134 research outputs found

    Variability in Surface BRDF at Different Spatial Scales (30 m-500 m) Over a Mixed Agricultural Landscape as Retrieved from Airborne and Satellite Spectral Measurements

    Get PDF
    Over the past decade, the role of multiangle remote sensing has been central to the development of algorithms for the retrieval of global land surface properties including models of the bidirectional reflectance distribution function (BRDF), albedo, land cover/dynamics, burned area extent, as well as other key surface biophysical quantities represented by the anisotropic reflectance characteristics of vegetation. In this study, a new retrieval strategy for fine-to-moderate resolution multiangle observations was developed, based on the operational sequence used to retrieve the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 reflectance and BRDF/albedo products. The algorithm makes use of a semiempirical kernel-driven bidirectional reflectance model to provide estimates of intrinsic albedo (i.e., directional-hemispherical reflectance and bihemispherical reflectance), model parameters describing the BRDF, and extensive quality assurance information. The new retrieval strategy was applied to NASA's Cloud Absorption Radiometer (CAR) data acquired during the 2007 Cloud and Land Surface Interaction Campaign (CLASIC) over the well-instrumented Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site in Oklahoma, USA. For the case analyzed, we obtained approx.1.6 million individual surface bidirectional reflectance factor (BRF) retrievals, from nadir to 75 off-nadir, and at spatial resolutions ranging from 3 m - 500 m. This unique dataset was used to examine the interaction of the spatial and angular characteristics of a mixed agricultural landscape; and provided the basis for detailed assessments of: (1) the use of a priori knowledge in kernel-driven BRDF model inversions; (2) the interaction between surface reflectance anisotropy and instrument spatial resolution; and (3) the uncertain ties that arise when sub-pixel differences in the BRDF are aggregated to a moderate resolution satellite pixel. Results offer empirical evidence concerning the influence of scale and spatial heterogeneity in kernel-driven BRDF models; providing potential new insights into the behavior and characteristics of different surface radiative properties related to land/use cover change and vegetation structure

    ESTIMATING LAND SURFACE ALBEDO FROM SATELLITE DATA

    Get PDF
    Land surface albedo, defined as the ratio of the surface reflected incoming and outgoing solar radiation, is one of the key geophysical variables controlling the surface radiation budget. Surface shortwave albedo is widely used to drive climate and hydrological models. During the last several decades, remotely sensed surface albedo products have been generated through satellite-acquired data. However, some problems exist in those products due to instrument measurement inaccuracies and the failure of current retrieving procedures, which have limited their applications. More significantly, it has been reported that some albedo products from different satellite sensors do not agree with each other and some even show the opposite long term trend regionally and globally. The emergence of some advanced sensors newly launched or planned in the near future will provide better capabilities for estimating land surface albedo with fine resolution spatially and/or temporally. Traditional methods for estimating the surface shortwave albedo from satellite data include three steps: first, the satellite observations are converted to surface directional reflectance using the atmospheric correction algorithms; second, the surface bidirectional reflectance distribution function (BRDF) models are inverted through the fitting of the surface reflectance composites; finally, the shortwave albedo is calculated from the BRDF through the angular and spectral integration. However, some problems exist in these algorithms, including: 1) "dark-object" based atmospheric correction methods which make it difficult to estimate albedo accurately over non-vegetated or sparsely vegetated area; 2) the long-time composite albedo products cannot satisfy the needs of weather forecasting or land surface modeling when rapid changes such as snow fall/melt, forest fire/clear-cut and crop harvesting occur; 3) the diurnal albedo signature cannot be estimated in the current algorithms due to the Lambertian approximation in some of the atmospheric correction algorithms; 4) prior knowledge has not been effectively incorporated in the current algorithms; and 5) current observation accumulation methods make it difficult to obtain sufficient observations when persistent clouds exist within the accumulation window. To address those issues and to improve the satellite surface albedo estimations, a method using an atmospheric radiative transfer procedure with surface bidirectional reflectance modeling will be applied to simultaneously retrieve land surface albedo and instantaneous aerosol optical depth (AOD). This study consists of three major components. The first focuses on the atmospheric radiative transfer procedure with surface reflectance modeling. Instead of executing atmospheric correction first and then fitting surface reflectance in the previous satellite albedo retrieving procedure, the atmospheric properties (e.g., AOD) and surface properties (e.g., BRDF) are estimated simultaneously to reduce the uncertainties produced in separating the entire radiative transfer process. Data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua are used to evaluate the performance of this albedo estimation algorithm. Good agreement is reached between the albedo estimates from the proposed algorithm and other validation datasets. The second part is to assess the effectiveness of the proposed algorithm, analyze the error sources, and further apply the algorithm on geostationary satellite - the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard Meteosat Second Generation (MSG). Extensive validations on surface albedo estimations from MSG/SEVIRI observations are conducted based on the comparison with ground measurements and other satellite products. Diurnal changes and day-to-day changes in surface albedo are accurately captured by the proposed algorithm. The third part of this study is to develop a spatially and temporally complete, continuous, and consistent albedo maps through a data fusion method. Since the prior information (or climatology) of albedo/BRDF plays a vital role in controlling the retrieving accuracy in the optimization method, currently available multiple land surface albedo products will be integrated using the Multi-resolution Tree (MRT) models to mitigate problems such as data gaps, systematic bias or low information-noise ratio due to instrument failure, persistent clouds from the viewing direction and algorithm limitations. The major original contributions of this study are as follows: 1) this is the first algorithm for the simultaneous estimations of surface albedo/reflectance and instantaneous AOD by using the atmospheric radiative transfer with surface BRDF modeling for both polar-orbiting and geostationary satellite data; 2) a radiative transfer with surface BRDF models is used to derive surface albedo and directional reflectance from MODIS and SEVIRI observations respectively; 3) extensive validations are made on the comparison between the albedo and AOD retrievals, and the satellite products from other sensors; 4) the slightly modified algorithm has been adopted to be the operational algorithm of Advanced Baseline Imager (ABI) in the future Geostationary Operational Environmental Satellite-R Series (GOES-R) program for estimating land surface albedo; 5) a framework of using MRT is designed to integrate multiple satellite albedo products at different spatial scales to build the spatially and temporally complete, continuous, and consistent albedo maps as the prior knowledge in the retrieving procedure

