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Abstract. The proposed development is an attempt to en- The algorithm is designed to retrieve complete aerosol
hance aerosol retrieval by emphasizing statistical optimizajproperties globally. Over land, the algorithm retrieves the pa-
tion in inversion of advanced satellite observations. This op-rameters of underlying surface simultaneously with aerosol.
timization concept improves retrieval accuracy relying on theln all situations, the approach is anticipated to achieve a ro-
knowledge of measurement error distribution. Efficient ap-bust retrieval of complete aerosol properties including infor-
plication of such optimization requires pronounced data re-mation about aerosol particle sizes, shape, absorption and
dundancy (excess of the measurements number over nuntomposition (refractive index). In order to achieve reliable
ber of unknowns) that is not common in satellite observa-retrieval from PARASOL observations even over very reflec-
tions. The POLDER imager on board the PARASOL micro- tive desert surfaces, the algorithm was designed as simultane-
satellite registers spectral polarimetric characteristics of theous inversion of a large group of pixels within one or several
reflected atmospheric radiation at up to 16 viewing directionsimages. Such multi-pixel retrieval regime takes advantage of
over each observed pixel. The completeness of such observ&nown limitations on spatial and temporal variability in both
tions is notably higher than for most currently operating pas-aerosol and surface properties. Specifically the variations
sive satellite aerosol sensors. This provides an opportunityf the retrieved parameters horizontally from pixel-to-pixel
for profound utilization of statistical optimization principles and/or temporary from day-to-day are enforced to be smooth
in satellite data inversion. The proposed retrieval scheme iy additional a priori constraints. This concept is expected to
designed as statistically optimized multi-variable fitting of provide satellite retrieval of higher consistency, because the
all available angular observations obtained by the POLDERretrieval over each single pixel will be benefiting from coin-
sensor in the window spectral channels where absorption bgident aerosol information from neighboring pixels, as well,
gas is minimal. The total number of such observations byfrom the information about surface reflectance (over land)
PARASOL always exceeds a hundred over each pixel anabtained in preceding and consequent observations over the
the statistical optimization concept promises to be efficientsame pixel.

even if the algorithm retrieves several tens of aerosol param- The paper provides in depth description of the proposed
eters. Based on this idea, the proposed algorithm uses a largeversion concept, illustrates the algorithm performance by a
number of unknowns and is aimed at retrieval of extended seseries of numerical tests and presents the examples of prelim-
of parameters affecting measured radiation. inary retrieval results obtained from actual PARASOL ob-
servations. It should be noted that many aspects of the de-
scribed algorithm design considerably benefited from expe-
rience accumulated in the preceding effort on developments
of currently operating AERONET and PARASOL retrievals,
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1 Introduction the required comprehensive look-up tables of such obser-
vations may have larger dimensions and thus be less suit-
The research presented in this paper aims to develop able for operational use. As a result, most look-up table
new retrieval algorithm optimized for deriving maximum based algorithms rely only on the selected sub-sets of the ob-
information content using the data redundancy availableservations with highest sensitivity to the aerosol parameters
from advanced satellite observations, such as those fronand retrieve reduced set of characteristics. For example, the
POLDER/PARASOL observations.  The design of the current POLDER/PARASOL operational retrieval algorithm
POLDER imager allows collecting rather comprehensiveover ocean (Herman et al., 2005) uses measurements of to-
characterization of angular distribution of both total and po-tal and polarized reflectances only at two spectral channels
larized components of solar radiation reflected to space. Th¢0.67 and 0.87 pum) . The look-up table algorithm works ef-
observations in window channels where the effect of absorpficiently for these two channels because they are sensitive to
tion by atmospheric gases are minimal are usually used fothe scattering of both fine and coarse mode aerosols. At the
aerosol retrievals. The complete set of such observationsame time, observations at these two channels are insensitive
collected operationally by POLDER/PARASOL over each to vertical variability of aerosol and not strongly affected by
pixel includes angular measurements of both total radiancesvater-leaving radiation. The POLDER/PARASOL retrieval
and linear polarization at 0.49, 0.675 and 0.87 pm and anguever land (Deug et al., 2001) uses only polarized measure-
lar measurements of only total radiances at 0.44, 0.565 an¢hents of reflected light at the same two channels. Such strat-
1.02pm. The number of viewing directions is similar for egy is used because the contribution of aerosol into polarized
all spectral channels and varies from 14 to 16 depending omeflectance generally dominates over the contribution of the
observed geographical location. The completeness of sucland reflectance, while contribution of land surface into total
observations is significantly higher comparing to any cur-reflected radiation is usually comparable or stronger than that
rently operating passive satellite aerosol sensors. In additionf aerosol. Therefore, as discussed by [Eearzal. (2001),
PARASOL provides nearly global coverage every 2 days.utilization of only polarized observations allows one to de-
Therefore, such complete set of PARASOL observations porive aerosol properties and to avoid challenging issue of sep-
tentially provides very valuable basis for enhanced characaration of surface and aerosol contributions into the total re-
terization of global aerosol. flectance. Although this algorithm has successfully provided
However, rigorous interpretation of redundant satellite ob-valuable aerosol retrievals from POLDER observations, sev-
servation is a very challenging task. Indeed, the optimizederal shortcomings were identified in the POLDER aerosol
inversion requires applying complex multi-variable inversion products. First, PARASOL retrieval over land provides in-
algorithms. Such methods are time-consuming and challengformation only about fine aerosol particles, because the con-
ing for implementation. This is why the rigorous methods of tribution of large aerosol (predominantly non-spherical dust)
inversion optimization are not generally used for processingover land to the polarized reflectances often is small. In ad-
very large data sets provided by satellite aerosol imagers. Indition, the correct interpretation of PARASOL observations
stead, most satellite aerosol retrievals use look-up tables off desert dust even over ocean surface is challenging due
simulated satellite signals pre-computed for some limited seto difficulties to model appropriately the light scattering by
lected scenarios of aerosol and underlying surface combinaaon-spherical particles of desert duste¢@rd et al., 2005).
tions. The modeled scenario that provides the best match oddecond, since the PARASOL algorithm, both over land and
the observed radiances is accepted as the retrieved solutioncean, relies on the observations of only two spectral chan-
With some modification, this strategy is adopted in most of nels, the retrieved aerosol spectral properties are not always
aerosol satellite retrievals because it allows rapid operationafully consistent with the observations at other channels.
processing of satellite images. For example, it is success- The retrieval algorithm proposed here fits the complete
fully employed in retrievals of single-view AVHHR (Stowe set of PARASOL observation in all spectral channels (with
et al., 1997; Mishchenko et al., 1999; Higurashi and Naka-the exception of the channels dominated by gaseous absorp-
jima, 1999), TOMS (Torres et al., 1998), MODIS (Kaufman tion such as 0.763, 0.765 and 0.910 um) and including both
etal., 1997; Tar&etal., 1997; Remer et al., 2005), etc. Atthe measurements of total radiances and linear polarization (if
same time, applying the same methodology for processingvailable). Based on this strategy, the algorithm is driven
observations from imagers with multi-viewing capabilities, by larger number of unknown parameters and aimed on re-
such as MISR (Diner et al., 1998; Martonchik et al., 1998; trieval of an extended set of parameters affecting measured
Kahn et al., 2007, 2009), SEVIRI (Govaerts et al., 2010; radiation. For example, the approach allows the retrieval of
Wagner et al., 2010; Carrer et al., 2010), or POLDER ([2euz both the optical properties of aerosol and underlying surface
et al., 2001; Herman et al., 2005; Téret al., 2011), reveals from PARASOL observations over land. Also, comparing
some deficiencies of the look-up table retrievals. The multi-to the current operational PARASOL retrieval, the proposed
directional observations have notably higher sensitivity to thealgorithm is designed to provide more detailed information
details of aerosol and surface properties, and the retrieval cibout aerosol properties including the particle size distri-
larger number of parameters is expected. Correspondinglyhution, complex refractive index, parameters characterizing
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aerosol particle shape and vertical distribution. This setup okpectral multi-angle polarimetric observations. Indeed, the
the aerosol retrieval algorithm is based on accumulated exPOLDER retrieval algorithm by Deézet al. (2001) oriented
perience and current understanding of the high potential obn rapid operational processing uses polarized reflectance at
using spectral multi-angular polarimetric observations fromtwo visible spectral channels. Therefore, the positive po-
space for improving global aerosol monitoring. Diverse as-larimetric information from other spectral channels, as well
pects of aerosol retrieval improvements by using advance@s any information from total reflectance observation, was
satellite observations have been already demonstrated anbt used. Waquet et al. (2007) demonstrated that using po-
outlined in numerous previous studies (e.g. see Kokhanovskjarimetric observations over a wider spectral range is essen-
and de Leeuw, 2009). For example, the studies by Kahn etial for aerosol retrieval over land from polarimetry obser-
al. (2007, 2009), Kalashnikova et al. (2005), Kalashnikovavations. Waquet et al. (2007, 2009a,b) followed Deet

