22 research outputs found

    Monitoring Black Sea environmental changes from space: New products for altimetry, ocean colour and salinity. Potentialities and requirements for a dedicated in-situ observing system

    Get PDF
    21 pages, 13 figures, 2 tables, supplementary material https://www.frontiersin.org/articles/10.3389/fmars.2022.998970/full#supplementary-material.-- Data availability statement: The datasets generated for this study can be found on the web interface (http://www.eo4sibs.uliege.be/) and on Zenodo under data doi: 10.5281/zenodo.6397223 with a full documentation that include Products User Manuals (PUM) and Algorithm Theoretical Basis Document (ATBD). All these products are distributed in netCDF files Grégoire et al. (2022). SMOS SSS and CDM products are also available at https://bec.icm.csic.es/bec-ftp-service/In this paper, satellite products developed during the Earth Observation for Science and Innovation in the Black Sea (EO4SIBS) ESA project are presented. Ocean colour, sea level anomaly and sea surface salinity datasets are produced for the last decade and validated with regional in-situ observations. New data processing is tested to appropriately tackle the Black Sea’s particular configuration and geophysical characteristics. For altimetry, the full rate (20Hz) altimeter measurements from Cryosat-2 and Sentinel-3A are processed to deliver a 5Hz along-track product. This product is combined with existing 1Hz product to produce gridded datasets for the sea level anomaly, mean dynamic topography, geostrophic currents. This new set of altimetry gridded products offers a better definition of the main Black Sea current, a more accurate reconstruction and characterization of eddies structure, in particular, in coastal areas, and improves the observable wavelength by a factor of 1.6. The EO4SIBS sea surface salinity from SMOS is the first satellite product for salinity in the Black Sea. Specific data treatments are applied to remedy the issue of land-sea and radio frequency interference contamination and to adapt the dielectric constant model to the low salinity and cold waters of the Black Sea. The quality of the SMOS products is assessed and shows a significant improvement from Level-2 to Level -3 and Level-4 products. Level-4 products accuracy is 0.4-0.6 psu, a comparable value to that in the Mediterranean Sea. On average SMOS sea surface salinity is lower than salinity measured by Argo floats, with a larger error in the eastern basin. The adequacy of SMOS SSS to reproduce the spatial characteristics of the Black Sea surface salinity and, in particular, plume patterns is analyzed. For ocean colour, chlorophyll-a, turbidity and suspended particulate materials are proposed using regional calibrated algorithms and satellite data provided by OLCI sensor onboard Sentinel-3 mission. The seasonal cycle of ocean colour products is described and a water classification scheme is proposed. The development of these three types of products has suffered from important in-situ data gaps that hinder a sound calibration of the algorithms and a proper assessment of the datasets quality. We propose recommendations for improving the in-situ observing system that will support the development of satellite productsThis work has been carried out as part of the European Space Agency contract Earth Observation data For Science and Innovations in the Black Sea (EO4SIBS, ESA contract n° 4000127237/19/I-EF). MG received fundings from the Copernicus Marine Service (CMEMS), the European Union’s Horizon 2020 BRIDGE-BS project under grant agreement No. 101000240 and by the Project CE2COAST funded by ANR(FR), BELSPO (BE), FCT (PT), IZM (LV), MI (IE), MIUR (IT), Rannis (IS), and RCN (NO) through the 2019 “Joint Transnational Call on Next Generation Climate Science in Europe for Oceans” initiated by JPI Climate and JPI Oceans. The research on SMOS SSS has been also supported in part by the Spanish R&D project INTERACT (PID2020-114623RB-C31), which is funded by MCIN/AEI/10.13039/501100011033, funding from the Spanish government through the “Severo Ochoa Centre of Excellence” accreditation (CEX2019-000928-S) and the CSIC Thematic Interdisciplinary Platform TeledetectPeer reviewe

    Exploiting the multiscale synergy among ocean variables : application to the improvement of remote sensing salinity maps

