19 research outputs found

    Sharpening Geometric Inequalities using Computable Symmetry Measures

    Full text link
    Many classical geometric inequalities on functionals of convex bodies depend on the dimension of the ambient space. We show that this dimension dependence may often be replaced (totally or partially) by different symmetry measures of the convex body. Since these coefficients are bounded by the dimension but possibly smaller, our inequalities sharpen the original ones. Since they can often be computed efficiently, the improved bounds may also be used to obtain better bounds in approximation algorithms.Comment: This is a preprint. The proper publication in final form is available at journals.cambridge.org, DOI 10.1112/S002557931400029

    Dimer Models from Mirror Symmetry and Quivering Amoebae

    Full text link
    Dimer models are 2-dimensional combinatorial systems that have been shown to encode the gauge groups, matter content and tree-level superpotential of the world-volume quiver gauge theories obtained by placing D3-branes at the tip of a singular toric Calabi-Yau cone. In particular the dimer graph is dual to the quiver graph. However, the string theoretic explanation of this was unclear. In this paper we use mirror symmetry to shed light on this: the dimer models live on a T^2 subspace of the T^3 fiber that is involved in mirror symmetry and is wrapped by D6-branes. These D6-branes are mirror to the D3-branes at the singular point, and geometrically encode the same quiver theory on their world-volume.Comment: 55 pages, 27 figures, LaTeX2

    Brane Tilings and Their Applications

    Full text link
    We review recent developments in the theory of brane tilings and four-dimensional N=1 supersymmetric quiver gauge theories. This review consists of two parts. In part I, we describe foundations of brane tilings, emphasizing the physical interpretation of brane tilings as fivebrane systems. In part II, we discuss application of brane tilings to AdS/CFT correspondence and homological mirror symmetry. More topics, such as orientifold of brane tilings, phenomenological model building, similarities with BPS solitons in supersymmetric gauge theories, are also briefly discussed. This paper is a revised version of the author's master's thesis submitted to Department of Physics, Faculty of Science, the University of Tokyo on January 2008, and is based on his several papers: math.AG/0605780, math.AG/0606548, hep-th/0702049, math.AG/0703267, arXiv:0801.3528 and some works in progress.Comment: 208 pages, 92 figures, based on master's thesis; v2: minor corrections, to appear in Fortschr. Phy

    A geometric analysis of subspace clustering with outliers

    Full text link
    This paper considers the problem of clustering a collection of unlabeled data points assumed to lie near a union of lower-dimensional planes. As is common in computer vision or unsupervised learning applications, we do not know in advance how many subspaces there are nor do we have any information about their dimensions. We develop a novel geometric analysis of an algorithm named sparse subspace clustering (SSC) [In IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009 (2009) 2790-2797. IEEE], which significantly broadens the range of problems where it is provably effective. For instance, we show that SSC can recover multiple subspaces, each of dimension comparable to the ambient dimension. We also prove that SSC can correctly cluster data points even when the subspaces of interest intersect. Further, we develop an extension of SSC that succeeds when the data set is corrupted with possibly overwhelmingly many outliers. Underlying our analysis are clear geometric insights, which may bear on other sparse recovery problems. A numerical study complements our theoretical analysis and demonstrates the effectiveness of these methods.Comment: Published in at http://dx.doi.org/10.1214/12-AOS1034 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Flow pattern within hydrocyclone

    Get PDF
    The paper deals with the measurement methods of tangential, radial, axial velocities evolving in hydrocyclone and the characteristics of the velocity distributions defined in the course of the experiments. The definition of the cut-size diameter based on the so-called equilibrium model requires a review according to the authors. In the sense of the model there are only twoo forces acting on a unique particle settling: the centrifugal force and the one, opposite of the motion, resistance strength, and it does not take into consideration, that liquid flows in hydrocyclon. In the hydrocyclone the medium flowing inwards from the tapered cloak wall has a transport velocity and so an effect on the settling onto a particle may not be apart from attention to let. In the hydrocyclone the phenomenon of an air core taking shape in his axis line was explained by means of the basis equations of the hydrostatics till now. The authors demonstrated that the development of the air core is justifiable also with the necessities of the rotating bowls on an actual example
    corecore