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Atmospheric aerosols play an important role in earth climate by scattering and absorbing

solar and terrestrial radiation, and indirectly through altering the cloud formation, life-

time, and radiative properties. However, accurate quantification of these effects is in no

small part hindered by our limited knowledge about the particle size distribution (PSD)

and refractive index, the aerosol microphysical properties essentially pertain to aerosol

optical and cloud-forming properties. The research goal of this thesis is to obtain the

aerosol microphysical properties of both fine and coarse modes from the polarimetric solar

radiation measured by the SunPhotometer of the Aerosol Robotic Network (AERONET).

We achieve so by (1) developing an inversion algorithm that integrates rigorous radiative

transfer model with a statistical optimization approach, (2) conducting a sensitivity study

and error budgeting exercise to examine the potential value of adding polarization to the

current radiance-only inversion, and (3) performing retrievals using available AERONET

polarimetric measurements.

The results from theoretical information and error analysis indicate a remarkable increase

in information by adding additional polarization into the inversion: an overall increase of 2–5

of degree of freedom for signal comparing with radiance-only measurements. Correspond-

ingly, retrieval uncertainty can be reduced by 79% (57%), 76% (49%), 69% (52%), 66%

(46%), and 49% (20%) for the fine-mode (coarse-mode) aerosol volume concentration, the

effective radius, the effective variance, the real part of refractive index, and single scattering



albedo (SSA), respectively, resulting in their retrieval errors of 2.3% (2.9%), 1.3% (3.5%),

7.2% (12%), 0.005 (0.035), and 0.019 (0.068).

In real cases, we demonstrate that our retrievals are overall consistent with current

AERONET operational inversions, but can offer mode-resolved refractive index and SSA

with sufficient accuracy for the aerosol composed by spherical particles. Along with the

polarimetric retrieval, we also performed radiance-only retrieval to reveal the improvements

by adding polarization in the inversion. The comparison analysis indicates that with polar-

ization, retrieval error can be reduced by over 50% in PSD parameters, by 10–30% in the

refractive index, and by 10–40% in SSA, which is consistent with the theoretical results.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Atmospheric aerosols play a crucial role in earth climate system. They affect earth’s energy

budget directly by scattering and absorbing solar and terrestrial radiation, and indirectly

through altering the cloud formation, lifetime, and radiative properties [Haywood and

Boucher, 2000; Ramanathan et al., 2001]. However, quantification of these effects in current

climate models is fraught with uncertainties. The global average of the aerosol effective

radiative forcing was estimated to range from –0.1 to –1.9 Wm−2 with the best estimate

of –0.9 Wm−2 [Boucher et al., 2013], indicating that the cooling effects of aerosol might

partially offset the warming effects of 1.82±0.19 Wm−2 caused by the increase of carbon

dioxide since the industrial revolution [Myhre et al., 2013]. The climate effects of aerosol

particles depend on their geographical distribution, optical properties, and efficiency as

cloud condensation nuclei and ice nuclei. Key quantities pertain to the aerosol optical and

cloud-forming properties include particle size distribution (PSD), chemical composition,

mixing state, and morphology [Boucher et al., 2013]. While the daily aerosol optical

depth (AOD) can be well measured from current satellite and ground-based remote sensing

instrumentations [e.g., Holben et al., 1998; Kaufman et al., 2002], the accurate quantification

of aerosol radiative forcing is in no small part hindered by our limited knowledge about the

aerosol PSD and refractive index (describing chemical composition and mixing state).
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To fully understand the role of aerosol particles in global climate change, further de-

velopment in observations along with retrieval algorithms for these aerosol microphysical

properties from different platforms are thus highly needed [Mishchenko et al., 2004], and the

focus of this work is the characterization of aerosol properties from ground-based passive

remote sensing.

1.1.1 Previous studies on aerosol microphysical retrievals

There have been continuous efforts in determining aerosol microphysical properties from

ground-based measurements of direct and/or diffuse solar radiation since Ångström [1929]

first suggested an empirical relationship between the spectral dependency of extinction

coefficients and the size of aerosol particles. Over thirty years later, Curcio [1961] inferred

the aerosol PSD from the spectral particulate extinction coefficients in the visible and near-

infrared regions. With the effective numerical inversion technique developed by Phillips

[1962] and Twomey [1963] specifically for error-involved inverse problem, a number of

studies soon explored the use of either spectral attenuations or scattered radiances (in a

small range of scattering angles) to determine the aerosol PSD [Twomey and Howell, 1967;

Yamamoto and Tanaka, 1969; Dave, 1971; Grassl, 1971; Herman et al., 1971; King et al.,

1978]. Shaw [1979] and Nakajima et al. [1983] were among the first studies that have

combined optical scattering measurements with spectral extinctions to recover particle size

spectrum. Kaufman et al. [1994] suggested that useful information is contained in the sky

radiances of larger scattering angles for retrieval of the aerosol scattering phase function

and PSD. The first operational retrieval algorithm for aerosol microphysical properties was

introduced by Nakajima et al. [1996], when the multi-band automatic sun- and sky-scanning

radiometer was deployed in the AErosol RObotic NETwork, or the AERONET [Holben

et al., 1998]. All of above mentioned methods treated aerosol particles as homogeneous
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spheres and with refractive index assumed a priori, even though the refractive index can

highly impact the optical characteristics, especially the scattering [Hansen and Travis,

1974]. Tanaka et al. [1982, 1983] developed an inversion library method to estimate the

complex refractive index and PSD simultaneously from measurements of scattered radiances

polarized in the perpendicular and parallel directions. Another concept for determining

refractive index from both direct and diffuse angular radiances was developed by Wendisch

and Von Hoyningen-Huene [1994] and Yamasoe et al. [1998], which were based on the

fact that sensitivities of scattered radiances to the PSD and those to the refractive index

are dominated on different scattering-angular regions. The current AERONET operational

inversion algorithm was developed by Dubovik and King [2000], which has heritage from

algorithms developed by King et al. [1978] and Nakajima et al. [1983, 1996] but was

implemented for simultaneous retrieval of particle size distribution and complex refractive

index with sophisticated inclusion of multiple a priori constraints. Dubovik et al. [2002a,

2006] further implemented the spheroids in the particle shape consideration for desert dust

in the retrieval, and added fractional volume of non-spherical particles to the inversion

products.

1.1.2 The AERONET measurements

With over 400 locations around the word, most AERONET sites are equipped with an auto-

matic sun and sky scanning spectral radiometer, or the CIMEL CE318 type SunPhotometer

(Figure 1.1a), to routinely measure direct and diffuse solar radiation in various atmospheric

window channels [Holben et al., 1998]. As listed in Table 1.1 and illustrated in Figure 1.1,

these measurements include direct sun radiances, sky radiance on both the solar almucantar

and principal planes, as well as the optional polarization of sky light on the solar principal

plane.
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Inversion Infrastructure

Direct sun Almucantar Principal-plane

Introduc)on******Methodology*******Informa)on*Content*******Case*study*******Summary***

a b c d

Figure 1.1: A photo of the CIMEL CE318 type SunPhotometer (a) and its observational
modes: (b) direct-sun radiance scan, (b) sky-radiance scan on the solar almucantar, (c) solar
principal-plane scan for sky radiance and polarization. Detail scan information are presented
in Table 1.1 and text.

Direct sun radiances at various atmospheric window channels from the ultra-violet (UV)

to near-infrared (NIR) are used to infer the spectral AODs with the Beer-Lambert-Bouguer

Law [Holben et al., 1998; Smirnov et al., 2000]. Depending on site-specific instruments,

AOD values are typically reported at 7 wavelengths centered at 340 nm, 380 nm, 440 nm,

500 nm, 675 nm, 870 nm, and 1020 nm. Their calibration errors are believed to as small as

0.01 for visible and NIR bands and 0.02 for UV bands.

Sky radiance measurements, which are performed at 440, 670, 870, and 1020-nm bands

with full width spectrum at half maximum (FWHM) of 10 nm, are acquired from both solar

almucantar and solar principal plane. An almucantar is a series of measurements taken at the

viewing angle of the sun for 76 specified relative azimuthal angles (Table 1.1). To achieve

a wide enough range of scattering angles, almucantar scans are usually made at an optical

air mass of 1.7 or more (corresponding to solar zenith angle larger than about 50◦). The

principal-plane sequence for each spectrum performs right after almucantar scans. It begins

with a sun observation, moves 6◦) below the sun-ray, sweeps up through the sun, and ends

at a scattering angle of 150◦) or viewing angle achieves horizon, collecting radiances from

up to 42 viewing angles. Hereinafter, we will use Ialm and Ippl to represent the sky radiances
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Table 1.1: Measurement sequences of the CIMEL CE318 SunPhotometer.

Spectra (nm) Viewing Geometry (◦) Applications

Direct sun 340–1020
340–1640a

Target to the sun AOD,
Pw, AE

Almucantar
(Ialm)

440, 675, 870, 1020
(340, 380, 500,
1640)a

Azimuth angles relative to Sun: 6, 5, 4.5, 4, 3.5, 3,
2.5, 2, –2, –2.5, –3, –3.5, –4, –4.5, –5, –6, –8, –10,
–12, –14, –16, –18, –20, –25, –30, –35, –40, –45,
–50, –60, –70, –80, –90, –100, –110, –120, –130,
–140, –160, –180 (Duplicate above sequence for a
complete counter clockwise rotation to –6)

PSD,
mr, mi,
SSA,
phase function

Principal-
plane (Ippl)

Same as above Scattering angle from Sun: –6, –5, –4.5, –4, –3.5,
–3, –2.5, –2, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 8, 10, 12, 14,
16, 18, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90,
100, 110, 120, 130, 140 (negative is below the Sun)

Same as above

Polarization
(Ipp,DOLPpp)

870,
(340, 380, 440, 500,
675, 870, 1020,
1640)a

Zenith angle on the solar principal plane: –85, –80,
–75, –70, –65, –60, –55, –50, –45, –40, –35, –30,
–25, –20, –15, –10, –5, 5, 10, 15, 20, 25, 30, 35, 40,
45, 50, 55, 60, 65, 70, 75, 80, 85 (negative is in the
anti-solar direction)

Not used yet

aAdditional measurements taken by the newer-generation CIMEL-318DP SunPhotometer.

from the solar almucantar and solar principal plane, respectively.

These sky radiance data are used in the current AEROENT operational inversion al-

gorithm [Dubovik and King, 2000; Dubovik et al., 2006] (hereafter Dubovik00&06) to

derive: (1) the aerosol particle size distribution (PSD) in terms of the aerosol volume (in the

atmospheric column) at 22 size bins, (2) the fractional volume of non-spherical particles,

and (3) the complex refractive index assumed to be independent of particle size. From

those microphysical parameters, the Dubovik00&06 algorithm computes the aerosol single

scattering albedo (SSA) and the phase function. Uncertainties in the AERONET inversion

products are 15–100% for the bin-based PSD parameters, 0.025–0.05 for real-part refractive

index and 0.03 for SSA [Dubovik et al., 2000].

Light polarization measurements are performed optionally over many sites. They are

measured by the SunPhotometer with three polarizers placed 60◦ between each axial direc-
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tion. The total radiance is derived by

Ipp =
2
3
(I1 + I2 + I3) , (1.1)

where I1, I2, and I3 are radiance with these three polarizers, respectively. The degree of

linear polarization (DOLP) of skylight is inferred by

DOLPpp =
2(I2

1 + I2
2 + I2

3 − I1I2− I2I3− I1I3)1/2

I1 + I2 + I3
. (1.2)

It should be noted that we prefer to use DOLPpp instead of polarized radiance in our

inversion, since as a relative quantity it is more accurate. Polarization measurements are

made every hour (right after principal plane scans) at 870 nm in the principal plane at 5◦

increments between viewing zenith angle of −85◦ and +85◦. These measurements are

optional depending on the instrument version and configuration, and are currently available

mostly over European and African stations. Recently, multi-spectral polarizations have also

been taken with a newer-generation SunPhotometer (CIMEL CE318-DP) at some sites [Li

et al., 2009] and the UAE2 fields campaign [Reid et al., 2008]. Here we focus our study on

using multi-spectral polarizations for the inversion of aerosol parameters.

1.1.3 Challenges and opportunities

While the AERONET AOD and other inversion products have been widely used to study

the climatology of aerosol optical properties [Dubovik et al., 2002b; Levy et al., 2007a]

and for the development and validation of aerosol retrieval algorithms for satellite sensors

such as the Moderate Resolution Imaging Spectrometer (MODIS) [Kaufman et al., 1997;

Remer et al., 2005; Levy et al., 2007b, 2010; Wang et al., 2010] and the Multi-angle

Imaging SpectroRadiometer (MISR) [Diner et al., 1998; Kahn et al., 2010], the AERONET
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operational algorithm also faces: (i) challenges in evaluation of aerosol data either retrieved

from newer-generation satellite sensors or simulated from chemistry transport models,

and (ii) opportunities to improve the retrieval through the use of multi-spectral polarization

measurements that are now available at a few sites and will be made available at more sites as

part of the AERONET future research development (http://aeronet.gsfc.nasa.gov).

These challenges and opportunities, as further described below, are also the motivation for

us to develop a new research algorithm.

The first challenge is that newer-generation satellite sensors are expected to offer aerosol

microphysical products with accuracy that is equivalent to, if not higher than, that of the

current AERONET microphysical products. For instance, the Aerosol Polarimetry Sensor

(APS) for the NASA Glory mission, through measuring the first three Stokes vector elements

simultaneously from 250 viewing angles at nine spectral bands (410, 443, 556, 670, 865,

910, 1370, 1610, and 2200 nm), was designed to retrieve aerosol effective radius (reff),

effective variance (veff), and spectral complex index of refraction for both fine and coarse

modes [Mishchenko et al., 2007]. While no actual product is available because of the failure

of Glory launch, several case studies with the APS’s prototype airborne sensor, RSP (the

Remote Sensing Polarimeter), demonstrated feasibility of APS algorithm [Chowdhary et al.,

2002, 2005; Mishchenko et al., 2004; Waquet et al., 2009]. At least in the case of spherical

particles, the accuracy of APS’s bi-modal aerosol products was expected to be 10% for reff,

40% for veff, 0.02 for mr, and 0.03 for the SSA (ωA) [Mishchenko et al., 2007]. Some of

these accuracy expectations are unlikely to be matched by existing ground-based and in

situ instruments, including those at the AERONET sites. Moreover, the current AERONET

retrieval of the refractive index and the ωA are not recommended to use when the 440-nm

AOD is lower than 0.4 [Holben et al., 2006] due to expected limited accuracy identified in

the detailed sensitivity study by [Dubovik et al., 2000].

The second challenge is associated with the inconsistency in assumptions of PSD that

http://aeronet.gsfc.nasa.gov
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exists between current AERONET inversion products and satellite retrievals on the one

hand, and the aerosol models used by climate models on the other hand. Specifically, the

Dubovik00&06 algorithm retrieves the aerosol PSD in 22 discrete size bins. In contrast,

a continuous PSD function (e.g., lognormal) is usually assumed in satellite retrieval algo-

rithms, such as those for APS/RSP [Mishchenko et al., 2007; Waquet et al., 2009] and the

POLDER/PARASOL algorithm [Hasekamp et al., 2011]. Also, aerosol microphysical prop-

erties are usually calculated with continuous PSD assumption in many chemistry transport

models, such as GEOS-Chem [Drury et al., 2010; Wang et al., 2010] and the GOCART

model [Chin et al., 2002]. Clearly, the actual aerosol PSD is never a perfect lognormal

distribution, but neither is it discrete. At least from the scattering perspective, the aerosol

PSD can be well characterized with an effective radius reff and an effective variance veff,

while the specific function of the PSD is shown to be much less important [Hansen and

Travis, 1974]. In other words, since the retrieval is based on the information content in the

particle optical scattering, the most relevant size parameters, regardless of the PSD shape,

should be reff and veff, at least for spherical particles.

The third challenge is that the assumption of a size-independent refractive index (and

SSA) in Dubovik00&06 is not in line with the majority of counterpart satellite retrieval

algorithms [e.g., Mishchenko et al., 2007; Hasekamp et al., 2011; Martonchik et al., 2009],

which often use different refractive indices for various individual aerosol modes. In many

cases, tropospheric aerosol is a mixture of modes with substantially different refractive

indices. For example, smoke from biomass burning can be mixed with mineral dust over

western coastal North Africa [Yang et al., 2013]. Furthermore, the assumption of size-

independent refractive index can lead to errors in the retrieval of the size distributions when

the refractive indices for fine- and coarse-mode aerosols differ substantially [Dubovik et al.,

2000; Chowdhary et al., 2001]. Thus, a mode-resolved parameterization of the refractive

index in an aerosol retrieval algorithm not only can facilitate the validation of satellite



9

products and chemistry transport models, but also is expected to improve the accuracy of

PSD and SSA retrievals for each mode. [Dubovik et al., 2000] have tested the possibility of

retrieving separated refractive indices of fine and coarse modes. However, they concluded

that the retrieval of bi-modal refractive indices is essentially non-unique due to limited

information in the AERONET radiance-only observations.

Therefore, this work aims to developing an algorithm to retrieve the aerosol microphysi-

cal properties of both fine and coarse aerosol modes, which embraces the future opportunities

of deploying polarization measurements through AERONET, and ameliorates the afore-

mentioned limitations in the Dubovik00&06 algorithm by incorporating both radiance and

polarization data. Polarization measurements contain valuable information on aerosol mi-

crophysical properties [Mishchenko and Travis, 1997], as the polarization of the scattered

light is highly sensitive to aerosol size and refractive index [Hansen and Travis, 1974;

Mishchenko et al., 2002]. We note, however, their conclusions were based on consideration

of spherical aerosol particles and were primarily from a theoretical point of view. In contrast,

the studies by Dubovik et al. [2006] and Deuzé et al. [1993, 2001] revealed serious limitation

of polarimetric retrieval of the properties for the coarse mode, especially non-spherical

aerosols. Moreover, Dubovik et al. [2006] have shown that while the polarimetic observation

of fine particles and large spheres are highly sensitive to the real part of refractive index,

even they have non-negligible sensitivity to particle shape. Therefore, adding polarization

measurements to the inversion has great potential to improve the accuracy of AERONET

microphysical retrievals, provided that the difficulty of representing aerosol particle shapes

is recognized or adequately addressed. In these regards, most of the past efforts seem to

suggest clear improvements in characterization of fine mode aerosol using polarimetric

observations. For example, Li et al. [2009], based upon the Dubovik00&06 algorithm,

demonstrated the possibility to reduce errors in the fine-mode size distribution, real part of

the refractive index, and particle shape parameters.
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1.2 Research Goals and Thesis Outline

As discussed above, this dissertation seeks to contribute an improved research algorithm

that retrieves aerosol microphysical properties from AERONET measurements of light

radiance and polarization, with emphasis on elucidating the potential value of polarization

measurements. It does so by pursuing the following three objectives:

1. Develop ground-based inversion algorithms for the retrieval of aerosol refractive

indices and particle size distribution from a combined use of direct and diffuse solar

radiation measurements from AERONET.

Retrieving aerosol information from remote sensing observation involves two type of

development, i.e., the forward modeling and inverse modeling. In Chapter 2, I present

a unified radiative transfer model—UNL-VRTM—that we have developed specifically

for inversion of aerosol properties from remote sensing measurements [Wang et al.,

2014]. The key feature of UNL-VRTM is that it not only simulates the polarimetric

radiation in the atmosphere but also, more importantly, can compute the analytical

derivatives of these radiation fields with respect to aerosol microphysical parameters.

In the subsequent chapter, I describe an inversion algorithm that is developed by

integrating the UNL-VRTM with statistical optimization approach to retrieve 22

aerosol microphysical parameters from the AERONET measured multi-spectral and

multi-angular light radiance and polarization.

2. Conduct a sensitivity study and error budgeting exercise to characterize retrieval

accuracy and error sources.

In order to explore the potential of the AERONET polarization measurements for

improving aerosol microphysical retrieval, our inversion testbed is used to examine the

information content of these measurements with and without radiation in the Chapter 4.
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The analysis focuses on how the added polarization measurements impact the retrieval

accuracy of aerosol particle size distribution, spectral refractive index, and single

scattering albedo. We also investigate how the added polarization measurements can

reduce the retrieval error for these properties.

3. Perform ground-based retrievals using available AERONET polarimetric measure-

ments.

In Chapter 5, I applied our new research algorithm to a suite of photo-polarimetric

measurements taken from the new-generation SunPhotometer at the Beijing_RADI

AERONET station. In order to demonstrate the value of adding polarization measure-

ments, we performed aerosol retrievals from radiance measurements only, in addition

to the retrievals using both radiance and polarization measurements.
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CHAPTER 2

MODEL DEVELOPMENT

2.1 Introduction

Retrieving aerosol information from remote sensing observation involves two types of

development, i.e., the forward modeling and the inverse modeling. Mathematically, the

forward modeling constructs a complete physical system to predict the outcome of mea-

surements. The inverse modeling uses the actual measurements to infer the values of the

parameters that characterize the system. The focus of this chapter is the development of a

forward model that can accurately simulate the multi-spectral and multi-angular polarimetric

quantities measured by the AERONET SunPhotometer. In the following text of this section,

I present the general physics of light propagation within the atmosphere. Then I describe

the forward model (UNL-VRTM) in section 2.2. Finally, I show the benchmark simulations

and verifications of the forward model in section 2.3.

The radiation fields—radiance and the state of polarization—measured by the AERONET

SunPhotometer are the outcome of solar radiation interacting with various physical processes

including the absorption and scattering by atmospheric molecules, aerosols and clouds, as

well the reflection and absorption by underlying surface. The radiance and polarization of

light at any wavelength can be represented by a Stokes column vector I having four elements

[Hansen and Travis, 1974]:

I = [I,Q,U ,V ]T , (2.1)
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where I is the total intensity (or radiance), Q and U describe the state of linear polarization,

V describes the state of circular polarization, and T indicates a transposed matrix. It should

be noted that all radiation fields and optical parameters used in this paper are functions of

the light wavelength λ . For simplicity, however, we omit λ in all formulas. The degree of

linear polarization (DOLP) is defined by

DOLP =

√
Q2 +U2

I
. (2.2)

In the solar principal plane, U is negligibly small for a homogeneous atmosphere and

the above formula becomes DOLP = −Q/I. Its deviation from zero is an indicator of a

lack of homogeneity or instrumental issues. Let I0 = [I0,0,0,0]T denote the Stokes vector

for incident Solar radiation at the top of the atmosphere (TOA) from the direction (θ0,

φ0), where θ0 and φ0 are the incident solar zenith and azimuth angles, respectively. For a

plane-parallel atmosphere bounded below by a reflective surface, the vector radiative transfer

equation in the medium for the specific intensity column vector I of light propagating in the

viewing direction (θ , φ ) can be written [Hovenier et al., 2004; Mishchenko et al., 2002]:

µ
∂ I(τ , µ ,φ )

∂τ
= I(τ , µ ,φ )−J(τ , µ ,φ ; µ0,φ0) (2.3)

J(τ , µ ,φ ; µ0,φ0) =
ω

4π

∫ 1

−1

∫ 2π

0
P(τ , µ , µ0,φ −φ0)I(τ , µ0,φ0)dφ0dµ0

+
ω

4π
P(τ , µ , µ0,φ −φ0)I0 exp(−τ/µ0)

(2.4)

Here, τ is the extinction optical depth measured from TOA, µ and µ0 are cosines of θ and

θ0, respectively, ω is the SSA and P is the phase matrix. The first term in equation (2.4)

represents multiple scattering contributions, while the second indicates scattered light from

the direct solar beam.

Parameters required to solve the above radiative transfer equation are τ , ω , and P(Θ)
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for the atmosphere, and the reflectance matrix Rs(τ , µ ,φ ; µ0,φ0) of the underlying surface.

Considering a cloud-free atmosphere, the solar radiation is attenuated by molecular scat-

tering, gaseous absorption, and aerosol scattering and absorption. For a given layer, we

have

τ = τA + τR + τG (2.5)

ω =
τAωA + τR

τ
(2.6)

P(Θ) = PA(Θ)
τAωA

τAωA + τR
+PR(Θ)

τR

τAωA + τR
(2.7)

where τA, τR, and τG are optical depth, respectively, by aerosol extinction, Rayleigh scat-

tering of air density fluctuations, and gaseous absorption. ωA is the SSA of aerosol, and

PA(Θ) and PR(Θ) are, respectively, the aerosol and Rayleigh phase matrices as functions

of the scattering angle Θ. Therefore, the forward modeling development thus requires the

computation of single scattering properties for aerosols and air density fluctuations, rigorous

treatment for absorption of trace gases, accurate representation of reflectance/polarization

by surface, an the realistic simulation of polarimetric radiative transfer.

2.2 The UNL-VRTM

We have developed the UNified Linearized Vector Radiative Transfer Model, or UNL-VRTM,

specifically for simulation, analysis, and inversion of the photo-polarimetric measurements.

As shown in Figure 2.1, the UNL-VRTM comprises 6 modules; they are

1. A module computing Rayleigh scattering (section 2.2.1);

2. A module that deal with gaseous absorption (section 2.2.1);

3. A linearized Mie scattering code (section 2.2.2);
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Figure 2.1: Flowchart of the UNL-VRTM components. See text for detail.

4. A linearized T-matrix electromagnetic scattering code (section 2.2.2);

5. A surface model computing various bidirectional reflectance/polarization functions

(BRDF/BPDF) (section 2.2.3);

6. A vector linearized radiative transfer model—VLIDORT (section 2.2.4).

These modules are integrated for the forward calculation of aerosol single scattering, gas

absorption, and vector radiative transfer hereafter, and thus they together constitute the

UNified Linearized Radiative Transfer Model, UNL-VRTM.

Inputs for the UNL-VRTM are profiles of atmospheric properties and constituents

(temperature, pressure, aerosol mass concentration or layer AOD, water vapor amount and

other trace gas volume mixing ratio profiles [McClatchey et al., 1972]), the surface properties,

as well as the aerosol parameters (such as PSD parameters and refractive index) themselves.

Bearing in mind the lack of sensitivity in passive remote sensing for the retrieval of vertical

profiles of aerosol properties, the UNL-VRTM as it stands now is only designed to deliver

radiative calculations for a maximum of two sets of aerosol single scattering properties (e.g.,

aerosol PSD, refractive index, and particle shape), typically with one fine-mode and one

coarse-mode aerosol. Other inputs for model include spectral and geometrical definition

that characterizes specification of an observing sensor.
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Outputs of the model include the Stokes vector (I) at user-defined spectral wavelengths

and desired atmospheric levels for both upwelling and downwelling radiation, from which

the light radiance and degree of polarization can be derived. Outputs also include analytical

Jacobians of I with respect to all aerosol particle parameters (PSD parameters, refractive

index, vertical profile), Rayleigh scattering optical depth, optical depth of all trace gases, and

parameters describing surface optical property. A detail description of the UNL-VRTM’s

Jacobian capability is presented in section 2.2.5.

Although the UNL-VRTM is used to simulate the AERONET measurements in this work,

the module-based structure of UNL-VRTM allows its application not limit to the AERONET

inversion. It can be easily used to simulate observations from other remote sensing platforms,

like satellite sensors. For example, we have employed it to explore the aerosol information

content of observations from the future TEMPO/GEO-CAPE geostationary satellite sensors

[Wang et al., 2014], to investigate the potential application of hyper-spectral radiances at

O2A and O2B bands for the retrieval of aerosol vertical profile [Wang et al., 2014; Ding

et al., 2014], to retrieve aerosol microphysical properties from GeoTASO measured UV-to-

visible continuous radiance spectra [Hou et al., 2014], and to perform AOD retrieval from

GOSAT/TANSO-CAI’s UV radiance [Han et al., 2014].

Recently, we have made the UNL-VRTM publicly accessible. We published the source

code on http://meteo.unl.edu/~xxu/unlvrtm.php. A detail description and a dedi-

cated User’s Guide for the model is also available on the webpage.

2.2.1 Molecular scattering and absorption

The Rayleigh scattering optical depth at certain wavelength in any atmospheric layer (τR) is

computed by

τR = NairσR (2.8)

http://meteo.unl.edu/~xxu/unlvrtm.php
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where Nair is air molecular number density of that layer (molec cm−2), and σR is the

Rayleigh scattering cross-section (cm2 molec−1) computed following Bodhaine et al. [1999].

The Rayleigh phase matrix, PR(Θ), depends upon molecular anisotropy through the depo-

larization factor, also computed from the same source. Bodhaine et al. [1999] computed

the wavelength-dependent Rayleigh scattering cross-section as a function of mixing ratios

for N2, O2, H2O, and CO2. The phase matrix for Rayleigh scattering follows Hansen and

Travis [1974]; we use the set of spherical-function expansion coefficients for the phase

matrix as supplied for VLIDORT [Spurr, 2006].