    Get PDF
    Les imatges de teledetecció de la superfície oceànica proporcionen una vista sinòptica de la complexa geometria de la circulació oceànica, dominada per la variabilitat de mesoescala. Estructures com filaments i vòrtex són presents en els diferents escalars advectats pel flux oceànic. L’origen més probable d’aquestes estructures és el caràcter turbulent dels corrents, aquestes estructures són persistents amb el temps i compatibles amb la dinàmica mesoscalar oceànica. A escales espacials de quilòmetres o més, la turbulència és principalment 2D, i una complexa geometria, plena de filaments i remolins de mides diferents, emergeix en les imatges superficials de teledetecció de concentració de clorofil·la-a, salinitat superficial, així com en altres escalars més coneguts com són la temperatura superficial i la topografia dinàmica. L’objectiu d’aquesta tesi és explorar i aplicar metodologies de mapatge que permeten millorar la qualitat de mapes de teledetecció oceànica en general, i en particular de la salinitat superficial del mar (SSS). Les diferents metodologies emprades en aquesta tesi han estat aplicades amb l’objectiu específic de millorar els mapes de teledetecció de salinitat superficial del mar proveïts per la missió SMOS de l’Agència Espaial Europea. SMOS és el primer satèl·lit capaç de mesurar la humitat del sol i salinitat oceànica des de l’espai a escala global. La primera part d’aquesta tesi se centra a analitzar les característiques dels productes de nivell 2 (L2) de salinitat de SMOS i produir mapes de nivell 3 (L3) de salinitat utilitzant aproximacions clàssiques: millora del filtratge, mitjana ponderada i Interpolació Òptima. En el curs de la nostra recerca obtenim un conjunt de recomanacions de com processar les dades de SMOS començant des del nivell L2. Aquesta tesi també presenta una nova tècnica de fusió de dades que permet explotar les estructures turbulentes comunes entre diferents variables oceàniques, representant un pas endavant en la cadena de processat per generar mapes de nivell 4 (L4). Aquesta tècnica de fusió es basa teòricament en les propietats geomètriques dels traçadors advectats per la dinàmica oceànica (Turiel et al., 2005a). Degut a l’efecte de forta cissalla als fluits turbulents, l’estructura espacial d’un traçador oceànic hereta algunes propietats del flux subjacent, i en particular el seu arranjament geomètric. Com a conseqüència, les diferents variables oceàniques mostren propietats d’escala similars a la cascada d’energia turbulenta (Seuront and Schmitt, 2005; Nieves et al., 2007; Nieves and Turiel, 2009; Isern-Fontanet et al., 2007). El mètode de fusió agafa un senyal de menor qualitat (afectat per soroll, forats de dades i/o de resolució més baixa) i en millora la seva qualitat. A més d’això, el mètode de fusió és capaç d’extrapolar les dades de forma geofísicament coherent. Aquesta millora del senyal s’aconsegueix utilitzant una altra variable oceànica adquirida amb major qualitat, cobertura espacial més gran i/o millor resolució. Un punt clau d’aquesta aproximació és la suposició de l’existència d’una estructura multifractal de les imatges de teledetecció oceànica (Lovejoy et al., 2001b), i que les línies de singularitat de les diferents variables de l’oceà coincideixen. Sota aquestes premises, els gradients de les dues variables a fusionar estan relacionats per una matriu suau. Com a primera i simple aproximació, s’assumeix que aquesta matriu és proporcional a la identitat; això porta a un esquema de regressió lineal local. Aquesta tesi mostra que aquesta aproximació senzilla permet reduir l’error i millorar la cobertura del producte de nivell 4 resultant. D’altra banda, s’obté informació sobre la relació estadística entre les dues variables fusionades, ja que la dependència funcional entre elles es determina per cada punt de la imatge.Remote sensing imagery of the ocean surface provides a synoptic view of the complex geometry of ocean circulation, which is dominated by mesoscale variability. The signature of filaments and vortices is present in different ocean scalars advected by the oceanic flow. The most probable origin of the observed structures is the turbulent character of ocean currents, and those signatures are persistent over time scales compatible with ocean mesoscale dynamics. At spatial scales of kilometers or more, turbulence is mainly 2D, and a complex geometry, full of filaments and eddies of different sizes, emerges in remote sensing images of surface chlorophyll-a concentration and surface salinity, as well as in other scalars acquired with higher quality such as surface temperature and absolute dynamic topography. The aim of this thesis is to explore and apply mapping methodologies to improve the quality of remote sensing maps in general, but focusing in the case of remotely sensed sea surface salinity (SSS) data. The different methodologies studied in this thesis have been applied with the specific goal of improving surface salinity maps generated from data acquired by the European Space Agency's mission SMOS, the first satellite able to measure soil moisture and ocean salinity from space at a global scale. The first part of this thesis will introduce the characteristics of the operational SMOS Level 2 (L2) SSS products and the classical approaches to produce the best possible SSS maps at Level 3 (L3), namely data filtering, weighted average and Optimal Interpolation. In the course of our research we will obtain a set of recommendations about how to process SMOS data starting from L2 data. A fusion technique designed to exploit the common turbulent signatures between different ocean variables is also explored in this thesis, in what represents a step forward from L3 to Level 4 (L4). This fusion technique is theoretically based on the geometrical properties of advected tracers. Due to the effect of the strong shear in turbulent flows, the spatial structure of tracers inherit some properties of the underlying flow and, in particular, its geometrical arrangement. As a consequence, different ocean variables exhibit scaling properties, similar to the turbulent energy cascade. The fusion method takes a signal affected by noise, data gaps and/or low resolution, and improves it in a geophysically meaningful way. This signal improvement is achieved by using an appropriate data, which is another ocean variable acquired with higher quality, greater spatial coverage and/or finer resolution. A key point in this approach is the assumption of the existence of a multifractal structure in ocean images, and that singularity lines of the different ocean variables coincide. Under these assumptions, the horizontal gradients of both variables, signal and template, can be related by a smooth matrix. The first, simplest approach to exploit such an hypothesis assumes that the relating matrix is proportional to the identity, leading to a local regression scheme. As shown in the thesis, this simple approach allows reducing the error and improving the coverage of the resulting Level 4 product; Moreover, information about the statistical relationship between the two fields is obtained since the functional dependence between signal and template is determined at each point

