4,451 research outputs found

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    MISSEL: a method to identify a large number of small species-specific genomic subsequences and its application to viruses classification

    Get PDF
    Continuous improvements in next generation sequencing technologies led to ever-increasing collections of genomic sequences, which have not been easily characterized by biologists, and whose analysis requires huge computational effort. The classification of species emerged as one of the main applications of DNA analysis and has been addressed with several approaches, e.g., multiple alignments-, phylogenetic trees-, statistical- and character-based methods

    Bibliometric Mapping of the Computational Intelligence Field

    Get PDF
    In this paper, a bibliometric study of the computational intelligence field is presented. Bibliometric maps showing the associations between the main concepts in the field are provided for the periods 1996–2000 and 2001–2005. Both the current structure of the field and the evolution of the field over the last decade are analyzed. In addition, a number of emerging areas in the field are identified. It turns out that computational intelligence can best be seen as a field that is structured around four important types of problems, namely control problems, classification problems, regression problems, and optimization problems. Within the computational intelligence field, the neural networks and fuzzy systems subfields are fairly intertwined, whereas the evolutionary computation subfield has a relatively independent position.neural networks;bibliometric mapping;fuzzy systems;bibliometrics;computational intelligence;evolutionary computation

    Parameter optimization for intelligent phishing detection using Adaptive Neuro-Fuzzy

    Get PDF
    Phishing attacks has been growing rapidly in the past few years. As a result, a number of approaches have been proposed to address the problem. Despite various approaches proposed such as feature-based and blacklist-based via machine learning techniques, there is still a lack of accuracy and real-time solution. Most approaches applying machine learning techniques requires that parameters are tuned to solve a problem, but parameters are difficult to tune to a desirable output. This study presents a parameter tuning framework, using adaptive Neuron-fuzzy inference system with comprehensive data to maximize systems performance. Extensive experiment was conducted. During ten-fold cross-validation, the data is split into training and testing pairs and parameters are set according to desirable output and have achieved 98.74% accuracy. Our results demonstrated higher performance compared to other results in the field. This paper contributes new comprehensive data, novel parameter tuning method and applied a new algorithm in a new field. The implication is that adaptive neuron-fuzzy system with effective data and proper parameter tuning can enhance system performance. The outcome will provide a new knowledge in the field

    Intelligent phishing detection parameter framework for E-banking transactions based on Neuro-fuzzy

    Get PDF
    Phishing attacks have become more sophisticated in web-based transactions. As a result, various solutions have been developed to tackle the problem. Such solutions including feature-based and blacklist-based approaches applying machine learning algorithms. However, there is still a lack of accuracy and real-time solution. Most machine learning algorithms are parameter driven, but the parameters are difficult to tune to a desirable output. In line with Jiang and Ma’s findings, this study presents a parameter tuning framework, using Neuron-fuzzy system with comprehensive features in order to maximize systems performance. The neuron-fuzzy system was chosen because it has ability to generate fuzzy rules by given features and to learn new features. Extensive experiments were conducted, using different feature-sets, two cross-validation methods, a hybrid method and different parameters and achieved 98.4% accuracy. Our results demonstrated a high performance compared to other results in the field. As a contribution, we introduced a novel parameter tuning framework based on a neuron-fuzzy with six feature-sets and identified different numbers of membership functions different number of epochs, different sizes of feature-sets on a single platform. Parameter tuning based on neuron-fuzzy system with comprehensive features can enhance system performance in real-time. The outcome will provide guidance to the researchers who are using similar techniques in the field. It will decrease difficulties and increase confidence in the process of tuning parameters on a given problem

    A survey on computational intelligence approaches for predictive modeling in prostate cancer

