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1. Introduction

A network of people having established trust relations and a model for propagation of related
trust scores are fundamental building blocks in many of todayŠs most successful e-commerce
and recommendation systems. Many online communities are only successful if sufficient mu-
tual trust between their members exists. Users want to know whom to trust and how much
to trust in the competence and benevolence of other community members in a specific appli-
cation domain.
However, the web of trust is often too sparse to predict trust values between non-familiar
people with high accuracy. Since, at least in large online communities, a user has experience
with only a very small fraction of the other community members. Thus, very often there will
be no trust relation to an intended new partner of an e-commerce transaction at all.
The process of building trust is hereby performed in two different ways. First, one can es-
tablish trust (or distrust) by gaining direct experience with another party. Of course, every
positive event increases the assumed trustworthiness of the trustee while every negative one
reduces it. Second, one can gain trust based on recommendations of third parties. If, e.g.,
Alice has high trust in Bob’s ability to assess the trustworthiness of other people, Bob has
similar trust in Claire’s recommendations, and Claire considers David trustable based on her
personal experience with him, then Alice gains also trust in David even if she has no or very
limited knowledge of him at all. This form of propagated trust is called trust transitivity. Trust
transitivity may provide additional information to alleviate the consequences of the sparsity
and possible cold-start problems. Such approaches are helpful, provided that a complete trust
path exists between the two users.
Based on the two forms of trust, a so-called web of trust between community members is cre-
ated which is often used in recommender systems helping users of e-commerce applications
to get an idea about the trustworthiness of their mostly personally unknown cooperation part-
ners. Unfortunately, however, these webs of trust are often too sparse to be helpful in practice
since — at least in large online communities — a user has experience with only a very small
fraction of the other community members. Thus, very often there will be no trust relation to
an intended new partner of an e-commerce transaction at all (Kim et al., 2008).
An alternative approach to the problem is advocated in this chapter. Based on collaborative
filtering one can exploit the like-mindedness resp. similarity of individuals to infer trust to yet
unknown parties which increases the trust relations in the web. For instance, if one knows that
with respect to a specific property, two parties are trusted alike by a large number of different
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trusters, one can assume that they are similar. Thus, if one has a certain degree of trust to
the one party, one can safely assume a very similar trustworthiness of the other one. In an
attempt to provide high quality recommendations and proper initial trust values even when
no complete trust propagation path or user profile exists, we propose TILLIT1 (Trust Inference
Links based on Like-minded Interaction Transitions) — a model based on combination of trust
inferences and user similarity. The similarity is derived from the structure of the trust graph
and users’ trust behavior as opposed to other collaborative-filtering based approaches which
use ratings of items or user’s profile. We describe an algorithm realizing the approach based
on a combination of trust inferences and user similarity, and validate the algorithm using a
real large-scale data-set.
TILLIT enables to derive trust not only from direct experience and by transitive propagation
but also from the similarity between users and vice versa. In particular, two users are consid-
ered similar if they either built akin trust relations to other users or if they are trusted very
similarly by others. This can be used to propagate already known trust to new trust relations
encompassing people similar to those of the yet known relationships. Thus, the web of trust
can be augmented significantly.
In comparison with other approaches based on similarity, our work has the following differ-
ences:

• It intends to alleviate the sparsity problem in the web of trust matrix itself instead of
the matrix of users rating items in the system. Since users have usually few items rated
in common, the classic recommender system techniques are often ineffective and are
not able to compute a user similarity weight for many of the users. Instead, exploiting
the web of trust, it is possible to propagate trust better and to infer additional trust
information about other users.

• It calculates the similarity from the structure of the web of trust and trust relations (the
trust graph structure and trust values) instead of user-item ratings.

• It proposes methods to convert trust values to similarity measures and vice versa based
on the TNA-SL model.

We conduct experiments on a large real dataset showing how our proposed solution increases
the coverage (number of trust relations that are predictable) while not reducing the accu-
racy (the error of predictions). This is especially true for users who have provided few rat-
ings (Tavakolifard et al., 2009).
The rest of this chapter is organized as follows: Section 2 presents a state-of-the-art survey of
most popular approaches to deal with the sparsity problem and provide main directions along
which research efforts have been done. In section 3 our proposed model is presented. Finally,
Section 4 concludes the chapter and outlines some future issues concerning the applicability
of the proposed method.