    First SMOS Sea Surface Salinity dedicated products over the Baltic Sea

    Get PDF
    26 pages, 24 figures, 4 tables.-- Data availability: Access to the data is provided by the Barcelona Expert Center, through its FTP service. The DOI of the L3 product is https://doi.org/10.20350/digitalCSIC/13859 (González-Gambau et al., 2021a). The DOI of the L4 product is https://doi.org/10.20350/digitalCSIC/13860 (González-Gambau et al., 2021b). Seasonal averaged L4 SSS products are also available in the HELCOM catalogue (https://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/9d979033-1136-4dd1-a09b-7ee9e512ad14, BEC team, 2021b), and they can be visualized in the HELCOM Map and Data service (https://maps.helcom.fi/website/mapservice/?datasetID=9d979033-1136-4dd1-a09b-7ee9e512ad14, last access: 9 November 2021).-- This work is a contribution to the CSIC Thematic Interdisciplinary Platform TeledetectThis paper presents the first Soil Moisture and Ocean Salinity (SMOS) Sea Surface Salinity (SSS) dedicated products over the Baltic Sea. The SSS retrieval from L-band brightness temperature (TB) measurements over this basin is really challenging due to important technical issues, such as the land–sea and ice–sea contamination, the high contamination by radio-frequency interference (RFI) sources, the low sensitivity of L-band TB at SSS changes in cold waters, and the poor characterization of dielectric constant models for the low SSS range in the basin. For these reasons, exploratory research in the algorithms used from the level 0 up to level 4 has been required to develop these dedicated products. This work has been performed in the framework of the European Space Agency regional initiative Baltic+ Salinity Dynamics. Two Baltic+ SSS products have been generated for the period 2011–2019 and are freely distributed: the Level 3 (L3) product (daily generated 9 d maps in a 0.25∘ grid; https://doi.org/10.20350/digitalCSIC/13859, González-Gambau et al., 2021a) and the Level 4 (L4) product (daily maps in a 0.05∘ grid; https://doi.org/10.20350/digitalCSIC/13860, González-Gambau et al., 2021b)​​​​​​​, which are computed by applying multifractal fusion to L3 SSS with SST maps. The accuracy of L3 SSS products is typically around 0.7–0.8 psu. The L4 product has an improved spatiotemporal resolution with respect to the L3 and the accuracy is typically around 0.4 psu. Regions with the highest errors and limited coverage are located in Arkona and Bornholm basins and Gulfs of Finland and Riga. The impact assessment of Baltic+ SSS products has shown that they can help in the understanding of salinity dynamics in the basin. They complement the temporally and spatially very sparse in situ measurements, covering data gaps in the region, and they can also be useful for the validation of numerical models, particularly in areas where in situ data are very sparseThis work has been carried out as part of the Baltic+ Salinity Dynamics project (4000126102/18/I-BG), funded by the European Space Agency. It has been also supported in part by the Spanish R&D project INTERACT (PID2020-114623RB-C31), which is funded by MCIN/AEI/10.13039/501100011033. We also received funding from the Spanish government through the “Severo Ochoa Centre of Excellence” accreditation (CEX2019-000928-S)Peer reviewe