Calculation of the absorption optical depth (τG) at any atmospheric layer for K different

trace gases follows

τG =
K

∑
i=1

Ngas,iσA,i(T ,P) (2.9)

where Ngas,i is the number density of ith gas in that layer, and σA,i is the corresponding

absorption cross-section, a function of temperature and pressure. Our model accounts

for absorptions by a total number of 22 trace gases: H2O, CO2, O3, N2O, CO, CH4, O2,

NO, SO2, NO2, NH3, HNO3, OH, HF, KCl, HBr, HI, ClO, OCS, H2CO, HOCl, and

N2. The determination of σA utilizes a UV-to-visible cross-section library and the line-

spectroscopic absorption parameters archived in the HITRAN database [Orphal and Chance,

2003; Rothman et al., 2009]. The cross-section library compiles the extinction cross-section

for O3, NO2, SO2, and O2−O2 in the UV and/or visible spectral regions. Meanwhile,

line-spectroscopic absorption database are used to simulate the pressure- and temperature-

dependent extinction cross-section with line-by-line (LBL) approach [Liou, 2002; Rothman

et al., 2009] by accumulating each individual absorption line. Doppler broadening is

calculated from the molecular mass and temperature, and Doppler and Lorentz broadening

are included in the Voigt calculation.

Particular to work, we only consider the most influential trace species for the AERONET
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spectral bands: H2O (vapor), O3, and NO2, O2 (O2-O2 collision) and CO2. In our algorithm

(section 3), the columnar amounts of O3 and NO2 are dynamically adjusted with retrievals

from the Ozone Monitoring Instrument (OMI) [Levelt et al., 2006] on board the AURA

satellite. We apply the columnar water vapor amount retrieved from the 940-nm radiances

measured by the AERONET SunPhotometer [Halthore et al., 1997].

2.2.2 Aerosol single scattering

Aerosol single scattering properties necessary to the radiative transfer calculation include

aerosol optical depth (τA) (Qext), SSA (ωA), and scattering phase matrix (PA(Θ)). The

calculation of these parameters is made with a Linearized Mie (LMIE) scattering code for

spherical particles and a Linearized T-matrix (LTMATRIX) scattering code for non-spherical

convex and axially symmetric particles [Spurr et al., 2012]. The LMIE code originates from

the Mie code of de Rooij and Stap [1984], and the LTMATRIX code originates from the

T-Matrix code developed by Mishchenko et al. [1996]; Mishchenko and Travis [1998]; both

include linearization capability developed by Spurr et al. [2012].

Common inputs for both codes are the complex refractive index (mr + imi), and the

particle size distribution (PSD) parameters for polydisperse scattering. The codes have

several options to specify the PSD function: two-parameter gamma, two-parameter lognor-

mal, three-parameter modified gamma, and four-parameter bi-lognormal. In addition, the

linearized T-matrix code offers options to characterize the shape of non-spherical aerosols

(spheroids, cylinders, or Chebyshev particles) [Spurr et al., 2012]. For non-spherical parti-

cles, the specified size distribution is interpreted as the equivalent surface-area sphere in the

linearized T-matrix calculation, regardless of the shape.

For AERONET inversion algorithm, we assume that the aerosol volume distribution

follows a bi-modal lognormal function [in agreement wit Schuster et al., 2006; Waquet et al.,
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2009]:
dV

dlnr
=

2

∑
i=1

V i
0√

2π lnσ i
g

exp

[
−(lnr− lnri

v)
2

2ln2
σ i

g

]
(2.10)

where V0, rv, and σg are the total volume concentration, volume median radius, and ge-

ometric standard deviation, respectively. The superscript i indicates the size mode, and

will be replaced by ‘f’ for fine mode and ‘c’ for coarse mode. We assume that particle

size ranges from 0.01 to 10 µm for the fine mode and from 0.05 to 20 µm for the coarse

mode, both covering > 99.9% of the total volume of an idealistic size range (0, +∞). An

advantage of the lognormal distribution is that standard deviations for the number, area,

and volume PSD functions are identical, and therefore allowing that the median radii for

these PSD functions be converted from one to another [Seinfeld and Pandis, 2006]. ]. For

instance, the volume median radius rv relates to the number geometric median radius rg by

rv = rg exp (3ln2
σg).The reff and veff are related to the geometric parameters through:

reff = rv exp
(
−1

2
ln2

σg

)
, (2.11)

veff = exp
(
ln2

σg
)
−1. (2.12)

The LMIE/LTMATRIX code computes the aerosol extinction efficiency factor Qext,

single scattering albedo ωA, and phase matrix PA(Θ), as well as Jacobians of these quantities

with respect to input parameters including reff, veff, mr, and mi. The phase matrix and its

Jacobians are expressed in terms of the coefficients BA(Θ) for each moment l in terms of

the generalized spherical function expansions for each non-zero phase matrix element. Let

ΛΛΛ denotes the vector of aerosol microphysical parameters, ΛΛΛ = [V0,reff,veff,mr,mi]
T , and

M the vector of aerosol optical parameters, M = [τA,ωA,BA(Θ)]T , where τA is related to

Qext by τA = 3V0Qext
4reff

. The LMIE/LTMATRIX code acts as an operator that maps vector ΛΛΛ

to M. The Jacobian matrix of M with respect to ΛΛΛ, or ∂M
∂ΛΛΛ , is calculated by means of the
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linearization feature of the code.

2.2.3 Surface representations

VLIDORT has a supplementary module for specification of the surface BRDF as a linear

combination of (up to) three semi-empirical kernel functions; for details, see Spurr [2004].

This supplementary module can also provide partial derivatives of the BRDF with respect to

the kernel weighting factors or with respect to kernel parameters such as the wind speed

for glitter reflectance. These kernel functions include Lambertian, Ross-Thick, and Li-

Sparse functions [Wanner et al., 1995; Lucht et al., 2000], a Bi-directional Polarization

Distribution Function (BPDF) [Maignan et al., 2009], and an ocean surface model based

on the Cox-Munk model [Cox and Munk, 1954]. In addition, VLIDORT has an option for

using a surface-leaving radiation field, either as a fluorescence term or as a water-leaving

term expressed as a function of chlorophyll absorption.

Although surface reflectance has in general a low influence on AERONET down-welling

sky radiances and polarization, a state-of-the-art representation of the surface reflectivity

potentially reduces model uncertainties, especially for measurements taken at low elevation

angles that could be affected by surface diffusion. Here we use time-matched MODIS BRDF

products to reconstruct the bidirectional reflectance over AERONET stations. The MODIS

BRDF products, reported every 16 days at a 1-km resolution[Lucht et al., 2000], supplie

three weighting parameters ( fiso, fvol, and fgeo) for the first 7 MODIS bands, respectively,

corresponding to three kernel types: isotropic, Ross-Thick (Kvol), and Li-Sparse (Kgeo):

ρR(µ ,φ ; µ0,φ0) = fiso + fvolKvol(µ ,φ ; µ0,φ0)+ fgeoKgeo(µ ,φ ; µ0,φ0) (2.13)

Expanded expressions for Kvol and Kgeo appear in Wanner et al. [1995]; Lucht et al. [2000].

Studies have shown that the BPDF for land surfaces is generally rather small and is
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“spectrally neutral” [Nadal and Breon, 1999; Maignan et al., 2004, 2009; Waquet et al.,

2007; Litvinov et al., 2011]. Most empirical BPDF models are based on Fresnel coefficients

of light reflectance from the surface. Here we have incorporated the one-parameter model

developed by Maignan et al. [2009], which was derived from analyses of several years of

POLDER/PARASOL measurements. This model describes the polarized reflectance at any

viewing geometry (µ , φ ) from the given incident geometry (µ0, φ0) as:

ρρρP(µ ,φ ; µ0,φ0) =
C0 exp(− tanθh)exp(−NDVI)

µ0 + µ
FP(θh,nv) (2.14)

where C0 is a constant parameter chosen for a certain surface type, θh is half of the phase

angle of reflectance, nv is the refractive index of vegetation (1.5 is used), and FP is the

Fresnel reflection matrix. We chose a spectrally-independent value for C0 based on the

recommendations by Maignan et al. [2009] for relevant surface types.

The combination of the BRDF and BPDF for land surface follows the discussion by

Dubovik et al. [2011]. The surface reflectance matrix Rs(µ ,φ ; µ0,φ0) is represented as a

sum of diffuse unpolarized reflectance and specular reflectance; the former is modeled using

the MODIS BRDF in equation (2.13), and the latter using the BPDF formula in equation

(2.14).

2.2.4 Radiative transfer

The radiative transfer equation (2.3) is solved with the Vector Linearized Discrete Ordinate

Radiative Transfer (VLIDORT) model, which is a core part of the UNL-VRTM. VLIDORT,

developed by Spurr [2006], is a linearized pseudo-spherical vector discrete ordinate radia-

tive transfer model for multiple scattering of diffuse radiation in a stratified multi-layer

atmosphere. It computes four elements of the Stokes vector I for downwelling and upwelling

radiation at any desired atmospheric level. The VLIDORT includes the pseudo-spherical
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approximation to calculate solar beam attenuation in a curved medium. It also uses the

delta-M approximation for dealing with sharply peaked forward scattering. Specifically for

the AERONET inversion, we consider 16 discrete ordinate streams in the radiative transfer

calculation and retain 180 terms in the spherical-function expansion of the scattering matrix

to ensure accurate calculation of diffuse radiation.

Along with the Stokes vector I, VLIDORT also computes the Jacobian matrix of I with

respect to aerosol optical vector M, ∂ I
∂M . Therefore, the combination of the VLIDORT and

the LMIE/LTMATRIX codes allows for a direct calculation of the Jacobian matrix of the

Stokes vector with respect to aerosol microphysics ΛΛΛ by

∂ I
∂ΛΛΛ

=
∂ I

∂M
· ∂M

∂ΛΛΛ
(2.15)

Essentially, the above equation can yield the derivatives of the radiance I and DOLP with

respect to any aerosol microphysical parameter, i.e., ∂ I
∂ΛΛΛ and ∂DOLP

∂ΛΛΛ . While obtaining ∂ I
∂ΛΛΛ is

straightforward, ∂DOLP
∂ΛΛΛ can be derived from equation (2.2) following:

∂DOLP
∂ΛΛΛ

= −DOLP
I

∂ I
∂ΛΛΛ

+
Q ∂Q

∂ΛΛΛ +U ∂U
∂ΛΛΛ

I
√

Q2 +U2
(2.16)

2.2.5 Capability of calculating Jacobians

This section analytically derives the Jacobian of I with respect to various aerosol related

parameters, including τA, ωA, BA, refractive index, PSD parameters, and aerosol vertical

profile. Computation of the Stokes vector in VLIDORT requires input of an optical property

set [τ ,ω ,
〈
B j〉

j=0,J ] for each atmospheric layer, where <> j=0,J denotes the vector that

consists of elements having the similar expression as that inside <> but for j = 0,J. For

each atmospheric layer L, the optical property inputs are assumed constant and are given
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by equations (2.5)–(2.6), as well as equation (2.7) with P(Θ) replaced by B j. It should be

noted that all parameters in these equations are for each layer, but we drop L when writing

equations for convenience.

Since VLIDORT generates Jacobians with respect to layer-integrated single scattering

properties in each atmospheric layer as well as column-integrated single scattering property

as a whole, and LMIE and LTMATRIX offer the sensitivity of aerosol scattering properties

to microphysical aerosol physical parameters, an integrated use of VLIDORT and LTMA-

TRIX/LMIE can, in principle, provide the Jacobians of Stokes parameters with respect to

both aerosol single scattering properties as well as aerosol microphysical parameters (as

expressed by equations (2.15)–(2.16)). Practically, the VLIDORT calculation of Jacobians

of any Stokes parameter ξ with respect to any aerosol parameter x proceeds according to

x
∂ξ

∂x
= x

[
∂ξ

∂τ
,

∂ξ

∂ω
,
〈

∂ξ

∂B j

〉
j=1,J

][
∂τ

∂x
,
∂ω

∂x
,
〈

∂B j

∂x

〉
j=1,J

]T

=

[
τ

∂ξ

∂τ
,ω

∂ξ

∂ω
,
〈

B j ∂ξ

∂B j

〉
j=1,J

][
φx,ϕx,

〈
ΨΨΨ j

x
〉

j=1,J

]T
.

(2.17)

The first square bracket on the right-hand side of equation (2.17) contains quantities

computed internally by VLIDORT, while the second so-called “transformation vector” must

be supplied by users and is defined as:

φx =
x
τ

∂τ

∂x
; ϕx =

x
ω

∂ω

∂x
; ΨΨΨ j

x =
x

B j
∂B j

∂x
. (2.18)

As we are interested in aerosol parameters, this transformation vector can be further

expanded as [
φx,ϕx,

〈
ΨΨΨ j

x
〉

j=1,J

]T
= ΠΠΠ

[
φ
′
x,ϕ ′x,

〈
ΨΨΨ′ jx
〉

j=1,J

]T
, (2.19)
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Table 2.1: Elements of transformation vector for various aerosol single scattering parameters
(composite of fine and coarse mode).

x φx ϕx ΨΨΨ j
x

τA
τA
τ

τA
τ

(
ωA
ω
−1
)  ωAτA

ωτ

(
B j

A
B j −1

)
for j < 3

τR
ωτ

for j ≥ 3
ωA 0 τAωA

ττAωA+τR
Same as above

B j
A 0 0


ωAτAB j

A

ωAτAB j
A+τRB j

R
for m = j < 3

1 for m = j ≥ 3
0 for m 6= j

where

φ
′
x = x

∂τA
∂x

, ϕ
′
x = x

∂δA
∂x

, andΨΨΨ′ jx = x
∂B j

A
∂x

, (2.20)

and ΠΠΠ is a matrix expressed by

ΠΠΠ =


1
τ

000 000

−1
τ

1
δA+τR

000

000
〈

B j
A−B j

R
B j(δA+τR)

〉
j=1,J

〈
δA

B j(δA+τR)

〉
j=1,J

 . (2.21)

Here, δA is the scattering optical depth of aerosols. The detailed derivations of the matrix

ΠΠΠ are presented in Appendix A. Hence, the transformation vector for calculating Stokes

profile Jacobians with respect to τA, ωA, B j
A can be obtained by combining equations (2.19)

and (2.21), and the components of this vector are listed in Table 2.1.

In an atmosphere where both fine (superscript “f”) and coarse (superscript “c”) aerosol

particles co-exist, the ensemble aerosol optical properties may be derived by assuming

external mixing: 
τA = τ f

A + τc
A

δA = δ f
A + δ c

A

B j
A =

δ f
A+δ c

A

δ f
ABf, j

A +δ c
ABc, j

A

(2.22)
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Table 2.2: Elements of transformation vector for various microphysical parameters of fine
and coarse mode aerosolsa.

x φ ′xf ϕ ′xf ΨΨΨ′ jxf

τ f
A τ f

A δ f
A

δ f
A

τA
(Bf j

A−B j
A)

ωA 0 δ f
A

δ f
A

τA
(Bf j

A−B j
A)

V f
0

3V f
0 Qf

ext
4rf

eff

3V f
0 Qf

sca
4rf

eff

δ f
A

τA
(Bf j

A−B j
A)

mf
r,m

f
i τ f

A
xf

Qf
ext

∂Qf
ext

∂xf δ f
A

xf

Qf
sca

∂Qf
sca

∂xf

ϕ ′
xf

δ f
A
(Bf j

A−B j
A)+ xf ∂Bf j

A
∂xf

rf
g,σ f

g,ε f τ f
A(

xf

Qf
ext

∂Qf
ext

∂xf − xf

rf
eff

∂ rf
eff

∂xf ) δ f
A(

xf

Qf
sca

∂Qf
sca

∂xf − xf

rf
eff

∂ rf
eff

∂xf )
ϕ ′

xf

δ f
A
(Bf j

A−B j
A)+ xf ∂Bf j

A
∂xf

Hf Hf ∂τA
∂Hf φ ′xfω

f
A

δ f
A

τA
(Bf j

A−B j
A)

a Expressions are shown only for fine-mode parameters; expressions for coarse-mode
parameters are the same but with superscripts replaced by ’c’

We can generate the transformation vectors (as listed in Table 2.2) for any of the

following parameters: τ f
A, ω f

A, V f
0 , mf

r, mf
i , rf

g, σ f
g, ε f, Hf, and τc

A, ωc
A, V c

0 , mc
r , mc

i , rc
g, σ c

g , εc,

and Hc. Here, rg, σg, and H denote the median and standard deviation of the particle radius

(e.g., two parameters in the log-normal aerosol number distribution), and the scale height

of aerosol extinction, respectively. V0 is the aerosol volume concentration and ε the shape

factor of the non-spherical particle. Details of the algebra for deriving the transformation

vectors may be found in Appendix A. Note that the shape of the aerosol extinction vertical

profile in the testbed is assumed to be constant or exponentially decreasing with height or

quasi-Gaussian (Appendix A). The analytical formulas for φ ′x, ϕ ′x, and ΨΨΨ′ jx for coarse mode

aerosol parameters are the same as their counterparts for fine-mode aerosols; we need only

replace superscript “s” with “c” in Table 3 entries. Jacobians with respect to the fine mode

fraction, either in terms of AOD (fmfτ ) or in terms of the volume concentration (fmfv),

can be derived from the corresponding Jacobians with respect to modal AOD and volume,
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respectively:

fmfτ

∂ξ

∂ fmfτ

= τ
f
A

∂ξ

∂τ f
A
− fmfτ

1− fmfτ

τ
c
A

∂ξ

∂τc
A

(2.23)

fmfv
∂ξ

∂ fmfv
= V f

0
∂ξ

∂V0
f −

fmfv

1− fmfv
V c

0
∂ξ

∂V0
c (2.24)

Details of these necessary VLIDORT inputs are presented in Appendix A, and a com-

prehensive verification of these Jacobian calculation are presented in following section

2.3.

2.3 Model Benchmarking and Verifications

Figure 2.2a shows the downward solar spectral irradiance at the top-of-atmosphere and at

the surface for a solar zenith angle of 30◦. Spectral regions dominated by gas absorption

can be clearly identified, including the O3 Hartley-Huggins bands in the UV, the O2B band

(0.69 µm) and O2A band (0.76 µm), as well as a number of water vapor bands. The

spectroscopic calculations shown in Figure 2.2 were performed at a resolution of 0.01 nm.

In general this resolution is high enough to pick up fine structure in gas absorptions. In

the UV below 300 nm, and in parts of the O2A and O2B bands, whole-atmosphere gas

absorption optical depths can reach 50 or more, and the downward irradiance is nearly zero

at the ground (Figure 2.2b). The inset in Figure 2.2b shows a close-up view of the fine

structure in absorption optical depth for the O2A band, with dual peaks centered at 0.761

µm and 0.764 µm, and a deep, narrow valley around 0.762 µm. Similarly, the continuum

of water vapor absorption from the near-infrared to about 4 µm is also well simulated

(Figure 2.2c). Also of note is the non-negligible absorption of SO2 and NO2 in UV and blue

wavelength regions respectively (Figure 2.2d). In urban regions, high SO2 and NO2 can

together contribute optical depths of around 0.03–0.07 (Figure 2.2d). Hence, in order to take
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error covariance matrix for the retrieved parameters is

Ê ¼ ðE#1
a þKT

i E
#1
T KiÞ#1 ð13Þ

Errors in derived variables (e.g., τsA) can be deter-
mined from the errors of the retrieved parameters and
the Jacobians of these derived variables with respect to
the retrieval elements. For the purpose of quantifying
information contained in the observation, only the error
covariance and Jacobian matrix, and not the retrieval,

are important. To obtain the link between the retrieval
to the true state, we differentiate Eq. (12) and assume a
linear forward model in the vicinity of the true state:

A¼
∂xiþ1

∂x
¼ ðE#1

a þKT
i E

#1
T KiÞ#1KT

i E
#1
T Ki ð14Þ

A is called the averaging kernel matrix, which quantifies
the ability of the retrieval to infer a posteriori state
vector (x̂) given the relationship between y and x at
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Fig. 2. (a) Downward solar spectral irradiance at the TOA and the surface for solar zenith angle of 301. (b) Total-atmosphere gas absorption optical depth in
the range 0.2–0.8 μm. (c) Same as (b) but for 0.8–4 μm. (d) Optical depth of SO2 and NO2 in polluted cases. Also shown in (b) and (c) are the optical depth
computed from Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model [45]. The mid-latitude summer atmospheric profile is assumed
(McClatchey et al. [62]).

J. Wang et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 146 (2014) 510–528516

Figure 2.2: Some benchmark simulations by the UNL-VRTM: (a) Downward solar spectral
irradiance at the TOA and the surface for solar zenith angle of 30◦. (b) Total-atmosphere
gas absorption optical depth in the range 0.2–0.8 µm. (c) Same as (b) but for 0.8–4 µm. (d)
Optical depth of SO2 and NO2 in polluted cases. Also shown in (b) and (c) are the optical
depth computed from Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART)
model [Ricchiazzi et al., 1998]. The mid-latitude summer atmospheric profile is assumed
[McClatchey et al., 1972]. (Figure adopted from Wang et al. [2014].)
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the linearization point (i.e., K) for specified observation
noise and a priori characterization. Thus, a perfect
retrieval results in the identity matrix for A, while a null
matrix for A indicates that no information can be gained
from the observation. The trace of A is the Degree of
Freedom for Signal, DFS¼ TraceðAÞ, which is a measure
of the number of independent pieces of information that
can be gleaned from the retrieval. Note, in reality Ea and
Ki can be connected. For example, in the extreme case
when Ea is approaching infinite, it also means that Ki is
approaching zero, i.e., the instrument has no informa-
tion for the retrieval parameter; hence, in this case, DFS
is approaching zero.

3. Forward model examples and benchmarking

Fig. 2a shows the downward solar spectral irradiance at
the top-of-atmosphere and at the surface for a solar zenith

angle of 301. Spectral regions dominated by gas absorption
can be clearly identified, including the O3 Hartley-Huggins
bands in the UV, the O2 B band (0.69 μm) and O2 A band
(0.76 μm), as well as a number of water vapor bands. The
spectroscopic calculations shown in Fig. 2 were performed
at a resolution of 0.01 nm. In general this resolution is high
enough to pick up fine structure in gas absorptions. In the
UV below 300 nm, and in parts of the O2 A and O2 B bands,
whole-atmosphere gas absorption optical depths can
reach 50 or more, and the downward irradiance is nearly
zero at the ground (Fig. 2b). The inset in Fig. 2b shows a
close-up view of the fine structure in absorption optical
depth for the O2 A band, with dual peaks centered at
0.761 μm and 0.764 μm, and a deep, narrow valley around
0.762 μm. Similarly, the continuum of water vapor absorp-
tion from the near-infrared to $4 μm is also well simu-
lated (Fig. 2c). Also of note is the non-negligible absorption
of SO2 and NO2 in UV and blue wavelength regions
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Fig. 3. Degree of linear polarization (%Q/I) of downward radiation for a pure Rayleigh atmosphere: (a) computed by UNL-VRTM for the case analyzed in
Figure 5.7 of Coulson [46] and shown here as (b). (c)–(e) shows the comparisons of I, Q, and U computed by Coulson et al. [47] and those from UNL-VRTM.
In (a) and (b), As represents the surface albedo value. In (c) and (d), the calculation is for τ¼1.0, surface albedo ρ¼0.25, cos θ0¼0.8, and for 8 different
viewing angles values. See details in the text.

J. Wang et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 146 (2014) 510–528 517

Figure 2.3: Validating UNL-VRTM for calculating the degree of linear polarization (−Q/I)
of downward radiation for a pure Rayleigh atmosphere: (a) computed by UNL-VRTM for
the case analyzed in Figure 5.7 of Coulson [1988] and shown here as (b). (c)–(e) shows the
comparisons of I, Q, and U computed by Coulson et al. [1960] and those from UNL-VRTM.
In (a) and (b), As represents the surface albedo value. In (c) and (d), the calculation is for
τ = 1.0, surface albedo is 0.25, cosθ0 = 0.8, and for 8 different viewing angles. (Figure
adopted from Wang et al. [2014].)

advantage of low surface reflectance in the UV and the use of deep-blue wavelengths for

the retrieval of AOD in urban regions, it is critical to treat absorption by SO2 and NO2. In

contrast, calculations performed at moderate spectral resolution (such as those from Santa

Barbara Discrete-Ordinate Atmospheric Radiative Transfer, or SBDART [Ricchiazzi et al.,

1998], shown as the blue lines in Figure 2.2b and c) do not resolve fine-structure details,

sometimes missing the absorption lines for SO2 or NO2, and in general producing significant

underestimation of optical depths in the O2A band.
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respectively (Fig. 2d). In urban regions, high SO2 and NO2

can together contribute optical depths of around 0.03–0.07
(Fig. 2d). Hence, in order to take advantage of low surface
reflectance in the UV and the use of deep-blue wave-
lengths for the retrieval of AOD in urban regions, it is
critical to treat absorption by SO2 and NO2. In contrast,
calculations performed at moderate spectral resolution
(such as those from Santa Barbara Discrete-Ordinate
Atmospheric Radiative Transfer, or SBDART [45], shown
as the blue lines in Figs. 2b and c) do not resolve fine-
structure details, sometimes missing the absorption lines
for SO2 or NO2, and in general producing significant
underestimation of optical depths in the O2 A band.

Fig. 3 shows the calculation of the degree of linear
polarization (DOLP) of downward radiation in a pure
Rayleigh scattering atmosphere. The solid blue line in
Fig. 3a (dotted line in Fig. 3b) reproduces the theoretical
results shown in Figure 5.7 of Coulson's 1988 book [46],
which was used to interpret the DOLP measured at Mauna
Loa Observatory on February 19, 1977. Furthermore, Fig. 3a
shows that the anisotropy in Rayleigh scattering reduces
the peak DOLP by 5% (e.g., the difference between the
green and red lines) at 0.7 mm. Surface reflection and its
concomitant increase of atmosphere scattering will

decrease the DOLP of downward radiation. An increase of
surface reflectance from 0 to 0.25 decreases the peak DOLP
by 10%.

Quantitatively, the Stokes-vector I, Q, and U compo-
nents computed with UNL-VRTM differ from their counter-
parts found in the tables by Coulson et al. [47] by average
(relative) deviations of 1.9!10"4 (0.05%), 2!10"5 (0.14%),
and 4!10"5 (0.03%), respectively (Figs. 3c–e). These
differences are similar to the values 2.1!10–4, 9!10–5,
and 7!10–5 identified by Evans and Stephens [48]. More
recently, Rayleigh-atmosphere benchmark results have
been re-computed by Natraj and Hovenier [49] to a much
higher degree of accuracy; this work also included bench-
marking of the VLIDORT model.

Fig. 4 shows benchmark calculations of four Stokes
parameters for radiative transfer in an aerosol-only atmo-
sphere. Garcia and Siewert [50] documented their results for
unpolarized incident radiation at 951 nm and solar zenith
angle cosine 0.2, for an atmosphere with a Lambertian
reflectance of 0.1. The aerosols in that atmosphere were
assumed to satisfy a gamma-function size distribution with
ref f ¼ 0:2 μm and vef f ¼ 0:07 μm, and a refractive index
yielding an aerosol single scattering albedo of 0.99. Com-
pared to their results, the Stokes four parameters computed

U
N

L 
- 

V
R

TM
U

N
L 

- 
V

R
TM

Garcia and Siewert, 1989

Garcia and Siewert, 1989

-1 -2 -2

-5

Relative Difference 
Average Max 

I 0.55% 0.74% 
Q 0.51% 1.90% 
U 0.43% 0.65% 
V 0.46% 3.78% 
DOLP 0.49% 0.65% 

Fig. 4. Counterparts in Tables 3–10 of Garcia and Siewert [50] for upwelling radiation on the top of the same atmospheric conditions of aerosol scattering.
No gas absorption and Rayleigh scattering are considered. Note that compared here are I and Q values reported in Ref. [50] for 9 view angles (with cosine
values from 0.1 to 0.9 at equal spacing of 0.1) and 3 relative azimuth angles (0, π/2, and π), which yields a total of 27 data points. For U and V, their values are
reported for the same 9 viewing angles but for one relative azimuth angle (π/2) only. See details in the text. The calculation is performed at 951 nm for
AOD¼1.0, and aerosol size distribution parameters reff¼0.2, and veff¼0.07, refractive index¼1.44, and single scattering albedo 0.99 [50].

J. Wang et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 146 (2014) 510–528518

Figure 2.4: Validation of UNL-VRTM for calculating the degree of linear polarization
(−Q/I) of upwelling radiation for a Mie scattering atmosphere. Counterparts in Tables 3–10
of Garcia and Siewert [1989] for upwelling radiation on the top of the same atmospheric
conditions of aerosol scattering. No gas absorption and Rayleigh scattering are considered.
Note that compared here are I and Q values reported in Garcia and Siewert [1989] for 9 view
angles (with cosine values from 0.1 to 0.9 at equal spacing of 0.1) and 3 relative azimuth
angles (0, π/2, and π), which yields a total of 27 data points. For U and V , their values are
reported for the same 9 viewing angles but for one relative azimuth angle (π/2) only. The
calculation is performed at wavelength of 951 nm and τ of 1.0, and aerosol size distribution
parameters reff = 0.2, veff = 0.07, refractive index mr = 1.44, and SSA of 0.99. (Figure
adopted from Wang et al. [2014].)

Figure 2.3 shows the calculation of the degree of linear polarization (DOLP) of downward

radiation in a pure Rayleigh scattering atmosphere. The solid blue line in Figure 2.3a (dotted

line in Figure 2.3b) reproduces the theoretical results shown in Figure 5.7 of Coulson [1988],

which was used to interpret the DOLP measured at Mauna Loa Observatory on February 19,

1977. Furthermore, Figure 2.3a shows that the anisotropy in Rayleigh scattering reduces the

peak DOLP by 5% (e.g., the difference between the green and red lines) at 0.7 µm. Surface

reflection and its concomitant increase of atmosphere scattering will decrease the DOLP of
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downward radiation. An increase of surface reflectance from 0 to 0.25 decreases the peak

DOLP by 10%.