and Kahn (2006) demonstrated the possibility of deriving notal. (2001) approach and used only polarized reflectances. At
only aerosol loading but also some information about aerosothe same time, the Waquet et al. (2007, 2009a,b) algorithm
particle size, morphology and shape from observations fromwas driven by a large number of unknowns and was of sig-
the MISR imager that provides multiple view observations of nificantly higher complexity than the POLDER algorithm.
total reflectance in 9 directions in 4 spectral channels (0.44An algorithm of such level of complexity has never been ap-
0.55, 0.67 and 0.87 um). These studies have suggested a higiied to POLDER/PARASOL observations. In addition, one
importance of using multi-angular observation geometry forcould expect that including total reflectance into such an en-
deriving more detailed aerosol information. However, mosthanced retrieval scheme could result in additional improve-
of the known comparisons of the aerosol parameters derivethents of the aerosol retrieval. Indeed, the spectral angular
from multi-viewing images (such as MISR and POLDER) measurements of total reflectance are shown to provide valu-
with the aerosol products of single view satellite sensors daable aerosol information even over land surfaces (e.g. Mar-
not indicate clear advantage of multi-viewing observation fortonchik et al., 2004; Liu et al., 2004; Kahn et al., 2005; Diner
aerosol monitoring. For example, Kokhanovsky et al. (2007)et al., 2005; etc.). In addition, rigorous sensitivity studies
compared the aerosol retrievals obtained from different satelsuggest high importance of using observations of both to-
lite platforms over land with ground-based AERONET ob- tal and polarized reflectances for reliable aerosol retrieval
servations and indicated significant differences in currently(Mishchenko and Travis, 1997a,b; Hasekamp and Landgraf,
available satellite products and did not reveal any notable2005b, 2007). That is why the retrieval concept described in
advantage of one particular satellite sensor. The study sughis paper pursues inversion of both total radiances and lin-
gested that retrieval indeterminacies are likely part of theear polarization measurments and includes implementations
observed discrepancies, and their reduction will likely beof several important algorithm refinements. The realization
aided by new missions incorporating spectral multi-angularof this concept is expected to result in enhancement of com-
polarimeters. Indeed, sensitivity analysis of Mishchenko andpleteness and accuracy of POLDER aerosol retrieval.

Travis (1997a,b) related the possibility of potential important The presented algorithm developments essentially rely on
improvements of satellite aerosol retrievals with use of specthe available positive research heritage from previous re-
tral multi-angular polarization as well as intensity of reflected mote sensing aerosol retrieval developments, in particular
sunlight. Later studies by Chowdhary et al. (2002, 2005)those from the POLDER and AERONET retrieval activities.
demonstrated the possibility of retrieving the detailed aerosolThe general inversion scheme will be designed as multi-term
properties from spectral multi-angular Research Scannind SM fitting by Dubovik and King (2000). Such an inver-
airborne Polarimeter (RSP) over water. This polarimeter ission strategy allows for the use of a continuous space of so-
an aircraft-based prototype of the APS instrument projectedutions instead of a limited set of predetermined solutions as
to be part of the future NASA Glory mission (Mishchenko used in look-up table based algorithms. During more than a
et al., 2004, 2007). The analysis of RSP observations ovedecade the algorithm developed by Dubovik and King (2000)
land by Waquet et al. (2007, 2009a,b) illustrated the possiwas successfully employed for processing observation of
bility of reliable aerosol retrievals over reflective land sur- AERONET of ground-based sun/sky-radiometers (Holben et
faces. It should be noted here that Kokhanovsky et al. (2007al., 1998). During this period the algorithm has passed no-
did not identify any superiority of POLDER results (in- table evolution and several useful modifications were added
cluded into the comparisons) over other satellite imagersinto the inversion procedure. The modifications of that al-
This fact has several probable explanations. First, althougtyorithm were effectively applied for interpretation of coin-
POLDER sensor has multi-viewing polarimetric capabilities, cident up and down-looking remote sensing observations.
the spectral range of POLDER observation is notably nar-For example, Sinyuk et al. (2007) conducted the retrieval of
rower that spectral coverage of some single viewing senboth atmospheric aerosol and land surface properties from
sors, such as a MODIS. Similar remark is valid for com- a combination of AERONET data with coincident MISR or
parisons on multi-viewing MISR satellite instrument. Sec- POLDER satellite observations. Gatebe et al. (2010) im-
ond, the algorithm processing POLDER observations waplemented the joint retrieval of detailed properties of multi-
not designed to take full advantage of positive redundancy ofayered aerosol and underlying surface reflectance from a
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combination of AERONET data and airborne measurementsvas used in studies by Lyapustin et al. (2008) and Lyapustin
by NASA's Cloud-Absorption Radiometer. The main details and Wang (2009), who used the limited time variability of
of the resulting fine-tuned numerical inversion scheme ardand surface for screening cloud-contaminated data or the
discussed by Dubovik (2004) and below in Sect. 3 of thelimited space variability of aerosol properties for constrain-
current paper. The modeling of PARASOL observed re-ing aerosol retrieval from MODIS observations. Tempo-
flectances is implemented using approaches and computeal smoothness constraints on surface reflectance variability
codes developed previously for accurate radiative transfewere used by Quaife and Lewis (2010) in the method for in-
equation solutions and for modeling aerosol single scatteringzerting linear bi-directional surface reflectance models from
and surface reflectance properties. Specifically, the multipleMODIS observations. Here, the satellite retrieval is designed
solar light interactions with the atmosphere and underlyingas a statistically optimized simultaneous fitting of the obser-
surface are accounted for using the successive order of scarations over a group of pixels implemented under additional
tering radiative transfer code by Lenoble et al. (2007). Thisinter-pixel constraints. Specifically, the variations of the re-
approach and actual computer code have been used and reieved parameters horizontally from pixel-to-pixel or tem-
fined in POLDER-1, POLDER-2 and POLDER/PARASOL porary from day-to-day over the same pixel are limited by
data analysis. The land surface reflectance of total solar radithe additional a priori constraints, in a similar manner to how
ance is approximated by the model of Rahman et al. (1993}t is applied in inverse modeling by Dubovik et al. (2008).
that has already been successfully used for interpretation ofhe inclusion of these additional constraints is expected to
MISR (e.g. Martonchik et al., 1998), SEVIRI (e.g. Govaerts provide retrieval of higher consistency for aerosol retrievals
et al.,, 2010) and RSP (e.g. Litvinov et al., 2010) observa-from satellites, because the retrieval over each single pixel
tions. The reflectance of polarized radiation by land surfacewill be benefiting from coincident aerosol information from
is approximated by using the models developed by Nadal angieighboring pixels, in addition to the information about sur-
Bréon (1999) and Maignan et al. (2009) from the observa-face reflectance (over land) obtained in preceding and conse-
tions by POLDER. These models were also validated by RSRjuent observations over the same pixel.
observations (Litvinov et al., 2011). The modeling of aerosol It should be noted that this paper focuses on detailed im-
single scattering properties is adopted from AERONET de-plementation of core ideas for a new PARASOL retrieval al-
velopments. This scattering model seems rather suitable fogorithm, however it does not address many aspects of an op-
applying to multi-angular polarimetric observations, since erational implementation of the algorithm. For example, is-
this model was demonstrated to accurately reproduce the olsues such as cloud-screening, retrieval time requirements and
servations by ground-based radiometers that have high sensither important aspects of algorithm implementation for op-
tivity to the fine features of angular and spectral aerosol scaterational processing are to be addressed in follow-on studies.
tering. For example, the software developed by Dubovik et
al. (2006) for AERONET allows for very fast simulations of
scattering by non-spherical aerosol particles. As discusse@ General structure of the algorithm
by Herman et al. (2005) andé&gard et al. (2005), the ade-
quate modeling of scattering by non-spherical aerosol parti-The general structure of the algorithm is shown in Fig. 1. In
cles is critical for analysis of PARASOL observations. order to make the algorithm more flexible it is divided into
In addition, as a part of the PARASOL aerosol algorithm several interacting but rather independent modules. Each
improvement, a new aspect has been introduced into the cormodule has rather particular function. The interactions be-
cept of satellite data inversion. Specifically, in order to over-tween the modules are minimized for a straightforward ex-
come some difficulties related to the limited information of change of a very limited set of parameters. The “Forward
the PARASOL observations over a single pixel, the retrievalModel” and “Numerical Inversion” are the two most com-
is organized as a simultaneous inversion of a large group oplex and elaborated modules in the developed algorithm. The
pixels within one or several images. For example, derivationorganization of the algorithm by modules enhances the flex-
of aerosol properties over bright land is known to be an ex-ibility in algorithm utilization. For example, the “Numeri-
tremely difficult task. The multi-pixel retrieval regime takes cal Inversion” module implements quite universal operations
advantages from known limitations on spatial and temporalthat have no particular relation to the physical nature of the
variability in both aerosol and surfaces properties. Similarinverted observations. This module can, in principle, be used
ideas have already been used in different forms for improvingn any other application not related to atmospheric remote
satellite retrievals. For example, Martonchik et al. (1998) de-sensing. The “Forward Model” module does not have such
rive the surface reflectance properties from a group of nearuniversal applicability as the “Numerical Inversion” module.
by MISR pixels in a 16< 16 km region by relying on the Nonetheless, the “Forward Model” module is developed in
similarity of aerosol properties over this area. Govaerts eta quite universal way allowing modeling quite a broad va-
al. (2010) have built the SEVIRI aerosol and surface retrievalriety of atmospheric remote sensing problems. As a result
concept assuming rather limited time variability of the land of such organization of the algorithm, it can equally be ap-
surface reflectance properties. Even more explicitly the ideglied (with minimal changes) to inverting observations from
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General structure of inversion algorithm