    Intercomparison of desert dust optical depth from satellite measurements

    Get PDF
    This work provides a comparison of satellite retrievalsof Saharan desert dust aerosol optical depth (AOD)during a strong dust event through March 2006. In this event,a large dust plume was transported over desert, vegetated,and ocean surfaces. The aim is to identify the differencesbetween current datasets. The satellite instruments consideredare AATSR, AIRS, MERIS, MISR, MODIS, OMI,POLDER, and SEVIRI. An interesting aspect is that the differentalgorithms make use of different instrument characteristicsto obtain retrievals over bright surfaces. These includemulti-angle approaches (MISR, AATSR), polarisationmeasurements (POLDER), single-view approaches using solarwavelengths (OMI, MODIS), and the thermal infraredspectral region (SEVIRI, AIRS). Differences between instruments,together with the comparison of different retrievalalgorithms applied to measurements from the same instrument,provide a unique insight into the performance andcharacteristics of the various techniques employed. As wellas the intercomparison between different satellite products,the AODs have also been compared to co-located AERONETdata. Despite the fact that the agreement between satellite andAERONET AODs is reasonably good for all of the datasets,there are significant differences between them when comparedto each other, especially over land. These differencesare partially due to differences in the algorithms, such as assumptionsabout aerosol model and surface properties. However,in this comparison of spatially and temporally averageddata, it is important to note that differences in sampling, relatedto the actual footprint of each instrument on the heterogeneousaerosol field, cloud identification and the qualitycontrol flags of each dataset can be an important issue

    Forest structure and aboveground biomass in the southwestern United States from MODIS and MISR

    Get PDF
    Red band bidirectional reflectance factor data from the NASA MODerate resolution Imaging Spectroradiometer (MODIS) acquired over the southwestern United States were interpreted through a simple geometric–optical (GO) canopy reflectance model to provide maps of fractional crown cover (dimensionless), mean canopy height (m), and aboveground woody biomass (Mg ha−1) on a 250 m grid. Model adjustment was performed after dynamic injection of a background contribution predicted via the kernel weights of a bidirectional reflectance distribution function (BRDF) model. Accuracy was assessed with respect to similar maps obtained with data from the NASA Multiangle Imaging Spectroradiometer (MISR) and to contemporaneous US Forest Service (USFS) maps based partly on Forest Inventory and Analysis (FIA) data. MODIS and MISR retrievals of forest fractional cover and mean height both showed compatibility with the USFS maps, with MODIS mean absolute errors (MAE) of 0.09 and 8.4 m respectively, compared with MISR MAE of 0.10 and 2.2 m, respectively. The respective MAE for aboveground woody biomass was ~10 Mg ha−1, the same as that from MISR, although the MODIS retrievals showed a much weaker correlation, noting that these statistics do not represent evaluation with respect to ground survey data. Good height retrieval accuracies with respect to averages from high resolution discrete return lidar data and matches between mean crown aspect ratio and mean crown radius maps and known vegetation type distributions both support the contention that the GO model results are not spurious when adjusted against MISR bidirectional reflectance factor data. These results highlight an alternative to empirical methods for the exploitation of moderate resolution remote sensing data in the mapping of woody plant canopies and assessment of woody biomass loss and recovery from disturbance in the southwestern United States and in parts of the world where similar environmental conditions prevail

    Statistically Optimized Inversion Algorithm for Enhanced Retrieval of Aerosol Properties from Spectral Multi-Angle Polarimetric Satellite Observations

