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Abstract— The concept of Cumulated Anomaly (CA), which describes a new type of database anomalies, is addressed. A 

typical CA intrusion is that when a user who is authorized to modify data records under certain constraints deliberately 

hides his/her intentions to change data beyond constraints in different operations and different transactions. It happens 

when some appearing to be authorized and normal transactions lead to certain accumulated results out of given thresholds. 

The existing intrusion techniques are unable to deal with CAs.  This paper proposes a detection model, 

Dubiety-Determining Model (DDM), for Cumulated Anomaly. This model is mainly based on statistical theories and fuzzy 

set theories. It measures the dubiety degree, which is presented by a real number between 0 and 1, for each database 

transaction, to show the likelihood of a transaction to be intrusive. The algorithms used in the DDM are introduced. A 

DDM-based software architecture has been designed and implemented for monitoring database transactions. The 

experimental results show that the DDM method is feasible and effective. 
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1. Introduction 

The number of anomalous usage originated inside an organization is increasing steadily [7][11][12]. They 
are usually made by "authorized'' users of the system. Typically, there is a specific type of intrusions, a user 
who is authorized to modify data records under certain constraints deliberately hides his/her intentions to 
change data beyond constraints in different operations and different transactions. It happens when certain 
authorized and normal transactions submitted result in the accumulated amount of data out of some 
thresholds. Often, in this type of attack, each individual transaction is legitimate; however, the accumulated 
results of the attacker’s operations are malicious. We refer this type of intrusions as Cumulated Anomaly 

(CA) intrusion. 
 

The existing Intrusion Detection Systems (IDS) can be grouped into two classes: (1) misuse detection, 
which maintains a database of known intrusion techniques or behaviors and detects intrusions by 
comparing users’ behaviors against the database [14, 9]; (2) anomaly detection, which analyzes user 
behaviors and the statistics of a process in a normal situation, and checks whether the system is being used 
in a different manner [5, 21].  

  
 In general, misuse detection model cannot detect new, unknown intrusions [14]. Anomaly detection 

needs to maintain the records of users' behaviors and the statistics for normal usages, which is referred to as 
“profiles”. The profiles tend to be large. To detect intrusions, it needs a large amount of system resources, 
and often delays detection decision makings. If attackers hide their intensions, anomaly detection will not 
be able to detect them. So it is fair to say that neither anomaly detection nor misuse detection would be able 
to effectively detect CAs.  
 
 In this study, we investigate Cumulated Anomaly intrusions and propose a model for detection. In this 
model, each transaction is treated as an audit record, which includes the database account, the SQL 
statement, the time when it is submitted, and the specific data it refers to. By applying a cluster process on 
the audit records, transaction patterns can be derived. According to these patterns, monitoring rules are set 
up to specify what transaction patterns to monitor, including the database operations (such as select, update 
and delete) and the database objects referred to (such as tables and columns). Besides, monitoring rules also 
define different monitoring modes, including counting the occurrences of transactions belonging to the 
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same user, and data change frequency to make sure that the monitoring rules can inspect closely some 
complex transactions in which some malicious intentions may hide. In addition, membership functions [11] 
of fuzzy set theories, which are used to specify the monitoring rules, are applied in the model to monitor 
and present the possibility of anomalies of transactions in real time. The values of the parameters in the 
monitoring rules can be extracted from training processes and be modified whenever it is needed. The 
membership functions are used to assist the rules to indicate the likelihood of a transaction being intrusive 
or not. If a transaction matches the pattern of a monitoring rule, an indicator (degree) within the interval 
[0,1]  will be calculated. This indicator is used to represent the dubiety degree of a transaction. By this 
method, the dubiety of database transactions can be denoted quantitatively. Therefore, this model is named 
as Dubiety-Determining Model (DDM). 

The main contributions of this study are: (1) address a specific type of anomalies - Cumulated Anomaly; 
(2) propose a new method, the DDM, to monitor Cumulated Anomaly; (3) design software system 
architecture for database transaction monitoring based on the DDM; (4) implement the DDM in a database 
system; (5) evaluate the system to verify the effectiveness of the DDM. 