2. State of the Art

Most popular approaches proposed to deal with the sparsity problem include dimensionality
reduction of the user-item matrix, application of associative retrieval techniques in the bi-
partite graph of items and users, item-based similarity instead of user-based similarity, and
content-boosted collaborative filtering (see (Papagelis et al., 2005)). The dimensionality reduc-
tion approach addresses the sparsity problem by removing unrepresentative or insignificant

1 “Tillit” is the Norwegian word for trust.
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Paper Web of
trust

User-item
ratings

rating-
based
similarity

profile-
based
similarity

(Papagelis et al., 2005) x x

(Massa & Avesani, 2004) x x

(Massa & Bhattacharjee,
2004)

x x

(Massa & Avesani, 2006) x

(Avesani et al., 2004) x x

(Avesani et al., 2005) x x

(Weng et al., 2006) x

(Lathia et al., 2008) x

(Gal-Oz et al., 2008) x

(O’Donovan & Smyth, 2005) x x x

(Ziegler & Golbeck, 2007) x x

(Ziegler & Lausen, 2004) x x

(Golbeck, 2006) x x

(Golbeck & Hendler, 2004) x x

(Golbeck, 2005) x

(Bedi & Kaur, 2006) x

(Bedi et al., 2007) x

(Hwang & Chen, 2007) x

(Peng & Seng-cho, 2009) x

(Kitisin & Neuman, 2006) x

(Fu-guo & Sheng-hua, 2007) x x

(Peng & Seng-cho, 2009) x x

(Victor, De Cock, Cornelis &
Teredesai, 2008)

x

(Victor, Cornelis, De Cock &
Pinheiro da Silva, 2008)

x

Table 1. Categorization of the related work.