Observation definition Forward model:

\ 4

Simulates observations f(a®) for a
given set of parameters a?

A
aP flar), etc.
. . o2e N
Observation definition: 4
Viewing geometry, spectral f* | Numerical inversion: Inversion settings:
characteristics; coordinates, etc. ?| Stat. optimized fitting of f*by [ - description of error Af*;
Observations: f* flaP) under a priori constraints - a priori constraints
ar- final
Retrieved parameters:

aP—describes optical properties
of aerosol and surface

Fig. 1. The general structure of the retrieval algorithm.

other satellite sensors or from the ground. In addition, such Zenith
an algorithm structure was helpful in adapting physical mod- Sun
els and computer routine fragments inherited from previous
AERONET and POLDER developments.

The following several Sections of the paper provide a full POLDER
description of the “Forward Model” and “Numerical Inver- 9
sion” algorithm modules. A number of optional adjustments < > N
are suggested for setting both aerosol physical model and re-
trieval scheme. Although the algorithm is tuned for inverting g
PARASOL observations, some aspects of aerosol parameter- o,
ization and inversion implementation (in particular a priori /
constraint settings) can be modified and adjusted for optimiz-
ing the algorithm performance if it is applied to other remote Fig. 2. The iIIustrati_on of the angular convention used for POLDER
sensing observations. For example, two alternative strate?Pservation modeling.
gies are suggested for implementing numerical inversion of
satellite image observations: conventional pixel-by-pixel in-
version and a new multi-pixel inversion strategy. According

to this new multi-pixel approach, the retrieval developed as ; . . .
simultaneous inversion of a large group of pixels within one of the atmosphere is only linearly polarized. In the polarized

or several images. Such a retrieval regime takes advantage Spantnels, b%&dt(;s tr;? tEtal reflectecti radla(;‘lzme ][neazu:e-
known limitations of spatial and temporal variability in both ments provi de' Ie odes pc'TlralTetgsaln | re e_(rjr_e (i
aerosol and surface properties, axes perpendicular and parallel to the local meridian plane,

i.e. Q=1Ipco82x) and U = I sin(2) where I is the po-
larized component of reflected radiance anis the angle

3 Forward model of POLDER/PARASOL observations  Petween the meridian plane and the polarization direction.
Let I=(I, Q, U, V)T and Eq=(Ep, 0, 0, 0)T stand,
The aerosol retrieval algorithm is designed to invert respectively, for the Stokes’ vectors of the observed elec-
the POLDER/PARASOL observations acquired in window tromagnetic radiation and of the incident unpolarized so-
channels shown in Table 1, thatis: the total radiance in 6 windar radiation; the subscriptT™ denotes transposition and
dow channels: 0.44, 0.49, 0.565, 0.675, 0.87 and 1.02umy is assumed to be negligible. The Stokes' vector
and the linear polarization in 3 of these channels: 0.49,1=(I, Q, U, V)T =1(uo; u1; vo; ¢1; ) depends on the
0.675 and 0.87 um, reflected by a ground pixel. In each chansolar zenith angl&g (1o =cos(p)), the observation zenith
nel, observations of the same pixel are performed nearly siangle®; (u1=c0s (1)), the solar and observation azimuth
multaneously in up to 16 viewing directions (Deschamps etanglesgg and ¢1, and wavelength.. Figure 2 illustrates

%

al., 1994). It is assumed that the light observed at the top
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Table 1. List of measured and retrieved characteristics considered in POLDER/PARASOL algorithm.

POLDER/PARASOL measurements

MESUREMENT TYPE:
1 (Ho: My: 00; 01: 4i) =1(©; 1) — 1 reflected total radiances
0 (Mo: Ma: 90; 01: 4i) = (03 A;) — 0 component of the Stokes vector
U (Mo: Ma: 90; 01: Ai) =U (®;: A;) — U component of the Stokes vector
OBSERVATION SPECIFICATIONS:
ANGULAR:
1(9;; %), 0(®; &;) andU (®; A;) measured in up to 16 viewing directions, that may
cover the range of scattering angefrom ~ 80° to 18C°.
SPECTRAL:

1(©;; ;) measured in 6 window channels=0.44, 0.49, 0.565, 0.675, 0.87, and 1.02 um

0(9j; 4;) andU (®;; A;) measured in 3 window channels=0.49, 0.675 and 0.87 um

Retrieved characteristics

AEROSOL PARAMETERS:

Cv — total volume concentration of aerosol (fipm?)

dV(r;)/dInr — (=1, ...,Ny) values of volume size distribution iN; size bins;, normalized byCy

Csph — faction of spherical particles

n(i;) — (=1, ...,N, =6) the real part of the refractive index at everyof the POLDER/PARASOL sensor

k(A) — (=1, ...,N, =6) the imaginary part of the refractive index at evyyf the POLDER/PARASOL sensor
ho — mean height of aerosol layer.