    Satellite data for the offshore renewable energy sector: Synergies and innovation opportunities

    Get PDF
    Can satellite data be used to address challenges currently faced by the Offshore Renewable Energy (ORE) sector? What benefit can satellite observations bring to resource assessment and maintenance of ORE farms? Can satellite observations be used to assess the environmental impact of offshore renewables leading towards a more sustainable ORE sector? This review paper faces these questions presenting a holistic view of the current interactions between satellite and ORE sectors, and future needs to make this partnership grow. The aim of the work is to start the conversation between these sectors by establishing a common ground. We present offshore needs and satellite technology limitations, as well as potential opportunities and areas of growth. To better understand this, the reader is guided through the history, current developments, challenges and future of offshore wind, tidal and wave energy technologies. Then, an overview on satellite observations for ocean applications is given, covering types of instruments and how they are used to provide different metocean variables, satellite performance, and data processing and integration. Past, present and future satellite missions are also discussed. Finally, the paper focuses on innovation opportunities and the potential of synergies between the ORE and satellite sectors. Specifically, we pay attention to improvements that satellite observations could bring to standard measurement techniques: assessing uncertainty, wind, tidal and wave conditions forecast, as well as environmental monitoring from space. Satellite–enabled measurement of ocean physical processes and applications for fisheries, mammals and birds, and habitat change, are also discussed in depth

    Satellite Salinity Observing System: Recent Discoveries and the Way Forward

    Get PDF
    Advances in L-band microwave satellite radiometry in the past decade, pioneered by ESA’s SMOS and NASA’s Aquarius and SMAP missions, have demonstrated an unprecedented capability to observe global sea surface salinity (SSS) from space. Measurements from these missions are the only means to probe the very-near surface salinity (top cm), providing a unique monitoring capability for the interfacial exchanges of water between the atmosphere and the upper-ocean, and delivering a wealth of information on various salinity processes in the ocean, linkages with the climate and water cycle, including land-sea connections, and providing constraints for ocean prediction models. The satellite SSS data are complimentary to the existing in situ systems such as Argo that provide accurate depiction of large-scale salinity variability in the open ocean but under-sample mesoscale variability, coastal oceans and marginal seas, and energetic regions such as boundary currents and fronts. In particular, salinity remote sensing has proven valuable to systematically monitor the open oceans as well as coastal regions up to approximately 40 km from the coasts. This is critical to addressing societally relevant topics, such as land-sea linkages, coastal-open ocean exchanges, research in the carbon cycle, near-surface mixing, and air-sea exchange of gas and mass. In this paper, we provide a community perspective on the major achievements of satellite SSS for the aforementioned topics, the unique capability of satellite salinity observing system and its complementarity with other platforms, uncertainty characteristics of satellite SSS, and measurement versus sampling errors in relation to in situ salinity measurements. We also discuss the need for technological innovations to improve the accuracy, resolution, and coverage of satellite SSS, and the way forward to both continue and enhance salinity remote sensing as part of the integrated Earth Observing System in order to address societal needs

    Coastal high-frequency radars in the Mediterranean ??? Part 1: Status of operations and a framework for future development

    Get PDF
    Due to the semi-enclosed nature of the Mediterranean Sea, natural disasters and anthropogenic activities impose stronger pressures on its coastal ecosystems than in any other sea of the world.With the aim of responding adequately to science priorities and societal challenges, littoral waters must be effectively monitored with high-frequency radar (HFR) systems. This land-based remote sensing technology can provide, in near-real time, fine-resolution maps of the surface circulation over broad coastal areas, along with reliable directional wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network and the future roadmap for orchestrated actions. Ongoing collaborative efforts and recent progress of this regional alliance are not only described but also connected with other European initiatives and global frameworks, highlighting the advantages of this cost-effective instrument for the multi-parameter monitoring of the sea state. Coordinated endeavors between HFR operators from different multi-disciplinary institutions are mandatory to reach a mature stage at both national and regional levels, striving to do the following: (i) harmonize deployment and maintenance practices; (ii) standardize data, metadata, and quality control procedures; (iii) centralize data management, visualization, and access platforms; and (iv) develop practical applications of societal benefit that can be used for strategic planning and informed decision-making in the Mediterranean marine environment. Such fit-for-purpose applications can serve for search and rescue operations, safe vessel navigation, tracking of marine pollutants, the monitoring of extreme events, the investigation of transport processes, and the connectivity between offshore waters and coastal ecosystems. Finally, future prospects within the Mediterranean framework are discussed along with a wealth of socioeconomic, technical, and scientific challenges to be faced during the implementatio