users or items so as to condense the user-item matrix. We briefly explain those which are
based on trust management and similarity measurement and thus more closely resemble our
work. Similarity-based approaches can be categorized in two groups: rating-based similarity
and profile-based similarity.
Recently, several researches have suggested that the incorporation of a notion of trust into
the standard collaborative filtering model can effectively solve the sparsity problem and thus
provide better recommendations. A user can build his personalized web of trust by specifying
those friends or users he trusts. The trust web can be constructed through the explicit trust
ratings provided by users (Hwang & Chen, 2007). Table 1 indicates whether each related work
is based on an explicit web of trust or the trust is derived from user-item ratings. In addition,
this table shows which kind of similarity (rating-based or profile-based) is used.
In (Papagelis et al., 2005), authors explain how similarity can benefit from special characteris-
tics of trust such as the ability to propagate along chains of trusted users; in this way similarity
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can support transitivity. They develop a model to establish trust between users by exploiting
the transitive nature of trust. In their model they use ordinary measures of similarity taken
from collaborative filtering to form the potential trust between the users which would be
propagated in a similar way to the word-of-mouth scheme through a trust graph. Finally, by
transforming the value back into similarity measure terms, it could be made appropriate for
use in collaborative filtering algorithms. More specifically, for each pair of users they first
calculate how similar they are, applying PearsonŠs correlation coefficient formula over the
user-item ratings, and then they calculate the indirect trust between them. Next, this trust
value is converted to a similarity metric using their formula. However, their model simply
adopts similarity as trustworthiness. Hence, it still possesses the limitations of similarity-
based collaborative filtering as discussed. The main contribution of this work is that a trust
metric has been designed, which helps a user to quantify the degrees of trust it should place
on others.
Massa et al. present in (Massa & Avesani, 2004) evidence that, by incorporating trust, rec-
ommender systems can be more effective than systems based on traditional techniques like
collaborative filtering. They analyze the potential contribution of Trust Metrics in increasing
the performances of Recommender Systems and proposed an architecture for trust-aware Rec-
ommender Systems. In this paper, it is proposed that a peer can establish trust on other peers
through explicit trust statements and trust propagation. A trust model is built directly from
users’ direct feedbacks. This trust model is incorporated into the recommendation process for
recommending various items (such as books, movie, music, software etc.) to on-line users.
Users can express their personal web of trust by identifying those reviewers whose reviews
and ratings are consistently found to be valuable. they argue that it is possible to predict trust
in unknown users by propagating trust even there were no direct connection between them.
However, it is not clear how a user quantify the degrees of trust when making trust state-
ments. The authors show how the similarity measure, on average, is computable only against
a very small portion of the user base and is, in most cases, a noisy and unreliable value because
computed on few items rated in common by two users. Instead, trust-aware techniques can
produce a trust score for a very high number of other users; the trust score of a user estimates
the relevance of that users’ preferences. In this paper, similarity is measured using PearsonŠs
correlation coefficient on user-item ratings.
They also show, in their subsequent experiment (Massa & Bhattacharjee, 2004), that the in-
corporation of trust metric and similarity metric can increase the coverage of recommender
systems while maintaining the recommendation accuracy. This work builds a trust model di-
rectly from trust data provided by users as part of the popular epinions.com service. A big
limitation of the work in (Massa & Avesani, 2004) and (Massa & Bhattacharjee, 2004) is that
the web of trust are built on binary relationships among users and the propagating trusts are
computed simply based on the distances between them.
Massa and Avesani in (Massa & Avesani, 2006) analyze the relative benefits of asking new
users either few ratings about items or few trust statements about other users for the purpose
of bootstrapping a RS ability to generate recommendations. They run experiments on a large
real world dataset derived from Epinions. com. The results clearly indicate that while tradi-
tional RS algorithms exploiting ratings on items fail for new users, asking few trust statements
to a new user is instead a very effective strategy able to quickly let the RS generate many accu-
rate items recommendations. The working hypothesis is that inviting users to elicit opinions
on users (trust statements) rather than opinions on items allows to shorten the bootstrapping
of RSs for cold start users. The benefits can be summarized as follows: (1) the number of trust
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statements needed from a new user for bootstrapping a Recommender System is much less
than the number of rating on items; (2) while exploiting the few early ratings provided by a
new user does not enable to generate recommendations, exploiting just few early trust state-
ments allows to significantly increase the number of possible recommendations; (3) the accu-
racy of generated recommendations increases as well exploiting trust statements rather than
ratings on items. The main contribution of this paper is the empirical proof of our hypothe-
ses. The straightforward impact of this work is a new guideline for Recommender Systems
design: a new user has to be invited to elicit few other users she trusts rather than to express
her opinions on a pool of items.
Avesain et al. in (Avesani et al., 2004; 2005) apply the trust model into the ski mountaineering
domain. They present a community-based website in which users can share their opinions
about the snow conditions of different ski routes and also express their trust on othersŠ opin-
ions. The trust score of a user depends on the trust statements of other users on him/her
and their trust scores. However, the trust model requires the direct feedback of users and the
effectiveness of the trust model on the skiing community has not been validated.
In (Weng et al., 2006) propose that peers predict the new items’ ratings based on the rec-