Option: algorithm allows the retrieval of multi-component aerosol. In that case, all above parameters are retrieved
for each aerosol component

SURFACE REFLECTION PARAMETERS:
Rahman et al. (1993) MODEL:

po(A;) — (=1, ...,N, =6) first RPV BRDF parameter (characterizes intensity of reflectance)

k(Xi) — (=1, ...,N, =6) second RPV BRDF parameter (characterizes anisotropy of reflectance)

o(A) — (=1, ...,N, =6) third RPV BRDF parameter (characterizes forward/backscattering contributions)
ho(A) — (=1, ...,N, =6) fourth RPV BRDF parameter (characterizes hot spot effect)

NOTE: hg(2) is retrieved only for the observation conditions7.5° close to backscattering. In other situations,
itis fixed as related tag(A) = pg(1).
Maignan et al. (2009) MODEL:
B(A;) — (=1, ...,N, =6) free parameter;
Option: algorithm allows using alternative surface models: Ross-Li model for BRDF and Nadal-Breon model for BPDF.

the angular convention adapted for storage and processinylscat (®; 1) = (2)
POLDER data. This convention is used in present algorithm.
The reflected radiance may be written:

_ IJO —mTi— —mAT; wé ()
I (Hoi Haiwoi 913 2) = O = i i_ZN<€ P e o Pi(Es A)>’

= L [Mscat(®; ) + Mrefiec (Ho; My: @0; @15 A)] Eo + mult. scat,

where the termi sca:andM refiec COrrespond to the light re- where Az; is the optical thickness of thith atmospheric
flected as a result of single interaction of incident solar light,/ayer ¢=1, ..., N numbered from the top to the bottom of
respectively, with the atmosphere and surface. In Eq. (1) it ifhe atmosphere) and is the optical depth of the bottom of
assumed that polarized light is referred to axes perpendiculd@yeri (i.e. =3, ;Aw); Pi(©;2) andwy denote the
and parallel to the scattering and reflection planes (here, botRhase matrix and single scattering albedo of ittle atmo-
formed by the solar and viewing directions); and the mdtrix SPheric layern = 1/uo+1/u1.
transforms the Stokes’ vector into the plane of observations The optical properties;, P; (®; 1) anda)g of each atmo-
(details are given in Lenoble et al., 2007). spheric layer include the contributions of aerosol (character-
Under assumption of plane parallel multi-layered atmo-ized ini-th layer by Az; 4, “’3,1' andP? (®; 1)), molecular

sphere, the single scattering terMgca; at the top of the scattering (characterized inth layer by At; mo, wg‘?'=1

atmosphere can be expressed as: and P§“°' (®; 1)) and atmospheric gases (characterized in

i-th layer by At; gas and wg; =0). The resulting single
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scattering albedo)g and phase matriR; (®; A) of thei-th Forward Model
atmospheric layer are:
i wgi A Tia + A Timol (3) Vector of retrieved parameters :
wgy = : ’ (oo
0 A Tia + A Ti.mol + A Ti,gas af = a..ﬂ ] - aerosol parameters
\ a* - surface parameters
and acer auf
B (©; 3) = W3A 7,2 P2 (©; 3) + A Tmol PM (©; 1) @
’ - ) . . ’ ing ing : Surface reflectance :
! Atia+ ATimol + A Tigas Aerosol single scatterin
and the extinction optical thicknesgsof the atmosphere is Provides: {4), w,(4), P,(%,0) Provides: M, (u;u;9,9.%)
the sum of the corresponding components: vy Pi) BROR, BPDF
T = Ta+ Tmol + T 5
2 me gas ( ) Vector radiative transfer model
The properties of atmospheric molecular scattetig and Calculates detailed distribution of atmospheric
Pl (@; i) are well known and can be calculated with suf- radiation properties:  |(u;; s, ;i)

ficient accuracy. The absorption of atmospheric gaggs

has rather minor contributions in the POLDER/PARASOL \
window channels and can be accounted for using known cli- Simulated _satellite
matologies, as well as using available information from an- observations: f(a?)
cillary observations. For example, the present development
uses the same procedure as used in the operational algorithm
by Deuz et al. (2001). That procedure corrects the water va-ig. 3. The organization of the forward calculations of atmospheric
por absorption using PARASOL measurements in 0.910 pntadiance measured from a satellite.

spectral band. The minor absorption from ozone,,N@d

O are accounted using the climatology data. Thus, the most

challenging part in modeling single scattering properties ofequation. Thus, the forward model of reflected radiances
the atmosphere is the modeling of aerosol contribution, i.e Measured by POLDER/PARASOL contains three main com-
aerosol extinctiorr,, single scattering albedo? and phase ~ Ponents: (i) aerosol single scattering, (ii) surface reflection
matrix P2 (®; A). These properties depend on aerosol mi- and (iii) solving vector radiative transfer equation for ac-
crophysics: particle size, shape and composition (refractivecounting for multiple scattering. The following parts of this
index). All these characteristics are driven by the parameter§ection will describe each of these components in detail.
included in the vector of unknowns and correspondingly they It should be noted that the forward model for repro-

are retrieved from the observations. dUCing POLDER/PARASOL observations is designed by
The single reflectioM refiec at the top of atmosphere can Means of adapting the atmospheric modeling strategies and
be calculated as: computer routines developed within previous POLDER and

Ho i AERONET activities. At the same time, several important
Mrefiec (Mo Ha: ¢0; ¢1: 4) = —e¢" R (Mos bas wos ¢154) (6)  modifications required for optimizing the forward modeling
performance have been implemented in the present PARA-
SOL algorithm. Specifically, the models of land surface
=1 | ) Tteflectance have been introduced into the radiative transfer
lar and viewing directions. For the ocean surface the reg o jations, the number of aerosol parameters driving the
flection R (105 pu1; wo; ¢1; 2) is mainly governed by the o6 has been reduced, the different regimes of the radia-

wind speed at sea level as suggested by the Cox-Munk mode} e ansfer calculations have been designed for allowing

(Cox and Munk, 1954) employed in th? currently operation.al faster but less accurate calculations. These and other forward
POLDER algorithm (Deuzet al., 2001; Herman el al., 2005; ) ,qe| modification allowed the performance of the devel-

Tané et al., 2011). In contrast, the reflection matrix of the oped “on-line” inversion procedure to attain the standards re-

land surface may differ very strongly from location to loca- ¢ ,ireq for operational processing (achieving sufficient speed
tion. Therefore, in the present algorithm, the key properties computations, etc.).

of the land surface reflectance are included in the set of un- Figure 3 shows the data flow within the

knowns and retrieved from the observations. block of the algorithm. Three main complementary efforts

As follows from Eq. (1), once the single scattering terms 5y jnyolved in modeling the atmospheric radiation field ob-
M scatandM refiec are defined one needs to account for multi- served by the POLDER sensor:

ple interactions of scattered light with atmosphere and sur-
face. In the present algorithm these interactions are ac- — Modeling of single scattering properties of the atmo-
counted for by rigorously solving vector radiative transfer spheric aerosol.

where reflection matriR (o; ©1; @o; @1; A) describes the
surface reflection properties in the plane formed by the so

“Forward model”
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— Modeling of the surface reflectance properties.