Quantitatively, the Stokes-vector I, Q, and U components computed with UNL-VRTM

differ from their counterparts found in the tables by Coulson et al. [1960] by average (relative)

deviations of 1.9× 10−4 (0.05%), 2× 10−5 (0.14%), and 4× 10−5 (0.03%), respectively

(Figure 2.3c–e). These differences are similar to the values 2.1× 10−4, 9× 10−5, and

4× 7−5 identified by Evans and Stephens [1991]. More recently, Rayleigh-atmosphere

benchmark results have been re-computed by Vijay and Hovenier [2012] to a much higher

degree of accuracy; this work also included benchmarking of the VLIDORT model.

Figure 2.4 shows benchmark calculations of four Stokes parameters for radiative transfer

in an aerosol-only atmosphere. Garcia and Siewert [1989] documented their results for

unpolarized incident radiation at 951 nm and cosθ0 of 0.2, for an atmosphere with a

Lambertian reflectance of 0.1. The aerosols in that atmosphere were assumed to satisfy a

gamma-function size distribution with reff of 0.2 µm and veff of 0.07, and a refractive index

yielding an aerosol single scattering albedo of 0.99. Compared to their results, the Stokes

parameters computed by UNL-VRTM show relative differences of less than 0.6%, with

maximum relative differences (at certain viewing geometries) of up to 2% for Q and 3.8%

for V . The DOLP computed from the UNL-VRTM (with 15 streams for the hemisphere)

and documented by Garcia and Siewert [1989] (with 3 streams) differ on average by 0.5%,

with a maximum relative difference of 0.65%.

The simultaneous calculation of analytic Jacobians of the four Stokes parameters with

respect to the aerosol optical depth, size parameters, refractive indices, and aerosol-loading

peak height for both fine and coarse model aerosols may be validated against Jacobians

calculated using the finite difference method (Figures 2.5 and 2.6). Overall, results from

the two methods are highly correlated as seen in the scatter plots shown in these figures.

Relative differences in all comparisons are less than 0.5%, and in many cases the differences
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are less than 0.05%.
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CHAPTER 3

INVERSION THEORIES AND ALGORITHM

3.1 Introduction

The inverse problem of this work seeks the solution of a number of microphysical parameters

from observations of different categories. We thus need to develop an retrieval algorithm

that uses statistically optimized multi-variable fitting, in which the solution sought not

only relies on the presumed classes of potential solutions, but also is in a continuous space

of solutions under statistically formulated criteria optimizing the error distribution of the

retrieval parameters. It should be noted that the development of this inversion algorithm

was built upon our experience with optimization of aerosol emissions using the adjoint

chemistry transport model (CTM) (See Appendix B and [Wang et al., 2012; Xu et al., 2013]).

In essence, the optimization method is consistent with the adjoint modeling [e.g., Henze

et al., 2007] that constrains aerosol emissions from measurements through inverting a CTM,

although different physical processes are involved for inversion of AERONET observation.

Both inversions seek the optimal solutions for a state vector that minimizes the differences

between the model simulation and observation.

In this chapter, I first present the general theory of inverse problem (section 3.2), covering

the Bayesian-based inversion (section 3.2.1) and information content analysis (3.2.2). After

that in section 3.3, I describe the key aspects of designed inversion algorithm: the definition

of the state vector (section 3.3.1) and considered constraining its a priori and smoothness



35

feature (section 3.3.2), how the state vector is sought statistically (section 3.3.3), how the

retrieval error is characterized (section 3.3.4), and quality control of measurements (section

3.3.5).

3.2 Inversion Theories

3.2.1 Maximum a posteriori (MAP) solution of an inverse problem

Let x denote a state vector that contains n parameters to be retrieved (such as PSD param-

eters and complex indices of refraction), and y an observation vector with m elements of

measurements (such as multi-band radiances from different viewing angles). Furthermore,

let F indicate a forward model (such as the radiative transfer model) that describes the

physics of how y and x are related. Then, we have

y = F(x,b)+εεεy (3.1)

where the vector b consists of forward model parameters (such as the surface reflectance)

that are not included in x but quantitatively influence the estimates to our known, and εεεy

term is the error that results from inaccurate modeling and measurement processes. In this

study, we use the best-estimated b̂ in the forward model and consider its contributions to the

total measurement accuracy. Linearizing the forward model at b = b̂:

y = F(x, b̂)+ K̂b(b− b̂)+εεεy (3.2)

where K̂b is the weighting function (or Jacobian matrix) of the forward model to model

parameters b at b̂, ∂F
∂b

∣∣∣
b=b̂

. If we treat the forward model as linear in the vicinity of the true
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xa + ✏✏✏a

x̂ + ✏̂✏✏

y

Figure 3.1: The concept of an inverse problem that optimzes an estimate from observations.
(Courtesy: Daniel Jacobs)

state of x, the forward model can be rewritten as:

y = Kx+εεε (3.3)

Where εεε represents the error that sums the errors from forward modeling and measurement

processes. We only consider the errors propagated from errors in b, but omit any other

source in the forward modeling. Thus, εεε = εεεy + K̂bεεεb, where εεεb = b− b̂ indicates error of

b̂. K is the m×n Jacobian matrix comprising derivatives of the forward model with respect

to each retrieved parameter, ∂F
∂x .

The inverse problem is to solve x from the measurement y by inverting the forward

model F. In many situations, the forward model is a complex process with large number of

internal uncertainties. As a result, the inverse problem tends to be an ill-posed problem. In

this regard, the a priori constraints are usually considered. A priori represents the knowledge

of the state before the measurement is made. And the true state occurs nearby the a priori:

x = xa +εεεa. (3.4)

where xa is the a priori estimate and εεεa indicates a priori error.
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Then, the inverse problem is solve the equation set (as illustrated in Figure 3.1):


y = Kx+εεε

x = xa +εεεa.
(3.5)

Provided that errors of measurements and the a priori are characterized by a Gaussian

probability distribution function (PDF) and the forward model is linear in the vicinity of

the true state, the maximum a posteriori (MAP) solution of the state vector, also called the

retrieval or the a posteriori derived with the Bayes’s Theorem is [Rodgers, 2000]:

x̂ = xa +(KT S−1
ε K+S−1

a )−1KT S−1
ε (y−Kxa) (3.6)

Here, Sa is the error covariance matrix of a priori, xa; Sε is the error covariance matrix of

the measurements; T denote matrix transpose operation.

The "retrieval", x̂, in above equation (3.6) is corresponding to the maximum posterior

PDF and the minimum of a cost function defined by

J = (y−Kx)T S−1
ε (y−Kx)+ (x−xa)

T S−1
a (x−xa). (3.7)

J is indeed the negative exponent term of the posterior PDF, which also follows a Gaussion

shape with the expected value of x̂ and the error covariance matrix Ŝ given by

Ŝ−1 = KT S−1
ε K+S−1

a . (3.8)

Ŝ describes the statistical uncertainties in retrieved x̂ due to measurement noise, forward

modeling uncertainty, and smoothing error [Rodgers, 2000]. The square roots of its diag-

onals are the one-sigma uncertainties of each retrieved parameters given the observation
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uncertainties, forward model uncertainties, and prior knowledge of the state. With Ŝ, we can

also estimate the uncertainty for any parameter (for example, the aerosol single scattering

albedo in this study) that can be fully determined by parameters (for example, aerosol

refractive index and PSD parameters) in x but is not directly retrieved. If one parameter is a

function defined by ζ = ζ x, then the uncertainty in derived ζ is [Rodgers, 2000]:

ε̂ζ =

√
n

∑
i=1

n

∑
i=1

∂ζ

∂xi

∂ζ

∂x j
Ŝi, j. (3.9)

3.2.2 Information theory

The Jacobian matrix K usually serves as gradients in the sensitivity analysis and can be a

useful indicator of information. For a linear system in the absence of measurement error,

the rank of K indicates independent pieces of information that can be determined from the

measurements. In practice, error inevitably presents in measurements and thus can impact

the effective rank. To identify the effective sensitivity of individual measurement to each

retrieved parameter, we define the error-normalized (EN) Jacobian matrix by

K̃ = S−
1
2

ε KS
1
2
a (3.10)

K̃ is also called the ‘pre-whitening’ by Rodgers [2000]. The superiority of the matrix

K̃ over the matrix K is that it compares the observation error covariance (S
1
2
ε ) with the

natural variability of the observation vector as expressed by its prior covariance (KS
1
2
a ). Any

component whose natural variability is smaller than the observation error is not measurable.

Therefore, an element K̃i, j less than unity indicates that the measurement component yi does

not contain useful information for determining parameter x j. In contrast, when K̃i, j > 1, the

larger of its value, the more useful information retained in yi for determining x j. Therefore,



39

the K̃ matrix provides not only sensitivity of individual measurements to each retrieved

parameter, but also a capacity-metric for those observations to infer retrieved parameters.

The averaging kernel matrix has been widely used to quantify the information gained by

making a measurement [e.g., Rodgers, 1998; Hasekamp and Landgraf , 2005a; Frankenberg

et al., 2012; Sanghavi et al., 2012]. It provides the sensitivity of the retrieval to the true state

and is defined by

A =
∂ x̂
∂x

. (3.11)

Replace y in equation (3.6) with equation (3.3) at x = xa,

x̂ = xa +(KT S−1
ε K+S−1

a )−1KT S−1
ε [K(x−xa)+εεε ] (3.12)

Then we have

A =
∂ x̂
∂x

=
(
KT S−1

ε K+S−1
a
)−1 KT S−1

ε K (3.13)

Matrix A quantifies the ability of the retrieval to infer x̂ given the relationship between

y and x (i.e., K) and given the observation noise and a priori characterization. Thus, A

represents a perfect retrieval if it is the identity matrix or, if A is the null matrix, indicates that

no information can be gained from the observations. The trace of A is the degree of freedom

for signal, i.e., DFS = Trace(A), which represents independent pieces of information that

the observation can provide. The diagonal elements of the averaging kernel matrix A, or

the DFS components, indicate the partial sensitivity of each individual retrieved parameters

with respect to their corresponding truth:

Ai,i =
∂ x̂i

∂xi
(3.14)

Clearly, Ai,i = 1 indicates that the observation is capable of fully characterizing the truth
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of xi; while Ai,i = 0 indicates the observation contains zero information on xi and xi is

not measurable. From the formulation of Ŝ and A, we can conclude that only the error

covariance and Jacobian matrix, but not the retrieval, are important for the purpose of

understanding information content.

Other quantities used for information analysis of a measurement include the Shannon

information content (H) [Shannon, 1948] and the Fisher information matrix. H, a widely

used quantity [e.g., Rodgers, 1998; Knobelspiesse et al., 2012], is defined as the reduction

in entropy after the measurement

H =
1
2

ln |Sa|−
1
2

ln |Ŝ|= −1
2

ln |ŜS−1
a |= −

1
2

ln |In−A| (3.15)

where In is an identity matrix of order n. Clearly, H is highly related to the DFS for

the information analysis. In the Gaussian linear case, the Fisher information matrix is

equal to the inverse of a posteriori error covariance matrix, Ŝ−1. The retrieval indeed

corresponds to the maximum of a posteriori PDF and the minimum of retrieval error. It

is thus straightforward that a higher level of the Fisher information is subject to a smaller

retrieval error. Due to their close relationship with the DFS and Ŝ, we will not present the

SIC and Fisher information analysis in this study.

3.3 New Research Algorithm for AERONET Inversion

Figure 3.2 gives an overview of the retrieval algorithm specifically designed for the anal-

ysis and inversion of photo-polarimetric remote sensing observations, such as those from

AERONET. The algorithm builds upon the UNified and Linearized Vector Radiative Trans-

fer Model (UNL-VRTM), which consists of seven component modules for the forward

simulation of observations (section 2.2). The forward modeling includes the linearized
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vector radiative transfer model (VLIDORT) developed by Spurr [2006], a linearized Mie

code and a linearized T-Matrix code calculating aerosol single scattering properties [Spurr

et al., 2012], a module calculating Rayleigh scattering and a module for gas absorption,

plus a surface model computing bidirectional reflectance/polarization distribution function

(BRDF/BPDF) [Spurr, 2004]. The required input parameters for the algorithm are the

relevant atmospheric profiles (of pressure, temperature, and gaseous mixing ratio), aerosol

loading in terms of AOD or aerosol columnar volume, aerosol vertical profiles, aerosol

microphysical and chemical parameters (size distribution and complex refractive index),

and surface reflection parameters. The users can specify up to two modes of the aerosol

population. Each mode is characterized by the total particle number (or volume), the vertical

profile, size distribution, and refractive index. The aerosol-related modules—Mie, T-matrix,

and VLIDORT—are analytically linearized and fully coupled. Thus, the forward model not

only simulates radiance and/or polarization for a given spectrum, but also simuteneously

computes the Jacobians of these radiation fields with respect to input aerosol microphysical

parameters. Our inversion-oriented UNL-VRTM supplies these Jacobians together with

observation error characterizations and a priori constraints to the statistical optimization

procedure for the retrieval. Objective information content (section 3.2.2) and error analysis

(section 3.2.1) are also included in the procedure along with the inversion. Although our

algorithm is tailored to measurements from the AERONET SunPhotometer, its modularized

framework enables the simulation and inversion of observations from various platforms,

including satellite sensors.

Development of the inversion component in our algorithm was built upon our experience

with optimization of aerosol emissions using the adjoint chemistry transport model (CTM)

(See Appendix B and [Wang et al., 2012; Xu et al., 2013]). In essence, the optimization

method is consistent with the adjoint modeling [e.g., Henze et al., 2007] that constrains

aerosol emissions from measurements through inverting a CTM, although different physical
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Figure 3.2: General structure of the new research inversion algorithm for the retrieval of
aerosol microphysical parameters from AERONET photopolarimetric measurements.

processes are involved for inversion of AERONET observation. Both inversions seek

the optimal solutions for a state vector that minimizes the differences between the model

simulation and observation. In addition, our algorithm inherits the inversion strategy from

the Dubovik00&06 algorithm, in particular with regard to the smoothness constraint on the

spectral dependence of the complex refractive index.

3.3.1 Definition of state vector and observation vector

For this study, the observation vector y comprises components from different sources. As

listed in Table 3.1 (and Table 1.1 for specific measurements by the SunPhotometer), there are

four categories of observations, i.e., the direct sun AOD, the sky radiance around the solar

aureole, the sky radiance in the solar principal plane, and the DOLP in the solar principal

plane, with all measurements performed at 440, 675, 870, and 1020 nm. Also indicated in

Table 3.1 are the calibration errors and other measurement uncertainties that make of the

term εεε .

The state vector x contains 11 pairs of parameters characterizing aerosol properties in the

fine and the coarse modes, respectively, the columnar volume concentration V0, the effective
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Table 3.1: AERONET observation characteristics.

Symbol Parameter Instrumental
uncertainty

Other uncertainties

y1 Direct sun AOD 0.01–0.02 ∼0.02 spatial/temporal variation
y2 Sky radiance in solar almucantar 5% Surface BRDF and BPDF
y3 Sky radiance in principal plane 5% Surface BRDF and BPDF
y4 DOLP in principal plane 0.01 Surface BRDF and BPDF

radius reff, the effective variance veff, and the complex refractive index mr−mii at 440, 675,

870, and 1020 nm (Table 3.2). reff and veff are two commonly used size parameters in the

aerosol radiative quantification, because different types of size distribution function having

same values of reff and veff possess similar scattering and absorption properties [Hansen and

Travis, 1974]. In line with many studies [Schuster et al., 2006; Hasekamp and Landgraf ,

2005a, 2007; Mishchenko et al., 2007; Waquet et al., 2009], we assume the aerosol PSD

follows a bi-modal lognormal function expressed in equation (2.10). All parameters include

both the fine and coarse modes and account for a total of 22 elements (n = 22).

3.3.2 Combine a priori and smoothness constraints

A priori information describes our knowledge of the state vector before measurements

are applied, and an a priori constraint is commonly used to achieve a well-defined stable

and physically reasonable solution to an ill-posed problem. Usually, a priori knowledge

comprises both a mean state xa and its error εεεa (equation (3.4)). One of the satisfactory

sources for the a priori knowledge is a climatology based on historical measurements. For a

given AERONET site, we use the available inversion products that have been obtained with

the Dubovik00&06 algorithm, for which the a priori can be well characterized by the mean

values and standard deviations of each component in the state vector. At the same time, the

a priori can also be determined from other sources if a historical AERONET retrieval is not
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Table 3.2: State vector elements and associated constraints for inversion.a

Symbol Parameter a priori
constraint?

Smoothness
constraint?

V f
0 , V c

0 Columnar volume (µm3µm−2)
√

rf
eff, rc

eff Effective radiance (µm)
√

vf
eff, vc

eff Effective variance
√

mf
r, mc

r Real part refractive index
√ √

mf
i , mc

i Imaginary part refractive index
√ √

aThe superscripts, ’c’ and ’f’, respectively denote fine and coarse aerosol modes. Refrac-
tive indices are for spectral wavelengths of 440, 675, 870, and 1020 nm.

available. For example, we could extract aerosol microphysical climatology from chemistry

transport model simulations [e.g., Wang et al., 2010] or from measurements of in situ and/or

even satellite sensors.

Among those retrieved parameters, the aerosol volumes—V f
0 and V c

0 —are the most

variable or uncertain quantities. A reasonable initial guess for these quantities could speed up

the iterative inversion. Here, we “look up” their initial values from the AOD measurements at

two spectral wavelengths. Given the a priori information on the aerosol PSD and refractive

indices, the aerosol extinction efficiency Qext can be obtained for each fine and coarse mode

with the Mie code. And the AOD is related to the V f
0 and V c

0 via equation:

τA = τ
f
A + τ

c
A =

3V f
0Qf

ext

4rf
eff

+
3V c

0 Qc
ext

4rc
eff

. (3.16)

Clearly, applying the above equation to the AODs at any two spectral wavelengths, we

can easily solve V f
0 and V c

0 . Considering the component fraction is more sensitive to the

wavelength-dependency of AOD at longer wavelengths (as later shown in Figure 5.1), we

choose AODs at 870 nm 1020 nm to determine the initial guesses of V f
0 and V c

0 .

For some parameters, the a priori estimates may be poorly known, but these parameters

behave smoothly with no sharp oscillations. For example, the aerosol refractive index
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usually does not vary rapidly over the visible to near-infrared spectral range. In this regard, a

smoothness constraint could be a preferable addition. The technique of constraining a smooth

solution was pioneered by Phillips [1962]; Twomey [1963], and has been successfully used

to retrieve coherent aerosol size distributions [Dubovik and King, 2000] and atmospheric

vertical profiles [Twomey, 1977]. The principle of the smoothness constraint is to restrain

the degree of non-linearity of a certain physical parameter by limiting the values of its dth

derivatives:

Gd +εεε∆ = 000 (3.17)

where Gd is a differential matrix composed of coefficients for calculating the dth derivatives

of x with respect to the dependent variable, and the vector εεε∆ indicates uncertainties in these

derivatives.

In particular, for constraining the dependence of the spectral refractive index with

wavelength, the matrix Gd calculates the dth difference of the refractive index at four

wavelengths (440, 675, 870, and1020 nm). As discussed by Dubovik and King [2000], we

assume a linear relationship between the logarithm of the refractive index and the logarithm

of the wavelength: mr ∼ λ−α , and mi ∼ λ−β . Further, the matrix G1 for the first difference

(of either mr or mi of one mode) can be expressed as:

G1 =


1/∆λ1 0 0

0 1/∆λ2 0

0 0 1/∆λ3



−1 1 0 0

0 −1 1 0

0 0 −1 1



=


−1/∆λ1 1/∆λ1 0 0

0 −1/∆λ2 1/∆λ2 0

0 0 −1/∆λ3 1/∆λ3

 (3.18)

Here, ∆λ1, ∆λ2, and ∆λ1 are the denominators for the first-order differences in the logarithm,
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e.g., ∆λ1 = ln 675
440 . As to εεε∆, we assume errors in first differences of the refractive index

following Dubovik and King [2000], i.e., 0.2 for mr and 1.5 for mi.

Similar to the approach suggested by Dubovik and King [2000], we use multiple a priori

constrains in the retrieval. Specifically, we combine the a priori constraint of equation

(3.4) and the smoothness constraint of equation (3.17); our inverse problem is equivalent to

solving the following set of three equations (in contrast to (3.5) that has two equations):


y = F(x)+εεε

x = xa +εεεa

000 = Gd +εεε∆.

(3.19)

3.3.3 Statistical optimized inversion

Under the assumption of Gaussian-distributed errors, the optimized solution of equation

(3.19) according to the MAP method corresponds to the state vector that minimizes the

quadratic cost function consisting of multiple terms [Dubovik and King, 2000; Dubovik,

2004]:

J(x) = γγγy[y−F(x)]T S−1
ε [y−F(x)]+γγγa(x−xa)

T S−1
a (x−xa)+γγγ∆xTΩΩΩx. (3.20)

where ΩΩΩ is a smoothing matrix related to Gd and the error covariance matrix S∆ (of the

dth derivatives of x) by ΩΩΩ = GT
d S−∆1Gd. The vectors γγγy, γγγa, and γγγ∆ are regularization

parameters. In principle, the minimization of three-term cost function given by the equation

(3.20) is conceptually analogous to the minimization of bi-component cost functions (3.7)

generally considered in the Bayesian approach [Rodgers, 2000]. These three terms on

the right-hand size of equation (3.20) represent, respectively, (1) the total squared fitting
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error incurred owing to departures of the model predictions from the observations, (2) the

penalty error incurred owing to departures of the estimates from the a priori, and (3) the

penalty error incurred owing to departures from the defined smoothness feature. Overall,

the minimization of J(x) achieves the objective of improving the agreement between the

model and the measurements while ensuring that the solution remains within a reasonable

range and degree of smoothness.

The regularization parameters in the calculation of J(x) act as weights to balance the

fitting error and the penalty errors. Clearly, a good assignment of γγγ is of crucial importance

for the statistical optimal solution. High values of γγγa and γγγ∆ can lead to over-smoothing of

the solution with little improvement to the fitting residuals, while low values minimize the

error term at the cost of greatly increasing the parameter penalty terms. Optimal values of γγγ

for two-term cost functions can be identified at the corner near the origin of the so-called

L-curve [Hansen, 1998]. However, such approach is not appropriate to the multi-term cost

function. In this study, we assume equal weights for observational constraint term and

combined a priori constrain terms in the cost function:

γγγa =
1
2

n−1e, γγγ∆ =
1
2
(n∆−d)−1e, γγγy =

〈
1

4mk

〉
k=1,4

(3.21)

Here, d is the order of difference, e is a vector consisting of n elements of 1, and n∆ is

the number of state elements that are supplied with smoothness constraints. Values for γγγy

are chosen to control the fitting residuals for observations of four different categories as

listed in Table 3.1. Each group comprises the number of mk observations for k from 1 to 4.

The corresponding elements of γγγy for the kth group are 1
4mk

, which means the observation

quadratic term is normalized by the observation count of each group.

In principle, solving this inverse problem is tantamount to a pure mathematical mini-

mization procedure. The minimization of J(x) equation (3.20) is performed with an iterative
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quasi-Newton optimization approach using the L-BFGS-B algorithm [Byrd et al., 1995;

Zhu et al., 1994], which offers bounded minimization to ensure the solution stays within a

physically reasonable range. The L-BFGS-B algorithm requires knowledge of xa and J(x),

as well as the gradient of J(x) with respect to x, or ∇xJ. By linearizing the forward model

F(x), we can determine ∇xJ by

∇xJ(x) = γγγyKT S−1
ε [y−F(x)]+γγγaS−1

a (x−xa)+γγγ∆ΩΩΩx. (3.22)

Here, the Jacobian matrix K is computed analytically by the UNL-VRTM (section 2.2)

through equations (2.15) and (2.16). At each iteration, improved estimates of the state vector

are implemented and the forward simulation is recalculated. The convergence criterion to

determine the optimal solution is the smallness of the reduction of J(x) and the norm of

∇xJ(x). The iteration stops when the reduction of J(x) is less than 1% within 10 continuous

iterations. Then, the optimal solutions are identified corresponding to the smallest norm of

∇xJ(x) from these 10 last iterations. In addition, to ensure a physically reasonable solution,

we also perform retrieval error analysis, and impose a practical quality control on real

measurements.

3.3.4 Characterizing retrieval error

The retrieval without error characterization is of significantly lesser value. Once the retrieval

is achieved, the retrieval error can be characterized by the a posteriori state, and the error

analysis can be performed in terms of a linearization of the problem around the solution

x̂. We estimate the retrieval error on each state vector element using the error covariance

matrix of the a posteriori state:

Ŝ−1 = K̂T S−1
ε K̂+S−1

a +ΩΩΩ. (3.23)
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where K̂ is the Jacobian matrix of the forward model F(x) at the solution x̂. It should be

noted that the above three-term equation of a posteriori are formularized according to the

cost function defined in the equation (3.20). Simply, the retrieval error for each element can

be estimated by:

ε̂i = Ŝ
1
2
i,i (3.24)

With Ŝ applied to equation (3.9), we can also estimate the uncertainty in parameters (such

as ωA and asymmetry factor in this study) that can be fully determined by the parameters in

x but are not themselves directly retrieved.

3.3.5 Quality control of measurements

We apply a suite of quality criteria to ensure (a) a cloud-free condition, (b) that aerosol

particles are quasi-homogeneously distributed in the horizontal plane within the scanning

region, and (c) the measurements are densely populated and cover a wide range of scattering

angles so that they provide sufficient information to retrieve all parameters falling within

specified uncertainty levels. More specifically, these criteria are as follows: (i) the number of

AOD observations ≥ 2 within a ±25-minute centered at the period of a full scan sequence;

(ii) sky radiance observations are excluded when the scattering angle is less than 3.2◦

and DOLP observations are excluded when the scattering angle is smaller than 5◦; (iii)

a symmetry check for the almucantar radiances: the difference is less than 5% for the

azimuthal angle of 180◦ and less than 10% elsewhere; and (iv) principal-plane observations

are discarded when their second derivatives with respect to the scattering angle are beyond

the smoothing threshold. Although most of these criteria follow Holben et al. [2006],

we also check the smoothness of the principal-plane radiances and DOLP to identify

scans that are contaminated by cloud. We apply the threshold on the second derivative of

radiance (or DOLP) with respect to scattering angle in order to restrain local oscillations
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of radiance (or DOLP) caused by clouds or heterogeneous aerosol plumes. Thus, applying

such a threshold can effectively remove sharp kinks and ensure continuous quantities in

the principal-plane scanning sequences. Indeed, this smoothness check shares the same

principle to the smoothness constraint presented in the section 3.3.2.

3.4 Acknowledgements

We thank Daven Henze, Oleg Dubovik, and Brent Holben for constructive suggestions and

useful discussions on the inversion algorithm developement. This work is supported by a

NASA Earth and Space Science Fellowship and the NASA Radiation Sciences Program

and the Glory mission program. Most content in this chapter also appear in two articles

published on Journal of Geophysical Research – Atmospheres [Xu and Wang, 2015; Xu

et al., 2015].



51

CHAPTER 4

INFORMATION CONTENT ANALYSIS

4.1 Introduction

AERONET collects not only the multi-spectral and multi-angular radiance observations, but

also the state of light polarization from various viewing angles over many sites (section 1.1.2).

Unfortunately, the potential value of AERONET polarization measurements in retrieving

aerosol microphysical parameters has not been fully exploited. Polarization measurements

contain valuable information about aerosol microphysical properties [Mishchenko and Travis,

1997; Cairns et al., 1997], as the polarization of light is highly sensitive to the aerosol size

and refractive index [Hansen and Travis, 1974]. Several studies have emphasized the

usefulness of the polarimetric observations taken by the ground-based instruments [Cairns

et al., 1997; Boesche et al., 2006; Emde et al., 2010; Zeng et al., 2008]. Vermeulen et al.

[2000] presented a two-step method to retrieve aerosol microphysical properties from

polarized radiances: first, the single scattering albedo and the natural and polarized phase

functions were retrieved from transmission and almucantar radiances and polarization in

the principal plane; second, the aerosol PSD and refractive index were then derived. With

the current AERONET inversion algorithm, Dubovik et al. [2006] conducted a case study

using polarization data in a UAE2 (Unified Aerosol Experiment-United Arab Emirates) field

campaign [Reid et al., 2008]. Li et al. [2009] extended the inversion algorithm of Dubovik

et al. [2006] to include multi-spectral polarization and demonstrated improved retrievals in
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the real part of the aerosol refractive index for fine particles and the fraction of spherical

particles.

However, questions regarding the use of AERONET polarimetric observations for

retrieving aerosol microphysical parameters remain unresolved: (1) Practically and quan-

titatively, what is the magnitude of the information content that exists in AERONET’s

photo-polarimetric measurements for improving the retrieval of aerosol microphysical

properties that we now routinely obtain from radiance-only measurements? and (2) Hypo-

thetically, how can future upgrades to the AERONET photo-polarimetric measurements and

inversion algorithm maximize the retrieval information content of AERONET observations?