ommendations of the peers that are trusted directly or indirectly. A trust metrics has been
designed to help peers to determine the degrees of trust should be placed on others. The
design of trust metrics also stimulates a novel method to make prediction, which is featured
by the recommendation adjustment and pseudo-recommendation. It has been shown by the
experimental results that the trust metrics and corresponding prediction making approach
do improve the performance of traditional similarity-based collaborative filtering in terms of
coverage, prediction accuracy and robustness.
A number of techniques for performing collaborative filtering from the point of view of a
trust-management problem are outlined in (Lathia et al., 2008). In this work authors propose
a variation of k-nearest neighbor collaborative filtering algorithm for trusted k-nearest recom-
menders. This algorithm allows users to learn who and how much to trust one another by
evaluating the utility of the rating information they receive. They mainly address the prob-
lem of learning how much to trust rating information that is received from other users in a
recommender system.
A model for computing trust-based reputation for communities of strangers is proposed
in (Gal-Oz et al., 2008). The model uses the concept of knots, which are sets of members
having high levels of trust in each other. Different knots typically represent different view
points and preferences. The assumption underlying this knot-aware reputation model is that
use of relatively small, but carefully selected, subsets of the overall community’s reputation
data yields better results than those represented by the full dataset.
In (O’Donovan & Smyth, 2005), O’Donovan and Smyth argue that profile similarity is just one
of a number of possible factors that might be used to influence recommendation and predic-
tion, and the reliability of a partner profile to deliver accurate recommendations in the past is
another important factor, if a profile has made lots of accurate recommendation predictions in
the past it can be viewed as more trustworthy than another profile that has made many poor
predictions. They claim that the reliability of a user profile to deliver accurate recommenda-
tion in the past is an important factor for influencing recommendation and prediction. A user
is viewed as more trustworthy if he has made more accurate predictions in the past than other
users. The trust metrics are calculated at both the Item and Profile levels. Item Level trust
is a representation for a producer’s trustworthiness with respect to the recommendation of a
specific item. Profile Level trust is a less fine-grained metric, representing a recommendation
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producers trust as a whole, without respect to one specific item. For example, we might wish
to refer to John’s overall trustworthiness based on a series of different past recommendations.
This score is simply an average over the Item Level trust scores for every item in the users
profile. Essentially these metrics summarize the relative number of correct recommendations
that a given user has made, according to a predefined error bound. They propose to modify
the way that recommendation partners are generally selected or weighted during the recom-
mendation process. They argue that profile similarity on its own may not be sufficient, that
other factors might also have an important role to play. Specifically they introduce the notion
of trust in reference to the degree to which one might trust a specific profile when it comes to
make a specific rating prediction. They develop two different trust models, one that operates
at level of the profile and one at level of the items within a profile. In both of these models trust
is estimated by monitoring the accuracy of a profile at making predictions over an extended
period of time. Trust then is the percentage of correct predictions that a profile has made in
general (profile-level trust) or with respect to a particular item (item-level trust). They de-
scribe how this trust information can be incorporated into the recommendation process and
demonstrate that it has a positive impact on recommendation quality. However, this system
only uses a global trust metric and provides neither any personalization nor trust propagation.
Ziegler and Lausen in (Ziegler & Lausen, 2004) mention that in order to provide meaningful
results for recommender system applications, they expect notions of trust to clearly reflect user
similarity. In this work, they provide empirical results obtained from one real, operational
community and verify latter hypothesis for the domain of book recommendations. Ziegler
and Golbeck in (Ziegler & Golbeck, 2007) experimentally prove that there exists a significant
correlation between the trust expressed by the users and their profile similarity based on the
recommendations they made in the system. This correlation is further studied as survey-based
experiments in (Golbeck, 2006).
Golbeck et al. in (Golbeck & Hendler, 2004) describe an E mail filtering system based on trust
ratings. The predicted trust of a user is given by a weighted average of her neighborsŠ trust
ratings. They have shown that the weighted average metric can provide better results than
other metrics.
Golbeck in (Golbeck, 2005) present FilmTrust, a website that uses trust in Semantic Web-based
social networks, to create predictive movie recommendations. She show how these recom-
mendations are more accurate than other techniques in certain cases, and discuss this as a
mechanism of Semantic Web interaction. Within the FilmTrust website, trust in social net-
works has been used to personalize the user experience. Trust took on the role of a recom-
mender system forming the core of an algorithm to create predictive rating recommendations
for movies. The accuracy of the trust-based predicted ratings in this system is significantly
better than the accuracy of a simple average of the ratings assigned to a movie and also the
recommended ratings from a Person-correlation based recommender system.
In (Bedi & Kaur, 2006) a model that incorporates the social recommendation process is pro-
posed. The trustworthy peers of the user become the recommender agents and suggest movies
to the user according to the tastes of the user. The agents in our system also learn from their ex-
perience in dealing with the trustworthy peers and update the degree of trust on them. In the
proposed system, they have tried to merge the advantages of the mechanical recommender
system with the more humane recommendation process to make their recommendations trust-
worthy and useful for the user.
(Bedi et al., 2007) proposes the design of a recommender system that uses knowledge stored