— Accounting for multiple scattering effects using full ra- & “ma dN (&) dN (r)
diative transfer model. cs (A ks nyrse) dinedInr (8)
ding dinr
. . . min €min
These aspects are described in detail below. . Z Z o ke o AN &) dV ()
3.1 Aerosol single scattering properties I o A S dine dinr

The modeling of the aerosol scattering matrices has been imwhere
plemented following the ideas employed in AERONET re-

. . ) . O KEL (A k;on; s = 9
trieval algorithm by Dubovik and King (2000) and Dubovik & ( GRORD ©)
etal. (2002b, 2006) Inri4+Alnr Ineg+Alne e

In order to account for aerosol non-sphericity, the atmo-— Ch e By dinediny

spheric aerosol is modeled as an ensemble of randomly ori- .. A, e 2 aine v(r)

ented spheroids. Specifically, AERONET operational re-

trievals use the concept developed by Dubovik et al. (2006where v(r) is the volume of particle,dd‘fé:) :v(r)% is

and model the particles for each size bin as a mixture ofthe volume particle size distributiod; (¢) and B; (r) are
spherical and non-spherical aerosol components. The northe functions providing correspondingly the interpolation of
spherical component was modeled by ensembles of ranshape distribution between the selected paiptand the in-
domly oriented spheroids (ellipsoids of revolution). Accord- terpolation of size distribution over selected points In

ing to this concept, aerosol particles of non-spherical com-studies by Dubovik et al. (2002b, 2006), the coefficients
ponent have size-independent distribution of shapes and tha; (¢) for integrating over axis ratio were assumed as rectan-

modeling of the total aerosol optical thicknessof non- gular functionsAy (¢) = const. For approximating size distri-

spherical aerosol can be written as the following: bution between the used size binsthe trapezoidal approxi-
mation was chosen by Dubovik and King (2000). Such kinds
T() = @) of interpolation are traditionally applied in aerosol applica-
Fmax Emax tions (e.g. see Twomey, 1977), where the functi®s(r)
_ / ¢ G ks s 1 6) AN (©) AN (1) 1 are defined as isosceles triangles.
oo ding dinr It should be noted that in Eq. (8) the integral over size is

approximated by a sum using values of volume size distri-
wherect (1; k; n; r; ¢) denotes the extinction cross-sections bution dV(r)/dInr (in place of the number size distribution
of spherical particle and randomly oriented spheraid- dN(r)/dInr) defined in logarithmically equidistant points
wavelength,n andk — real and imaginary parts of the re- Ultilization of both the volume size distribution and logarithm
fractive index,e spheroid axis ratiog(=a/b, a — axis of  of radius was chosen for the convenience of the algorithm
spheroid rotational symmetr, — axis perpendicular to the implementation. In principle, the particle number distribu-
axis of spheroid rotational symmetry) radius of volume-  tionsdN(r)/dInr or dN(r)/dr could be equally used in Eq. (8)
equivalent sphere. Correspondingly the mixture of spheroide.g. see King et al., 1978; King, 1982). At the same time,
includes the flattened oblate spheroigls:(1), spheress(=1) the usage of both the volume of the particle (instead of num-
and elongated prolate spheroids>(1). The characteristics ber) and logarithmic scale in binning of the size distribution
r ande are used here for describing size and shape of thénelps to optimize the approximation given by Eq. (8). First,
ensemble of spheroids. Analogously to the combination ofthese choices help to improve the accuracy of this approx-
a andb, the combination of ande¢ allows unique defini- imation (a smaller number of points, provides appropri-
tion of the spheroid shape. As discussed by Mishchenkate accuracy). Second, under this representation, the ker-
et al. (1997), the usage of and ¢ is convenient for sep- nelsKg,; (A; k; n; r;; &) for different pointsr; are closer
arating the effect of particle shape and size in analysis ofin values. This is one of the favorable conditions for im-
aerosol mixture light scattering. Then the functicﬂjﬁ(’% plementing inversion. Therefore, volume size distribution

and %Nlrg_i) denote the number particle size and the number_dV(r)/dmr is often used as retrieved aerosol characteristic

particle shape (axis ratio) distributions accordingly. in the algorithms applied to invert the optical data of high
For performing fast and accurate calculations of aerosof€nsitivity to aerosol particle size. For example, a similar

and shape integration can be approximated by the doubl®akajima et al. (1983, 1996) for retrieving aerosol proper-
sum, e.g. ties from ground-based sky-radiometers. In the AERONET

retrieval, Dubovik and King (2000) represented volume size
distribution dV(r)/dInr by N;=22 pointsr;. These points
are equidistant in logarithmic space and cover the size range
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from 0.05 to 15 um. This size range was chosen following theK 321 (A; k; n; r;) = (10c)
sensitivity analysis by Dubovik et al. (2000), which showed

that the aerosol particles of smaller and larger sizes produce nsi+a inr emax

negligible contribution to AERONET radiometer observa- = B (r) (/ Cext (%3 k( ;1 i E) jj\llrfa) din g) dinr,
tions. This range of aerosol particle sizes is slightly wider i -ainr min o ‘

than the one used in earlier studies by Nakajima et al. (1996).
As discussed later in this paper, the size range of aerosoihereCsph is the fraction of the spherical particles. Note,
is modified for retrieving aerosol from PARASOL observa- that while the preparation of the core look-up tables
tions. Kest~ (A; k; n; r;) required several years of computations,
Using the approximation given by Egs. (8)—(9), Dubovik the resulting software allows very fast simulations of scat-
et al. (2006) developed a numerical tool for fast calculationstering by non-spherical aerosol particles. The calculation
of scattering properties of spheroid mixture. The quadraturdakes a fraction of a second for any realistic combination of
coefficientsK &, (A; k; n; r;; ) for the extinction, as well ~ aerosol size distribution and complex refractive index. At
as for absorption cross-sections and scattering matrices haygesent, it is probably the only approach that can calculate
been calculated and stored into the look-up tables for a widescattering matrices for non-spherical particles as part of the
range ofn andk (1.3<n <1.7; 0.0005< k <0.5). The cal- retrieval without relying on look-up tables of scattering ma-
culations were done for spheroids with axis raticanging  trices. Once the forward model in AERONET retrieval was
from ~0.3 (flattened oblate spheroids) 8.0 (elongated updated with non-spherical aerosol light scattering modeling
prolate spheroids) and for 41 narrow size bins covering thecapabilities by Dubovik et al. (2006) (as shown in Eq. 10) the
size-parameter range from0.012 to~625. The look-up fraction Cspnhwas included in the set of retrieved parameters
tables were arranged into a software package allowing fastalong with the concentrations for 22 bins of size distribution.
accurate, and flexible modeling of scattering by randomly It is noteworthy that the spheroid model developed by
oriented spheroids with different size and shape distribu-Dubovik et al. (2002b, 2006) appeared to be rather useful
tions. In addition, Dubovik et al. (2006) used the developedfor AERONET and other aerosol remote sensing applica-
software and showed that spheroids can closely reproducgons. First, the utilization of this model has significantly im-
single-scattering matrices of mineral dust measured in thg@roved the AERONET operational retrieval of aerosol with
laboratory by Volten et al. (2001). It was shown that scatter-pronounced coarse mode fraction (e.g. see Reid et al., 2003;
ing matrices have rather limited sensitivity to the minor de- Eck et al., 2005; Dubovik et al., 2006). The same model has
tails of axis ratio distributio N (8" . Therefore, Dubovik et  been shown to reproduce adequately the ground-based po-
al. (2006) have suggested and demonstrated that AERONETarimetric observations of non-spherical desert dust. Specifi-
retrieval may rely on rather simple assumption that shapecally, the efficient application of the model to the polarimet-
(axis ratio) d|str|but|onM in the non-spherical fraction ric observations has been done by Dubovik et al. (2006) for
of any tropospheric aerosol is the same. Based on this coma case study and Li et al. (2009) for an extended series of ob-
clusion the aerosol scattering model was set in AERONETservations. In addition, it was shown that the spheroid model
retrieval as a mixture o$phericaland non-sphericalfrac- allows qualitative reproduction of the main characteristic fea-
tions, and% obtained by Dubovik et al. (2006) from tures of lidar observations of non-spherical desert dust. For
fitting Volten et al. (2001) observations was employed asexample, the increase of extinction-to-backscattering lidar
shape distribution fonon-sphericaffraction. Based on this ratio and a high depolarization of signal regularly observed
assumption, the integration overin Eq. (7) can be done in lidar observations of desert dust, and traditionally associ-
once and for all for each size bin, and, therefore, modelingated with aerosol particle non-sphericity, can be adequately
of aerosol optical properties{ (1), w§ andP? (©; 1)) in reproduced using a spheroid-based model (see discussion by
AERONET retrieval is implemented in a particularly conve- Dubovik et al., 2006). Cattrall at al. (2005) showed that
nient form. For example, for modeling (1) one can write:  lidar ratios calculated from aerosol properties derived from
AERONET observations using a spheroid model agree well

