4,123 research outputs found

    BPRS: Belief Propagation Based Iterative Recommender System

    Full text link
    In this paper we introduce the first application of the Belief Propagation (BP) algorithm in the design of recommender systems. We formulate the recommendation problem as an inference problem and aim to compute the marginal probability distributions of the variables which represent the ratings to be predicted. However, computing these marginal probability functions is computationally prohibitive for large-scale systems. Therefore, we utilize the BP algorithm to efficiently compute these functions. Recommendations for each active user are then iteratively computed by probabilistic message passing. As opposed to the previous recommender algorithms, BPRS does not require solving the recommendation problem for all the users if it wishes to update the recommendations for only a single active. Further, BPRS computes the recommendations for each user with linear complexity and without requiring a training period. Via computer simulations (using the 100K MovieLens dataset), we verify that BPRS iteratively reduces the error in the predicted ratings of the users until it converges. Finally, we confirm that BPRS is comparable to the state of art methods such as Correlation-based neighborhood model (CorNgbr) and Singular Value Decomposition (SVD) in terms of rating and precision accuracy. Therefore, we believe that the BP-based recommendation algorithm is a new promising approach which offers a significant advantage on scalability while providing competitive accuracy for the recommender systems

    Flow-based reputation with uncertainty: Evidence-Based Subjective Logic

    Full text link
    The concept of reputation is widely used as a measure of trustworthiness based on ratings from members in a community. The adoption of reputation systems, however, relies on their ability to capture the actual trustworthiness of a target. Several reputation models for aggregating trust information have been proposed in the literature. The choice of model has an impact on the reliability of the aggregated trust information as well as on the procedure used to compute reputations. Two prominent models are flow-based reputation (e.g., EigenTrust, PageRank) and Subjective Logic based reputation. Flow-based models provide an automated method to aggregate trust information, but they are not able to express the level of uncertainty in the information. In contrast, Subjective Logic extends probabilistic models with an explicit notion of uncertainty, but the calculation of reputation depends on the structure of the trust network and often requires information to be discarded. These are severe drawbacks. In this work, we observe that the `opinion discounting' operation in Subjective Logic has a number of basic problems. We resolve these problems by providing a new discounting operator that describes the flow of evidence from one party to another. The adoption of our discounting rule results in a consistent Subjective Logic algebra that is entirely based on the handling of evidence. We show that the new algebra enables the construction of an automated reputation assessment procedure for arbitrary trust networks, where the calculation no longer depends on the structure of the network, and does not need to throw away any information. Thus, we obtain the best of both worlds: flow-based reputation and consistent handling of uncertainties

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    Similarity-based Techniques for Trust Management

    Get PDF
    A network of people having established trust relations and a model for propagation of related trust scores are fundamental building blocks in many of todayĹ s most successful e-commerce and recommendation systems. Many online communities are only successful if sufficient mu-tual trust between their members exists. Users want to know whom to trust and how muc

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN
    • …
    corecore