and 23.7% for Tahoe respectively, compared to lidar data. The analysis of the
errors illustrated in Figure 7 shows that SAR and NDVI moderately overestimates at lower biomass
ranges, approximately until 200 Mg/ha, while it underestimates at higher AGB density. The larger
overall overestimation found in Tahoe compared to Asiago is possibly due to the sparser tree cover
characterizing this site, in which the SAR backscattering is therefore more influenced by the ground
signal component. Viergever [59] also reported overestimation modeling biomass with SAR data in
sparse savanna woodlands, while [60] suggested that pantropical carbon maps may overestimate AGB
in savanna areas. However, underestimation of tree heights has also been reported for lidar-derived
tree height models, and attributed to the laser beams missing the tree tops, especially at low laser
point densities [61–63], even if there are several examples of AGB models developed with low point
density lidar [64,65]. It is possible that the lidar-based AGB maps are slightly influenced by this effect,
especially for Tahoe where the sparse tree density may have exacerbated the problem. The distribution
of the AGB values in maps produced with the two different systems (Table 2) show that the central
measures are not so dissimilar; however, the range of local variation captured by lidar-based maps is
higher than in SAR plus NDVI maps, which tend to reduce the AGB variation over the sites, especially
at the high AGB Asiago range. This suggests that when the purpose is the overall quantification of
the stored carbon in a given area, satellite data which has lower cost and is widely available can be
effective, while when precise information on AGB spatial distribution is needed, lidar is a better choice.
For Asiago, considering that accuracy of the AGB lidar-based estimate is moderate (R2 = 0.75) and that
the overestimation of SAR plus NDVI is quite limited (6.3%), the cost-effectiveness of using lidar for
biomass monitoring has to be carefully evaluated.

5. Conclusions

Airborne lidar remains, when possible, the first choice for local studies and fine scale information
on biomass spatial distribution. The present research shows the continuity from ALOS to ALOS2 in
providing reasonably accurate AGB estimates at a coarse scale, in this case also using small forest
plots at considerable biomass densities. Given the reduced number of input features used in modeling,
and the large availability of NDVI information vs. the extra resources needed to compute and select
SAR textures features, the use of NDVI as integration is advisable. The results also underline the
importance of considering the degree of forest cover, similarly to what has been observed in other
research [66], which in our study influenced both lidar and SAR + NDVI results.

https://directory.eoportal.org/web/eoportal/satellite-missions/a/alos-2
https://directory.eoportal.org/web/eoportal/satellite-missions/a/alos-2
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Considering the larger availability of small plots with respect to larger ones from forest research
and inventory efforts, and the increasing number or SAR missions with low-cost data expected in
forthcoming years, to map AGB with SAR might be a cost-effective choice not only for large global or
country-level analysis but also at smaller scales. When both data are available, lidar-based estimation
can represent an accurate baseline, as in this study, with satellite data offering repeated monitoring
in time.
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