Ta (1) = Tsph (M) + Tnons () (102) " \ith known lidar observations of desert dust. Furthermore,
-y (CsthZ'i{’ G i s ) + (L= Cop) KO0 o ks s m) dv <r1-.). Veseloyskn etal. (2010) haye used the approach suggested by
i=1 o Ny diny Dubovik et al. (2006) and incorporated the spheroid model

into the algorithm retrieving aerosol properties from lidar ob-

where servations. That is, probably, one of the first attempts to in-
Zﬁth ;s kyn;yr) = (10b) terpret quantitatively the sensitivity of the lidar observations
n vt Al to particle r?on—spherici.ty. The don—spherical coarse eerosol
' ngth O ks onsr) models derived from c!lmatologles df AERONET retrievals
= TBk (rydinr, had been successfully incorporated into MODIS and SEVIRI
Inr —Anr satellite retrievals (Levy et al., 2007a,b; Govaerts et al., 2010;

Wagner et al., 2010). The AERONET retrievals are being
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Trapezium Approximation Approximation by Log-Normals
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Fig. 4. The illustration of modeling aerosol size distribution by fivg € 5) triangular (left) or log-normal (right) size bins.

used for making accurate calculations of atmospheric broadebservations can be achieved if the shape of each single bin is
band fluxes and aerosol radiative forcing. These calculationsptimized. Specifically, utilizations of log-normally shaped
were shown to agree very reasonably with available coinci-bins provided notable improvementsif, <10. The con-
dent ground-based flux observations in desert regions (Derducted small series of calculations suggested some advan-
imian et al., 2008) and globally (Garcia et al., 2008). De- tages of modeling aerosol size distribution as superposition
rimian et al. (2008) demonstrated that the neglect of deserbf the log-normal functions with fixed parameters:

dust non-sphericity in climatic assessment leads-1® %

systematic overestimation of cooling of the atmosphere bydV (r) _ Z v, exp | — (Inr —In 7\/,1‘)2 (11a)
desert dust aerosol on the top of the atmosphere. dinr . _{ ~ N V2o 207
The retrieval algorithm developed here for POLDER/ '
PARASOL uses the same modeling strategy as described dv; (r)
above. Correspondingly, a solution is sought in continuous - Z ‘N
space of aerosol size distribution parameters, aerosol parti- =L .. N
cle shape and complex refractive indices (see Table 1). How; o
ever, due to differences in information content of AERONET
and POLDER measurements, the retrieved size distributiorr; = ¢y ; and (11b)
is represented by a smaller number of bivis Instead of
Ny =22, retrieved by AERONET, herd, is reduced to 16 dv; (r) 1 (In r —In rv’,»)z
and even significantly smaller numbers. In order to assure dinr N exp _2—01.2 .

that the aerosol model remains adequate and its accuracy

is acceptable even if n_umber of aerosol bins is small, ther, example, Fig. 4 illustrates that a small number of log-
performance of Dubovik et al. (2006) software was ana-normal bins retains the realistically smooth shape of atmo-
lyzed for situations corresponding to POLDER/PARASOL gpheric aerosol size distribution, while applying triangular
measurements with reduced number of aerosol bins. Iy rapezium approximation leads to appearance of inade-
was found that the accuracy of the calculations remaingyate features (apparent triangle tops) in the size distribution.
practically unchanged if the aerosol size bins correspond-rhus, the new option allowing the usage of log-normally
ing to very small and very large particles have been e"m'shaped bins was included in Dubovik et al. (2006).

inated, i.e.N; =16 covers size range frompjn=0.07 um

to rmax=10pm. The contribution of smaller and larger 3.2 Modeling surface reflectance

particles into POLDER/PARASOL observations is negligi-

ble. Nonetheless, the need for optimizing the softwareThe reflective properties of ocean surface are modeled anal-
of Dubovik et al. (2006) by using even smaller number ogously to the currently operational POLDER algorithm
of aerosol binsN; <10, was identified. It was found (Deuz etal., 2001; Herman et al., 2005; Tarmt al., 2011).
that sufficiently accurate modeling of POLDER/PARASOL The Fresnel’s reflection on the agitated sea surface is taken
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into account using the Cox and Munk model (Cox and Munk, G = |tar? 91 +tar? 9, — 2 tan®; tand, cos ((p1—(p2)]l/2. (12d)
1954). The water leaving radiance is nearly isotropic (Voss
etal., 2007) and modeling shows that its polarization is neg-This model provides bi-directional reflectance as a function
ligible (e.g. Chami et al., 2001; Chowdhary et al., 2006; Otaof four empirical parameterso, (1) characterizes intensity
etal., 2010). This term and the white cap reflection are takerof reflectance« (1) characterizes anisotropy of reflectance,
into account by Lambertian unpolarized reflectances. The (1) characterizes forward/backscattering contributions in
whitecap reflectance is driven by the wind speed at sea suttotal reflectancekg (1) is a “hot spot” parameter. All these
face according to the Koepke (1984) model. The seawater reparameters are considered as unknowns and included in the
flectance at short wavelengths is not negligible and dependset of retrieved parameters (see Table 1).
on the properties of oceanic waters. Thus, in present model, The available airborne and satellite polarimetric observa-
the wind speed and the magnitude of seawater reflectance &@bns in the visible and infrared showed that the Bidirectional
short wavelengths need to be known a priori or retrieved to-Polarization Distribution Function (BPDF) of land surface
gether with aerosol. tends to have rather small values (compared to BPDF) with
The modeling of the reflectance by the land sur- no spectral dependence (e.g., Rondeaux and Herman, 1991;
faces has been adjusted to the needs of newly developedadal and Beon, 1999; Maignan et al., 2004, 2009; Wa-
POLDER/PARASOL retrieval. The aerosol retrieval algo- quet et al., 2009a,b; Litvinov et al., 2010, 2011). Most theo-
rithm by Deuz et al. (2001) over land relies only on the retical models developed for approximating observed BPDF
PARASOL measurements of polarized reflectance and, corare based on the Fresnel equations of light reflection from
respondingly, it does not consider the detailed directionalthe surface. For example, Nadal andeBn (1999) have
scattering properties of total reflectance by land surfaceproposed simple two-parameter non-linear function of the
Therefore, the “forward model” was modified to account ad- Fresnel reflection for characterization of atmospheric aerosol
equately for both total and polarized properties of surface reover land surfaces based on POLDER observations of land
flectance. surface reflectance. Recently, Maignan et al. (2009) have in-
In remote sensing applications the effects of directional-troduced a new linear BPDF model with only one free pa-
ity of land surface reflectance are often accounted for byrameter and demonstrated that this simple model allows a
semi-empirical models driven by a small number of internal similar fit to the POLDER measurements as more complex
parameters. For example, the Ross-Li model (Ross, 1981ion-linear model by Nadal and &n (1999). This model
Li and Strahler, 1992; Wanner et al., 1995) is employed forhas been used in the present POLDER/PARASOL retrieval
characterization of directional properties of land surface re-algorithm as a primary model of polarized reflectance of land
flectance derived from MODIS observation (Justice et al.,surface.
1998). The Rahman-Pinty-Verstraete (RPV) model (Rahman The model by Maignan et al. (2009) describes the polar-
etal., 1993) is successfully used for the analysis of MISR ob-jzed reflectance as:
servations by Martonchik et al. (1998) and SEVIRI by Gov-
aerts et al. (2010) and Wagner et al. (2010). The comparisonss (?1; ¢1; ¥2; ¢2) = PMaignan F12 (@, n), (13a)
of the models with satellite (Maignan et al., 2004, 2009) and o _ . )
aircraft (Litvinov et al., 2010, 2011) data showed that, gener-Vhere BPDF is given as a linear function of polarized com-
ally, both Ross-Li and RPV models are comparably capable?@NentF1z («;, n) of the Fresnel reflection matrix (depen-
of reproducing the multi-angle observations of land surfacesd€nt on incident angle; and refractive index) multiplied
Since the RPV model was applied more extensively to inter-PY an empirical coefficient:
pretation of multi-directional images (e.g. MISR, SEVIRI), B exp (—tan (a;)) exp (—v)
it has been retained in the present POLDER/PARASOL al-PMaignan (15 ¢1; ¥2; ¢2) = 2 (o + 1)
gorithm as a primary formulation for modeling Bidirec-
tional Reflectance Distribution Function (BRDF). Rahman et The attenuation term exp-z) reflects the observed tendency

. (13b)

al. (1993) describe BRDF as: of decreasing polarized reflectance with increasing vegeta-
tion cover, where is the Normalized Difference Vegetation
PRPV (V13 913 92; ¢2) = (128)  |ndex (NDVI). The NDVI valuez was obtained from the
1 1 reflectance measurements concomitant with the polarization
cog~1 91 cod—1y, 1—hp . .
= po 1 F @ |1+ , observationsp is a free parameter that should be chosen to
(Cosdy + cosvz) 1+6 fit the observed BPDF angular dependence.