    Get PDF
    Predictive modeling in medicine involves the development of computational models which are capable of analysing large amounts of data in order to predict healthcare outcomes for individual patients. Computational intelligence approaches are suitable when the data to be modelled are too complex forconventional statistical techniques to process quickly and eciently. These advanced approaches are based on mathematical models that have been especially developed for dealing with the uncertainty and imprecision which is typically found in clinical and biological datasets. This paper provides a survey of recent work on computational intelligence approaches that have been applied to prostate cancer predictive modeling, and considers the challenges which need to be addressed. In particular, the paper considers a broad definition of computational intelligence which includes evolutionary algorithms (also known asmetaheuristic optimisation, nature inspired optimisation algorithms), Artificial Neural Networks, Deep Learning, Fuzzy based approaches, and hybrids of these,as well as Bayesian based approaches, and Markov models. Metaheuristic optimisation approaches, such as the Ant Colony Optimisation, Particle Swarm Optimisation, and Artificial Immune Network have been utilised for optimising the performance of prostate cancer predictive models, and the suitability of these approaches are discussed

    Microbial community pattern detection in human body habitats via ensemble clustering framework

    Full text link
    The human habitat is a host where microbial species evolve, function, and continue to evolve. Elucidating how microbial communities respond to human habitats is a fundamental and critical task, as establishing baselines of human microbiome is essential in understanding its role in human disease and health. However, current studies usually overlook a complex and interconnected landscape of human microbiome and limit the ability in particular body habitats with learning models of specific criterion. Therefore, these methods could not capture the real-world underlying microbial patterns effectively. To obtain a comprehensive view, we propose a novel ensemble clustering framework to mine the structure of microbial community pattern on large-scale metagenomic data. Particularly, we first build a microbial similarity network via integrating 1920 metagenomic samples from three body habitats of healthy adults. Then a novel symmetric Nonnegative Matrix Factorization (NMF) based ensemble model is proposed and applied onto the network to detect clustering pattern. Extensive experiments are conducted to evaluate the effectiveness of our model on deriving microbial community with respect to body habitat and host gender. From clustering results, we observed that body habitat exhibits a strong bound but non-unique microbial structural patterns. Meanwhile, human microbiome reveals different degree of structural variations over body habitat and host gender. In summary, our ensemble clustering framework could efficiently explore integrated clustering results to accurately identify microbial communities, and provide a comprehensive view for a set of microbial communities. Such trends depict an integrated biography of microbial communities, which offer a new insight towards uncovering pathogenic model of human microbiome.Comment: BMC Systems Biology 201

    A Multi-Agent Architecture for the Design of Hierarchical Interval Type-2 Beta Fuzzy System

    Get PDF
    This paper presents a new methodology for building and evolving hierarchical fuzzy systems. For the system design, a tree-based encoding method is adopted to hierarchically link low dimensional fuzzy systems. Such tree structural representation has by nature a flexible design offering more adjustable and modifiable structures. The proposed hierarchical structure employs a type-2 beta fuzzy system to cope with the faced uncertainties, and the resulting system is called the Hierarchical Interval Type-2 Beta Fuzzy System (HT2BFS). For the system optimization, two main tasks of structure learning and parameter tuning are applied. The structure learning phase aims to evolve and learn the structures of a population of HT2BFS in a multiobjective context taking into account the optimization of both the accuracy and the interpretability metrics. The parameter tuning phase is applied to refine and adjust the parameters of the system. To accomplish these two tasks in the most optimal and faster way, we further employ a multi-agent architecture to provide both a distributed and a cooperative management of the optimization tasks. Agents are divided into two different types based on their functions: a structure agent and a parameter agent. The main function of the structure agent is to perform a multi-objective evolutionary structure learning step by means of the Multi-Objective Immune Programming algorithm (MOIP). The parameter agents have the function of managing different hierarchical structures simultaneously to refine their parameters by means of the Hybrid Harmony Search algorithm (HHS). In this architecture, agents use cooperation and communication concepts to create high-performance HT2BFSs. The performance of the proposed system is evaluated by several comparisons with various state of art approaches on noise-free and noisy time series prediction data sets and regression problems. The results clearly demonstrate a great improvement in the accuracy rate, the convergence speed and the number of used rules as compared with other existing approaches
    corecore