149 research outputs found

    Mechanomyographic Parameter Extraction Methods: An Appraisal for Clinical Applications

    Get PDF
    The research conducted in the last three decades has collectively demonstrated that the skeletal muscle performance can be alternatively assessed by mechanomyographic signal (MMG) parameters. Indices of muscle performance, not limited to force, power, work, endurance and the related physiological processes underlying muscle activities during contraction have been evaluated in the light of the signal features. As a non-stationary signal that reflects several distinctive patterns of muscle actions, the illustrations obtained from the literature support the reliability of MMG in the analysis of muscles under voluntary and stimulus evoked contractions. An appraisal of the standard practice including the measurement theories of the methods used to extract parameters of the signal is vital to the application of the signal during experimental and clinical practices, especially in areas where electromyograms are contraindicated or have limited application. As we highlight the underpinning technical guidelines and domains where each method is well-suited, the limitations of the methods are also presented to position the state of the art in MMG parameters extraction, thus providing the theoretical framework for improvement on the current practices to widen the opportunity for new insights and discoveries. Since the signal modality has not been widely deployed due partly to the limited information extractable from the signals when compared with other classical techniques used to assess muscle performance, this survey is particularly relevant to the projected future of MMG applications in the realm of musculoskeletal assessments and in the real time detection of muscle activity

    Continuous monitoring of electromyography (EMG), mechanomyography (MMG), sonomyography (SMG) and torque output during ramp and step isometric contractions

    Get PDF
    2010-2011 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    A Review of Non-Invasive Techniques to Detect and Predict Localised Muscle Fatigue

    Get PDF
    Muscle fatigue is an established area of research and various types of muscle fatigue have been investigated in order to fully understand the condition. This paper gives an overview of the various non-invasive techniques available for use in automated fatigue detection, such as mechanomyography, electromyography, near-infrared spectroscopy and ultrasound for both isometric and non-isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who wish to select the most appropriate methodology for research on muscle fatigue detection or prediction, or for the development of devices that can be used in, e.g., sports scenarios to improve performance or prevent injury. To date, research on localised muscle fatigue focuses mainly on the clinical side. There is very little research carried out on the implementation of detecting/predicting fatigue using an autonomous system, although recent research on automating the process of localised muscle fatigue detection/prediction shows promising results

    MC Sensor—A Novel Method for Measurement of Muscle Tension

    Get PDF
    This paper presents a new muscle contraction (MC) sensor. This MC sensor is based on a novel principle whereby muscle tension is measured during muscle contractions. During the measurement, the sensor is fixed on the skin surface above the muscle, while the sensor tip applies pressure and causes an indentation of the skin and intermediate layer directly above the muscle and muscle itself. The force on the sensor tip is then measured. This force is roughly proportional to the tension of the muscle. The measurement is non-invasive and selective. Selectivity of MC measurement refers to the specific muscle or part of the muscle that is being measured and is limited by the size of the sensor tip. The sensor is relatively small and light so that the measurements can be performed while the measured subject performs different activities. Test measurements with this MC sensor on the biceps brachii muscle under isometric conditions (elbow angle 90°) showed a high individual linear correlation between the isometric force and MC signal amplitudes (0.97 ≤ r ≤ 1). The measurements also revealed a strong correlation between the MC and electromyogram (EMG) signals as well as good dynamic behaviour by the MC sensor. We believe that this MC sensor, when fully tested, will be a useful device for muscle mechanic diagnostics and that it will be complementary to existing methods

    Mechanomyographic amplitude and frequency responses during dynamic muscle actions: a comprehensive review

    Get PDF
    The purpose of this review is to examine the literature that has investigated mechanomyographic (MMG) amplitude and frequency responses during dynamic muscle actions. To date, the majority of MMG research has focused on isometric muscle actions. Recent studies, however, have examined the MMG time and/or frequency domain responses during various types of dynamic activities, including dynamic constant external resistance (DCER) and isokinetic muscle actions, as well as cycle ergometry. Despite the potential influences of factors such as changes in muscle length and the thickness of the tissue between the muscle and the MMG sensor, there is convincing evidence that during dynamic muscle actions, the MMG signal provides valid information regarding muscle function. This argument is supported by consistencies in the MMG literature, such as the close relationship between MMG amplitude and power output and a linear increase in MMG amplitude with concentric torque production. There are still many issues, however, that have yet to be resolved, and the literature base for MMG during both dynamic and isometric muscle actions is far from complete. Thus, it is important to investigate the unique applications of MMG amplitude and frequency responses with different experimental designs/methodologies to continually reassess the uses/limitations of MMG