1_ 92 Thus, in the present algorithm the land surface reflectance

F (g) = e (12b) properties are modeled using Egs. (12) and (13) for simulat-
[1+ 62 —260cos(r — a))]” ing BRDF and BPDF accordingly. However, since these for-
mulations are semi-empirical and derived completely inde-

COSa; = COSV1 COSP2 — Siny sindz cos (g1 — ¢2), (12€)  pendently, one needs to exclude physically unrealistic com-
binations of BRDF and BPDF. Therefore, in order to assure
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that the surface reflectance of polarized radiation in any geor either BRDF or BPDF models. For example, in the
ometry does not exceed the reflectance of total radiation, th@resent algorithm version, the BRDF can be simulated using
reflectance matriR (wo; w1; @o; ¢1; A) of the land surface  the Ross-Li model and BPDF can be modeled using Nadal-
is represented as a sum of two surface reflection phenomen&réon (1999) formulation. Nonetheless, the utilizations of

these secondary BRDF or BPDF models will not be dis-
R (lJO’ H1§<PO;<P1§)») = Rugirr + Rspee (143) cussed in detail.

where the matrix for diffuse unpolarized reflectafg; is

modeled using Eq. (12): 3.3 Full forward radiative model

1000 Accounting for multiple scattering effects in the atmosphere

0000 isimplemented by the successive order of scattering radiative
Ruitf (Ho: Ha: ¢0: 913 ) = PRPV ooool’ (14b)  transfer code (Lenoble et al., 2007) that was used in PARA-

0000 SOL operational retrievals (Deézt al., 2001; Herman el al.,

) ) 2005; Tane et al., 2011). The code provides full information
and the matrix for specular reflectan@@pec is mod-  apoyt the atmospheric radiation field under the assumption of
eled as matrix of Fresnel reflectanée(w;, n) scaled by  the plane parallel atmosphere. In order to reduce calculation
PMaignan (915 ¢1; ¥2; ¢2) empirical coefficient: time for inverting PARASOL observations, tirecomponent
in the Stokes vector has been neglected. Hansen (1971) has
demonstrated that the radiation properties measured by pas-
where the Fresnel matrik («;, n) defined for Stokes pa- sive remote sensing exhibit negligible circular polarization of
rameters referred to directions parallel and perpendicular tdhe electromagnetic field. The developed version of succes-
the reflection plane can be written as (e.g. see Lenoble et alsive order of scattering radiative transfer code allows calcula-
2007): tions of atmospheric radiances for seve¥alaerosol compo-

nents. Each aerosol component can be described by defined
vertical profile of spectral extinctiokext x (%2, A) and altitude
(15a) independent phase matri, (®, 1) and single scattering
0 0 2nn albedowf (). In the present set up of the aerosol retrieval
0 0 0 2nn code these optical properties are detremined based on mi-

The Fresnel matri («;, n) depends on incident angie crophysical model of atmospheric aerosol. Correspondingly,

and refractive index. The coefficients, andr are defined  ©nly parameters describing aerosol microphysics are directly
as included in the set of retrieved parameters listed in Table 1.

sin (@ — ;) tan (o — ;) Specifically, the vertically invariai, (®, A) anda)’g (1) are
- = ——1 " (15b) driven by: the shape of the size distributid¥ (r;)/dInr giv-

sin (ar + o) tan (or + ai) ing the aerosol particle volume in the total atmospheric col-
where the refraction angle, is related tow; through the — umn per unit of surface area (in the unites ofyjm¥); the
Snell-Descartes refraction law given as: realn; (1) and imaginaryy () parts of the complex refrac-
tive index; and the fraction of the spherical partic@®sspn
The spectral dependence of optical thicknessi) /i (A;)

The straightforward analysis of the above equations showdS @0 vertically invariant and defined by these parameters,
that the definition oR (u0; 11; o: ¢1; A) given by Eq. (14) while the absolute value af; (A)_addltlonally depgnds on
secures the physically correct ratio between polarized and tot€ total volume of the aerosol in the atmospheric column:
tal radiation componentsR{; < R11) for any combination of  Cik,v=>_;_1 ("—Zf%). In order to account for vertical
PRrPV and pmaignan variability of the aerosol extinctiokexx (2, 1), the addi-

Thus, in the present algorithm, the BRDF and BPDF prop-tional characteristie; (h) was added. The functios, (k)
erties are driven by four free spectral parameters of RPVdefines the vertical distribution of aerosol concentration and
model (oo (1), ¥ (1), 6 (1), ho (1)) and one free (generally the optical thickness of-th aerosol component in each of
spectrally dependent) parametr(x). All these parame- j-th atmospheric layer is defined as:
ters have been added into the retrieved vector of unknowns
as shown in Table 1.

It should be noted, however, that the Rahman et al. (1993 Tix (A) = & (A) [ ¢k (h) dh. (16a)
and Maignan et al. (2009) formulations, chosen as primary
models for BRDF and BPDF in the present algorithm, have i . )
limited accuracy (e.g. see Litvinov et al., 2010, 2011). There-1h€ aerosol concentration profitg (k) is assumed as a
fore both the forward model and inversion module of the Gaussian function normalized to unity, i.e.:
present algorithm have an assumed option of changing both

Rspec (P1; 915 D25 92; ) = pmaignanF (@i, n), (14c)

r|2 + "r2 rl2 — rlr2 0

0
2 _ 2,2, 2
F(Oli,n)=% -t e 0 8

rr =

sin (o) = n sin (ar). (15¢)

hi

hit1
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(h — hk,0)2 "o relies on analytical single scattering approximation for cal-
c (h) ~ exp| ———= and [ ¢ () dh =1, (16b)  cylations of derivatives. The possibility of using this trade-
g hgoa off in POLDER retrieval algorithm was tested. It has been

wherehgoa — Bottom Of the Atmosphere (BOA) height and concluded that using single scattering approximation is not
htoa — Top Of the Atmosphere (TOA) height. In the re- sufficient for conducting retrieval from satellite observations.
trieval, the standard deviation characterizing the width of thelNonetheless, it has been found that the Jacobians estimated

aerosol layer is fixed te; =0.75km. Therefore, only one numerically as finite differences on basis of the full radiative

parameter characterizing aerosol vertical distribution is in-ransfer calculations implemented with significantly reduced
cluded into the retrievalii; o — the mean altitude of the values ofM andN provide fast and accurate retrievals. This

k-th aerosol component layer. The present version of the#PProach is used in the present algorithm.
POLDER/PARASOL retrieval code is set to retrieve onlyone  The utilization of linearized radiative transfer code
aerosol component. The algorithm derives single values of€.g. see Hasekamp and Landgraf, 2005a) that provides all
complex refractive index and fraction of spherical particles derivatives with respect to aerosol and surface properties in a
for particles of all sizes. Such retrieval assumption is basecsingle run would be alternative and promising strategy of ac-
on the earlier AERONET sensitivity studies by Dubovik et celerating satellite observation inversion. This strategy was
al. (2000, 2006) that indicated major limitations in discrimi- not used in the present study because the linearization of ra-
nating between refractive indices and shapes of aerosol pagliative transfer code is a rather complex effort that requires
ticles of fine and coarse modes. At the same time, the possisignificant time investments. The possibility of using this ap-
bility of retrieving several aerosol components with different proach will be considered in future studies. At the same time,
complex refractive indices and vertical distributions is also a retrieval algorithm relying on the numerical calculation of
assumed (see Table 1) and sensitivity of polarimetric obserthe first derivatives is probably more flexible in practical ap-

vations to multi-component aerosols is planned to be verifiedlications. Indeed, in the present POLDER/PARASOL algo-
in future studes. rithm the set of retrieved aerosol or/and surface parameters