in the form of ontologies. The interactions amongst the peer agents for generating recommen-
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dations are based on the trust network that exists between them. Recommendations about a
product given by peer agents are in the form of Intuitionistic Fuzzy Sets specified using de-
gree of membership, non membership and uncertainty. The presented design uses ontologies,
a knowledge representation technique, instead of databases for creating annotated content for
Semantic Web. Seeing the potential and popularity of ontologies among researchers, they be-
lieve that ontologies will be build and maintained in numerous knowledge domains for the
Semantic Web and future applications. The presented recommender system uses temporal
ontologies that absorb the effect of changes in the ontologies due to the dynamic nature of
domains, in addition to the benefits of ontologies. A case study of tourism recommender sys-
tem is chosen to generate the recommendations for the selection of destination, travel agents
and the flight schedule. A comparison of the generated recommendations with the manual
recommendations by peers establishes the validity of the presented recommender system.
In (Hwang & Chen, 2007) an improved mechanism to the standard collaborative filtering
techniques by incorporating trust into collaborative filtering recommendation process is pre-
sented. They derive the trust score directly from the user rating data based on users’ predic-
tion accuracy in the past and exploit the trust propagation in the trust web. They investigate
the effects of both the local trust metric and the global trust metric in the standard collab-
orative filtering recommendation. The global metric has shown to have an advantage over
other approaches in prediction coverage. The local metrics provide more accurate recom-
mendations than those provided by standard collaborative filtering technique. The overall
performance of their trust-based recommender system is presented and favorably compared
to other approaches. Experimental results verify that the incorporation of trust into collabora-
tive filtering process can indeed improve the prediction accuracy while maintain satisfactory
prediction coverage.
(Kitisin & Neuman, 2006) propose an approach to include the social factors e.g. user’s past
behaviors and reputation together as an element of trust that can be incorporated into the cur-
rent recommender system framework and show their experiments in order to test their solu-
tion. Two computation models: expertise level and credit model are presented. The expertise
model includes trust, reputation and past behaviors whereas the credit model represents the
recommendation incentive. They propose using credits to help alleviate cold start problem
and data sparseness.
In (Fu-guo & Sheng-hua, 2007) authors argue that items belonging to different topics need dif-
ferent trustworthy users to make recommendation, so topic-level trust will be more effective
than profile-level trust in incorporating into the recommendation process. Based on this idea,
they design a topic-level trust model which helps a user to quantify the trustworthy degree on
a specific topic, and propose a new recommender algorithm by incorporating the new model
into the mechanics of a standard collaborative filtering recommender system. Their proposed
algorithm combines topic trust with profile similarity. The results from experiments based on
Movielens dataset show that the new method can improve the recommendation accuracy of
recommender systems.
(Peng & Seng-cho, 2009) is motivated by the need to provide recommendations about blog
articles, so that bloggers/readers can find desired articles easily. Accordingly, this study pro-
poses to exploit the trust relationships between bloggers and readers via explicit trust ratings
to generate recommendations in a reliable and satisfactory way. Furthermore, rather than
only using a single trust rating, this work presents a multi-faceted model that considers trust
by dividing a general trust rating into multiple trust ratings for different types of blog arti-
cles, thus enabling trust relationships to be evaluated in a fine-grained manner. To help ease
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information overload in the blogosphere, this work proposes a trust-enhanced collaborative
filtering approach that integrates multi-faceted trust based on article type and user similarity.
An online blog article recommender system, called iTrustU, is also designed to evaluate the
effectiveness of the proposed approach in terms of accuracy and quality of recommendations.
Results demonstrate that the proposed integrated approach yields a significantly higher accu-
racy than traditional approaches, especially for cold-start users. In addition, analysis results
indicate that trust and similarity among bloggers/readers have a significantly positive corre-
lation in the blogosphere. Effective recommender systems can be achieved by exploiting trust
relationships in a trust network. The proposed approach is applicable not only to the blogo-
sphere, but also to online social communities when trust relationships already exist between
users.
(Victor, De Cock, Cornelis & Teredesai, 2008) examines the problem of cold-start users in rec-
ommender systems and propose to connect the newcomer to an underlying trust network
among the users of the recommender system which alleviates the so-called cold start problem.
In this paper, they study the effect of guiding the new user through the connection process,
and in particular the influence this has on the amount of generated recommendations. Ex-
periments on a dataset from Epinions.com support the claim that it is more beneficial for a
newcomer to connect to an identified key figure instead of to a random user.
In (Victor, Cornelis, De Cock & Pinheiro da Silva, 2008) the authors advocate the use of a trust
model in which trust scores are (trust,distrust)-couples, drawn from a bilattice that preserves
valuable trust provenance information including gradual trust, distrust, ignorance, and incon-
sistency. They pay particular attention to deriving trust information through a trusted third
party, which becomes especially challenging when also distrust is involved.
In our work we provide an alternative approach to deal with the sparsity problem. We mea-
sure similarity based on the users’ trust relationships, i.e. trust graph structure and trust val-
ues (in contrast to the other approaches which have used user-item ratings or profile similar-
ity), and propose novel formulas to convert it to subjective logic opinions. The consideration
of these similarities leads to extra information accessible for trust inferences.