Answering these two questions is not only relevant to the future AERONET instrumentation

design, but also for the ground-based passive polarimetric remote sensing of aerosols in

general.

In this chapter, we seek to answer above questions from a theoretical perspective (section

3.2.2) by investigating the available information contained in AERONET measurements

with and without the inclusion of polarization data. This purpose of this investigation is

to provide the a theoretical foundation to support actual algorithm development for using

polarimetric data for aerosol retrievals. The structure of this chapter is as follows. In section

4.2, we describe the experimental design on the aerosol models, error characteristics of a

Table 4.1: The aerosol parameters defined for both fine and coarse aerosol modesa.

Mode reff(µm) veff mr mi ωA

Fine
0.21
(80%)

.25
(80%)

1.44, 1.44, 1.43, 1.42
(.15)

.009, .011, .012, .011
(.01)

.95, .93, .92, .91
(.151)

Coarse
1.90
(80%)

.41
(80%)

1.56, 1.55, 1.54, 1.54
(.15)

.004, .003, .003, .002
(.005)

.84, .91, .93, .96
(.198)

aThe complex refractive index mr−mii, and single scattering albedo ωA are reported at
440, 675, 870, and 1020 nm. Bracketed values are assumed a priori error in relative for
reff and veff and in absolute for mr, mi, and ωA.
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priori and AERONET measurements. Section 4.3 presents the results of information content

and error analysis. In section 4.4, we investigate the sensitivity of retrieval uncertainties in

aerosol parameters with respect to the aerosol loading and fine/coarse aerosol characteristics.

Finally, we summarize in section 4.5 the general findings of this study and implications for

practical algorithm development.

4.2 Experimental Design

4.2.1 a priori characteritics

The state vector x comprises 22 (11 pairs) retrieved parameters, namely, the columnar

volume concentration V0, the effective radius reff, the effective variance veff, and the complex

refractive index mr +mii at 440, 675, 870, and 1020 nm (section 3.3.1). These 11 pairs

of parameters characterize aerosol properties in the both fine and coarse aerosol modes;

each mode follows a lognormal PSD function. Table 4.1 displays aerosol size parameters,

refractive indices, and single scattering albedo for each size mode adopted for error and

information analysis; also shown in brackets are their associated a priori uncertainties. The

fine-mode particles correspond to water-soluble aerosols obtained from OPAC database

[Hess et al., 1998] with updates by Drury et al. [2010], while the coarse-mode is for large

spherical particles with refractive index from Patterson et al. [1977]; Wagner et al. [2012].

Table 4.2: The aerosol scenarios adapted for numerical experimentsa.

Aerosol type V0 fmfv τA fmfτ AE ωA

Fine-dominated .15 .8 1.0, .58, .36, .25 .97, .95, .92, .88 1.5 .95, .93, .92, .91
Well-mixed .22 .5 1.0, .61, .41, .32 .90, .83, .74, .65 1.3 .94, .93, .92, .93
Coarse-dominated .43 .2 1.0, .71, .57, .50 .69, .55, .42, .32 .82 .91, .92, .92, .94
aValues for τA, ωA, and fmfτ are listed respectively for spectral wavelength of 440, 675,
870, and 1020 nm. The AE is reported between 440 and 870 nm. V0 is in the unit of
µm3µm−2
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Figure 4.1: Volume size distribution for the aerosol types adopted for the information
analysis. Relevant aerosol parameters are summarized in the Tables 4.1 and 4.2.

In order to include various atmospheric conditions, we simulate three types of aerosols—

each with different relative percentage between the coarse and fine modes—(I) fine particles

dominated, (II) well mixed, and (III) coarse particles dominated. As listed in Table 4.2 and

illustrated in Figure 4.1, fine-mode fractions in terms of volume (fmfv) are defined as 0.8,

0.5, and 0.2 for these three types, respectively. Aerosol volumes are scaled as necessary

to maintain a normalized AOD at 440 nm corresponding to a moderate hazy condition

(τ440 = 1.0). The spectral aerosol optical depths τA, single scattering albedo ωA, and the

Ångström exponent (AE) are calculated and also shown in Table 4.2.

4.2.2 Synthetic observations

As described in section 1.1.2 and Table 1.1, The SunPhotometer installed at each AERONET

site routinely measures direct and diffuse (sky) solar radiances and optionally the mono-band

light polarization [Holben et al., 1998]. Recently, multi-spectral polarizations have also

been taken with a newer-generation SunPhotometer (CIMEL CE318-DP) at some sites [Li
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Table 4.3: List of scenarios of AERONET observations used for information content analysis.

Scenario Observations includeda Remark

I1 τA, and Ialm Observations used in Dubovik00&06 algorithm
I2 τA, Ialm, and Ipp Scenario I1 plus principal-plane radiances
P1 τA, Ialm, Ipp and DOLPpp Scenario I2 plus principal-plane polarization
P2 τA, Ialm, and DOLPalm Scenario I1 plus almucantar polarization
aVariables are for four spectral wavelengths, i.e., 440, 675, 870, and 1020 nm.

et al., 2009] and the UAE2 fields campaign Reid et al. [2008]. Here we focus our study on

using multi-spectral polarizations for the inversion of aerosol parameters.

In order to investigate the merit of combining various observations in the inversion, we

define four different scenarios of observation vectors, i.e., I1, I2, P1, and P2 as summarized

in the Table 1. The observation vector in scenario I1 comprises direct sun AODs and

solar almucantar radiances (Ialm) at 440, 675, 870, and 1020 nm. Scenario I2 includes

measurements in scenario A and the total radiances (Ipp) at the same four wavelengths

observed in the solar principal-plane. Observations in scenario P1 are defined to further

include DOLPpp at those four wavelengths. Lastly, scenario P2 observations comprise

basic measurements in scenario I1 plus almucantar polarization (DOLPalm) at the same

wavelengths. The DOLPalm is not routinely measured by any current SunPhotometer, but

we include it for a comparative analysis. Measurements defined in scenario I1 represent

observations used by the current AERONET operational inversion and thus serves as a

control experiment. From scenario I2, we can investigate the synergy of radiances in both

the solar almucantar and solar principal-plane. Scans in the solar principal-plane can achieve

larger scattering angles and thus may contain additional scattering information. And with

scenarios P1 and P2 we will be able to evaluate the potential of adding polarization in the

inversion.

We exclude Ippl (Table 1.1) in our analysis because sky radiance in the solar principal

plane can also be obtained during the polarization scan (Ipp). Ippl and Ipp are different in the
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viewing-angle sequences, but they generally share a similar range of scattering angles. Thus,

one is redundant with the other. We also exclude analysis of monochromatic polarization (at

870 nm), currently measured on many AERONET sites, because single-band polarization

measurements contain much less information than multi-band ones and newer generation

SunPhotometers with multi-band polarization capacity will be deployed at more AERONET

sites.

While not as important as that for estimating the upwelling shortwave radiances, accu-

rately characterizing the surface reflectance and depolarization can minimize the possible

error in the simulation of down-welling radiation. For total reflectance, we parameterize

the surface BRDF using the reciprocal-Ross-Li kernels expressed in equation (2.13), which

are applied in MODIS surface retrieval products [Wanner et al., 1995; Lucht et al., 2000].

These three kernels represent scatterings respectively from a Lambertain surface, a surface

within a dense vegetation canopy, and a surface with larger gaps between objects accounting

for self-shadowing. Amplitude factors for these kernels at AERONET bands are chosen

from MODIS products at Beijing site during February 2011 to represent a typical urban site.

We also use a BPDF model (equation (2.14)) introduced by Maignan et al. [2009] for the

angular polarized radiance, which was based on the Fresnel coefficients of light reflectance

from the surface and fitted to the POLDER (POLarization and Directionality of the Earth’s

Reflectances) observations.

4.2.3 Errors of obervations and a priori

As discussed in section 3.2.2, the resulting DFS and retrieval error depend on the error

specifications for the state of a priori and for the observations. A realistic uncertainty char-

acterization is thus of crucial importance. We consider the measurement errors consisting of

uncertainties that take place in both of the observation process and the forward modeling.



57

The uncertainties of AOD and radiance measurements taken by a well-calibrated Cimel

SunPhotoemter usually do not exceed 0.01–0.02 and 3–5%, respectively [Holben et al.,

1998, 2006; Li et al., 2008]. For polarization measurements calibrated with the approach of

Li et al. [2010], the uncertainty of DOLP was estimated to be 0.005 for the newer-generation

CE318-DP SunPhotometer and 0.01 for the older CE318 generation. In thus study, we

conservatively choose absolute error of 0.02 for AOD, and relative uncertainty of 5% for Ialm

and Ipp, which are same as Dubovik et al. [2000]. We set the absolute uncertainty of DOLP

as 0.01 in consistent with Li et al. [2009]; Waquet et al. [2009]. We consider the forward

modeling error incurred by the limited knowledge of surface reflectivity; the amplitude factor

for each BRDF kernel is assumed to have 20% relative uncertainty. However, we ignore the

error in the BPDF because the polarized reflectance of the land surface is usually spectrally

invariant and tends to be smaller than 0.02–0.04 [Nadal and Breon, 1999; Maignan et al.,

2009].

As a result, the observation error covariance matrix is defined by

Sε = Sy +KbSbKT
b (4.1)

where Sy is the error covariance matrix representing the uncertainty occurring in the mea-

suring process, Sb is the error covariance matrix for spectral BRDF amplitude factors (b),

and Kb is the Jacobian matrix of measurements y with respect to b. Similar to Dubovik

et al. [2000], we use zero off-diagonal elements for Sy by assuming errors are independent

between measurements. Errors for b are also assumed to be non-correlated, which gives

a diagonal matrix of Sb. As discussed in Dubovik et al. [2000], the surface character-

istics appear to have much less effect in AEROENT retrieval than in satellite retrievals,

because AERONET measures downward sky radiances. According to our simulation, the

relative error in radiances incurred by surface BRDF uncertainties is 0.7% by averaging
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all SunPhotometer observation geometries, with the maximum of about 2% occurring at

the near-horizontal viewing angles. The contribution of the term KbSbKT
b to Sε in equation

(4.1) is then less than 2% (the square of 0.7% to the square of 5%).

The uncertainties associated with the a priori knowledge are given in Table 4.1. We

consider that the aerosol columnar volume concentrations for both modes are unknown

with a relative uncertainty of 100%. Uncertainties for aerosol microphysical parameters

are based on aerosol climatology of the companion paper and are consistent with Dubovik

et al. [2002a] and Waquet et al. [2009]. As listed in Table 4.1, the relative error of reff and

veff are 80% for both aerosol modes, and the absolute error is assumed to be 0.15 for mr of

both modes, 0.01 for fine-mode mi, and 0.05 for coarse-mode mi. These prescribed a priori

uncertainties give an error of 0.15 and 0.20 for aerosol single scattering albedo (ωA) of the

fine-mode and the coarse-mode, respectively. We also assume that the a priori uncertainties

are independent bewteenbetween retrieved parameters by using zero off-diagonal elements

for Sa.

4.3 Results

Following the approach stated in section 3.2, we have simulated the AERONET photo-

polarimetric measurements under various solar zenith angles from 40◦ to 75◦ for the three

defined aerosol types (Table 4.2). The simulated radiances (Ialm) on the solar almucantar

plane and the degree of linear polarization (DOLPpp) on the solar principal plane are

illustrated in Figure 4.2 for aerosols of well-mixed (type II) with solar zenith angle of 55◦.

These simulations for other aerosol types and other solar zenith angles are of similar pattern.

According to Figure 4.2a, Ialm decreases as the scattering angle increases, resulting from

forward-dominated scattering phase function of aerosol particles. The maximum DOLPpp

takes place at the scattering angle of 90◦ as a result of composite effect of Rayleigh and
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Figure 4.2: Simulation of radiances and polarization by UNL-VRTM:(a) Radiances in the
solar almucantar plane as a function of azimuth angle. (b) DOLP in the solar principal plane
as a function of view zenith angle. Simulations are for the well-mixed aerosol type with
columnar AOD of 1.0 at 440 nm as shown in the Table 4.2. Solar zenith angle is 55◦ and top
abscissas show corresponding scattering angles.

aerosol scattering, while the smaller DOLPpp values dominates at the small scattering angles

because of the predominance of diffracted light (Figure 4.2b). With the synthetic data and

relevant error characterizations, we have computed the error-normalized (EN) Jacobian

matrix, DFS, and a posteriori error to evaluate the capacity of AERONET measurements in

inferring aerosol microphysical properties. Our analysis mainly focuses on the comparison

of those quantities between measurements with and without including polarization, so that

we can understand the importance of adding polarization for the retrieval.

4.3.1 Error-normalized (EN) Jacobian matrix

We compare the EN Jacobians for the Ialm and DOLPpp in both Figure 4.3 and Figure 4.4

to explore the importance of DOLPpp measurements to the retrieval. Distinct patterns of

EN Jacobians can be found between the DOLPpp and Ialm over the scattering angle. As

shown in Figures 4.3a and 4.4a, the radiance at scattering angles less than ∼10◦ decreases

with increasing fine-mode aerosol loading (e.g. negative ∂ Ialm/∂V0) and increases with
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increasing coarse-mode aerosol loading (e.g. positive ∂ Ialm/∂V0), whereas the sensitivity

of the Ialm to V0 at larger scattering angles is more positive in the fine mode and less positive

in the coarse mode. This occurs because large particles scatter more radiation than small

particles at near-forward scattering angles [van de Hulst, 1981]. In contrast, the DOLPpp

presents profound sensitivity to the V0 of aerosol in both modes at the scattering angles

between 45◦ and 135◦ (Figures 4.3f and 4.4f).

Furthermore, the EN Jacobians of Ialm and DOLPpp are also complimentary in terms of

their variations on the spectral wavelength. For example, the EN Jacobians for Ialm with

respect to the fine-mode V0 express lowest at 440 nm (blue curve in Figure 4.3a), but those

for DOLPpp at 440 nm (blue curve in Figure 4.3f) are largest ones among these four spectral

bands. Indeed, variations of these sensitivities with wavelength are mainly determined by

the change of size parameter η , which defined as the ratio of the particle size to the applied

spectral wavelength, η = 2πreff/λ . The DOLPpp in scattering angles near 90◦ approaches

unity under pure Rayleigh scattering regime where η � 1. When the η increases, the value

of ∂DOLPpp/∂V0 decreases and transits into negative at η ∼ 2, reaches negative maxima

at η ∼ 10, then increases and slowly transits back to positive when η is as large as ∼ 40

[Hansen and Travis, 1974]. The magnitude of the η at these four bands ranges from 3.0 to

1.3 for the fine-mode particles and from 27 to 11 for the coarse-mode particles. Therefore

we can understand that: (i) the sensitivity of DOLPpp to the fine-mode V0 is positive at 1020

nm due to the small size parameter η = 1.3 (orange curve in Figure 4.3f); (ii) this sensitivity

gets weaker at 675 nm to 870 nm and transits to negative at 440 nm as η increases (Figure

4.3f); and (iii) this sensitivity for aerosol in the coarse mode is more negative for longer

wavelengths that are corresponding to smaller values of η .

We also note that sensitivity of the Ialm to PSD parameters dominates for scattering

angles less than ∼40◦ (Figures 4.3b-c and 4.4b-c), while its sensitivity to mr and mi prevails

at larger scattering angles (Figures 4.3d-e and 4.4d-e). In the near-forward scattering angular
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Figure 4.3: Error-normalized Jacobians of almucantar radiances Ialm (left column) and degree
of linear polarization DOLPpp (right column) with respect to retrieved aerosol parameters
in the fine mode: (a, f) V0, (b, g) reff, (c, h) veff, (d, i) mr, and (e, j) mi. Simulations use
type-II aerosols with columnar AOD of 1.0 at 440 nm and solar zenith angle of 55◦. The
top and bottom abscissas are respectively the scattering angle and SunPhotometer scanning
geometries.
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regions, the dominant scattering effect is the diffraction of light, which essentially depends

on the size of particles and is independent of the index of refraction [van de Hulst, 1981;

Hansen and Travis, 1974]. The DOLPpp, in contrast, is sensitive to both the aerosol size

and the refractive index at scattering angles from 45◦ to 135◦ (right columns of the Figures

4.3 and 4.4). Variations of the sensitivity among spectral bands can be explained by the

wavelength-dependent size parameters as discussed in the above paragraph.

Overall, the DOLPpp EN Jacobians have similar or larger magnitudes to these of Ialm,

indicating that the DOLPpp measurements possess equal or larger information for the

inversion of these aerosol properties. Adding such complementary DOLPpp measurements

to the current radiance-only inversion can potentially increase the retrieval accuracy. The

magnitude of EN Jacobian elements varies among retrieved parameters, which leads to the

variability of retrieval accuracy. The EN Jacobians with respect to the V0 and reff of both

modes and the fine-mode veff and refractive index are larger than those of other parameters.

Correspondingly, these parameters are expected to achieve higher accuracy in the retrieval.

While the maxima in EN Jacobians of Ialm with respect to the coarse-mode refractive index

at 870 and 1020 nm slightly exceed unity (Figure 4.4d-e), larger counterparts for DOLPpp

(Figure 4.4i-j) will likely result in improved retrievals. In contrast, magnitudes of EN

Jacobian for both Ialm and DOLPpp with respect to coarse-mode refractive index at 440 and

675 nm are smaller than unity across the whole angular range. Adding polarization may not

improve the retrieval for coarse-mode refractive index at those shorter wavelengths in such

aerosol scenario. However, the consideration of spectral dependence of refractive index by

using the smoothness constraints will potentially resolve this problem [Dubovik, 2004].
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4.3.2 Information content and retrieval error

We calculated the averaging kernel matrix A, DFS, and a posteriori error for retrieved

parameters from these four scenarios of observation defined in Table 4.3. Figuress 4.5a-c

illustrate how the DFS varies with the solar zenith angles for three defined aerosol types.

The DFS in the scenario I2 (red curves) ranges from 14 to 15 for the fine-dominated aerosol

model, and from 17 to 19 for other two aerosol models, about 2–3 degrees higher than those

using AODs and Ialm measurements in the scenario I1 (black curves), indicating that sky

radiances in the principal plane (Ipp) contain additional information. The scenario P1 (green

curves), which comprises solar almucantar sky radiances and principal-plane polarimetric

radiances at four wavelengths, further increases DFS by 1–2. Observations in the scenario

P2 (blue curves)—radiance and polarization in the almucantar plane—yields DFS values

slightly below those in the scenarios I2 and P1. Therefore, from Figure 4.5 we conclude that

adding measurements in the solar principal plane into the inversion significantly increases the

information content for aerosol properties, especially when combining the Ipp and DOLPpp.

We also note that the DFS increases with solar zenith angle for all cases. Observations in

larger solar zenith angle enable a wider range of scattering angles (Figure 4.5d), and thus

contain more information on the aerosol scattering phase function and in turn on the aerosol

microphysical parameters.

We illustrate the DFS components Ai,i in Figure 4.6 for the V0, reff and veff, and in

Figure 4.7 and 4.8 for the mr and mi, respectively. Also shown in those figures are the a

posteriori errors, which are the diagonal elements of Ŝ
1
2 . It should be noted that errors for

V0, reff, and veff are in terms of relative uncertainties (%), while errors in the mr and mi are

absolute quantities. Curves of four different colors in each panel indicate these defined four

observation scenarios and are averages for the three aerosol types. Error bars represent one

fifth of the standard deviations among the three aerosol types (the use of the one-fifth scale is
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Figure 4.5: Degree of freedom for signal (DFS) as a function of solar zenith angle for
retrieving all 22 parameters when using aerosol type of (a) fine-dominated, (b) well-mixed,
and (c) coarse-dominated. Four differently colored-curves denote four observation scenarios
defined in Table 1. Panel (d) shows the maximum scattering angles that can be reached by
the almucantar and the principal-plane scans.

only for plotting purpose). These error bars thus depict the variability of the DFS component

and retrieval error over the fine-mode fraction (fmfv). Mean retrieval uncertainties averaged

over various solar zenith angles are summarized in Table 4.4. We discuss these results for

each retrieved parameter in detail as following.

4.3.2.1 Aerosol PSD

Among the 22 elements in the state vector, the V0, reff and veff describe the aerosol PSD.

According to Figure 4.6a-c, observations in the scenario P1 (green curves) always yield the

highest DFS components for inferring PSD parameters in both the fine and coarse modes,

followed by observations from the scenarios I2 (red) and P2 (blue), and lastly the scenario I1

(black). As a consequence, the a posterior errors are found smallest for the scenario P1 and

largest for the scenario I1 (Figure 4.6d-e). Retrieval errors in the scenario I1 (black curves)

are 5–15% for V0, 5–9% for reff, and 20–30% for veff, which vary with solar zenith angles.

In contrast, retrieval errors in the scenario P1 (green curves) are reduced to ∼2.5%(3%),

1%(3.5%), and 7%(20%) for the fine (coarse) mode. From observations in the scenarios P2

and I2, one can retrieve V0, reff, and veff of errors lying between the scenarios I1 and P1,
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Figure 4.6: DFS components (left column) and retrieval uncertainty (right column) as
a function solar zenith angle with different observation scenarios defined in Table 4.3.
Quantities are averages for three aerosol types defined in Table 4.2, and error bars represent
one fifth of standard deviation. Three rows from top to bottom are respectively for retrieving
V0, reff, and veff. In each panel, shown in the left is for the fine mode and in the right is for
the coarse mode.

though slightly larger in the scenario P2. In addition, higher DFS components and smaller

retrieval errors are found for the fine-mode parameters than those for the coarse mode,

because radiances and polarization are in particular more sensitive to aerosol parameters in

the fine mode as shown in the contrast between the Figures 4.3 and 4.4

We also note that, in the scenario I1, DFS components for the coarse-mode parameters

decrease with increasing solar zenith angle, while no obvious trend can be found for the
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fine-mode parameters. This can be explained by the low sensitivity of the Ialm to the

coarse-mode V0, reff, and veff at large scattering angles as showed in Figure 4.4a-c. Higher

sensitivities occur at scattering angles below ∼30◦; the increase in SZA results in a smaller

number of measurements in the near-forward scattering angular regions, and thus leads

to larger retrieval errors. However, these trends turn to be weaker or negligible in other

observation scenarios, especially the scenario P1. We can understand this from two aspects.

First, observations from principal plane can add additional measurements near the forward

scattering region. Second and most importantly, the added polarization measurements in

the scenarios P1 and P2 contain additional information that is independent of the scattering

angle limitation as discussed in the section 4.3.1.

Overall, the increase in DFS components by adding polarization measurements is

less than 0.1 for retrieving V0, reff, and veff, because radiances alone contain abundant

information. The retrieval accuracy in aerosol PSD from observations of all scenarios

exceeds the requirements for better quantifying aerosol climate radiative forcing identified

by Mishchenko et al. [2004]. Even so, the addition of multi-band DOLPpp measurements to

the inversion can still yield up to ∼70% retrieval error reduction in the fine-mode and up to

∼50% reduction in the coarse-mode aerosol PSD parameters.

4.3.2.2 Refractive indices

As shown in Figure 4.7a-b, different magnitudes prevail in the DFS components for the mr

between fine and coarse modes and among different observation scenarios. For example,

DFS components for aerosols in the fine mode exceed 0.8 at all four wavelengths in the

scenario I1; while the counterparts in the coarse mode approach 0.5 at 1020 nm and are less

than 0.2 for the other three wavelengths. This is due to the weaker sensitivity of almucantar

radiances to the coarse-mode mr (as in Figure 4.4d) comparing to that for aerosol in the

fine mode (as in Figure 4.3d). In general, adding the DOLPalm, Ipp, or both the Ipp and
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DOLPpp in the inversion increases the DFS components for mr of aerosols in both the fine

and the coarse modes. Particularly, DFS components achieve the most significant rise in

the scenario P1 by climbing to 0.95–1.0 in the fine mode and to 0.4–0.8 in the coarse mode.

Also shown in Figure 4.7a, an increasing pattern with solar zenith angles is found in the DFS

components for the fine-mode aerosol at larger wavelengths because stronger sensitivity

occurs in larger scattering angles.

As expected, the retrieval of mr can be more accurate by adding additional measurements.

According to Figure 4.7c-d, the a posteriori error in mr averaged on the four spectral bands is

∼0.015 (0.065) for aerosols in the fine (coarse) mode from measurements in the scenario I1.

In contrast, it is reduced to 0.008 (0.037), 0.005 (0.035), and 0.009 (0.040) in the scenarios

I2, P1, and P2, respectively. Retrieval errors in the coarse-mode mr are larger in shorter

spectral wavelengths because of weaker sensitivity to the Ialm and DOLP. For instance of the

scenario P1, it is about 0.06 at 440 nm, 0.035 at 675 nm, and 0.02 at 870 and 1020 nm.

The DFS components for the mi are shown in Figure 4.8a–b, and the corresponding

retrieval errors in mi are displayed in Figure 4.8c–d. Similar to those for the mi, DFS

components for retrieving the mi are larger in the fine mode and show an increasing pattern

with the solar zenith angle. Observations in the scenario P1 always yield largest DFS

components and smallest retrieval error for the mi, followed by the scenarios P2 and I2.

Observations in the scenario I1 offer the mi retrieval with largest error. If averaged on the

solar zenith angles and aerosol types, the retrieval error in the mi is 0.006 (0.004) for aerosol

in the fine (coarse) mode in the scenario I1, and can be reduced to 0.003 (0.003) in the

scenario P1.

4.3.2.3 Single scattering albedo

Note that the aerosol single scattering albedo ωA is an intermediate rather than a directly

retrieved parameter. The error in ωA can be estimated from Ŝ with equation (3.9). The ωA



69

440 nm 675 nm 870 nm 1020 nm
DFS compoents for retrieving mr

fine mode  

coarse mode 

Retrieval errors in mr

a

b

c

d

Figure 7.

Obs. I1 Obs. I2 Obs. P1 Obs. P2

0.80
0.85
0.90
0.95
1.00

0.0
0.2
0.4
0.6
0.8
1.0

DF
S 

co
m

po
ne

nt
s 

A
i,i

0.0

1.0

2.0

3.0

40 50 60 70 40 50 60 70 40 50 60 70 40 50 60 70
Solar zenith angle (o)

0
2
4
6
8

10

fine mode  

coarse mode 

440 nm 675 nm 870 nm 1020 nm

Re
tri

ev
al

 e
rro

r (
x1

0
2 )

Figure 4.7: Same as Figure 4.6 but for DFS components (a-b) and retrieval uncertainty (c-d)
for retrieving real part refractive index mr in four wavelength bands. (a) and (c) are for the
fine aerosol mode, while (b) and (d) for the coarse mode.



70

440 nm 675 nm 870 nm 1020 nm
DFS compoents for retrieving mi

Retrieval errors in m i

a

b

c

d

Figure 8.

Obs. I1 Obs. I2 Obs. P1 Obs. P2

DF
S 

co
m

po
ne

nt
s 

A
i,i

40 50 60 70 40 50 60 70 40 50 60 70 40 50 60 70
Solar zenith angle (o)

440 nm 675 nm 870 nm 1020 nm

Re
tri

ev
al

 e
rro

r (
x1

0
2 )

0.2
0.4

0.6

0.8
1.0

0.1
0.2

0.3

0.4
0.5

0.2
0.4

0.6

0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

fine mode  

fine mode  

coarse mode  

coarse mode  
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Table 4.4: Error for retrieved and derived parameters among a priori, a posteriori, and Glory
characterizationa.

Error in retrieved parameters

Entries V0 (%) reff (%) veff (%) mr mi ωA

A priori 100/100 80/80 80/80 .15/.15 .01/.05 .151/.198
Obs. I1 11./9.0 5.5/6.8 23/25 .015/.065 .0057/.0038 .037/.085
Obs. I2 4.1/5.5 1.8/4.4 10/18 .008/.037 .0041/.0032 .024/.073
Obs. P1 2.3/2.9 1.3/3.5 7.2/12 .005/.035 .0033/.0030 .019/.068
Obs. P2 4.9/6.2 1.9/4.9 11/19 .009/.040 .0044/.0034 .026/.076
Gloryb – 10 40 .02 – .03
aResults of our work are averaged values for three aerosol types and for solar zenith
angles from 40◦ to 75◦.
bReferred to Mishchenko et al. [2004].

for each aerosol mode uniquely depends on the light wavelength and aerosol microphysical

parameters including reff, veff, and mr and mi, although the mi impacts ωA most significantly

[Hansen and Travis, 1974]. Required derivatives of ωA to these parameters in the equation

(3.9) can be obtained from the linearized Mie code (section 2.2.2) integrated into the UNL-

VRTM. We calculated uncertainties in the ωA for each wavelength and each aerosol type,

and the averaged values are summarized in Table 4.4. Observations in these four scenarios

can retrieve ωA with the uncertainty of 0.037, 0.024, 0.019, and 0.026 for the fine mode,

and 0.085, 0.073, 0.068, and 0.076 for the coarse mode, respectively. This agrees with the

conclusion of Hasekamp and Landgraf [2005a] that the retrieval uncertainty for ωA can

be reduced by adding polarization measurementsThus, although , only the fine-mode ωA

retrieval with polarization involved can meet the accuracy requirements (0.03) for accurate

climate forcing estimates [Mishchenko et al., 2004]. We noted that the mean uncertainty in

the coarse-mode ωA exceeds 0.06 in all of these four scenarios, but higher accuracy may be

achieved under coarse-dominated conditions as shown in the following section. We also note

that our result contradicts with findings in Li et al. [2009] who demonstrated that AERONET

polarimetric measurements have no sensitivity to the imaginary part of the refractive index.
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This could pertain to the differences in assumptions of aerosol particle shape: sphere in this

study while spheroid in Li et al. [2009]. Dubovik et al. [2006] also found weak sensitivity of

polarization to the refractive index of non-spherical particles.