    Sonomyographic responses during voluntary isometric ramp contraction of the human rectus femoris muscle

    Get PDF
    This paper aims to investigate the relationship between torque and muscle morphological change, which is derived from ultrasound image sequence and termed as sonomyography (SMG), during isometric ramp contraction of the rectus femoris (RF) muscle, and to further compare SMG with the electromyography (EMG) and mechanomyography (MMG), which represent the electrical and mechanical activities of the muscle. Nine subjects performed isometric ramp contraction of knee up to 90% of the maximal voluntary contraction (MVC) at speeds of 45, 22.5 and 15% MVC/s, and EMG, MMG and ultrasonography were simultaneously recorded from the RF muscle. Cross-sectional area, which was referred to as SMG, was automatically extracted from continuously captured ultrasound images using a newly developed image tracking algorithm. Polynomial regression analyses were applied to fit the EMG/MMG/SMG-to-torque relationships, and the regression coefficients of EMG, MMG, and SMG were compared. Moreover, the effect of contraction speed on SMG/EMG/MMG-to-torque relationships was tested by pair-wise comparisons of the mean relationship curves at different speeds for EMG, MMG and SMG. The results show that continuous SMG could provide important morphological parameters of continuous muscle contraction. Compared with EMG and MMG, SMG exhibits different changing patterns with the increase of torque during voluntary isometric ramp contraction, and it is less influenced by the contraction speed

    Assessment of muscle fatigue using sonomyography : muscle thickness change detected from ultrasound images

    Get PDF
    Author name used in this publication: J. ShiAuthor name used in this publication: Y. P. ZhengAuthor name used in this publication: X. ChenAuthor name used in this publication: Q. H. HuangAccepted ManuscriptPublishe

    Novel Pseudo-Wavelet function for MMG signal extraction during dynamic fatiguing contractions

    Get PDF
    The purpose of this study was to develop an algorithm to classify muscle fatigue content in sports related scenarios. Mechanomyography (MMG) signals of the biceps muscle were recorded from thirteen subjects performing dynamic contractions until fatigue. For training and testing purposes, the signals were labeled in two classes (Non-Fatigue and Fatigue). A genetic algorithm was used to evolve a pseudo-wavelet function for optimizing the detection of muscle fatigue. Tuning of the generalized evolved pseudo-wavelet function was based on the decomposition of 70% of the conducted MMG trials. After completing 25 independent pseudo-wavelet evolution runs, the best run was selected and then tested on the remaining 30% of the data to measure the classification performance. Results show that the evolved pseudo-wavelet improved the classification rate of muscle fatigue by 4.70 percentage points to 16.61 percentage points when compared to other standard wavelet functions, giving an average correct classification of 80.63%, with statistical significance (p < 0.05). © 2014 by the authors; licensee MDPI, Basel, Switzerland

    Advances and perspectives of mechanomyography

    Get PDF
    INTRODUCTION: The evaluation of muscular tissue condition can be accomplished with mechanomyography (MMG), a technique that registers intramuscular mechanical waves produced during a fiber's contraction and stretching that are sensed or interfaced on the skin surface. OBJECTIVE: Considering the scope of MMG measurements and recent advances involving the technique, the goal of this paper is to discuss mechanomyography updates and discuss its applications and potential future applications. METHODS: Forty-three MMG studies were published between the years of 1987 and 2013. RESULTS: MMG sensors are developed with different technologies such as condenser microphones, accelerometers, laser-based instruments, etc. Experimental protocols that are described in scientific publications typically investigated the condition of the vastus lateralis muscle and used sensors built with accelerometers, third and fourth order Butterworth filters, 5-100Hz frequency bandpass, signal analysis using Root Mean Square (RMS) (temporal), Median Frequency (MDF) and Mean Power Frequency (MPF) (spectral) features, with epochs of 1 s. CONCLUSION: Mechanomyographic responses obtained in isometric contractions differ from those observed during dynamic contractions in both passive and functional electrical stimulation evoked movements. In the near future, MMG features applied to biofeedback closed-loop systems will help people with disabilities, such as spinal cord injury or limb amputation because they may improve both neural and myoelectric prosthetic control. Muscular tissue assessment is a new application area enabled by MMG; it can be useful in evaluating the muscular tonus in anesthetic blockade or in pathologies such as myotonic dystrophy, chronic obstructive pulmonary disease, and disorders including dysphagia, myalgia and spastic hypertonia. New research becomes necessary to improve the efficiency of MMG systems and increase their application in rehabilitation, clinical and other health areas304384401CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPsem informaçã
    corecore