    Coastal high-frequency radars in the Mediterranean - Part 1: Status of operations and a framework for future development

    Get PDF
    Due to the semi-enclosed nature of the Mediterranean Sea, natural disasters and anthropogenic activities impose stronger pressures on its coastal ecosystems than in any other sea of the world. With the aim of responding adequately to science priorities and societal challenges, littoral waters must be effectively monitored with high-frequency radar (HFR) systems. This land-based remote sensing technology can provide, in near-real time, fine-resolution maps of the surface circulation over broad coastal areas, along with reliable directional wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network and the future roadmap for orchestrated actions. Ongoing collaborative efforts and recent progress of this regional alliance are not only described but also connected with other European initiatives and global frameworks, highlighting the advantages of this cost-effective instrument for the multi-parameter monitoring of the sea state. Coordinated endeavors between HFR operators from different multi-disciplinary institutions are mandatory to reach a mature stage at both national and regional levels, striving to do the following: (i) harmonize deployment and maintenance practices; (ii) standardize data, metadata, and quality control procedures; (iii) centralize data management, visualization, and access platforms; and (iv) develop practical applications of societal benefit that can be used for strategic planning and informed decision-making in the Mediterranean marine environment. Such fit-for-purpose applications can serve for search and rescue operations, safe vessel navigation, tracking of marine pollutants, the monitoring of extreme events, the investigation of transport processes, and the connectivity between offshore waters and coastal ecosystems. Finally, future prospects within the Mediterranean framework are discussed along with a wealth of socioeconomic, technical, and scientific challenges to be faced during the implementation of this integrated HFR regional network

    Ground, Proximal, and Satellite Remote Sensing of Soil Moisture

    Get PDF
    Soil moisture (SM) is a key hydrologic state variable that is of significant importance for numerous Earth and environmental science applications that directly impact the global environment and human society. Potential applications include, but are not limited to, forecasting of weather and climate variability; prediction and monitoring of drought conditions; management and allocation of water resources; agricultural plant production and alleviation of famine; prevention of natural disasters such as wild fires, landslides, floods, and dust storms; or monitoring of ecosystem response to climate change. Because of the importance and wide‐ranging applicability of highly variable spatial and temporal SM information that links the water, energy, and carbon cycles, significant efforts and resources have been devoted in recent years to advance SM measurement and monitoring capabilities from the point to the global scales. This review encompasses recent advances and the state‐of‐the‐art of ground, proximal, and novel SM remote sensing techniques at various spatial and temporal scales and identifies critical future research needs and directions to further advance and optimize technology, analysis and retrieval methods, and the application of SM information to improve the understanding of critical zone moisture dynamics. Despite the impressive progress over the last decade, there are still many opportunities and needs to, for example, improve SM retrieval from remotely sensed optical, thermal, and microwave data and opportunities for novel applications of SM information for water resources management, sustainable environmental development, and food security

    The importance of seasonality at different levels of ecological organization in the marine ecosystem of the Northwestern Mediterranean Sea