4.4 Sensitivity of Retrieval Error to AOD and fmfv

The performance of retrieval usually varies with aerosol conditions like the aerosol loading

and the prevalence of aerosol in either the fine or the coarse modes (e.g., fine-mode volume

fraction, fmfv). As a result, uncertainties in aerosol retrievals can depend much more strongly

on the AOD than they do on the properties of an individual aerosol model [Knobelspiesse

et al., 2012]. For the same reason, the inversion of refractive indices and ωA in the current

AERONET algorithm is confined to the condition when the 440-nm AOD is larger than 0.4

[Dubovik et al., 2000; Holben et al., 2006]. Our analysis above, which focused on three

aerosol types by a constant AOD value at 440 nm (τA440=1.0), is insufficient to represent

variable global conditions. At the same time, we also found noticeable variability of the

DFS components and a posteriori errors existing among three aerosol types with different

fmfv, especially for the coarse-mode parameters. Thus, it is necessary to investigate how

aerosol conditions affect the retrieval error, in order to answer the questions: : (1) Under

what aerosol conditions are the AERONET measurements (with and without polarization)

capable of yielding retrievals with sufficient accuracy? And (2) what aerosol conditions

can allow the retrieval for both fine and coarse aerosol modes simultaneously (hereafter

bi-modal retrieval)?

We expand our analysis for the τA440 ranging from 0.1 to 2.0 and for the fmfv from 0.1

to 0.9. In practice, the fmfv is inaccessible prior to inversion. Instead, we use the Ångström

exponent (AE) from 870 to 1020 nm together with τA440 to define the aerosol conditions,

because the AE in the longer pair of wavelengths is highly related to the fmfv [Schuster
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(c) the difference of DFS between (a) and (b). Simulations are for solar zenith angle of 55◦.
The top abscissa denotes Ångström exponent (AE).

et al., 2006] and immediately available from the AERONET direct sun measurements. With

the aerosol properties defined in the Table 4.3, the fmfv from 0.1 to 0.9 gives AE values

from 0.35 to 2.3. We exclude the scenarios of I2 and P2 in our following analysis, because

the scenario P1 demonstrates the most superior performance and is also the focus of our

algorithm development.

Figure 4.9a–b display the contours of DFS as a function of the AE (or fmfv) and τA440

in the scenarios I1 and P1, respectively. We found that the DFS decreases with an increasing

AE and fmfv for the same AOD. This is attributed to the fact that the coarse-mode parameters

are more difficult to retrieve than their fine-mode counterparts, restrained by their weaker

sensitivities to the Ialm and the DOLPpp. Thus, the decrease in the coarse-mode fraction

significantly reduces the aerosol information for coarse-mode parameters but retains the

information for fine-mode parameters, resulting in decreases in the total DFS. We also

notice from Figure 4.9a that the DFS increases with an increasing AOD in the scenario

I1. However, AOD change has less impact in the scenario P1 (Figure 4.9b). For example,
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the DFS values are lower than 14 when AOD < 0.4 in the scenario I1, whereas even larger

DFS can be found in the scenario P1 when AOD < 0.2. Therefore, we may expect that the

inversion in the scenario P1 will be capable to retrieve aerosol parameters in conditions

of lower aerosol loading, and may bring down the τA440 threshold of 0.4 from the current

AERONET inversion algorithm to retrieve the refractive index and ωA. Finally, as indicated

in Figure 4.9c, the addition of Ipp and DOLPpp in the inversion can add 2–5 pieces of useful

information. Such improvement occurs in all aerosol conditions but is more dominated when

enough coarse particles are present: fmfv < 0.5 (or AE< 1.6), in which the radiance-only

inversion usually yields a large retrieval error for the fine-mode aerosol.

In Figure 4.10, we show the contours of the a posteriori error ε̂ in the scenarios I1

and P1 for the individual fine-mode and coarse-mode parameters. Overall, observations in

scenarios P1 offer more accurate retrievals for all parameters in both the fine and the coarse

aerosol modes. In both scenarios, the ε̂ decreases for fine-mode parameters (left column)

and increases for coarse-mode parameters (right column) with increasing the AE (or fmfv)

for same τA440, indicating that the relative contribution of fine and coarse modes determines

the relative information of each mode. Extreme cases are fmfv of 1 or 0, i.e., the absence of

the coarse- or fine-mode aerosols, which certainly will only allow a mono-modal retrieval.

Thus, the bi-modal retrieval, especially for refractive indices, requires that aerosols reach

certain mixture conditions to contain enough information for both modes. For example in

the scenario I1, while the fine-mode reff can be well retrieved with 5% accuracy when the

fmfv > 0.2 at τA440 of 0.5 (Figure 4.10b), the fmfv > 0.3 is required to ensure the ε̂ < 0.02

in the fine-mode mr (Figures 4.10d). Comparing to the change of the fmfv, the change of

τA440 has less impact on the ε̂ of the PSD parameters; this impact occurs in low aerosol

loadings. For example, Figure 4.10f shows that a minimum of ∼0.4 for τA440 is required

in the scenario I1 to guarantee a retrieval error in the fine-mode ωA less than 0.04 when

fmfv = 0.5.
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Table 4.5: Required aerosol conditions (τA440 and AE) to achieve anticipated retrieval
accuracy < ε > for observations in scenario I1 and P1.

Scenario I1 Scenario P1

x < ε > τA440 AE τA440 AE

V f
0 10% >0.3 >1.5 aAll All

V c
0 10% <1.3 <2.2 All All

rf
eff 5% >0.3 >1.3 All All

rc
eff 10% All <2.0 All <2.2

vf
eff 20% >0.3 >1.5 All All

vc
eff 30% All <1.8 All <2.2

mf
r 0.02 >0.4 b>1.0 All All

mc
r 0.04 All <1.0 All <1.8

ω f
A 0.04 >0.6 >1.5 >0.2 >0.7

ωc
A 0.08 >0.2 <1.1 All <1.6

a‘All’ indicates conditions: 0.1 < τA440 < 2.0 and 0.35 < AE < 2.3;
b2Underlined bold indicate conditions that cannot allow bi-modal retrievals.

From the Figure 4.10, we can identify required aerosol conditions in terms of the AE

and τA440 in order to achieve certain anticipated accuracy < ε >, which are summarized

in Table 4.5. Clearly, observations with polarization can enable retrievals of equivalent

accuracy in a lower aerosol loading. For example, the retrieval accuracy of 10% for the V f
0

and rf
eff and 30% for the vf

eff requires τA440 to be larger than 0.3 for inversion in the scenario

I1 (Figure 4.10a–c). In contrast, inversion in the scenario P1 can easily ensure retrievals of

the same accuracy when τA440 is 0.1. For the fine-mode mr retrieval, an accuracy of 0.04

requires τA440 > 0.4 for the inversion I1 but τA440 > 0.2 for the inversion P1 (Figure 4.10d).

Moreover, the radiance-only inversion is unable to resolve the bi-modal mr and ωA under any

circumstance, because AE>1.5 is necessary for retrieving the fine-mode ωA (Figure 4.10f),

meanwhile AE<1.1 is required for its coarse-mode retrieval (Figure 4.10l). This agrees

with Dubovik et al. [2000] in that the retrieval of refractive indices for both fine and coarse

mode is essentially non-unique due to limited information in the AERONET (radiance-only)

observations. In contrast, observations in the scenario P1 can allow bi-modal retrievals of
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the mi and ωA when 0.7 < AE < 1.6 and τA440 > 0.2 (Figures 4.10f and 4.10l). Therefore,

our retrieval algorithm is designed to use observations of scenario P1 to retrieve bi-modal

refractive indices when τA440 and AE reach these criteria. In aerosol conditions beyond

the criteria, bi-modal PSD along with a mono-modal refractive index will be retrieved by

assuming the refractive index is independent of the aerosol mode.

4.5 Summary

In an effort to improve the AERONET inversion by including additional polarization mea-

surements, this chapter examines the potential microphysical aerosol information contained

in the AERONET photo-polarimetric observations. We have focused our analysis on how the

added polarization measurements impact the retrieval accuracy for the aerosol particle size

distribution (PSD), spectral refractive index, and single scattering albedo ωA. A numerical

testbed has been constructed to generate the synthetic AERONET radiance and degree of

linear polarization (DOLP) over 440, 675, 870, and 1020 nm. We considered four scenarios

of observations to that do or do not include the DOLP for the inversion, i.e., (I1) direct Sun

AOD and almucantar sky radiances, (I2) observations in the scenario I1 with additional

radiance measurements in the solar principal plane, (P1) observations in the scenario I2

plus polarization measurements in the solar principal plane, and (P2) observations in the

scenario I1 plus almucantar polarization. Measurements in the scenario I1 are those used

in current AERONET inversion algorithm, and thus represent a control experiment. For

each observation scenario, we also considered three aerosol types to represent general

aerosol climatology. A Bayesian statistical approach then was applied to relate information

contained in those synthetic data and retrieval errors in aerosol physical parameters to the

instrumental as well as the a priori characteristics. Then the error-normalized Jacobian,

degree of freedom for signal (DFS), and the a posteriori error in each individual retrieved
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parameter were presented as function of solar zenith angle for these observation scenarios.

The results show a remarkable increase in information by adding additional polarization

and/or radiances into the inversion. Overall, observations in the scenario P1 yield the highest

DFS, which is larger than that in the scenario I1 by 2–5 for all defined aerosol types. This

can be understood as polarization measurements in the solar principal plane, in comparing

with sky radiances in solar almucantar, have complementary sensitivities with respect to

retrieved aerosol parameters. Also, measurements in the principal plane allow a wider range

of scattering angles and supplies more information on aerosol backscattering. In scenario

P2, adding polarization in the solar almucantar offer an increase of ∼2 pieces of information

with DFS values slightly below those in scenarios I2. We also note that the DFS increases

with increasing solar zenith angle for all cases, resulting from more information contained

in observations of a wider range of scattering angle.

We also analyzed the DFS components and the a posteriori uncertainty for each individ-

ual retrieved parameter. As expected, the smallest retrieval errors were always found in the

scenario P1: 2.3% (2.9%) for the volume concentration, 1.3% (3.5%) and 7.2% (12%) for

the effective radius and effective variance, 0.005 (0.035) for the real part of refractive index,

and 0.019 (0.068) for the single scattering albedo in the fine (coarse) mode. These values

represent an error reduction from the scenario I1 of 79% (57%), 76% (49%), 69% (52%),

66% (46%), and 49% (20%), respectively. Uncertainties in retrieved parameters averaged

among these three aerosol types are summarized in the Table 4.4 for each observation

scenario. While agreeing with previous studies [Chowdhary et al., 2001; Waquet et al.,

2009; Mishchenko et al., 2007; Hasekamp and Landgraf , 2005a] in that poarimetric retrieval

can significantly improve the retrieval accuracy over the radiance-only retrieval, the retrieval

uncertainties for the P1 scenario in this theoretical study are smaller than those past results.

This indicates that the accurate retrieval with AERONET photo-polarimetric measurements

can allow us to retrieve more aerosol properties with the accuracy needed for long-term
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monitoring of the direct an indirect aerosol forcing of climate and for validating aerosol

retrievals from space polarimetric remote sensing.

Seeking to answer under what conditions the inversions can achieve a mode-resolved

aerosol refractive index and ωA, we further investigated how the AOD (τA440) and fine/coarse

modal domination (in terms of Ångström exponent, or AE) influence the retrieving accuracy

from observations in the scenarios I1 and P1. We found that adding principal-plane polariza-

tion measurements can increase the DFS by up to ∼5 in cases dominated by coarse-mode

particles (fmfv < 0.5), in which the radiance-only inversion usually yields larger retrieval

uncertainty for fine-mode aerosol. As a consequence, these photo-polarimetric observations

can enable accurate retrievals in a lower aerosol loading when the τA440 is 0.1, except for the

fine-mode mr retrieval that requires τA440 > 0.2. The analysis also agrees with Dubovik et al.

[2000] in that the radiance-only inversion is unable to resolve bi-modal mi and ωA under any

circumstance. However, observations in the scenario P1 can allow bi-modal retrievals of mi

and ωA when 0.7 < AE < 1.6. Such criteria can guide us in the practical retrieval algorithm

to determine whether a mono-modal or bi-modal retrieval of the aerosol refractive index

and ωA is possible. In aerosol conditions beyond the criteria, bi-modal PSD along with the

mode-independent refractive index will be retrieved.

Finally, it should be noted that in our analysis the aerosol particles in each mode are

assumed to be poly-disperse homogeneous spheres. Although the linearized T-matrix code

has been implemented in the forwrad model (UNL-VRTM), the simulation of scattering

properties for large non-spherical particles (for example spheroids) is still subject to com-

putational limitations. It has been shown by Dubovik et al. [2006] and Deuzé et al. [2001]

that information content in the polarimetric retrieval of refractive index for the coarse mode,

especially non-spherical particles, is limited. Therefore, the results of our analysis are only

applicable to the spherical aerosol particles; the information content and retrieval accuracy

may be degraded for non-spherical coarse aerosol type. Our future efforts will implement
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non-spherical treatment in order to more realistically represent mineral dust aerosols.
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CHAPTER 5

CASE DEMONSTRATIONS

5.1 Introduction

As suggested by the information content analysis in Chapter 4, adding polarization data into

the AERONET inversion will enable the retrieval of bi-modal refractive indices and SSA

even for 440-nm AOD as low as 0.2 when the Ångström exponents (AE) is between 0.7 and

1.6. We also found that the uncertainty in the retrieval can be reduced by up to 79% (57%),

76% (49%), 69% (52%), 66% (46%), and 49% (20%) for the fine-mode (coarse-mode) V0,

reff, reff, mr, and SSA, respectively. In this chapter, our new research algorithm is applied to

a suite of photo-polarimetric measurements taken from the new-generation SunPhotometer

at the AERONET station of Beijing_RADI. Below I present the selected cases and the a

priori characterization in section 5.2, and discuss the fitting residuals in section 5.3 and the

retrieved results in section 5.4. A contrast analysis is presented in section 5.5 to demonstrate

the superiority of the inversion involving polarization.

5.2 Selected Cases and the a priori Characterization

We applied our algorithm to the radiance and polarization measured by the CIMEL CE318-

DP SunPhotometer (instrument #350) at Beijing_RADI (116.37◦E, 40.00◦N), which is a

joint station of the AERONET and the Sun/sky-radiometer Observation NETwork (SOnet).
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The AOD measurements are designated from the field-calibrated level 1.5 products. Mea-

surements of the direct and diffuse radiance as well as DOLP were performed at eight

spectral wavelengths, with the measurements at 440, 675, 870, and 1020 nm chosen for the

inversion. The sky radiances were calibrated following Li et al. [2008] and are reported as

values normalized by the extra-terrestrial solar irradiance. The DOLP were calibrated in

the laboratory following Li et al. [2010]. Measurement uncertainties were estimated to be

0.01–0.02 for AOD, 3–5% for radiance, and 0.01 for DOLP.

The a priori knowledgeis characterized with the climatology of aerosol properties

derived from the version 2.0 AERONET daily inversion products of the same site during

2011–2013. The PSD parameters were analyzed with 299 available daily inversions when

the 440-nm AOD is larger than 0.2. The refractive index and SSA were analyzed with

215 inversions when the 440-nm AOD is larger than 0.4. In Figure 5.1, the variables are

shown as functions of the fine-mode-fraction in terms of the aerosol volume, or fmfv. It

can be found that the fmfv from 0.2 to 0.6 accounts for ∼70% of occurrences (Figure 5.1a),

indicating aerosol over this site is dominated by the mixed fine-coarse aerosols. The AE

derived from the 1020-nm and 870-nm AOD pairs is more linearly related to the fmfv than

the 440-nm and 870-nm AE (Figure 5.1b), because AE over the longer-wavelength pairs

is more sensitive to the component fraction and less sensitive to the change of component

particle size [Schuster et al., 2006]. From Figure 5.1c–d, we determine the a priori state (xa)

of PSD parameters for both fine and coarse modes based on their mean values across all fmfv

Table 5.1: Main characteristics of case studies in this work.

Case
Date & Time

UTC
θ0(◦) τA440

AE
(870/1020nm)

OMI NO2
(molec/cm2)

OMI O3
(DU)

Vapor
(cm)

A 02/22/2011 04:30 50.3–50.6 3.46 1.57 6.3×1016 356.5 0.86
B 03/17/2013 03:25 43.0–42.2 2.74 1.39 4.2×1016 332.7 0.76
C 03/22/2013 07:23 57.0–60.0 1.05 1.01 4.1×1016 386.7 1.01
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Figure 5.1: Climatology of aerosol properties over the Beijing_RADI site derived from
AERONET daily inversion products during 2011–2013. The variables are shown as functions
of the fine-mode-fraction in terms of the aerosol volume, or fmfv. Eight bins are applied for
fmfv from 0 to 0.8 with an increment of 0.1. The six panels are: (a) Histogram of used data;
(b) the Ångström exponents (AE) derived from from 870 to 1020 nm (red) and from 440 to
870 nm (green) wavelength pairs; (c) the effective radius for aerosols in the fine (red) and
coarse (green) mode; (d) the effective variance in the fine (red) and coarse (green) mode
(green); (e) the real part of the refractive index at 440, 675, 870, and 1020 nm; and (f) the
imaginary part of the refractive index and aerosol SSA at the same wavelengths.
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intervals. For refractive index, we pick their mean values when fmfv < 0.2 for the coarse

mode and when fmfv > 0.6 for the fine mode (Figure 5.1e–f). Along with determining xa,

we estimate the a priori error (εa) for each parameter (very-right column of Table 5.4) is

determined as two standard deviations for a 95% confidence interval. Then we build Sa with

zero off-diagonal elements by neglecting the error correlation between retrieved parameters.

In addition, we found in the Figure 5.1e that the mr retrievals decrease quasi-linearly with the

increasing fmfv, which indicates the mr has distinct values between aerosols in the fine and

the coarse modes over this site. It is expected that the mr in the mixed aerosol situations, e.g.,

0.3 < fmfv < 0.6, is also expected to have the separated values for fine- and coarse-mode

particles.

With the above a priori characterization, we performed retrievals for three cases, re-

spectively, on 22 February 2011, 17 March 2013, and 22 March 2013 (hereinafter, cases A,

B, and C). A brief characterization of these cases is presented in Table 5.1. Indeed, these

cases represent different aerosol mixtures (according to their AE values): (A) dominated by

fine particles, (B) well-mixed, and (C) dominated by large particles. Moreover, the present

algorithm is designed to run with two inversion scenarios: the first includes DOLP, while

the second ignores it—hereafter, we label these scenarios type P and I, respectively. An

examination of the difference in the fitting results between these two types of inversion

would indicate the value of DOLP in improving the retrieval. For all cases, optimal solutions

are achieved within less than thirty iterations, and further iterations yield negligible reduction

of the cost function.
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5.3 Fitting Residuals

The fitting residual characterizes the disagreement between the model and the measurement.

The individual sky radiance residual is defined as a relative quantity:

eI = (Icalc− Imeas)/Imeas (5.1)

where Icalc and Imeas denote the calculated (using the retrieved aerosol parameters) and

measured sky radiances, respectively. In contrast, the fitting residuals for AOD and DOLP

are defined by:

eAOD = AODcalc−AODmeas, (5.2)

eDOLP = DOLPcalc−DOLPmeas. (5.3)

The residual errors for AOD, sky radiance, and DLOP are mean values of |eI|, |eAOD|, and

|eDOLP|, respectively.

Because similar fitting results are found for these three aerosol types (cases), we illustrate

in Figure 5.2 the fitting results for sky radiances and DOLP only for the case B. We found that

retrievals from both types of inversion can well reproduce these AERONET measurements

of AOD and sky radiances. Fitting residuals from both types of inversions for individual

ALM radiance measurement lie within the experimental uncertainty of 5%, although the

fit of radiances from the P-type inversion is slightly deteriorated: residual error is 1.60%

for the P-type compared 1.46% for the I-type inversion. However, the DOLP residual error

can be much larger for the I-type inversion than that for the P-type inversion: 0.011 versus

0.004. The statistical residual errors for all three cases are displayed in Table 5.2. As

these fitting results show, without the constraints imposed by polarization, the retrieved
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Figure 5.2: Fittings of AERONET measurements: (a) Measured almucantar normalized
radiances. (b) Measured DOLP in the solar principal plane. (c) Fitting residuals for
almucantar radiances by the P-type inversion (solid curves) and I-type inversion (crosses).
(d) Same as panel (c), but for fitting the residuals of principal-plane DOLP. Four colors
indicate different wavelengths: blue for 440 nm, green for 675 nm, red for 870 nm, and
orange for 1020 nm. Gray areas in panels c–d indicate the measurement uncertainty.

aerosol microphysical parameters could result in larger error in polarization simulations,

highlighting the necessity to include polarization in the inversion as an additional source of

constraint.

5.4 Retrieved Aerosol Properties

Figure 5.3 displays our retrievals from both I-type and P-type inversions for the aerosol vol-

ume PSD and complex refractive indices. Also shown are the retrievals from the AERONET

Dubovik00&06 inversion. Table 5.3 presents the values of the (P-type inversion) retrieved

PSD parameters including V0, reff, veff, rv, and σg for both fine and coarse modes, and
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Table 5.2: Summary of measurement fitting errors.

Case Inversion type
AOD

residual error
Radiance

residual error
DOLP

residual error

A I 0.0008 1.78% 0.008
P 0.0015 1.85% 0.005

B I 0.0007 1.46% 0.011
P 0.0005 1.60% 0.004

C I 0.0006 2.67% 0.020
P 0.0021 3.11% 0.009

corresponding values from the Dubovik00&06 inversion. The PSD in these cases consists

of separated fine and coarse aerosol modes. In the cases dominated by fine-mode aerosol

(A) and well-mixed aerosol (B), our retrievals agree with the AERONET inversions, though

marginal differences are found in the effective radius and standard deviation. In case C dom-

inated by coarse-mode aerosols, our algorithm results in a smaller coarse mode reff than that

from the AERONET algorithm; this may be caused by our assumption of spherical particles,

whereas the Dubovik00&06 algorithm considers non-sphericity for coarse particles. We

did not find significant differences in the aerosol volumes between our algorithm and the

Dubovik00&06 algorithm. As Figure 5.3b–c indicate, fine-mode volume retrieved by the

P-type inversion is lower than that retrieved by the I-type inversion; such an overestimation

from radiance-only inversion was also found by Li et al. [2009].

In contrast with the Dubovik00&06 algorithm, which retrieves a single refractive index

for each spectrum that is independent of aerosol size, our retrieved aerosol refractive indices

pertain to the corresponding fine and coarse modes. In order to get a general impression

of the agreement between our retrievals and the AERONET inversions, we compute the

bulk refractive index that is a weighted average by the particle volume of each mode in our

retrieval [e.g., Wang and Martin, 2007]. According to Figure 5.3d–f, while the bulk value

of mr is in good agreement (differences < 0.03) with that of the Dubovik00&06 retrievals,

our retrieval allows for a mode-resolved characterization of aerosol refractive index. For
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Figure 5.3: Retrieved aerosol volume size distribution (PSD) and refractive index compared
with Dubovik00&06 inversions (gray). P-type and I-type inversions are represented by green
and red colors, respectively. In panels d–i, the retrievals are shown for aerosols in both fine
(dotted) and coarse (dashed) modes, as well as bulk averages (solid). The PSD relevant
quantities for panels a–c are summarized in Table 5.3.

instance, the aerosol mr has values 1.5–1.6 in the coarse mode, which is larger than that

in the fine mode (1.4–1.5). A T-Test using the corresponding retrieving standard errors

indicates a statistical significance level of about 98% for the difference of real-part refractive

indices between the fine and coarse modes. In addition, we found that the P-type inversion

usually yields higher values of mr compared to the I-type inversion; this finding agrees with

Li et al. [2009] in that the radiance-only inversion underestimates mr.
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Figure 5.4: Same as Figure 5.3, but for derived aerosol SSA and Asy.

According to Figure 5.3g-–i, the bulk mi retrieved by our algorithm is consistent overall

with that from the Dubovik00&06 algorithm, with both retrievals showing similar spectral

dependencies. One exception is for case C; mi at 440 nm is about 0.01 from our algorithm but

is about 0.02 with the Dubovik00&06 algorithm. As expected, our inversion algorithm also

offers mode-resolved mi. We notice in our retrieval that mi shows an increasing dependence

on the spectral wavelength for the fine mode but a decreasing tendency for the coarse mode.

In the forward modeling framework, the aerosol macrophysical optical properties act

as intermediate model parameters to link the aerosol microphysical characteristics to the

radiation fields. These macrophysical optical parameters include but are not limited to the

aerosol SSA (ωA), the scattering phase function, and the asymmetry factor (Asy). These

quantities do not appear in the state vector; instead, they can be derived from the retrieved

microphysical parameters, and are thus called derived or intermediate parameters. In Figure

5.4, we present ωA and Asy from our retrieval, and the comparison with their counterparts
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Table 5.3: PSD-related parameters (as illustrated in Figure 5.3) retrieved by our P-type
inversion, compared with values from the AERONET Dubovik00&06 inversion.

Case A Case B Case C

x Units P-type AERONET P-type AERONET P-type AERONET

V f
0 µm3µm−2 0.41 0.36 0.28 0.31 0.10 0.09

rf
eff µm 0.215 0.208 0.223 0.201 0.163 0.156

vf
eff – 0.26 0.32 0.23 0.32 0.30 0.33

rf
v µm 0.242 0.240 0.246 0.232 0.186 0.179

σ f
g – 1.62 1.69 1.57 1.69 1.67 1.70

V c
0 µm3µm−2 0.24 0.21 0.39 0.32 0.28 0.26

rc
eff µm 2.02 2.01 2.05 2.26 2.24 2.61

vc
eff – 0.59 0.53 0.55 0.38 0.75 0.50

rc
v µm 2.55 2.44 2.57 2.65 2.97 3.28

σ c
g – 1.98 1.92 1.94 1.76 2.12 1.89

from the Dubovik00&06 inversion. In our retrieval, bulk values of ωA and Asy are again

calculated by a scatter-weight averaging of the fine and coarse mode values. We found that

the bulk ωA and Asy from our algorithm and the Dubovik00&06 algorithm agree very well.

However, our retrieved coarse-mode ωA varies from 0.7 to 0.9, increasing with wavelength.

In contrast, the retrieved fine-mode ωA runs close to 0.9.

5.5 Improvement over Radiance-Only Retrievals

The above comparisons of retrieval results confirm that both P- and I-type inversions by our

algorithm can generate solutions quite consistent with the current Dubovik00&06 algorithm.

In order to demonstrate the improvements in the retrieval by including polarization, we

compare the retrieval errors between the P-type and I-type inversions in Table 5.4 for

individual aerosol parameters. Also compared are the errors in the derived ωA and Asy.

Clearly, the P-type inversion yields lower retrieval errors for all the retrieved and derived

parameters; this is confirmed by the theoretical analysis in Chapter 4 of this thesis. The key

points from the comparison are:
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(i) Polarization measurements provide important constraints in improving the retrieval

of V0, reff, and veff for both fine and coarse aerosol modes. For these three cases, the errors

in the retrieved V0 with polarization are less than 3% for the fine mode and less than 5% for

the coarse mode, representing a significant decrease from their counterparts (∼15% and

∼10%) in the I-type inversion. Adding polarization can also decrease the error in reff of

both fine and coarse modes from 8–14% for the I-type inversion to 3% and below. Errors in

veff retrieved by the P-type inversion are 8–12% for aerosol in the fine mode and 11–26% in

the coarse mode, whereas they can exceed 50% with the I-type inversion.

(ii) Polarization measurements also provide useful constraints in improving the refractive

index retrievals. The most significant improvement is found in the fine-mode mr, where

the error is lower than 0.01 for the P-type inversion, compared to 0.02–0.03 for the I-type

inversion. The error in the coarse-mode mr from P-type inversion ranges from 0.04 to 0.06,

depending on the prevalence of coarse-mode particles. For retrieving mi, the inclusion

of polarization reduces the error by 10–30%, a value also depending on coarse-mode

dominance.

(iii) Adding the polarization yields better estimates of the aerosol SSA and Asy for both

aerosol modes. From P-type inversion, the errors in the retrieved ωA are lower than 0.02 for

aerosols in the fine mode and 0.06 for aerosols in the coarse mode, representing a 10–40%

decrease from the I-type inversion. As expected, errors in the Asy also reveal a 30–50%

decrease.

5.6 Summary

In this chapter, we applied the new algorithm to a suite of photo-polarimetric measurements

taken from the new-generation SunPhotometer at the Beijing_RADI AERONET station. In

order to demonstrate the importance of adding polarization measurements, we performed
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Table 5.4: Errors on the retrieved and derived parameters from both types of inversiona.