In addition, in order to harmonize the radiative trans- can be changed with no modifications in the calculations of
fer code with the structure and needs of general inverthe first derivatives. If the derivatives are calculated analyti-
sion approach, several modifications have been implemente@ally, achieving such flexibility could be more difficult.
Specifically, the modifications were aimed to increase the
speed of calculations by allowing admissible decrease of th& 3.2  Truncation of the phase matrix
accuracy of modeling. The three possible tradeoffs permit-
ting reduction of computation time without any significant

: . . X The truncation of the phase function is a technique whereby
loss of retrieval accuracy were identified and implemented.

the scattering effects from the sharply increasing forward
peak of the phase function are calculated separately from
those of the rest of the phase function, which permits the
accurate but much faster modeling of diffuse radiation. For
example, the AERONET aerosol operational retrieval by
The accuracy of radiative transfer calculations strongly de-Pubovik and King (2000) employs the discrete ordinate ra-
pends on the number of termg used in the expansion of diative transfer code by Nakajima and Tanaka (1988) that
the phase matrix into Legendre polynomials and number ofises the efficient procedure of the phase function trunca-
terms N used in Gaussian quadrature for zenithal integra-tion and provides very fast and accurate calculation of down-
tion. The values should satisfy the inequalitf4-1> 2 M welling diffuse radiation in moderately thick atmospheres.
to retain conservation of energy in the successive order off he detailed discussion of different methods of implement-
scattering integration. The valugg and N should be suf- INg the phase matrix truncation and their comparison are
ficiently large to provide accurate calculation. However, thegiven in the recent paper by Rozanov and Lyapustin (2010).
largerM andN the longer the calculation time. At the same  Following the ideas of Nakajima and Tanaka (1988) the
time, the high accuracy of the modeling is not always re-truncation of the phase matrix has been implemented in the
quired during the retrieval. For example, studies by Duboviksuccessive order of scattering code as a part of present stud-
and King (2000) showed that when observations of ground-es. In the developed version of the PARASOL algorithm the
based radiometers are inverted, the successful retrieval camse of truncation is optional but recommended. The utiliza-
be achieved using the approximate and quick calculationgion of the phase matrix truncation allows for decreasing the
of the first derivatives. Correspondingly, the retrieval time number of termsV in the expansion of the truncated phase
can be significantly decreased because the calculations déinction andN in the Gaussian quadrature for azimuth inte-
the first derivatives is the most time consuming componentgration. According to the results of the conducted tests, accu-
of Newtonian’s retrieval algorithms. Following this strat- rate PARASOL retrievals can be achieved with the following
egy, the operational retrieval of aerosol from AERONET datarecommended valuest =21 andN =10 — for calculating

3.3.1 Adjustable number of terms in the expansion of
the phase matrix and in the quadrature of
directional integration

www.atmos-meas-tech.net/4/975/2011/ Atmos. Meas. Tech., 419182011



988 O. Dubovik et al.: Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties

the fit to PARASOL observationsyf =15 andN =7 — for not suggest the reader sufficient explanations as to which

calculating Jacobian matrices. method and why should be chosen for a particular applica-
tion. The approach used here is focused on clarifying the

3.3.3 Flexible angular representation in the phase connection between different inversion methods established
function in atmospheric optics and unifying the key ideas of these

methods into a single inversion procedure. It follows the de-
The successive order of scattering radiative transfer codeelopments by Dubovik and King (2000), Dubovik (2004),
uses the phase function valuesMing angles correspond- Dubovik et al. (2008). The methodology has several orig-
ing to the points of Gaussian quadrature. These values arial (compare to standard inverse methods) features opti-
provided to the radiative transfer code from the Dubovik etmized for remote sensing applications. As shown in de-
al. (2006) software generating aerosol single scattering proptailed description by Dubovik (2004), the methodology ad-
erties. The software provides the phase function for thedresses such important aspects of inversion optimization
set of fixed scattering angles allowing sufficiently accurateas accounting for errors in the satellite observations, in-
modeling of angular variability of scattering. For example, version of multi-source data with different levels of ac-
in AERONET retrieval the phase function is calculated atcuracy, accounting for a priori and ancillary information,
83 Gaussian points. At the same time, the speed of aeros@stimating retrieval errors, clarifying potential of employ-
single scattering modeling depends on the number of théng different mathematical inverse operations (e.g. com-
scattering angles used. In order to enhance the flexibility ofparing iterative versus matrix inversion methods), accel-
the retrieval code the possibility of using the phase functionerating iterative convergence, etc. The concept uses the
at nearly arbitrary set of scattering angels has been impleprinciples of statistical estimation and suggests a general-
mented, with the values of the phase function at the requiredzed multi-term Least Squaretype formulation that com-
Gaussian points derived from the software data by conveplementarily unites advantages of a variety of practical in-
nient interpolation. The results of the series of the numericalversion approaches, suchRsillips-Tikhonov-Twomegon-
tests have shown that POLDER/PARASOL observations carstrained inversion (Phillips, 1962; Tikhonov, 1963; Twomey,
be adequately modeled using set\yfng= 35 selected scat- 1963), Kalman filter (Kalman, 1960),Newton-Gaussand
tering angles. Levenberg-Marquarditerations, etc. This approach pro-
vides significant transparency and flexibility in development
of remote sensing algorithms for deriving such continuous
4 Numerical inversion characteristics as vertical profiles, size distributions, spec-
tral dependencies of some parameters, etc. For example,
In contrast to the majority of existing satellite retrieval algo- compared to the popular “Optimal Estimation” equations
rithms, this effort is one of the first attempts to develop an(Rodgers, 2000), the multi-term Least Square type formu-
aerosol satellite retrieval using statistically optimized multi- lation allows harmonious utilization of not only a priori esti-
variable fitting. Such strategy does not rely on the pre-mate term butinstead, or in addition, using a priori terms lim-
assumed classes of potential solutions. Instead the solutioiting derivatives of the solution (see discussion by Dubovik,
is sought in a continuous space of solutions under statisti2004 and Dubovik et al., 2008). This methodology has re-
cally formulated criteria optimizing the error distribution of sulted from the multi-year efforts on developing inversion
the retrieved parameters. The implementation of some elealgorithms for retrieving comprehensive aerosol properties
ments of such a strategy was pursued in the earlier develogfrom AERONET ground-based observations.
ments of satellite retrieval algorithms. For example, the sta- Two alternative scenarios are proposed for inverting satel-
tistical optimization of the retrieval solutions was used for in- lite observationssingle-pixelretrieval andnultiple-pixelre-
version of MISR observations by Martonchik et al. (1998), in trieval. Thesingle-pixelretrieval is a conventional approach
the retrieval algorithms proposed by Chowdhary et al. (2002when observations of the satellite instrument over each single
2005) and by Waquet et al. (2007, 2009a) for inverting antic-pixel (e.g. in the case of POLDER/PARASOL the pixel size
ipated GLORY/APS observations and applied to RSP datais 5.3 kmx 6.2 km at nadir) are inverted completely indepen-
in the retrieval approach suggested by Hasekamp and Landdently. Themultiple-pixelretrieval is a newly suggested ap-
graf (2005b, 2007) for applying to multiple-viewing-angle proach when the observations of the satellite instrument over
intensity and polarization measurements and the retrieval ala group of pixels are inverted simultaneously and extra a pri-
gorithm developed by Go