    Full text link
    [eng] From an oceanographic perspective, seasonality has been widely studied, and abundant research exists about low trophic level organisms such as phytoplankton and zooplankton. Nevertheless, at a regional scale, this information is not always homogenous and certain areas lack longer time series to track seasonal cycles. This knowledge gap is emphasized as one moves to higher trophic level organisms, whose studies tend to focus on single seasons or inter-annual variation rather than on seasonal changes and intra-annual dynamics. This Ph.D. thesis aims to broaden the knowledge about the marine ecosystem of the Northwestern Mediterranean Sea incorporating the importance of seasonality in key ecological processes, such as body condition, fitness, spatial distribution, and trophic ecology of marine species, and, finally, the structure and functioning of marine food webs. Seasonality is approached at different levels of the marine community, including the demersal component focusing on commercially important species of fish (Merluccius merluccius, Lophius budegassa, Lophius piscatorius, Mullus barbatus), crustaceans (Liocarcinus depurator, Squilla mantis) and cephalopods (Illex coindetii, Eledone cirrhosa), the pelagic component targeting the most abundant and commercially important small pelagic fish species (Sardina pilchardus and Engraulis encrasicolus), and at the ecosystem level using system indicators. To attain these objectives, various methodological approaches have been combined, such as species distribution models, stable isotopes analysis, bayesian isotope mixing isotope models, analysis of biometrical/biophysical parameters (Kn, GSI, fat content), generalized additive models and ecosystem modelling. Results show seasonal variations in species distribution with species-specific patterns in the case of demersal species. Bathymetry, temperature and fishing effort are important drivers explaining biomass spatial distribution of these species. European hake is further studied in one of the chapters, and the predicted posterior mean weight distribution also presents spatial differences between winter and summer. Ontogenetic and seasonal variations are also detected in the diet of this species. Spatial and seasonal variations in fitness are found at the local scale for European sardines and anchovies. These changes are mostly explained by environmental variables while spatial and seasonal factors are also important. Moreover, trophic variables also contributed to the species dynamics, suggesting that variations in prey abundance, composition and quality can impact their fitness. At the ecosystem level, we investigate changes in indicators of ecosystem structure and functioning when using seasonal input data vs annual averages in marine ecosystem models for the characterization of our study area. We find several indicators showing significant variations in ecosystem structure and energy transfer. Overall, the findings of this Ph.D. show seasonal variation at different levels of biological organization and in various ecological processes, which highlights the relevance of seasonality in the marine realm, specifically in the Northwestern Mediterranean Sea. Therefore, we can conclude that considering seasonality in ecological studies can provide complementary insights into our understanding of species biological and ecological dynamics, which cascades up to the knowledge about ecosystem structure and functioning.[spa] Desde una perspectiva oceanográfica y climatológica, la estacionalidad se ha estudiado ampliamente y existen múltiples investigaciones desarrolladas con organismos situados en niveles tróficos bajos, como el fitoplancton y el zooplancton. Sin embargo, a escala regional, esta información no siempre es homogénea y algunas zonas carecen de series temporales largas. Esta laguna de conocimiento se acentúa a medida que se avanza hacia organismos de nivel trófico superior. Esta tesis pretende mejorar el conocimiento sobre el ecosistema marino del mar Mediterráneo noroccidental investigando el efecto de la estacionalidad en algunos procesos ecológicos clave, como la condición corporal, la distribución espacial y la ecología trófica de las especies, así como en la estructura y el funcionamiento de las redes tróficas marinas. La estacionalidad se aborda a distintos niveles de la comunidad marina, incluyendo el componente demersal (especies de peces, crustáceos y cefalópodos), pelágico (la sardina y el boquerón) y a nivel de ecosistema. Para alcanzar estos objetivos, se han combinado diversos enfoques metodológicos (e.g. modelos de distribución de especies, análisis de isótopos estables, análisis de parámetros biométricos/biofísico y modelización de ecosistemas). Para las especies demersales, los resultados muestran variaciones estacionales en su distribución espacial, y la batimetría, la temperatura y el esfuerzo pesquero aparecen como importantes impulsores. La merluza europea se estudia con más detalle en uno de los capítulos y se detectan variaciones ontogenéticas y estacionales en la dieta de esta especie. En el caso de la sardina y el boquerón, se observan variaciones espaciales y estacionales en la condición a escala local. Estos cambios se explican principalmente por variables ambientales y los factores espaciales y estacionales, pero las variables tróficas también contribuyen. A nivel de ecosistema, investigamos los cambios en los indicadores de estructura y funcionamiento de los ecosistemas al utilizar datos de entrada estacionales, frente a medias anuales. Encontramos varios indicadores que muestran variaciones significativas en la estructura del ecosistema y la transferencia de energía. En general, los resultados de esta tesis muestran una variación estacional en diferentes niveles de organización biológica y en varios procesos ecológicos, lo que pone de manifiesto la relevancia de la estacionalidad en el mar Mediterráneo noroccidental. Se concluye que considerar la estacionalidad en los estudios ecológicos puede aportar conocimientos complementarios a la comprensión de la dinámica biológica y ecológica de las especies, y a la estructura y el funcionamiento de los ecosistemas marinos
    corecore