Case A Case B Case C

x ε̂P ε̂I ε̂P ε̂I ε̂P ε̂I εa

V f
0 1.9% 12% 2.1% 13% 2.9% 19% 100%

rf
eff 1.4% 7.5% 1.3% 8.3% 2.3% 12% 50%

vf
eff 8.4% 27% 8.9% 31% 12% 29% 60%

mf
r 0.005 0.016 0.006 0.018 0.008 0.027 0.14

mf
i 0.002 0.002 0.003 0.004 0.004 0.006 0.009

ω f
A 0.010 0.011 0.016 0.019 0.020 0.032 –

Asyf 0.003 0.005 0.003 0.005 0.004 0.007 –
V c

0 4.7% 14% 3.2% 10% 3.0% 8.8% 100%
rc

eff 6.7% 16% 3.3% 7.4% 2.0% 6.0% 50%
vc

eff 26% 53% 16% 42% 11% 30% 60%
mc

r 0.060 0.068 0.052 0.063 0.037 0.056 0.08
mc

i 0.008 0.009 0.005 0.006 0.003 0.005 0.011
ωc

A 0.059 0.068 0.044 0.055 0.038 0.044 –
Asyc 0.024 0.032 0.017 0.024 0.012 0.021 –
aε̂P and ε̂I are retrieval error respectively from the P-type and I-type inversions, εa
is the a priori error.

aerosol retrievals from radiance measurements only (the I-type inversion), in addition to the

retrievals using both radiance and polarization measurements (the P-type inversion). We

found that, for both types of inversion, the fitting errors for the AOD and sky radiance are

much smaller than the calibration uncertainties (0.02 for AOD and 5% for sky radiance).

Also, the fitting errors of the degree of linear polarization (DOLP) with the P-type inversion

are much smaller than the calibration error (∼0.01). However, the DOLP fitting errors

in the I-type inversion usually exceed 0.01, and even reach 0.04 for many individual

measurements in the case dominated by coarse aerosols, which highlights the necessity to

include polarization in the inversion as an additional source of constraint.

Our retrieval results are generally consistent with the AERONET inversion products, but

we found distinct differences between the values of the refractive index and SSA for the fire-

and coarse-mode aerosols. For these three cases selected for our study, we found that the

retrieved real part refractive index is about 1.5–1.6 in the coarse mode, which is higher than
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those for the fine mode, 1.4–1.5. Also, the coarse-mode aerosols are more absorbing than

the fine-mode ones.

We also compared the retrieval error for each retrieved parameters between the I-type and

P-type inversions. A comparison analysis indicates that the retrieval error can be reduced by

at least 50% in PSD parameters, by 10–30the refractive index components, and by 10–40%

in the aerosol SSA. These error reductions depend on the fine/coarse-mode fraction, specifics

of instrumentation, and aerosol properties. These improvements in the P-type inversion are

consistent with the theoretical analysis in Chapter 4 of this thesis.

The mode-specific retrieval of aerosol microphysical and optical properties not only

facilitates the evaluation of atmospheric chemistry models and the validation of aerosol

products from satellite sensors with polarization capability (the challenges we present

in Introduction), but also can benefit the analysis of aerosol radiative impacts and aerosol

chemical compositions. Aerosol radiative forcing depends on both particle size and refractive

index [Nemesure et al., 1995; Mishchenko et al., 2004]. Nemesure et al. [1995] have shown

that, for sulfate particles, a change of particle size from 0.15 µm to 0.25 µm could lead to

an 80% increase of negative forcing. Mishchenko et al. [2004] found that accuracies of 10%

in reff, 50% in veff, and 0.02 in mr are required for radiative forcing calculations that will be

able to determine aerosol contributions to the Earth’s total energy balance. According to

the real retrievals in this chapter and the theoretical analysis in Chapter 4, the accuracies

suggested in Mishchenko et al. [2004] can only be attained by the integrated use of radiance

and polarization. Accurate PSD and real part of refractive index are also needed to identify

the aerosol chemical composition, which can be used to derive the aerosol hygroscopicity,

to diagnose the efficiency of cloud condensation, and to distinguish anthropogenic aerosol

species from natural ones [Wang et al., 2008]. Indeed, efforts have been made by using the

current AERONET inversions to derive aerosol composition [Schuster et al., 2005; Arola

et al., 2011; Li et al., 2013]. Therefore, with more information on the refractive index, our
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inversion is expected to provide more robust estimates of the aerosol chemical components.

The promising results in this study are obtained from the initial development and

preliminary applications of a new algorithm targeted for the retrieval of aerosol properties

from new-generation AERONET measurements. Future developments will include, but

not be limited to, the treatment of non-spherical large aerosol particles like mineral dust,

and the consideration of tri-modal aerosols for special situations. While the bi-lognormal

PSD can well represent the aerosol size spectrum in most cases, future research efforts will

include the implementation of tri-modal aerosol mixtures in situations of cloud formation

[Eck et al., 2012] or volcanic aerosols [Eck et al., 2010]. Moreover, extensive retrievals for

a longer period of time will also be performed over sites where CE318-DP SunPhotometer

instruments have been installed (i.e., Beijing_RADI and Lille). ). Historically an issue with

the Cimel polarization measurements has been their limited accuracy [Li et al., 2010]. It is

thus worthwhile to investigate what level of accuracy in DOLP measurements is necessary

to contribute useful information for the retrieval. This question is important not only for

the historical polarization measurements by the older Cimel SunPhotometer, but also for

providing guidance to the new instrument design.
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CHAPTER 6

CONCLUSIONS AND OUTLOOK

6.1 Conclusions

Aerosols have been recognized as major components of the Earth’s climate system, influ-

encing the radiative budget, clouds, and precipitation processes. An accurate assessment of

these effects requires realistic representation of the aerosol loading and distribution across

the globe, as well as the characteristics of the aerosol particle size distribution and chemical

composition (refractive index).

The objective of this thesis is to contribute an improved research algorithm retrieving

aerosol microphysical properties from AERONET measurements of light radiance and

polarization, with emphasis on elucidating the potentially important role of polarization

measurements. As outlined in section 1.2, specific investigations towards this research

goal are: the development of an retrieval algorithm that integrates a rigorous radiative

transfer model (Chapter 2) and statistical optimized inversion (Chapter 3), the examination

of potential aerosol information contained in the AERONET polarizaton measurements

(Chapter 4), and the application of our designed inversion algorithm to the real AERONET

measurements (Chapter 5). Below, I briefly summarize the contributions of this thesis by

these three investigations.
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6.1.1 UNL-VRTM and new AERONET inversion algorithm

The UNified Linearized Vector Radiative Transfer Model, or UNL-VRTM integrates the

linearized codes computing vector radiative transfer (VLIDORT) and scattering of spherical

(LMIE) and non-spherical (LTMATRIX) particles, hyper-spectral treatment for air molecular

scattering and gaseous absorption, and models describing bidirectional surface reflectance

and polarization (BRDF/BPDF). As shown in Chapter 2, the direct coupling of these

components by UNL-VRTM allows it not only able to compute the four Stokes parameters

and degree of linear polarization (DOLP) with high accuracy and high spectral resolution,

but also to simultaneously and analytically generate sensitivities of these Stokes parameters

with respect to aerosol parameters of both the fine and coarse modes. By inclusion of

HITRAN and other molecular spectroscopy data for atmospheric trace gases, the UNL-

VRTM is also able to perform line-by-line calculation of gas absorption, thus providing

another opportunity for the future study of the effect of absorbing gases (such as SO2, NO2,

O3, and water vapor) on the aerosol retrieval. Although the UNL-VRTM is used to simulate

the AERONET measurements in this work, the module-based structure of UNL-VRTM

allows a broad application to the remote sensing observations from other platforms.

In Chapter 3, I have presented a new algorithm to retrieve both fine- and coarse-mode

aerosol properties from multi-spectral and multi-angular solar polarimetric radiation fields

measured by AERONET including additional spectra of polarization observations. The

retrieval algorithm uses UNL-VRTM and incorporates the statistical optimized inversion

to retrieve aerosol parameters pertaining to a bi-lognormal particle size distribution (PSD),

including the aerosol volume concentration, effective radius and variance, and complex

indices of refraction. While the new algorithm has heritage from the existing AERONET

inversion algorithm in using multiple a priori constraints, it is different from the existing

AERONET algorithm in that: (a) a bi-modal lognormal PSD (instead of 22 size bins) is
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assumed; (b) the spectral refractive indices are retrievable for both fine and coarse modes.

The mode-separated aerosol microphysical and optical retrievals can benefit the analysis

for aerosol chemical compositions and climate radiative impacts study of aerosol, and most

importantly, can thereby facilitate the evaluation of atmospheric chemistry models and the

validation of aerosol products from satellite sensors with polarization capability.

6.1.2 Potential information contained in AERONET polarization

In Chapter 4, I have examined the potential microphysical aerosol information contained

in the AERONET photo-polarimetric observations. The analysis focused on how the

added polarization measurements impact on the retrieval accuracy the in aerosol particle size

distribution, spectral refractive index, and single scattering albedo. We used the UNL-VRTM

to generate the synthetic AERONET spectral radiance and DOLP, as well as their sensitivities

with respect to these aerosol properties. Then, we quantify the aerosol infomation content in

various observation scenarios in terms of degree of freedom for signal (DFS) and a posterior

error.

The results show a remarkable increase in information by adding additional polarization

and/or radiances into the inversion: an overall increase of 2–5 of DFS comparing with

radiance-only measurements. Correspondingly, smallest retrieval errors are found in the

added-polarization scenario: 2.3% (2.9%) for the fine-mode (coarse-mode) aerosol volume

concentration, 1.3% (3.5%) for the effective radius, 7.2% (12%) for the effective variance,

0.005 (0.035) for the real part refractive index, and 0.019 (0.068) for the single scattering

albedo. These errors represent a reduction from their counterparts in the radiance-only

scenario of 79% (57%), 76% (49%), 69% (52%), 66% (46%), and 49% (20%), respectively.

We have further investigated those retrieval errors over a variety of aerosol loading and

fine/coarse-mode prevalence (section 4.4), which indicates that the combined use of radiance
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and polarizatuon observations can yield the retrieval of refractive index and single scattering

albedo for both fine and coarse aerosol modes, when AOD at 440 nm is larger than 0.2 and

870/1020-nm Ångström exponent ranges between 0.7 and 1.6.

6.1.3 Application to real retrieval

In Chapter 5, we have applied our new AERONET inversion algorithm to a suite of real cases

over Beijing_RADI site. We found that our retrievals are overall consistent with AERONET

operational inversions, but can offer mode-resolved refractive index and SSA with acceptable

accuracy for the aerosol composed by spherical particles. Along with the retrieval using

both radiance and polarization, we also performed radiance-only retrieval to demonstrate

the improvements by adding polarization in the inversion. Contrast analysis indicates that

with polarization, retrieval error can be reduced by over 50% in PSD parameters, 10–30%

in the refractive index, and 10–40% in SSA, which is consistent with theoretical analysis

presented in Chapter 4.

6.2 Outlook and Future Work

The promising results in this study are obtained from the initial development and prelimi-

nary applications of a new algorithm targeted for the retrieval of aerosol properties from

new-generation AERONET measurements. Future developments will include, but not be

limited to, the treatment of non-spherical large aerosol particles like mineral dust, and

the consideration of tri-modal aerosols for special situations. Another interesting research

topic is to investigate the chemical composition from the multi-spectral and multi-angular

photo-polarimetric measurements. Below, I list particularly promising directions for future

investigations.
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1. Implement the consideration of non-spherical dust. Conclusions of of this work are

based on consideration of spherical aerosol particles. However, the studies by Dubovik

et al. [2006] and Deuzé et al. [1993, 2001] revealed serious limitation of polarimetric

retrieval of the properties for coarse, especially non-spherical aerosols. Therefore,

treatment of non-spherical optical scattering properties is necessary to improve our

understanding on how polarization can benefit the retrieval for dust aerosols.

2. While the bi-lognormal PSD can well represent the aerosol size spectrum in most

cases, future research efforts will include the implementation of tri-modal aerosol

mixtures in situations of cloud formation [Eck et al., 2012] or volcanic aerosols [Eck

et al., 2010].

3. Explore the potential use of multi-spectral and multi-angular photo-polarimetric

measurements for the retrieval of aerosol chemical composition. This will benifit the

source identification of species-specified aerosols.

4. Last but not least, extensive retrievals for a longer period are on-going over sites

where CE318-DP SunPhotometer instruments have been installed (i.e., Beijing_RADI

and Lille). Such long-term retrievals will provide more robust resources for studying

the aerosol climatology.
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APPENDIX A

DERIVATIONS OF TRANSFORMATION VECTOR ΠΠΠ

This appendix presents the derivations of equations (2.19) and (2.21) and the expressions

in Table 2.1 and Table 2.2. It should be noted that all optical parameters are functions of

wavelength and defined for each atmospheric layer, but we omit indicating symbols for

wavelength and air layer for simplicity.

Let x be an aerosol microphysical parameter. The aerosol extinction and scattering

optical thickness (τA and δA), single scattering albedo (ωA), and Greek coefficient matrix

(B j
A) are functions of x. However, the gaseous absorption and Rayleigh scattering parameters

are independent of x.

First, we transform equation (2.18) as below:

φx =
x
τ
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τ
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These expressions are linear combinations of φ ′x, ϕ ′x, and ΨΨΨ′ jx (as defined by equation

(2.20)), where

[
φ
′
x,ϕ ′x,

〈
ΨΨΨ′ jx
〉

j=1,J

]T
=

x
∂τA
∂x

,x
∂δA
∂x

,

〈
x

∂B j
A

∂x

〉
j=1,J

T

(A.4)

We then can write above equations (A.1)–(A.3) into vector formulism (as equation (2.19):

[
φx,ϕx,

〈
ΨΨΨ j

x
〉

j=1,J

]T
= ΠΠΠ

[
φ
′
x,ϕ ′x,

〈
ΨΨΨ′ jx
〉

j=1,J

]T
(A.5)

where ΠΠΠ is a matrix comprising the relevant coefficients, as noted in equation (2.21).

Equations (A.5) and (2.21) then act as a universal formulation for preparing linearized

inputs of optical property for VLIDORT. Computation of
[

φx,ϕx,
〈

ΨΨΨ j
x

〉
j=1,J

]
can then be

achieved by the calculation of
[

φ ′x,ϕ ′x,
〈

ΨΨΨ′ jx

〉
j=1,J

]
for a given parameter x.

Let us first consider the derivation of
[

φ ′x,ϕ ′x,
〈

ΨΨΨ′ jx

〉
j=1,J

]
for certain aerosol optical

properties in a given atmospheric layer, i.e., τA, ωA, and β k
A, where β k

A indicates one of the

elements in the kth aerosol scattering Greek matrix Bk
A.
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For x = τA, we have

φ
′
x = τA

∂τA
∂τA

= τA (A.6)

ϕ
′
x = τA

∂δA
∂τA

= τAωA (A.7)

ΨΨΨ′ jx = τA
∂B j

A
∂τA

= 000 (A.8)

For x = ωA, we have

φ
′
x = ωA

∂τA
∂ωA

= 0 (A.9)

ϕ
′
x = ωA

∂δA
∂ωA

= ωAτA (A.10)

ΨΨΨ′ jx = ωA
∂B j

A
∂ωA

= 000 (A.11)

For x = β k
A, we have

φ
′
x = β

k
A

∂τA

∂β k
A
= 0 (A.12)

ϕ
′
x = β

k
A

∂δA

β k
A

= 0 (A.13)

ΨΨΨ′ jx = β
k
A

∂B j
A

β k
A

=


δAβ k

A
β k if j = k

0 if j 6= k
(A.14)

Expressions in Table 2.1 are then derived by substituting equations (A.6)–(A.14) into

equation (A.5).

The UNL-VRTM integrates the VLIDORT with linearized Mie/T-matrix codes, and this

combination allows us to generate Stokes vectors and associated analytical Jacobians with

respect to aerosol microphysical parameters for two aerosol modes. Thus, we must supply the
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[
φ ′x,ϕ ′x,

〈
ΨΨΨ′ jx

〉
j=1,J

]
quantities for all such parameters. We give an example here, assuming

that the aerosols are bimodal, with two lognormal size distributions described by geometric

standard deviations (σ f
g and σ c

g ), geometric median radii (rf
g and rc

g), and non-sphericity

parameters (ε f and εc) for the fine and coarse modes. We note that ε is available only

when non-spherical particles are assumed (T-matrix code is applied). Complex refractive

indices are mf
r−mf

ii and mc
r −mc

i i. Given these microphysical properties, the linearized

Mie/T-matrix codes will compute for each mode the scattering and extinction efficiencies

(Qsca and Qext), the set of expansion coefficients (B j
A) of scattering phase matrix, as well

as the derivatives of these quantities with respect to these microphysical properties. For

a wide size range of aerosol particles, which enable am about 100% accumulated value

for the bi-lognormal probability function, the optical thickness for aerosol extinction and

scattering and the associated Greek matrix coefficients within for one atmospheric layer can

be calculated through

τA = τ
f
A + τ

c
A =

3V f
0Qf

ext

4rf
eff

+
3V c

0 Qc
ext

4rc
eff

(A.15)

δA = δ
f
A + δ

c
A =

3V f
0Qf

sca

4rf
eff

+
3V c

0 Qc
sca

4rc
eff

(A.16)

B j
A =

δ f
ABf j

A + δ c
ABc j

A

δ f
A + δ c

A
(A.17)

We can compute vector
[

φ ′x,ϕ ′x,
〈

ΨΨΨ′ jx

〉
j=1,J

]
for a given parameter by differentiating

above equations (A.15)–(A.17). For x = V f
0 as an example:

φ
′
x = V f

0
∂τA

∂V f
0
= V f

0
3Qf

ext

4rf
eff

= τ
f
A (A.18)

ϕ
′
x = V f

0
∂δA

∂V f
0
= V f

0
3Qf

sca

4rf
eff

= δ
f
A (A.19)
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ΨΨΨ′ jx = V f
0

∂B j
A

∂V f
0
=

δ f
A

δA
(Bf j

A−B j
A) (A.20)

And similarly for x = rf
g, we have

φ
′
x = τ

f
A

(
rf

g

Qf
ext

∂Qf
ext

∂ rf
g
−

rf
g

rf
eff

∂ rf
eff

∂ rf
g

)
(A.21)

ϕ
′
x = δ

f
A

(
rf

g

Qf
sca

∂Qf
sca

∂ rf
g
−

rf
g

rf
eff

∂ rf
eff

∂ rf
g

)
(A.22)

ΨΨΨ′ jx =
ϕ ′x
δA

(Bf, j
A −B j

A)+ rf
g

∂Bs j
A

∂ rf
g

(A.23)

In a similar fashion, we can obtain the vector
[

φ ′x,ϕ ′x,
〈

ΨΨΨ′ jx

〉
j=1,J

]
for other fine-mode

aerosol parameters including τ f
A, ω f

A, V f
0 , mf

r, mf
i , rf

g, σ f
g, and ε f (as listed in Table 2.2). For

coarse-mode aerosol parameters, the derivations are the same with superscript ‘s’ replaced

by ‘c’.

We have implemented various aerosol-loading vertical profiles into the testbed, including

uniform, exponential-decreasing, and quasi-Gaussian profile shapes. For the uniform profile,

aerosols are assumed evenly distributed with height. The layer AOD for the exponential-

decreasing profile follows form

∫ z

+∞

τA(z)dz = τa0 exp
(
− z

H

)
(A.24)

where τa0 is the columnar AOD, and H is a scale height parameter. The quasi-Gaussian

profile is derived from a generalized distribution function [Spurr and Christi, 2014]

τA(z) = K
exp(−γ|z− zpeak|)

[1+ exp(−γ|z− zpeak|)]2
(A.25)

where K is a constant related to τa0, γ is related to half-width constant, and zpeak is the height
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having peak loading. Derivatives of layer aerosol optical thickness with respect to these

profile parameters (H, γ , and zpeak are also included in order to calculate Jacobians of Stokes

vector to these parameters, and the vectors
[

φ ′x,ϕ ′x,
〈

ΨΨΨ′ jx

〉
j=1,J

]
for these derivatives are

also shown in Table 2.2.
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APPENDIX B

OPTIMIZING SPECIES-SPECIFIED AEROSOL EMISSIONS

FROM SATELLITE MEASURED RADIANCES

B.1 Introduction

Tropospheric aerosols play an important role in the Earth’s energy budget and hydrological

cycle by directly scattering or absorbing solar radiation (direct effect) and indirectly altering

the cloud microphysical properties and lifetime through serving as cloud condensation

nuclei (indirect effect) [Haywood and Boucher, 2000]. The Intergovernmental Panel on

Climate Change [IPCC, 2007] reported direct and indirect aerosol radiative forcing as –0.5

and –0.7 Wm−2, respectively, both with uncertainty of about 100%. Such large uncertainties

are attributed not only to a diversity of representations of aerosol microphysical and optical

properties across models [Schulz et al., 2006], but also to the uncertainty in the emissions

of aerosol particles and aerosol precursors (hereafter aerosol emissions) from both natural

and anthropogenic sources. Differences in global aerosol emission estimates, ranging from

22% to over 200% depending on the species, were found among various global chemistry

transport models (CTMs) [Textor et al., 2006], highlighting the need to further improve

the quantifications of aerosol emissions. At regional scales, the emission inventories have

much larger uncertainty [Streets et al., 2003] and often don’t resolve the seasonal or monthly

variations, making it difficult to model regional climate, air quality and visibility. In addition,
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accurate and timely knowledge of aerosol sources is required for use of air quality models

for studying impacts of aerosols on human health [Pope et al., 2009].

Current estimates of aerosol emissions are largely based on the “bottom-up” method

that integrates diverse information such as fuel consumption in various industries and

corresponding measurements of emission rates for different species [Streets et al., 2003],

economic growth, and the statistics of land use and fire-burned areas [van der Werf et al.,

2006]. While significant progress has been made [Streets et al., 2006], the “bottom-up”

approach has a number of limitations. First, the emission inventory usually has a temporal

lag of at least 2 to 3 years, as time is needed to aggregate information from different sources

and format them into the emission inventories that are suitable for use in climate models.

Second, the temporal resolution of the current emission inventory is usually on monthly

to annual scale, which is not sufficient to characterize the daily or diurnal variation of

emissions; the aerosol impact on radiative transfer and the variation of cloud properties,

however, is often strongly dependent on the time of the day [Wang et al., 2006]. Third,

the spatial resolutions of the bottom-up emission inventories are usually limited by the

availability of the ground-based observations, which often lack the spatial coverage for

estimating emission in a uniformly fine resolution for regional modeling of aerosol transport.

Finally, bottom-up emission inventories may miss important emission sources that are not

well documented including emissions from wild fires, volcanic eruptions, and agricultural

activities. All these limitations are amplified over the East Asia region because the economic

growth in China is so rapid that information needed for bottom-up approach cannot be

timely and reliably documented.

To complement information from bottom-up emissions, remote sensing is increasingly

used to better quantify aerosol distributions. The satellite observations and/or products

can provide information important for the bottom-up estimate of emissions. Examples

include the fire products from MODIS, ASTER, and AVHRR sensors that are widely used
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for characterizing the biomass burning emissions [Borrego et al., 2008; van der Werf et al.,

2006, 2010; Reid et al., 2009]. Alternatively, the satellite observed tracer abundance could

be used to constrain bottom-up estimates of aerosol emissions through the inverse modeling;

such method is referred to as a ‘top-down’ constraint. Although satellite-based aerosol

retrievals have less precision than in situ measurements, studies have shown that they are able

to quantify the atmospheric aerosol loading and temporal variations with good agreement

and expected accuracy to the ground-based observations [Levy et al., 2010; Remer et al.,

2005]. Furthermore, the satellite-based aerosol data, in contrast to the ground-based ones,

have much higher temporal resolution across the globe. For instance, the MODIS sensor,

aboard on NASA’s both Terra and Aqua satellites, has a surface footprint size of about 1

km at nadir and needs only 1 to 2 days to achieve global coverage. In addition, the joint

retrieval of aerosols from diverse satellite sensors enhances the accuracy of satellite aerosol

products [Sinyuk et al., 2008], the potential of which have also been shown in the air quality

monitoring [Liu et al., 2005; Wang et al., 2010].

Different top-down techniques have been developed to optimally estimates the emissions

from satellite observations, which include but are not limited to the following: (a) the use

of a scaling factor that is the ratio of observed tracer abundances to the CTM simulated

counterparts Lee et al. [2011]; Martin et al. [2003a]; Wang et al. [2006]; (b) the use of the

local sensitivity of change of tracer concentration to the change of emission [Lamsal et al.,

2011; Walker et al., 2010]; (c) the analytical Bayesian inversion method [e.g., Heald et al.,

2004]; (d) the adjoint of CTM [e.g., Muller and Stavrakou, 2005; Henze et al., 2007, 2009;

Dubovik et al., 2008; Kopacz et al., 2009, 2010; Wang et al., 2012]. The first two methods

are similar; both assume a linear relationship between model simulated aerosol abundances

and emissions. The analytical method is exact but computationally expensive and thus

can only constrain emission in the domain-wise or over coarse spatial resolution [Kopacz

et al., 2009]. In contrast to the first three approaches, the adjoint approach is designed for
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exploiting the high-density of observations to constrain emission with high resolution, as it

is able to efficiently calculate gradients of the overall mismatch between observations and

model estimates with respect to large sets of parameters (i.e., emissions resolved at each

grid box) [Henze et al., 2007].

Several studies have successfully analyzed sources of traces gases using the top-down

methods, including CO sources from MOPITT sensor over the Asia [Heald et al., 2004;

Kopacz et al., 2009] and over the globe [e.g., Stavrakou and M¸ller, 2006; Kopacz et al.,

2010], CO2 surface flux from the TES sensor [Nassar et al., 2011], NOx emissions from

space-based column NO2 by several satellite sensors [Lamsal et al., 2011; Lin et al., 2010;

Martin et al., 2003a; Muller and Stavrakou, 2005], and SO2 from SCIAMACHY and OMI

sensors [Lee et al., 2011], etc. However, not all emissions of trace gases can be fully

constrained with their satellite-based counterpart products, because some trace gases (e.g.

SO2) can react with other gases (e.g., NH3), to form either liquid or solid aerosols (e.g.,

(NH4)2SO4). As a result, using measurements of trace gases alone can only provide partial

constraints on the emission of the corresponding trace gases.

Ultimately, combined use of measurements of both trace gases and aerosols should

provide stronger constraint (than each individual measurement alone) for the emission of

aerosols and their precursors including trace gases. Unlike a given trace gas, aerosol has

complex chemical composition. Aerosol optical depth (AOD), the only parameter that

current satellite remote sensing can provide and is well validated, contains little information

on aerosol composition. Consequently, assumption of aerosol composition is often made

when using AOD to constrain aerosol models. Examples from previous studies have focused

on assimilation of AOD to constrain model AOD [Wang et al., 2004; Zhang et al., 2008;

Benedetti et al., 2009], or to estimate PM2.5 concentrations [van Donkelaar et al., 2008].

While valuable for forecasts or estimating distribution of aerosols, these studies do not

provide direct constraints on aerosol sources. In terms of constraining sources, a recent
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study by [Dubovik et al., 2008] constrained aerosol primary sources in single-fine and

single-coarse modes respectively from MODIS retrieved fine and coarse mode 0.55 µm

AOD by inverting the GOCART aerosol transport model. To overcome the inconsistency of

aerosol single scattering properties between CTM and aerosol retrieval algorithm that may

compromise the use of satellite AOD to quantitatively invert aerosol emissions, Weaver et al.

[2007] suggested directly assimilating the satellite observed radiance (such as from MODIS)

to improve the CTM (GOCART model) simulation of aerosols. Improved retrieval of AOD

and improved estimate of surface PM concentration were also obtained by Drury et al.

[2008] over the U.S. and Wang et al. [2010] over China, when the GEOS-Chem simulated

aerosol single scattering properties is used in the retrieval, allowing MODIS radiance to

directly constrain the GEOS-Chem columnar mass of aerosols. Built upon this progress, we

[Wang et al., 2012] further used MODIS radiance to constrain dust emissions over the East

Asia.

In this study, we present a new attempt for the top-down estimate of aerosol emissions

through integration of the satellite observation of reflectance and GEOS-Chem Adjoint

model. The technique is applied to improve estimates of mineral dust and anthropogenic

SO2, NH3, NOx, BC and OC emissions over China for April 2008, during which ground-

based PM10 (particulate matter with aerodynamic diameter of 10 µm or less) data is available

from a joint China-U.S. dust field experiment [Huang et al., 2010]. This study differs from

the past work in that: (i) satellite reflectance (in essence radiance) is used to constrain the

emission estimates of aerosol particle and precursors, which eliminates the discrepancy of

aerosol optical properties between model simulated and satellite retrieved AOD; (ii) we use

a suite of aerosol and gas measurements from satellite sensors and ground-based instruments

to independently evaluate our results, and test our hypothesis that temporal variation of AOD

at different locations, as characterized by satellite observations, can be a strong constraint for

species-specific source estimates if they are combined with the model-based knowledge of
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the dominant aerosol sources and the source-receptor relationship at corresponding locations;

and (iii) combination of (i) and (ii) will provide the basis and a necessary step forward

for future research to simultaneously use both gas and AOD measurements to constrain

speciated aerosol emissions.