3. TILLIT

In our model, we measure similarity based on the existing web of trust in a community us-
ing an iterative fixed-point algorithm on node-pair graphs introduced later in this section.
As a method to describe the values of trust as well as its propagation we apply the TNA-SL
model (Jøsang et al., 2006) which is based on the Subjective Logic (Jøsang, 2001). Our ap-
proach, however, would also work with other methods like (Abdul-Rahman & Hailes, 2000;
Grandison & Sloman, 2002).
In subsection 3.1, we briefly explain the TNA-SL model as the background of our work. Our
proposed model for trust inference is described in section 3.2.

3.1 Trust Network Analysis with Subjective Logic

for trust network analysis. TNA-SL uses the Subjective Logic (Jøsang, 2001) which enables to
represent a specific belief calculus. There trust is expressed by a belief metric called opinion.
An opinion is denoted by ω

A
B

= (b, d, u, a) expressing the belief of a relying party A in the
trustworthiness of another party B. The parameters b and d represent the belief resp. disbelief
in B’s trustworthiness while d expresses the uncertainty of A about to trust B or not. The three
parameters are all probability values between 0 and 1 and fulfill the constraint b + d + u = 1.
The parameter a is called the base rate, and determines how uncertainty shall contribute to the
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Fig. 1. Opinion triangle with an example opinion (Jøsang, 2001).

A�
FT�

D�

C�

RT�

B�

E�

RT�

RT� RT�

FT�

Fig. 2. Referral trust transitivity and parallel combination of trust paths.

opinion’s probability expectation value which is calculated as E(ω
A
x ) = b + au. The opinion

space can be mapped into the interior of an equal-sided triangle, where, the three parameters
b, d, and u determine the position of the point in the triangle representing the opinion. Fig.1
illustrates an example where the opinion is ωx = (0.7, 0.1, 0.2, 0.5).
Based on TNA-SL, there are two different types of trust relations: functional trust (FT) and re-
ferral trust (RT). The former concerns A’s direct trust in B performing a specific task; the latter
concerns A’s trust in B giving a recommendation about someone else doing a task or in other
words is the trust in the ability to refer to a third party. As mentioned in the introduction,
the simplest form of trust inference is trust transitivity which is widely discussed in litera-
ture (Ding et al., 2005; Guha et al., 2004; Morselli et al., 2007; Quercia et al., 2007; Yang et al.,
2002). That is, if A trusts B who trusts C, then A will also trusts C. A valid transitive trust path
requires that the last edge in the path represents functional trust and that all other edges in
the path represents referral trust. Referral trust transitivity and parallel combination of trust
paths are expressed as part of TNA-SL model (figure 2) (Jøsang et al., 2006).
The discounting operator (⊗) (Jøsang, 2002) is used to derive trust from transitive trust paths,
and the consensus operator (⊕) allows to combine parallel transitive trust paths. The trust
network in figure 2 can then be expressed as

FTA
B = ((RTA

D ⊗ RTD
C ) ⊕ (RTA

E ⊗ RTE
C )) ⊗ FTC

B

www.intechopen.com



Web Intelligence and Intelligent Agents242

A�

C�

FT�
1�

FT�

S�

B� B�

C�A�

FT�
2�

FT�

S�

(a)� (b)�

Fig. 3. (a) Similar trustees (b) Similar trustees.

While we consider TNA-SL and the Subjective Logic as a suitable fundament for our similarity
model, it can be, as already mentioned, adapted to all trust management models enabling
to combine referral and functional trust (e.g., (Abdul-Rahman & Hailes, 2000; Grandison &
Sloman, 2002)).

3.2 The Proposed Model

Our model for the estimation how much trust A can place in B considers not only direct
experience and recommendations but also similarities between agents with respect of trusting
other agents or being trusted by other parties. The two kinds of similarities between trusters
resp. trustees can be gradually expressed by triples very similar to the first three operands of
the opinion quadruples such that we can use the consensus operator of the subjective logic for
the trust value computation.

3.2.1 The Main Idea

If A has functional trust in C who is similar to B (they are similar trustees), then A can infer its
functional trust to B ((Ding et al., 2005), see figure 3(a)).
Our similarity opinion is a special form of referral trust. It reflects that the akin trust evalua-
tions of B and C by several other trusters are a kind of recommendation by these agents to A

to treat B and C similarly. Thus, we see the discounting operator ⊗ as the correct mechanism
to combine the similarity opinion between B and C with the functional trust of A in C in order
to infer the functional trust of A in B:

FT1
A
B = S

C
B
⊗ FT

A
C

(1)

As higher the similarity between B and C is, as closer the trust of A to B will equal to that
between A and C. As lower this similarity is, as more uncertain A will be about whether to
trust B or not.
If C has functional trust to B and A is similar to C (they are similar trusters), then A can also
infer functional trust towards B ((Ding et al., 2005), see figure 3(b)).
This similarity opinion is discounted by the functional trust FTC

B
from C to B to form the new

trust value.