    Get PDF
    The proposed development is an attempt to enhance aerosol retrieval by emphasizing statistical optimization in inversion of advanced satellite observations. This optimization concept improves retrieval accuracy relying on the knowledge of measurement error distribution. Efficient application of such optimization requires pronounced data redundancy (excess of the measurements number over number of unknowns) that is not common in satellite observations. The POLDER imager on board the PARASOL microsatellite registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. The completeness of such observations is notably higher than for most currently operating passive satellite aerosol sensors. This provides an opportunity for profound utilization of statistical optimization principles in satellite data inversion. The proposed retrieval scheme is designed as statistically optimized multi-variable fitting of all available angular observations obtained by the POLDER sensor in the window spectral channels where absorption by gas is minimal. The total number of such observations by PARASOL always exceeds a hundred over each pixel and the statistical optimization concept promises to be efficient even if the algorithm retrieves several tens of aerosol parameters. Based on this idea, the proposed algorithm uses a large number of unknowns and is aimed at retrieval of extended set of parameters affecting measured radiation

    Assessing change in the Earth's land surface albedo with moderate resolution satellite imagery

    Full text link
    Land surface albedo describes the proportion of incident solar radiant flux that is reflected from the Earth's surface and therefore is a crucial parameter in modeling and monitoring attempts to capture the current climate, hydrological, and biogeochemical cycles and predict future scenarios. Due to the temporal variability and spatial heterogeneity of land surface albedo, remote sensing offers the only realistic method of monitoring albedo on a global scale. While the distribution of bright, highly reflective surfaces (clouds, snow, deserts) govern the vast majority of the fluctuation, variations in the intrinsic surface albedo due to natural and human disturbances such as urban development, fire, pests, harvesting, grazing, flooding, and erosion, as well as the natural seasonal rhythm of vegetation phenology, play a significant role as well. The development of times series of global snow-free and cloud-free albedo from remotely sensed observations over the past decade and a half offers a unique opportunity to monitor and assess the impact of these alterations to the Earth's land surface. By utilizing multiple satellite records from the MODerate-resolution Imaging Spectroradiometer (MODIS), the Multi-angle Imaging Spectroradiometer (MISR) and the Visible Infrared Imaging Radiometer Suite (VIIRS) instruments, and developing innovative spectral conversion coefficients and temporal gap-filling strategies, it has been possible to utilize the strengths of the various sensors to improve the spatial and temporal coverage of global land surface albedo retrievals. The availability of these products is particularly important in tropical regions where cloud cover obscures the forest for significant periods. In the Amazon, field ecologists have noted that some areas of the forest ecosystem respond rapidly with foliage growth at the beginning of the dry season, when sunlight can finally penetrate fully to the surface and have suggested this phenomenon can continue until reductions in water availability (particularly in times of drought) impact the growth cycle. While it has been difficult to capture this variability from individual optical satellite sensors, the temporally gap-filled albedo products developed during this research are used in a case study to monitor the Amazon during the dry season and identify the extent of these regions of foliage growth

    Retrieval of Aerosol Microphysical Properties from AERONET Photopolarimetric Measurements

    Get PDF
    Atmospheric aerosols play an important role in earth climate by scattering and absorbing solar and terrestrial radiation, and indirectly through altering the cloud formation, life- time, and radiative properties. However, accurate quantification of these effects is in no small part hindered by our limited knowledge about the particle size distribution (PSD) and refractive index, the aerosol microphysical properties essentially pertain to aerosol optical and cloud-forming properties. The research goal of this thesis is to obtain the aerosol microphysical properties of both fine and coarse modes from the polarimetric solar radiation measured by the SunPhotometer of the Aerosol Robotic Network (AERONET). We achieve so by (1) developing an inversion algorithm that integrates rigorous radiative transfer model with a statistical optimization approach, (2) conducting a sensitivity study and error budgeting exercise to examine the potential value of adding polarization to the current radiance-only inversion, and (3) performing retrievals using available AERONET polarimetric measurements. The results from theoretical information and error analysis indicate a remarkable increase in information by adding additional polarization into the inversion: an overall increase of 2–5 of degree of freedom for signal comparing with radiance-only measurements. Correspond- ingly, retrieval uncertainty can be reduced by 79% (57%), 76% (49%), 69% (52%), 66% (46%), and 49% (20%) for the fine-mode (coarse-mode) aerosol volume concentration, the effective radius, the effective variance, the real part of refractive index, and single scattering albedo (SSA), respectively, resulting in their retrieval errors of 2.3% (2.9%), 1.3% (3.5%), 7.2% (12%), 0.005 (0.035), and 0.019 (0.068). In real cases, we demonstrate that our retrievals are overall consistent with current AERONET operational inversions, but can offer mode-resolved refractive index and SSA with sufficient accuracy for the aerosol composed by spherical particles. Along with the polarimetric retrieval, we also performed radiance-only retrieval to reveal the improvements by adding polarization in the inversion. The comparison analysis indicates that with polar- ization, retrieval error can be reduced by over 50% in PSD parameters, by 10–30% in the refractive index, and by 10–40% in SSA, which is consistent with the theoretical results. Adviser: Jun Wan
    corecore