We present the general structure of our inversion methodology in section B.2, in which we

describe the observation constraints and the inversion strategies. The top-down constraints

on aerosol emissions over China for the period of April 2008 are presented in section B.3,

and evaluated by indepdent observation acquired from various platforms in section B.4.

Interpretation and implications of the results are discussed in section B.5, and section B.6

summaries this work.

B.2 Observational Constraints and Inversion

Methodology

As shown in Figure B.1, the top-down inversion approach in this study integrates the MODIS

radiance/reflectance with the GEOS-Chem (section B.2.1) and its adjoint model (section

B.2.2) to optimize aerosol emissions. First, similar to Wang et al. [2010], we retrieve

the atmospheric aerosol mass and AOD through fitting the calculated radiance based on

GEOS-Chem aerosol composition and single optical properties to the MODIS cloud-free

radiances (section B.2.3). Second, the retrieved AOD (hereafter retrieved MODIS AOD)

from the first step is used as an observational constraint to optimize the aerosol emissions by

inverting the GEOS-Chem chemical transport model. The approach aims to improve aerosol

emission estimates that ultimately will yield better agreement between model simulated

and satellite-observed reflectances. Since the aerosol single scattering properties are exactly

the same between the retrieval algorithm and GEOS-Chem (as done in the first step), the
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o !Improved!aerosol!emissions!
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Figure B.1: Flowchart of the top-down inversion framework [Xu et al., 2013].

top-down inversion scheme essentially uses the MODIS radiances (in the form of retrieved

AOD) to scale the GEOS-Chem aerosol mass, which in turn are used to optimally adjust the

aerosol emissions. The approach here is first demonstrated through a pseudo-observation

experiment (section B.2.5) before it is applied to real observations (Section B.3).

B.2.1 GEOS-Chem model

GEOS-Chem [Bey et al., 2001] (www.geos-chem.org) is a global three-dimensional tropo-

spheric chemical transport model driven by assimilated meteorological observations from the

Goddard Earth Observing System (GEOS) of the NASA Global Modeling and Assimilation

Office. The aerosol simulation in GEOS-Chem includes state-of-science representations of

www.geos-chem.org
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the major aerosol components: sulfate (SO4), nitrate (NO3), ammonium (NH4), BC, and

OC in both hydrophilic and hydrophobic modes, mineral dust in four size bins, and sea salt

aerosols in both accumulation and coarse modes. The model couples aerosol and gas-phase

chemistry through nitrate and ammonium partitioning, sulfur chemistry, secondary organic

aerosol formation, and uptake of acidic gases by sea salt and dust [Park et al., 2004]. Aerosol

is removed by dry and wet deposition. Dry deposition in GEOS-Chem follows a resistance-

in-series scheme [Wesely, 1989] and accounts for gravitational settling [Seinfeld and Pandis,

2006] and turbulent mixing of particles to the surface. Aerosols are also removed through

wet scavenging in convective updrafts as well as the first-order rainout and washout.

GEOS-Chem uses many databases for anthropogenic emissions [van Donkelaar et al.,

2008] and biomass burning emissions [van der Werf et al., 2010]. In the current study, the

annually anthropogenic emissions of SO2 and NOx are from INTEX-B EI with the base

year of 2006 [Zhang et al., 2009b]. The monthly anthropogenic and biofuel emissions of

NH3 use the TRACE-P EI with the base year of 2000 [Streets et al., 2003]. The monthly

anthropogenic fossil fuel and biofuel OC/BC emissions are from Bond EI with base year of

2000 [Bond et al., 2007]. The monthly biomass burning emission for SO2, NH3, NOx, OC,

and BC use GFED2 EI with the base year of 2007 [van der Werf et al., 2010]. The mineral

dust entrainment and deposition (DEAD) scheme [Zender et al., 2003a] that was modified

to combine with the GOCART topographic source function [Ginoux et al., 2001; Fairlie

et al., 2007] is used to simulate the prior emitted dust fluxes (hereafter the modified DEAD

scheme). We run version 8-02-01 of GEOS-Chem for the full chemistry simulation during

the period of April 2008 with 2◦× 2.5◦ horizontal resolution and 47 vertical levels.

AOD at wavelength λ in each layer is calculated from the sum of AODs of each

component i assuming external mixing:

τλ =
n

∑
i=1

3MiQexti

4ρireffi
=

n

∑
i=1

Miβeffi (B.1)
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where n is the number of aerosol components, Mi is aerosol mass concentration of component

i, Qexti is extinction efficiency factor at wavelength λ calculated with Mie theory, ρi is

aerosol mass density, reffi is particle effective radius, and βeffi =
3Qexti
4ρireffi

is the mass extinction

efficiency. We account for the hygroscopicity of aerosol particles, as all parameters in the

above equation are functions of relative humidity for hydrophilic aerosol components. We

use the updated aerosol size distribution and refractive index from Drury et al. [2010] and

Wang et al. [2010] to calculate Qexti and reffi in a Mie code.

B.2.2 GEOS-Chem adjoint modeling

The adjoint of the GEOS-Chem model was developed specifically for inverse modeling

of aerosol (or their precursors) and gas emissions [Henze et al., 2007, 2009], and it is

continuously improved and maintained by the GEOS-Chem Adjoint and Data Assimila-

tion Working Group and its users (http://wiki.seas.harvard.edu/geos-chem/index.

php/GEOS-Chem_Adjoint). The strength of the adjoint model is its ability to efficiently

calculate model sensitivities with respect to large sets of model parameters, such as aerosol

emissions at each grid box. These sensitivities can serve as the gradients needed for inverse

modeling of aerosol emissions. Recent studies have used the GEOS-Chem adjoint with

satellite observations to constrain sources of species such as CO [Kopacz et al., 2009, 2010;

Jiang et al., 2011], CH4 [Wecht et al., 2012], and O3 [Parrington et al., 2012] to diagnose

source regions for long-range transport [Henze et al., 2009; Kopacz et al., 2011], and to

provide guidance on future geostationary observations of surface air quality [Zoogman et al.,

2011].

In the GEOS-Chem inverse modeling framework, aerosol emissions are adjusted using a

vector of control parameters σσσ that are the logarithm of emission scaling factors for aerosol

emissions: σσσ = ln(E/Ea), where E and Ea are updated and prior aerosol emission vectors,

http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_Adjoint
http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_Adjoint
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respectively. The model response function J, or cost function, is formulated following the

four-dimensional variational (4D-Var) technique:

J(σσσ) =
1
2 ∑

c∈Ω
[c(σσσ)− cobs]

T S−1
obs[c(σσσ)− cobs]+ γ

1
2
[σσσ −σσσ a]

T S−1
a [σσσ −σσσ a] (B.2)

where c is the vector of simulated aerosol concentration in four-dimensional spatial and

temporal observation space Ω, cobs is the vector of observed aerosol concentration, Sobs is

the observation error covariance matrix for cobs, γ is a regularization parameter, σσσ a is prior

control parameters, and Sa is the error covariance matrix of σσσ a. Overall, the cost function is a

measure of specific model response, the minimum value of which balances the objectives of

minimizing model mismatch of the observations while ensuring the specified prior emissions

remain within approximate range described by Sa. The optimization seeks the optimal σσσ that

minimizes the cost function J iteratively through a numerical quasi- Newton algorithm, the

L-BFGS-B algorithm [Byrd et al., 1995], which requires the supplement of the cost function

and its gradient with respect to the emission scaling factors calculated with GEOS-Chem

adjoint model.

B.2.3 Constraints from Satellite Radiances

The observational constraints in this study are MODIS reflectances from both Terra and

Aqua satellites, from which four-dimensiaonal mass concentrations of six aerosol species

(namely, sulfate (SO4), nitrate (NO3), amomnium (NH4), black carbon (BC), organic carbon

(OC), and mineral dust) have been derived with the GEOS-Chem model using the retrieval

algorithm presented by Wang et al. [2010]. Key to this algorithm are: (a) a database

of time-dependent local 0.65 and 2.1 µm surface reflectance ratio that are derived from

samples of the MODIS dark-pixel reflectance data in low AOD conditions (i.e. dynamic

lower envelope method), (b) an assumption that the simulated CTM aerosol is unbiased
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in composition and vertical distribution shape but possibly largely biased in total mass or

optical depth, and (c) a linearized radiative transfer model (VLIDORT [Spurr, 2006]) that

computes the top-of-atmosphere (TOA) reflectance and its Jacobian sensitivity to the column

AOD using the GEOS-Chem single aerosol optical properties and the solar-earth-sensor

geometries of the coincident MODIS scene. With above (a), (b), and (c), Wang et al. [2010]

retrieved two unknowns (i.e., AOD at 0.65 µm and surface reflectance at 2.13 µm) from

two MODIS observed quantities (i.e., 0.65 and 2.13 µm TOA reflectance) by seeking the

minimum differences between GEOS-Chem and MODIS reflectance. Based on (b), mass

concentrations of individual aerosol species at each MODIS overpassed grid cell are updated

by applying the AOD scaling factors (ratios of retrieved AOD to GEOS-Chem AOD at 0.65

µm) and are used as observational constraints for optimizing aerosol emissions.

Figures B.2a and B.2b show the two-month averages of the 0.65-µm AOD retrieved

using the approach by Wang et al. [2010] and the MODIS collection 5 products. Althogh

sharing simialr pattern of spatial distributions, their retrieved AOD is quantitatively smaller

and are in better agreement with the AERONET AODs (figure B.2c–d). According to the

evaluation of the retrieved AOD against these AERONET AODs, we found the uncertainty

is generally less than 20%, which we subsequently use to quantify the observation error in

the inverse modeling optimization.

GEOS-Chem simulated aerosol composition over Asia is shown by multiple studies to

have large underestimation in BC, and equivalent or larger underestimation of OC mass and

overestimation of sulfate aerosol mass [Heald et al., 2005; Fu et al., 2012], which suggests

that the mass fraction of highly absorbing (BC) and highly scattering (OC and sulfate)

fine mode aerosols may have far less biases (as compared to the relative bias in OC mass

only). Consequently, no significant biases are assumed for: (a) the GEOS-Chem simulated

fraction of coarse mode (dust) aerosol mass, and (b) the GEOS-Chem simulated aerosol

single scattering albedo. While (b) is important to ensure an unbiased retrieval of AOD,



117

This work 0.65 μm AOD MODIS C5 0.65 μm AOD AOD

0.0

0.4

0.6

0.8

1.0

0.2

(a) (b)

This work VS. AERONET MODIS C5 VS. AERONET

AERONET 0.65 μm AOD

 R
et

rie
ve

d 
0.

65
 μ

m
 A

O
D

(c) (d)

Figure B.2: The 0.65 µm AOD retrieved by [Wang et al., 2010] compared with the MODIS
operational collection 5 AOD products. (a) and (b) are their two-month averages for the
period of April–May, 2008. The correspondong two-month averages of 0.65-µm AOD
collected at size AERONET sites are color-coded as circles. (c) and (d) are their scatterplot
against AOD observed from AERONET sites indicated on the above map. [Figure adopted
from Wang et al., 2010].

(a) supports that the GEOS-Chem simulated dust AOD fraction is likely unbiased, both of

which support the use of AOD scale factors derived from MODIS for constraining emission

of coarse-mode dust and fine-mode aerosols. Admittedly, any model bias in modeled AOT

fraction for each individual species can lead to a corresponding bias (of the same sign) in the

adjoint modeling results for individual emission. Quantification of such bias is not possible

for the present study owing to the lack of aerosol composition data in China.
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B.2.4 Selection of emissions for optimization

The inversion scheme and the MODIS-based constraints, as described in the preceding

sections, are combined to constrain the aerosol emissions over the Eastern Asia for the

period of April 2008. The modeled emission parameters that most significantly influence

the discrepancy between simulation and observations are selected and spatially constrained.

Specifically, those model parameters (or control parameters) represent six emitted tracers,

as listed in Table B.2, which include emissions of SO2, NH3, and NOx, BC, and OC from

anthropogenic sources, and mineral dust. Bottom-up inventories (and an online mobilization

scheme for dust) are used as a priori estimates, corresponding magnitudes and geographic

distributions of which are shown in Table B.2 and Figure B.6, respectively. The temporal

extent of the optimization window is selected to be reconcilable with the temporal variability

of the bottom-up emission. We set optimization window of a month for those trace gases

and carbonaceous emission tracers; while dust emission tracers are constrained daily in a

separate optimization run following approach by Wang et al. [2012]. Both optimizations

assimilate hourly observations during the adjoint simulation.

The 4D-Var technique in the optimization requires background error covariance statistics

for each control parameter. We specify the priori error for those emission tracers based on

characterized spatial and temporal averaged uncertainties for those inventories [Zhang et al.,

2009b; Bond et al., 2007; Zender et al., 2003a], but with larger values to reflect the possibly

large local aerosol emission uncertainties in the bottom-up inventories. The uncertainty

for SO2 emission estimate is believed to be smaller than those for NH3 and NOx, while

uncertainties of other tracers could be even larger [Textor et al., 2006; Zhang et al., 2009b].

Therefore, we set relative error of 50% for SO2, 100% for NH3 and NOx, 200% for BC,

OC, and dust sources. Lacking information to fully construct a physically representative

prior error covariance matrix, a regularization parameter γ is introduced in the cost function
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to balance the contribution of model error and source error, with a value (here γ = 1000)

selected using the L-curve technique [Hansen, 1998]. Moreover, in order to test the impact

of those specified uncertainties on the optimization, we run a case with an arbitrary prior

error of 100% for all emission tracers, and present the results in Table B.3.

B.2.5 Sensitivity test with pseudo AOD observations

We first conduct a pseudo experiment to assess: (1) the concept that temporal variations and

geophysical location of AOD, when interpreted with GEOS-Chem model, can yield infor-

mation about change regarding aerosol composition and emissions, and (2) the sensitivity

of the inversion results to the assumption that GEOS-Chem simulated relative composition

or single scattering albedo of aerosol is unbiased. The experiment has three steps: (a)

GEOS-Chem simulation with standard bottom-up EIs are first conducted to obtain prior

aerosol composition and 0.65 µm AOD for the period from April 5 to 11 of 2008; (b)

Pseudo-observations of AOD are created by perturbing the following emissions (relative

to bottom-up EIs) in GEOS-Chem: +20% for SO2, NH3, and NOx, −40% for dust, and

zero for BC and OC (Table B.1); (c) These pseudo-observations of AOD in the dark surface

region (red box in Figure B.3a), twice per day, respectively at the Terra and Aqua overpass

daytime, are subsequently used as truth to constrain emissions using the GEOS-Chem

adjoint-based inversion.

The degree to which the inversion can correct for species-specific errors in the emissions

is assessed in these sensitivity tests by comparing the optimized aerosol emissions from

(c) can then be evaluated against the truth, or the perturbed emissions in (b). Figure B.3

shows the distribution of relative changes in posterior emissions from the 6th iteration with

respect to the prior bottom-up emissions for each species; the overall changes over the China

are shown in Table B.1. By the 6th iteration, the cost function reduced by 50%; further
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for dust only

for other species

Figure B.3: Relative changes in posterior aerosol emissions from a priori in the pseudo-
observation experiment. Six panels are respectively for anthropogenic emissions of SO2,
NH3, NOx, BC, and OC, and mineral dust from both natural and anthropogenic sources.
The red box in panel (a) indicates the region where AOD observations are selected. [Figure
adopted from Xu et al., 2013]

iterations yielded negligible additional decreases. The posterior emissions for SO2 and NH3,

which increased by 14% from the prior, are close to the “truth” (20%). NOx emissions were

increased by 8%, a smaller change than SO2 and NH3. Dust emissions reduced by 26%

percent in the inversion, approaching the true values of −40%. BC and OC emissions were

increased by 2% and 3%, which are close to the truth of 0.

Overall, this sensitivity study demonstrates that the inversion is capable of resolving

the sign, spatial distribution, and the bulk of the true perturbations for the emissions of

each species. Meanwhile, we also note that the adjoint inversion could transfer (somewhat

marginal) errors from one tracer to another, such as increases in BC and OC emission as a

result of significant underestimations in the prior SO2, NH3, and NOx emissions, reflecting

errors due to assumptions related to unbiased GEOS-Chem aerosol composition. We can

also assume that similar aliasing would occur in attempts to distinguish the impacts of co-

located precursor emissions of scattering particles (e.g., SO2 and NOx from power plants),
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Table B.1: Prior, posterior, and perturbed aerosol emissions over China in the pseudo
experiment.

Tracer
Eprior

(Gg/Month)
Eposterior

(Gg/Month)
Eposterior/Eprior

(%)
Eperturbed/Eprior

(%)

SO2 520.8 592.0 113.7 120
NH3 219.3 249.2 113.7 120
NOx 338.8 365.3 107.8 120
BC 23.3 23.8 102.3 100
OC 39.7 41.1 103.4 100
Dust 2301 1697 73.7 60

although additional tests would be necessary to assess whether or not differences in the

timescales (and thus transported length scales) over which these emissions impact AOD

would allow their sources to be separated. Long-range transport of dust appears to have

less influence on the inversion because: (a) except dust, there are little (other) emissions in

dust source regions; (b) a sudden increase of AOD in downwind regions can be interpreted

by GEOS-Chem due to the dust transport, and this increase can be used by GEOS-Chem

adjoint as constraint to optimize the dust emission.

B.3 Inversion Results

With the feasibility of the approach demonstrated in section B.2.5, we apply the approach to

MODIS radiance data in April 2008. The emissions that result from each iteration during

the optimization enable GEOS-Chem to produce a different set of AOD values that converge

to the observational constraints. Figure B.4a shows the geographic distribution of GEOS-

Chem AOD at 0.65 µm, simulated with prior aerosol emissions, averaged coincidently

with retrieved daily MODIS AOD (Figure B.4c) during April 2008. While the prior model

simulation captures the overall spatial pattern of AOD with larger values over eastern

China, it has a slight underestimation over the southwestern China but an overwhelming
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Figure B.4: Comparison of the prior (a) and posterior (b) GEOS-Chem (GC) simulation of
0.65 µm AOD with the AOD at the same wavelength retrieved from MODIS reflectance
using GEOS-Chem aerosol optical properties (c) averaged for the period of April 2008.
Satellite retrievals with 10 km by 10 km at nadir are aggregated to GEOS-Chem grid cells;
and the model AOD are sampled coincidentally with those retrievals. Panel (d) and (e)
respectively show the difference of prior and posterior simulated from the satellite retrieved
AODs. The red box in panel (c) indicates the region where AOD observations are selected.
[Figure adopted from Xu et al., 2013]

overestimation elsewhere, when compared to the retrieved AOD from MODIS radiance

(Figure B.4d). The optimization is expected to adjust aerosol emissions to reduce those

differences. Following the experiment design described in section B.2.4, we find that after

6 iterations of the GEOS-Chem forward and adjoint runs, the cost function is reduced by

about 60%, and further iterations yield negligible reductions in the cost function. Therefore,

the aerosol emissions adjusted from the 6th iteration are selected as the final optimal results.

As shown in Figure B.4b and B.4e, the posterior GEOS-Chem AOD that are simulated

with the optimized aerosol emissions are in much better agreement with their counterparts

retrieved from MODIS reflectance, which is also reflected by the cost function reduction

and confirms the effectiveness of the adjustment in top-down emissions.
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Figure B.5: Variations of Daily AOD and emission after the optimization of aerosol emi-
sisons: (a) Time series of the spatially averaged daily MODIS AOD retrievals (purple) for
April 2008 over the Eastern China, compared by the prior (orange) and posterior (green)
spatial averaged daily GEOS-Chem AOD that are sampled according to the MODIS AOD.
(b) Time series of the expected daily AOD adjustments (orange) that are the differences
between MODIS AOD and the prior GEOS-Chem AOD and their real adjustments (green)
that are the differences of posterior from prior GEOS-Chem AOD. (c) Time series of the
prior (orange) and posterior (green) daily dust emissions over China for April 2008. [Figure
adopted from Xu et al., 2013]
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Table B.2: List of prior and posterior aerosol emissions in China during April 2008.

Bottom-Up Top-Down

Tracer
Eprior

(TgMon−1)
a priori

error (%) Inventory Base
year

Temporal
resolution

Optimization
window

Eposterior
(TgMon−1)

∆E
(%)

SO2 2.60 50 INTEX-B 2006 Annual Monthly 1.73 −33.5
NH3 1.10 100 INTEX-B 2000 Annual Monthly 0.72 −34.5
NOx 1.69 100 INTEX-B 2006 Monthly Monthly 1.38 −18.8
BC 0.11 200 Bond07 2000 Monthly Monthly 0.10 −9.1
OC 0.21 200 Bond07 2000 Monthly Monthly 0.18 −15.0
Dust 19.02 200 DEAD Online Hourly Daily 8.30 −56.4

The convergence of the model simulation to the MODIS AOD retrievals is also indicated

in the AOD daily variability. Figure B.5a shows the daily variations of the AOD spatially

averaged for available MODIS retrievals (purple) over the eastern China areas within the

red box in Figure B.4c, and the coincidental GEOS-Chem simulation prior and posterior to

the aerosol emission optimization (orange and green, receptively). The prior model produce

overestimated AODs for most days during the month. After top-down adjustments to the

aerosol emissions, such overestimation of the AOD is reduced in total over the course of the

month. As shown in Figure B.5b, the real changes of the modeled daily AOD during the

optimization (green bars), or equivalently, the differences of the posterior from the prior are

consistent with the expected changes, i.e., the differences of the MODIS retrievals from the

prior model simulation. It is noted that the posterior AODs has larger departure from the

observation than the prior on a few days. This reflects that monthly-scaled emissions are not

perfectly capturing the daily variation of emission.

Emissions of SO2, NH3, NOx, BC, and OC from anthropogenic sources are optimized

monthly and rescaled over each individual 2◦ by 2.5◦ grid cell of China for the month of

April 2008. The prior and posterior (optimized) emissions of these tracers are respectively

shown in left and middle columns of Figure B.6, in which the relative changes of these

emissions in the optimization are also included in the right column. Overall, the optimization

yields an overwhelming reduction for all emission tracers, even though some local increases
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Figure B.6: The prior (or bottom-up based, left column), optimized (or top-down constrained,
middle column) aerosol emissions over China for the period of April 2008, and their relative
differences (right column). Six rows from top to bottom are respectively for anthropogenic
emissions of SO2, NH3, ceNOx, BC, and OC, and mineral dust from both natural and
anthropogenic sources. [Figure adopted from Xu et al., 2013]
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are found. As expected, such adjustment in the constrained aerosol emissions is consistent

with the changes in GEOS-Chem AOD before and after optimization, as aerosol loadings

usually positively respond to the aerosol emissions. Quantitatively, anthropogenic emissions

over China continent for the study period are changed by −33.5% for SO2 from 1.302 to

0.866 Tg, −34.5% for NH3 from 1.096 to 0.718 Tg, −18.8% for NOx from 1.694 to 1.375

Tg, −9.1% for BC from 0.11 to 0.10 Tg, and −15.0% for OC from 0.205 to 0.175 Tg

(see Table B.2). The largest reduction occurs sharply in the central regions of the Eastern

China, corresponding to the region where the largest AOD are adjusted to the MODIS

retrievals. Small increases of emitted anthropogenic sources of gases and carbonaceous

particles are found over the southwestern China, which can be explained as the response for

the underestimation of AOD in the model simulation over these regions (Figure B.4a, d).

The mineral dust emissions from both anthropogenic and natural sources are optimized

daily. The adjoint has no leverage to increase the dust emissions over grid cells having zero

dust emission in the priori estimate identified by the modified DEAD scheme. Thus, the

posteriori dust source region remains un-shifted as shown in Figure B.6 (bottom panels),

which is reasonable because the expansion or shrinkage of desert regions is unlikely to

extend beyond the grid size (2◦ by 2.5◦) of this study [Zender et al., 2003a; Fairlie et al.,

2007]. The total amount of the optimized dust emissions for April 2008 over China is 8.3

Tg, reduced by 56.4% from the modified DEAD module simulation of 19.02 Tg. Such

reduction indicates an overestimation in the prior emissions of dust, especially over Gobi

deserts that are located in the Northwestern China and the southern Mongolia. Wang et al.

[2012] presented a similar result, but only for a dust event that occurred in the later portion

of our study time period. Figure B.5c illustrates the time series of the prior and optimized

daily total dust emission. Two sharp peaks of the dust emissions indicate the occurrences of

strong dust storms after April 15. Such large temporal variation in the daily scale requires

the optimization of dust emission on the daily basis.
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Table B.3: Test of the sensitivity of optimization with respect to prescribed a priori error.

Case 1 Case 2

Tracer
a priori

error (%)
∆E
(%)

a priori
error (%)

∆E
(%)

SO2 50 −33.5 100 −33.7
NH3 100 −34.5 100 −34.4
NOx 100 −18.8 100 −18.8
BC 200 −9.1 100 −9.1
OC 200 −15.0 100 −15.0

An additional case with specified error of 100% for all the anthropogenic emission

tracers is conducted to examine the sensitivity of those specified error to the optimization.

Table B.3 shows the relative change in optimized emissions for two different scenarios. Less

than 0.5% of difference in the optimized emissions is found, which means the uncertainty in

a priori emission could have much smaller impact on the optimization than the observational

constraints.

B.4 Results Evaluations

Because direct measurements of the aerosol emissions are few over China, we assess

the optimized sources by comparing the GEOS-Chem posterior simulated aerosol mass

concentrations and AOD with the independent observations from various sources. The

evaluation datasets include: (1) AERONET AOD observations [Holben et al., 1998] over

nine sites; (2) Level 3 MISR daily AOD products [Kahn et al., 2005; Martonchik et al.,

2009]; (3) Level 3 SO2 [Krotkov et al., 2006; Lee et al., 2009] and Level 2 NO2 [Bucsela

et al., 2006] retrievals from the Ozone Monitoring Instrument (OMI); (4) surface mass

concentration of sulfate-nitrate-ammonium (SNA) aerosol particles over Qingdao, China;

and (5) surface PM10 over two sites close to dust source region [Ge et al., 2010].
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B.4.1 Comparison with AERONET AOD

We first evaluate the prior and posteriori GEOS-Chem 0.55 µm AOD against the AERONET

AOD at 0.55 µm that are interpolated from AODs at 0.44 and 0.67 µm based on the

Angstrom exponent. Three-hour averaged values of available AERONET AOD, centered by

the model output time are used to compare with the model AOD over the grid cells locating

the AERONET sites. The scatterplots shown in Figure B.7 are the comparisons for nine

stations over China, South Korea, and Japan representing different aerosol types. The first

three stations, i.e., (a) Zhangye, (b) SACOL, and (c) Jingtai, which are located over rural

regions in the south boundary of Gobi deserts and have little influence from anthropogenic

emissions, are representative sites for dust aerosol [Ge et al., 2010]. The next three sites, (d)

Beijing, (e) Xinglong, and (f) Heifei, are located in anthropogenic source regions. The last

three sites, (g) Noto, (h) Shirahama, and (i) Gwangju_K, are located over Japan and South

Korea, the downwind regions of China emissions. Those last six stations are affected not

only by the local anthropogenic emissions but also by the long-range transported aerosols

from the upwind regions. Indeed, those three categories of stations are respectively located

in the upwind, central, and downwind of regions having the observational constraints.

The prior GEOS-Chem simulation (shown in the red scatter panels) overestimates

the AERONET AOD for all the sites except Beijing. The negative bias of model AOD

at Beijing is likely owing to the model coarse resolution, which fails to resolve heavy

local urban pollution. The geographic area of urban Beijing is about 1300 km2 (http:

//en.wikipedia.org/wiki/Beijing), less than 3% of the area of a GEOS-Chem grid

cell. Thus, the local pollution signal is smeared in the model grid box. Moreover, Beijing

and Xinglong are in the same model grid cell, but AERONET AOD over Xinglong is much

smaller than that over Beijing site (as later shown as circles on the maps of Figure B.8a-c).

As Beijing site is difficult to represent in the GEOS-Chem at 2◦ by 2.5◦ resolution, we

http://en.wikipedia.org/wiki/Beijing
http://en.wikipedia.org/wiki/Beijing
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Figure B.7: (a – i) Scatterplots of GEOS-Chem AOD versus AERONET AOD at 0.55
µm at nine stations prior (red scatters) and posterior (green scatters) to the optimization
of aerosol emissions. AERONET AODs are 3-hour averages following the GEOS-Chem
output frequency. (j) The overall comparison for eight AERONET sites excluding Beijing.
Also shown are the number of valid sampled pairs (n), correlation coefficients (R), bias, and
root-mean-square-error (rmse).

exclude Beijing site in our further analysis. GEOS-Chem AOD from the posterior aerosol

emissions are in more agreement with the AERONET AOD (shown in the green scatter

panels), as indicated by reduced bias and root-mean-square-error (rmse) over all the other

sites and increased correlation coefficients (R) for most sites. The overall comparison

(Figure B.7j) shows the correlation coefficient increases from 0.54 to 0.63, and the bias

(rmse) declines from 0.13 (0.27) to 0.03 (0.07).
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B.4.2 Comparison with MISR AOD

We re-grid the Level 3 daily MISR 0.55 µm AOD from the 0.5◦ by 0.5◦ resolution to

GEOS-Chem 2◦ by 2.5◦ grid cells and take monthly average for April 2008, the geographic

distribution of which are shown in Figure B.8c. High AOD values are found over the

eastern China and the northwestern desert regions, which are associated to the anthropogenic

pollution primarily from the industry and wind-blown mineral dust, respectively. The

monthly sun-photometer AOD values at the same wavelength show good agreements with

the MISR AOD over all the AERONET sites except Beijing where the significant local

urban pollution exists.