FT2
A
B = S

A
C
⊗ FT

C
B

(2)
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Two trustees are similar if they are both similarly trusted by other agents Z1, Z2, ..., Zn (fig-
ure 4(a)). This is an extension of TNA-SL in which it is not possible to infer any trust value of
A towards B in a trust network.
We call C and A similar trusters if they have alike trust in several other agents Z1, Z2, ..., Zn.
In this case, if C has functional trust to a new agent B, then A can infer a functional trust to B
(figure 4(b)). Again using TNA-SL alone, there is no way to infer a new trust value.
Similarly to Jøsang’s way to define opinions, we use triples to describe similarity which en-
ables us to consider uncertainty. In particular, the degree of similarity depends on the number
n of agents Z1, Z2, ..., Zn used for the computation reflecting that we are more certain about
the similarity of two parties if they are trusted by a significant large number of other agents in
an akin way.
The similarity opinion SC

B from C towards B is the triple2 (similarity, non-similarity, uncertainty).
If C = B, the similarity opinion is defined to be (1, 0, 0). Otherwise, it is calculated based on
the measure simte(C, B) of similarity between the two trustees C and B which is introduced in
subsection 3.2.2:

SC
B = (

n · simte(C, B)

c + n
,

n · (1 − simte(C, B))

c + n
,

c

c + n
) (3)

c is a constant determining how fast uncertainty is replaced by assurance. As higher its value
is, as more agents are needed to reduce the uncertainty value in favor of the similarity and
non-similarity values. The similarity opinion fulfills the constraints that the sum of all three
values is equal to 1.
Like (3), the similarity opinion SA

C from A to C is calculated using the measure of similarity
simtr(C, A) between trusters which is also introduced in subsection 3.2.2:

SA
C = (

n · simtr(C, A)

c + n
,

n · (1 − simtr(C, A))

c + n
,

c

c + n
) (4)

2 This metric is inferred from a metric for the trust value computation (Jøsang & Knapskog, 1998) by
Jøsang and Knapskog.
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Fig. 5. Similarity measurement.

3.2.2 Similarity Calculation

In order to measure similarities, we model trusters, trustees, and trust relationships as a graph
with nodes representing trusters and trustees and edges representing trust relations. The
intuition behind our algorithm is that, similar trustees are related to similar trusters. More
precisely, trusters A and B are similar if they are related to trustees C and D, respectively,
and C and D are themselves similar. The base case is that each node is similar to itself. If we
call this graph G, then we can form a node-pair graph G2 in which each node represents an
ordered pair of nodes of G as depicted in figure 5. A node (A, B) of G2 points to a node (C, D)
if, in G, A points to C and B points to D. Similarity scores are symmetric, so for clarity we
draw (A, B) and (B, A) as a single node A, B (with the union of their associated edges) (Jeh &
Widom, 2002).
We propose an iterative fixed-point algorithm on G2 to compute similarity scores3 for node-
pairs in G2. The similarity score for a node υ of G2 gives a measure of similarity between
the two nodes of G represented by υ. Scores can be thought of as flowing from a node to
its neighbors. Each iteration propagates scores one step forward along the direction of the
edges, until the system stabilizes (i.e., scores converge). Since nodes of G2 represents pairs in
G, similarity is propagated from pair to pair. Under this computation, two trustees are similar
if they are trusted by similar trusters.
For each iteration k, iterative similarity functions simte,k(∗, ∗) for trustees and simtr,k(∗, ∗) for
trusters are introduced. The iterative computation is started with sim0,∗(∗, ∗) defined as

sim0,∗(A, B) =

{

1, i f A = B
0, i f A �= B

(5)

3 An alternative approach to measure this similarity is to model an agent’s mental structure as an ontol-
ogy and using various methods proposed in our previous work (Tavakolifard et al., 2008a;b)
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On the (k + 1)-th iteration, sim∗,k+1(∗, ∗) is defined in special cases as

sim∗,k+1(A, B) = 1, i f A = B
simte,k+1(A, B) = 0, i f I(A) = ∅ or I(B) = ∅

simtr,k+1(A, B) = 0, i f O(A) = ∅ or O(B) = ∅

(6)

I(A) is the set of in-neighbors of A while O(A) specifies the set of A’s out-neighbors. Indi-
vidual in-neighbors are denoted as Ii(A), for 1 ≤ i ≤ |I(A)|, and individual out-neighbors
are denoted as Oi(A), for 1 ≤ i ≤ |O(A)|. simte,k+1(∗, ∗) is computed from simtr,k(∗, ∗) in the
general case as follows:

simte,k+1(A, B) =

n
∑

i=1

n
∑
j=i

simtr,k

(

Ii(A), Ij(B)
)

· (1 − distance(Ii(A), Ij(B), A, B))

n
∑

i=1

n
∑
j=i

simtr,k

(

Ii(A), Ij(B)
)

(7)

and simtr,k+1(∗, ∗) is computed from simte,k(∗, ∗) in the general case as:

simtr,k+1(A, B) =

n
∑

i=1

n
∑
j=i

simte,k

(

Oi(A), Oj(B)
)

· (1 − distance(A, B, Oi(A), Oj(B)))

n
∑

i=1

n
∑
j=i

simte,k

(

Oi(A), Oj(B)
)

(8)

Formulas (7) and (8) are alternately computed in iterations until the resulting similarity values
simtr and simte converge.
The distance function is used to compare trust relations. distance(A, B, C, D) expresses the
difference between the trust from A, B to C, D. It averages the Euclidean distances between
the trust values of A and C resp. B and D on the opinion triangle (see figure 1):
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distance(A, A, C, D) =
√

(bAC + 1
2 uAC − bAD −

1
2 uAD)2 + 3

4 (uAC − uAD)2

distance(A, B, C, C) =
√

(bAC + 1
2 uAC − bBC −

1
2 uBC)2 + 3

4 (uAC − uBC)2

distance(A, B, C, D) =







1
2 (

√

(bAC + 1
2 uAC − bBD −

1
2 uBD)2 + 3

4 (uAC − uBD)2

+
√

(bAD + 1
2 uAD − bBC −

1
2 uBC)2 + 3

4 (uAD − uBC)2)

(9)

For the sake of simplicity, all base rate values (aAD, aAC, aBD, aBC) are assumed to be 1
2 . The

factor 3
2 is used for the vertical axis to adapt the measures. Otherwise, the opinion triangle

would be compressed and the distance between the points (0,1,0) and (0,0,1) would not be
equal to one. Figure 6 illustrates the distance function graphically.

4. Conclusion and Future Work

In order to overcome sparseness of the web of trust, we consider users’ similarity as a factor
to derive trust connectivity and trust values. The main idea is that we account two persons
similar if either a fair number of others have akin trust in them or if they themselves trust
several other people alike. In the first case, every person who has trust in one of them can
infer similar trust to the other one, at least as an estimated starting value. In the second case, a
person may infer the trust value of a third party from other trusters similar to her. the results
of our evaluation (Tavakolifard et al., 2009) lead to the expectation that the method TILLIT will
increase the coverage of trust relationships significantly, and that the accuracy of the predicted
additional will be fairly high as well.
We consider a similarity-based recommendation system for singers and songs as a good ap-
plication example for our model. Normally, in systems like iTunes only the most popular
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Fig. 8. Coupling: a trust propagation method.

songs or other songs of artists, of whom one already has bought songs, are advertised with-
out any guarantee that one likes these songs as well. Using our approach, it is possible to
find other customers who have an akin taste about music as the customer Alice reading the
advertisements. Songs rated positively by these customers but not bought yet by Alice can
be advertised to her since she will like them probably as well. This will make Alice more
receptive to the advertisements.
We count all ratings of a buyer of songs of a particular singer to compute the trust value of
that user to the singer by the metric mentioned before. A bipartite trust graph from users to
singers can be formed based on these trust values (Figure 7). Then, (7) and (8) can be used to
calculate similarity of singers and users respectively.
In the future, we aim to evaluate the accuracy of a whole recommender system that em-
ploys our proposed model. Furthermore, we assess the possibility of modeling some of
other trust propagation methods using our approach. An example is transposition resp. reci-
procity (Guha et al., 2004) assuming that A’s trust in B causes B to develop also some level
of trust towards A. Another propagation method is Coupling, in which A’s trust in C propa-
gates to B because C and B trust people in common (Guha et al., 2004). This propagation rule
is depicted in figure 8. According to this rule we can use the similarity between trusters to
propagate the trust in one trustee to another.
Moreover, one can use similarity in a complete different way. Trust is very specific and no-
body trusting Bob as a good car mechanic will automatically trust him also in undertaking
heart surgeries. But probably, he will be capable in repairing motorcycles. Thus, there is a
large similarity between the domains of repairing cars and motorcycles but a very low one
between both of these and medical surgery. We think to use trust relations in one domain to
infer ones in similar domains and consider ontologies describing the degrees of similarity be-
tween the domains as a useful means. All-in-all, we are convinced, that the various forms of
similarity are good vehicles to tackle the major problem of too sparse webs of trust in online
communities.
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