The monthly averages of prior and posterior GEOS-Chem 0.55 µm AOD mapped in

Figure B.8a–b are sampled coincidently to the MISR AOD. A comparison with the MISR

AOD shows GEOS-Chem simulation with prior aerosol emissions overestimates AOD over

both the desert and industrial regions. The posterior simulation is slightly more in agreement

with MISR AOD. To facilitate the comparison of model with MISR AOD, we also include,

as Figure B.8d, the scatterplots of the AOD for each GEOS-Chem grid cell with values

larger than 0.2 by considering the larger retrieval uncertainty in the low AOD conditions

[Kahn et al., 2005, 2010]. While the correlation coefficients remain about the same, both

absolute bias and rmse are reduced about 30%.

B.4.3 Comparisons with OMI columnar SO2 and NO2

The improvement in the optimized aerosol emissions is also exhibited in the comparison of

simulated trace gases to the satellite retrievals from OMI. The GEOS-Chem SO2 simulations

are assessed with OMI Level 3 daily products of planetary boundary layer (PBL) SO2 column

gridded with 0.25◦ by 0.25◦ resolution. We average the OMI SO2 columnar retrievals into

GEOS-Chem 2◦ by 2.5◦ grid cells and take the monthly average for comparison, which are
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Figure B.8: Comparison of the prior and posterior GEOS-Chem simulation of 0.55 µm AOD
with the level 3 MISR 0.55 µm AOD for the period April 2008. (a) The prior GEOS-Chem
0.55 µ AOD that are sampled coincidentally with MISR AODs for the period of April
2008. Also overlaid circles are the monthly AOD averages at 0.55 µm observed from the
nine AEORNET sites shown in Figure B.7. (b) Same as (a) but for the monthly average of
posterior GEOS-Chem AOD. (c) Monthly average of the Level 3 daily MISR 0.55 µm AOD.
(d) Scatter plot the GEOS-Chem AOD versus the MISR AOD before (red scatters) and after
optimization (green scatters), in which each point indicates an AOD pair over a model grid
cell with value over 0.2. Also shown are the statistics including number of sampled pairs
(n), correlation coefficient (R), bias and root-mean-square-error (rmse). Comparisons of the
monthly GEOS-Chem AOD versus AERONET AOD are also included as the black circles;
each circle indicates an AOD pair over an individual site. [Figure adopted from Xu et al.,
2013]

shown in Figure B.9c. Figure B.9a and B.9b show model prior and posterior SO2 column

that are coincidentally sampled with OMI retrievals. Figure B.9d illustrates the quantitative

analysis for OMI SO2 retrievals larger than 1.0× 1016 molec cm−2. With the optimized

emission estimates, the bias and RMSE are reduced from 0.81 and 0.61 to –0.28 and 0.38

(×1016 molec cm−2), respectively, along with an increase of correlation coefficient from

0.68 to 0.73.

We evaluate the model simulation of NO2 with OMI Level 2 products of NO2 tropo-



132

Figure B.9: Same as figure B.8 but for comparison of the GEOS-Chem SO2 simulation
with OMI column SO2 retrievals for the period of April 2008. The OMI planetary boundary
layer (PBL) column SO2 from the Level 3 daily products with 0.25◦ by 0.25◦ resolutions
are aggregated into GEOS-Chem grid cells.

spheric column over 0.25◦ by 0.25◦ grid cells. Recent studies suggested that the uncertainty

in OMI NO2 tropospheric column retrievals is about 40% with an about 15% positive

systematical bias [Boersma et al., 2008; Celarier et al., 2008]. Following Lin et al. [2010],

we apply a factor of 0.85 to OMI NO2 retrievals in our comparison to correct the bias.

Figure B.10 shows the comparison of GEOS-Chem NO2 columns with re-gridded OMI

NO2 retrievals. Similarly, we also perform the quantitative analysis, as in Figure B.10d,

for OMI NO2 column retrievals larger than 3.0×1015 molec cm−2. While the correlation

coefficient remains about the same, the bias (RMSE) is reduced from 1.50 (1.65) to 0.03

(1.51) (units: 1015 molec cm−2) after constraining aerosol emissions.
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Figure B.10: Same as figure B.8 but for comparison of the GEOS-Chem NO2 simulation
with OMI column NO2 retrievals for the period of April 2008. The OMI tropospheric
column NO2 from Level 2 daily products with 0.25◦ by 0.25◦ resolutions are aggregated
into GEOS-Chem grid cells.

B.4.4 Comparisons with near-surface aerosol mass concentrations

The accuracy of the sulfate-nitrate-ammonium (SNA) aerosol simulation is in part de-

termined by the representation of the emissions of SO2 and NOx and NH3, and hence

GEOS-Chem simulations with constrained emissions should provide overall an improved

simulation of SNA. Figure B.11 shows the comparison of daily near-surface SNA mass

concentration from the prior and posterior GEOS-Chem simulations with measurements

over Qingdao (120.34◦ E, 36.06◦ N), China. The error bars for the GEOS-Chem curves

indicate the diurnal standard deviation. An overestimation in the prior model surface SNA

simulations is found when comparing with observed counterparts, which shows a bias of

14.28 µg m−3, RMSE of 21.84 µg m−3, and correlation coefficient of 0.46. Such bias is

significantly reduced to 0.34 µg m−3 in the simulation with top-down constrained emissions,
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along with a 50% decrease in RMSE and a 28% increase in correlation coefficient.

Figure B.11: Comparison of the GEOS-Chem surface mass concentration of sulfate-nitrate-
ammonium (SNA) aerosols with ground-based observations over Qingdao (120.34◦ E,
36.06◦ N), China. Discontinuity in time series is due to missing or quality filtered observa-
tions.

The mass concentration over or near the dust source regions where the anthropogenic

emissions are small is most sensitive to the dust mass loading, and thus can be an indicator of

the dust emissions in the first order. Figure B.12 shows the prior and posterior GEOS-Chem

surface PM10 mass concentration compared with the ground-based measurements from

the 2008 China-U.S. joint field experiment [Ge et al., 2010; Huang et al., 2010] over two

the AERONET sites in Figure B.7a-b, i.e., Zhangye (100.28◦ E, 39.08◦ N) and SACOL

(204.14◦ E, 35.95◦ N), which are located on the downwind boundaries of the Gobi deserts.

Based on the availability of the measurements data, comparisons are for the period of 15–30

April 2008. The measured surface PM10 shows a strong daily variation. A strong dust

event during 18–20 April can be found over both stations with PM10 exceeding 400 µg

m−3. Two additional dust events with PM10 over 400 µg m−3 occurred during 24–26

and 29–30 April. The prior simulation generally captures the daily variation pattern but

significantly overestimates the surface PM10 for those dust events; prior simulated PM10

reaches up to around 3000 µg m−3 over Zhangye and 1000 µg m−3 over SACOL for the
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Figure B.12: Time serial plot of the GEOS-Chem simulated surface PM10 concentrations by
prior (red) and posterior (red) aerosol emissions compared with the in situ measured PM10
(black) over Zhangye (a) and SACOL (b) stations for 15 – 30 April 2008; also shown are
the average values over same the period. Discontinuity in time series is due to missing or
quality filtered observations.

dust events during 18−20 and 24−26 April 2008. The two-week averages show the prior

simulation overestimates PM10 a factor of 2 over Zhangye and a factor of 1 over SACOL in

the magnitude. After optimization, the relative biases in the PM10 simulation are reduced to

about 25%. Moreover, the comparison of the time series of the PM10 also shows that the

model value with top-down emissions has much better agreement with the measurements in

terms of temporal variation.
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B.4.5 Evaluation summary

A summary of evaluations of the prior and posterior model simulations is illustrated in Figure

B.13 using a Taylor diagram [Taylor, 2001]. Taylor diagram provides a statistical summary

of the model performance in terms of correlation coefficients (R), centralized root-mean-

square difference (RMSD), and ratio of standard deviations between model and observations

(or normalized standard deviation, NSD). The latter two quantities reflect how well model

captures the temporal or/and spatial variation of observations. In the Taylor diagram, cosine

of polar angles represents R, and radius (dotted-contour) indicates NSD. Thus, the reference

point (black circle) where R and NSD are unity represents observations, and the distance

(dashed-contour) of certain point from which indicates the RMSD. Considering that the

Taylor diagram itself is not able to show the statistical bias, we use different colors for each

data points to indicate their respective relative biases. The data points labeled from 1 to 6

indicate comparisons between model and observations of (1) AERONET AOD at 0.55 µm,

(2) MISR 0.55 µm AOD, (3) OMI retrievals of SO2 Column, (4) OMI retrievals of NO2

Column, (5) surface concentration of SNA over Qingdao, and (6) surface concentration of

PM10 over Zhangye and SACOL, respectively. Square and circles represent the evaluations

for prior and posterior GEOS-Chem simulations, respectively.

It should be noted that the NSD between prior GEOS-Chem simulated and measured

surface PM10 during the China-U.S. joint field campaign is about 6.5 (and R of 0.45) that

are significantly beyond the range of this Taylor diagram. Consequently, the square point of

number 6 is not shown in the diagram. It is clear from the Taylor diagram that the circular

points (posterior simulation) are generally closer than the square points (prior simulation)

to the reference point and to the unity curve of NSD, and have remarkably decreased bias.

Evaluations with all those independent observations indicate a notable improvement in the

model simulation, reflecting a better estimate of aerosol emissions.
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Figure B.13: Taylor diagram for the model evaluations before (squares) and after (circles)
optimization when comparing against (1) AERONET AOD at 0.55 µm, (2) MISR 0.55
µm AOD, (3) OMI column SO2, (4) OMI column NO2, (5) surface SNA concentrations at
Qingdao site, and (6) surface PM10 concentrations measured at Zhangye and SACOL sites.
The color coded on each point indicates the relative bias. It should be noted that the ratio of
standard deviations and correlation coefficient between prior GEOS-Chem simulated and
measured surface PM10 over Zhangye and SACOL are 6.5 and 0.45, which makes the point
number 6 for the prior simulation far beyond the range of this Taylor diagram.

B.5 Implications of Results

Interpretation of our inversion results can be from two different perspectives. First, if

assuming that bottom-up anthropogenic emissions are the best estimates for their base years

(mostly 2006), the reduction in the top-down emissions over China for April 2008 may

indicate a decrease of emissions for April from 2006 to 2008. This conjecture is supported

by the finding of significant decrease of AOD from 2006 to 2008 over the eastern China,

shown both in the MODIS and MISR Level 3 gridded products (Figure B.14), if we assume
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Figure B.14: Change of April monthly 0.55 µm AOD from 2006 to 2008 from MODIS (a)
and MISR (b) Level 3 daily products. [Figure adopted from Xu et al., 2013]

that the impact on AOD of meteorological differences between the two years is smaller than

the differences in emissions. Furthermore, a slight increase of AOD over the Southeastern

China (Figure B.14) is also found to be consistent to the increase in the top-down emission

estimates (Figure B.6). In contrast to the first interpretation, the second one is that the

difference of actual emissions between 2008 and their base year (2006) are smaller than the

magnitude of adjustments in the optimization, and hence our results imply that the priori

bottom-up emissions might be artificially overestimated. We further elucidate those two

points below with a literature survey (data are summarized in Table B.4).

B.5.1 SO2

The INTEX-B inventory by Zhang et al. [2009b] reported an annual production of 31.02

Tg from anthropogenic sources over China. A decrease trend of China SO2 emissions

from 2006 to 2008 has been found based on bottom-up estimates by Lu et al. [2010] from

33.2 to 31.3 (∼5.8% decrease) Tg yr−1 and by China Ministry of Environmental Protection

[2009] (hereafter referred to MEP-2008) from 25.9 to 23.2 Tg yr−1 (∼10.4% decrease).

With OMI SO2 retrievals, Lu et al. [2010] found the dramatic reduction of SO2 emissions
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over the northern China for the same period. Similar to this study, Lu et al. [2010] also

presented that the reductions is more significant over the Eastern China. They attribute some

reduction to the widespread installation of flue-gas desulfurization devices in power plants,

which is enforced by the China government since 2006. Evidences for the reduction trend

of SO2 emission also include the reduction of SO2 column from 2006 observed by both

SCIAMACHY and OMI satellite sensors [Lu et al., 2011]. With the same SCIAMACHY and

OMI SO2 retrievals, Lee et al. [2011] obtained top-down estimates of China SO2 emissions,

which are lower by 50% for SCIAMACHY and 30% for OMI than the INTEX-B inventory.

Thus, the reduction of 33.5% in the top-down China SO2 emissions of this work can be

interpreted by the joint contribution of a decrease trend and a possible overestimation in

INTEX-B bottom-up inventory.

B.5.2 NH3

The NH3 emissions over China have not changed much since 2000, as confirmed by the

REAS inventory [Ohara et al., 2007]. Our study shows an overall decrease of 34.5% in

the optimized from the TRACE-P 2000 inventory [Streets et al., 2003], which may indicate

an overestimation in the TRACE-P inventory. As shown in Table B.4, the total amount of

the constrained NH3 emission (0.72 Tg Mon−1) for April 2008 is quite close to a recent

bottom-up estimates (0.71 Tg Mon−1) by Huang et al. [2012]. Huang et al. [2012] also

pointed out that the TRACE-P 2000 inventory significantly overestimates the NH3 emission

by applying an overestimated emission factor across the whole country.

B.5.3 NOx

Lin et al. [2010] constrained Chinese anthropogenic emissions of NOx in July 2008 with

tropospheric NO2 retrievals from GOME-2 and OMI instruments. They found the top-down
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Table B.4: Comparisons for annually (Tg yr−1) and/or for April only (Tg Mon−1) estimates
of Chinese aerosol emissions during 2006 and 2008.

2006 2006
Tracer Emission inventories Annual April Annuala April

INTEX-B [Zhang et al., 2009b] 31.02 2.37 - -
SO2 China MEP-2008 25.89 - 23.21 -

Lu et al. [2010] 33.2 - 31.3 -
This work - 2.60 22.69 1.73

TRACE-P [Streets et al., 2003] 13.6 1.10 - -
NH3 Huang et al. [2012] 9.8 0.71 - -

This work - 1.10 8.91 0.72

INTEX-B [Zhang et al., 2009b] 20.83 1.63 - -
NOx Lin et al. [2010] - - 22.34 -

This work - 1.69 17.60 1.38

INTEX-B [Zhang et al., 2009b] 1.81 0.12 - -
Qin and Xie [2012] 1.55 - 1.61 -

BC Lu et al. [2011] 1.63 - 1.68 -
Zhao et al. [2013] 1.60 - 1.60 -
This work - 0.11 1.51 0.10

INTEX-B [Zhang et al., 2009b] 3.22 0.19 - -
OC Lu et al. [2011] 3.42 - 3.37 -

Zhao et al. [2013] 2.90 - 2.80 -
This work - 0.21 2.92 0.18

aOur annual top-down estimates (Tg yr−1) are based on the monthly
variation of the INTEXT-B inventory.

emissions are (10−15%) lower than the a priori near Beijing (in agreement with results from

Mijling et al. [2009]), in the northeastern provinces and along the east coast; yet they exceed

the a priori over many inland regions. Overall, they presented a best top-down estimate

of annual NOx production is 6.8 Tg N, or 22.34 Tg NO2, which is slightly higher than the

a priori. While the change in NOx emission over China remains controversy, the 18.8%

difference of posterior NOx emissions from the bottom-up still lies in the 31% uncertainty

of the inventory [Zhang et al., 2009b]. We argue bottom-up NOx estimate from INTEX-B

inventory could have a possible overestimation.
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B.5.4 BC and OC

Major emitting sectors of BC and OC are coal and biofuel combustion by industry, residential,

and transportation activities. The trend of BC and OC emissions in China during recent

years are controlled by the balance between decrease in emission factor which is pertain

to improved technology and increase in coal and fuel consumptions. According to MEP-

2008 [Ministry of Environmental Protection, 2009], the annual smoke emission in China

decreased by about 17.2% from 2006 to 2008. While BC and OC emissions estimated by

Lu et al. [2011] and Zhao et al. [2013] remain almost same between 2006 and 2008, Qin

and Xie [2012] reported a 3.8% increase. The top-down BC emission is 0.10 Tg mon−1 (or

1.509 Tg yr−1 based on the monthly variation in INTEX-B inventory), which is smaller than

that in INTEX-B, but close to estimates of 1.61 Tg yr−1 by Qin and Xie [2012] and 1.68

Tg yr−1 by Lu et al. [2011]. In terms of China OC emission estimates for 2008, Lu et al.

[2011] suggested a slightly larger value (3.37 Tg yr−1) while Zhao et al. [2013] indicated a

smaller value (2.8 Tg yr−1) than INTEX-B (3.22 Tg yr−1). Our OC emission estimate (0.18

Tg mon−1 or 2.92 Tg yr−1) is within their reported range. It is noted that the uncertainty for

OC emissions is reported to be very large: 258% in INTEX-B [Zhang et al., 2009b], −43%

to 80% by Lu et al. [2011], and −42% to 114% by Zhao et al. [2013].

B.5.5 Mineral dust

The ∼50% reduction in the posterior dust emission estimates suggests the use of DEAD

mobilization scheme with GOCART source function possibly tends to produce a systematic

positive bias over the Taklimakan and Gobi deserts regions over the northwestern China,

even it works reasonably for the United States [Fairlie et al., 2007]. Similar results have been

also found in top-down dust emission estimates by MODIS aerosol retrievals [Wang et al.,

2012], and constrained dust emissions by surface PM measurements [Ku and Park, 2011].
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Such overestimation by the dust mobilization scheme is also reflected through comparison

GEOS-Chem AOD (as in Figure B.7) and surface PM10 conentration (as in Figure B.12)

with in situ measurements near the dust source regions.

B.6 Summary

This study presents a two-stage inversion scheme to explore the capacity of using satel-

lite radiance for inversion of species-specific aerosol emissions. Firstly, we prepare the

observational constraints of AOD using an advanced aerosol retrieval algorithm, which

integrates the GEOS-Chem aerosol optical properties to the MODIS observed radiance

[Wang et al., 2010]. Secondly, the adjoint of the GEOS-Chem chemical transport model

is applied to statistically optimize aerosol emission estimates using these AOD retrievals.

Thus, the MODIS radiances are essentially used to optimize the estimates of the emitted

aerosol tracers and precursors.

We illustrate our concept first with an idealized numerical experiment, and subsequently

demonstrate the feasibility and practicability of the proposed scheme by applying it to

optimize aerosol emission inventories over China during April 2008. Emissions of SO2,

NH3, NOx, BC and OC from anthropogenic sources, which significantly influence the

aerosol simulation, are selected to be constrained at a spatial resolution of 2◦ by 2.5◦ and a

monthly temporal resolution. Mineral dust production from combined natural and disturbed

sources are optimized at the same spatial resolution but with a daily temporal resolution.

Independent observations from both satellite remote sensing and ground-based observations

are used to assess the inversion results through their comparisons with relevant GEOS-Chem

simulations using prior and posterior emission estimates.

The inversion yields posterior best estimates of 1.73 Tg for SO2, 0.72 Tg for NH3,

1.38 Tg for NOx, 0.10 Tg for BC, and 0.18 for OC from anthropogenic sources, and
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8.3 Tg for combined natural and disturbed mineral dust. These show notable decreases

from their counterparts in the bottom-up inventories in amount (or percentage decrease):

0.87 Tg (33.5%) for SO2, 0.38 Tg (34.5%) for NH3, 0.32 Tg (18.8%) for NOx, 0.01

Tg (9.1%) for BC, and 0.03 Tg (15.0%) for OC. The total amount of the mineral dust

emission is reduced by 56.4% from 19.02 Tg simulated by the DEAD mobilization module.

The distribution of emission scaling factors exhibits strong spatial variation for those

anthropogenic-emitted tracers and considerable temporal variation for mineral dust. The

use of top-down constrained emissions remarkably reduces the discrepancy between GEOS-

Chem simulation and observational AOD constraints, in both spatial and temporal variation

features.

Resulting posterior estimates of emissions are evaluated with independent AOD observa-

tions from surface sites (AERONET) and satellite (MISR), SO2 and NO2 column retrievals

from satellite (OMI), and surface SNA and PM10 concentrations from ground-based mea-

surements. While the prior simulation over China generally shows overestimation, the use

of posterior emissions significantly enhances the consistency between simulations and those

independent observations. The statistical analysis of those comprehensive comparisons

summarized in the Taylor diagram shows an overall reduced bias and root-mean-squre

difference along with increased correlation coefficient, further confirming the improvements

in the posterior simulation and the effectiveness of the presented top-down scheme.

We attribute the differences between prior and posterior aerosol emissions to the change

of emitted amount from the base year of those bottom-up inventories to the study period

and/or the under/over-estimations in those inventories. Through comparisons with emissions

over China reported by recent studies, we find that our inversion results are consistent with

following finding:

• Anthropogenic SO2 emissions over China has been decreased by 5−10% from 2006
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to 2008;

• Anthropogenic BC/OC emissions may be slightly reduced;

• Anthropogenic emissions of SO2 and NOx reported in the INTEX-B and NH3 from

TRACE-P inventories could have been artificially overestimated;

• The DEAD mobilization scheme combined with GOCART dust source function, even

works well over the United State [Fairlie et al., 2007], seems to simulate mineral dust

surface fluxes with a systematic positive bias.

As a first attempt to invert species-specific emissions with satellite radiance, this study

has a number of limitations. Those limitations may impact the uncertainty in posterior

emissions, which is supposed to be smaller than uncertainty characterizing either a priori

or observational constraints [Rodgers, 2000]. While quantification of these is beyond

the demonstrative purposes of this paper, we present a qualitative discussion as follows.

First, in the stage of aerosol retrieval, we presume aerosol composition is unbiased, and

contains errors only in the total amount. As the model inevitably has bias associating

aerosol types, improvement of this assumption over regional to global scale can be obtained

from innovative satellite measurements. Indeed, the radiance observations have potential

information on the aerosol composition. For example, the spectral behavior of the radiance

is used to discriminate smoke from mineral dust particles[King et al., 1999; Kaufman et al.,

2002]. Radiances measured from multi-viewing-angle are sensitive to aerosol particle

size and nonsphericity [Martonchik et al., 2009]. Temporal variation and geographical

location can also yield information about aerosol composition. For example, increase of

AOD in semi-arid region may reflect the increase of dust, while change of AOD in the

Eastern Asia may reflect the increase of industrial emission. Hence, as showed in this study,

a combined use of the model-based knowledge of the dominant aerosol sources and the
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source-receptor relationship together with the satellite-based temporal variation of AOD at

different locations can be a strong constraint for species-specific source estimates. Second,

this study also assumes the sole cause of the radiance difference (or the AOD difference)

is due to the uncertainty in aerosol emissions. However, other processes can contribute

to the difference, e.g. aerosol transport, wet/dry deposition, diurnal variation, prescribed

aerosol physical and optical properties, and errors in the meteorological fields and radiative

transfer calculation, etc. The third assumption is related to the error covariance matrices

that are specified as diagonal with errors based upon literature (but that themselves may

have uncertainty). To properly address these issues in future, a logical next step would be to

assimilate multiple-spectral and/or multi-angle satellite radiance to the CTM. Furthermore,

errors in the processes including emission, transport, and deposition and radiative transfer,

should be reasonably characterized and included in the optimization.

The top-down inversion scheme using GEOS-Chem adjoint inverse modeling is a power-

ful tool to include observational constraints from different platforms for timely updating

aerosol emissions. There is also a need of using combined tracer gas and aerosol measure-

ments to simultaneously constrain the aerosol emissions and gas precursors. Encouraging

results presented in this study reveal the potential of using aerosol observations from MODIS

and MISR, SO2 and NO2 from OMI and other sensor, such as SCIAMACHY, in the in-

version. Inclusion of those observations will undoubtedly add more information to the

optimization of emission.
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APPENDIX C

ABBREVIATIONS AND ACRONYMS

AE Ångström Exponent

AERONET AErosol RObotic NETwork

AOD Aerosol Optical Depth

APS Aerosol Polarimetric Sensor

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer

Asy Asymmetry factor

AVHRR Advanced Very High Resolution Radiometer

BPDF Bidirectional Polarization Distribution Function

BRDF Bidirectional Reflectance Distribution Function

CAI Cloud and Aerosol Imager

CTM Chemistry Transport Model

DEAD Dust Entrainment and Deposition Model

DFS Degree of Freedom for Signal

DOLP Degree of Linear Polarization

EI Emission Inventory

EN Error-Normalized

GEO-CAPE GEOstationary Coastal and Air Pollution Events satellite

GEOS Goddard Earth Observing System

GeoTASO Geostationary Trace Gases and Aerosol Sensor Optimization sensor

GOCART Goddard Chemistry Aerosol Radiation and Transport model

GOME Global Ozone Monitoring Experiment satellite

GOSAT Greenhouse gases Observing SATellite

HITRAN HIgh-resolution TRANsmission molecular absorption database

INTEX-B Intercontinental Chemical Transport Experiment Phase B

L-BFGS-B Limited memory Broyden–Fletcher–Goldfarb–Shanno bounded algorithm

LMIE Linearized Mie code
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LTMATRIX Linearized T-matrix code

MAP Maximum a posteriori

MISR Multi-angle Imaging SpectroRadiometer

MODIS Moderate Resolution Imaging Spectroradiometer

MOPITT Measurements Of Pollution In The Troposphere sensor

NASA National Aeronautics and Space Administration

NDVI Normalized Difference Vegetation Index

NIR Near-Infrared

NSD Normalized standard deviation

OMI Ozone Monitoring Instrument

OPAC Optical Properties of Aerosols and Clouds

PDF Probability density function

PM Particulate Matter

POLDER POLarization and Directionality of the Earth’s Reflectances

PSD Particle size distribution

RMSD Centralized root-mean-square difference

RMSE Root-mean-square error

RTM Radiative transfer model

SBDART Santa Barbara Discrete-Ordinate Atmospheric Radiative Transfer

SCIAMACHY SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY

SIC Shannon information content

SNA Sulfate-nitrate-ammonium

SOnet Sun/sky-radiometer Observation network

SSA Single-scattering albedo

SZA Solar zenith angle

TANSO Thermal And Near infrared Sensor for carbon Observation

TEMPO Tropospheric Emissions: Monitoring of Pollution

TES Tropospheric Emission Spectrometer

TOA Top of the atmosphere

TRACE-P Transport and Chemical Evolution over the Pacific

UAE2 United Arab Emirates Unified Aerosol Experiment

UNL-VRTM UNified Linearized Vector Radiative Transfer Model

UV Ultraviolet

VLIDORT Vector code of LInearized Discrete Ordinate Radiative Transfer
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APPENDIX D

LIST OF PUBLICATIONS GENERATED DURING PHD STUDY

2015 Xu, X. and and J. Wang, Retrieval of aerosol microphysical properties
from AERONET photopolarimetric measurements: 1. Information content
analysis, J. Geophys. Res. Atmos., 2015, 120, doi:10.1002/2015JD023108.

2015 Xu, X., J. Wang, J. Zeng, R. Spurr, X. Liu, O. Dubovik, L. Li, Z. Li, M. I.
Mishchenko, A. Siniuk, and B. N. Holben, Retrieval of aerosol microphysical
properties from AERONET photopolarimetric measurements: 2. A new
research algorithm and case demonstration, J. Geophys. Res. Atmos., 2015,
120, doi: 10.1002/2015JD023113.

2014 Wang, J., X. Xu, S. Ding, J. Zeng, R. Spurr, X. Liu, K. Chance, and M.
Mishchenko, A numerical testbed for remote sensing of aerosols, and its
demonstration for evaluating retrieval synergy from a geostationary satellite
constellation of GEO-CAPE and GOES-R, Journal of Quantitative Spec-

troscopy and Radiative Transfer, 2014, 146(0), 510-528.
2013 Meland, B. S., X. Xu, D. Henze, and J. Wang, Assessing remote polarimetric

measurement sensitivities to aerosol emissions using the GEOS-Chem adjoint
model, Atmos. Meas. Tech., 2013, 6, 3441-3457.

2013 Xu, X., J. Wang, D. K. Henze, W. Qu, and M. Kopacz, Constraints on aerosol
sources using GEOS-Chem adjoint and MODIS radiances, and evaluation
with multisensor (OMI, MISR) data, J. Geophys. Res. Atmos., 2013, 118(12),
6396-6413.

2012 Wang, J., X. Xu, D. K. Henze, J. Zeng, Q. Ji, S.-C. Tsay, and J. Huang,
Top-down estimate of dust emissions through integration of MODIS and
MISR aerosol retrievals with the GEOS-Chem adjoint model, Geophys. Res.

Lett., 2012, 39(8), L08802.
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2010 Wang, J., X. Xu, R. Spurr, Y. Wang, and E. Drury, Improved algorithm for
MODIS satellite retrievals of aerosol optical thickness over land in dusty
atmosphere: Implications for air quality monitoring in China, Remote Sensing

of Environment, 2010, 114(11), 2575Ð2583.
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