The rest of the paper is as follows. Section 2 reviews some related work briefly. Section 3 describes the 
DDM. The design and implementation issues are discussed in Section 4. In Section 5, the experimental 
results are introduced. Section 6 presents the final remarks. 

2. Related Work 

Besides access policies, roles, administration procedures, physical security, security models, and data 
inference, misuse detection and anomaly detection at databases have been used to detect anomaly intrusions 
or intrusion attempts made at the databases. 
 
Chung et al developed DEMIDS [4], which was a misuse detection system for relational database systems. 
DEMIDS uses anomaly detection methods for the detection of misuse of prifileges. The main idea is based 
on frequent itemsets. They comprise relations, attributes and values which a user most often uses in his/her 
SQL statements. The frequent itemsets are derived in the training phase for each user. DEMIDS developed 
a distance measure between such a set and a SQL statement. In the monitoring phase DEMIDS uses this 
measure to compare a user’s frequent itemset and his actual queries. An alarm is raised when the measure 
exceeds a threshold. [1] provides two approaches to anomaly detection in relational databases. The first one 
is based on the comparison of reference values. These values are obtained with a combination of  
statistical functions on the elements of single attributes. The second approach uses ⊿-relations. ⊿-relations 
record the changes of the values of the monitored attributes between two runs of the system. DIDAFIT [10] 
is a database misuse detection system that identifies anomalous database accesses by matching SQL 
statements with a known set of legitimate database transaction fingerprints. It modifies the semantics of an 
SQL statement with random data, derives a general form of a user’s statements and compares the form and 
the current SQL statement. A similar approach is also presented in [9]. [13] presents a framework for a 
statistical anomaly prediction system using a neuro-genetic forecasting model, which predicts unauthorized 
invasions, based on previous observations and takes further action before intrusion occurs. In this paper, the 
authors propose an evolutionary time-series model for short-term database intrusion forecasting using 
genetic algorithm owing to its global search capability. D_DIPS [7] monitors transactions issued by users 
and malicious transactions are viewed as intrusion behaviors. If a malicious transaction is identified, the 
system cancels the transaction before it succeeds. This method assumes that there are no direct interactive 
ways for database users to by pass the system. However, if this assumption does not hold, the system will 
be invalid. 

In the existing database intrusion detection researches, fuzzy set theory is mainly used with other 
theories such as neural network in building profiles for anomaly detection [8, 14, 21, 19]. For example, in 
[3], Chen R.C. and Hsieh C.C use a fuzzy Adaptive Resonance Theory (ART) and neural network to detect 
anomaly intrusion of database operations, by monitoring the connection activities to a database. 

3. The Dubiety-Determining Model (DDM) 

The existing researches have pointed out that the users’ profiles can be used for misuse detection or 
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anomaly detection [5, 9, 14, 21]. However, they approaches do not focus on the data changed by database 
transactions. Besides, they discover anomaly after it has occurred. In DDM, users’ profiles include not only 
the patterns of their SQL statements, but also the change of data. DDM monitors the dubiety degrees of 
database transactions quantitatively in real time for Cumulated Anomaly. 

In DDM, monitoring rules are set up according to the patterns of transactions (like fingerprint defined in 
[9] and [10]). However, transactions matching rules are not definitely anomalous, because in Cumulated 

Anomaly detection, we care not only about the patterns of transactions, but also the data referred, as Fig. 1 
shows. 

 

Fig.1 The Detection Flow of DDM 

In this section, after giving some basic definitions, we introduce the two sub-models employed in the 
DDM, which are statistical sub-model and membership function sub-model. They are the key components 
of the DDM. The algorithm of training monitoring rules is then presented. 

3.1. Definitions in DDM 

In this paper we adopt the relational database model as the underlying data model. We define 
relational database as 

,DB RS IC=  

where 1
1

{ , , } { }
n

n i
i

RS R R R
=

= =K U  is the set of all the relations in the database, and IC  is a set of 

integrity constraints in the database. Furthermore, for a relation R RS∈ , it is defined that 

1, ,
n

R A A= K  where each 
i

A  is an attribute of R . The set of the attributes of R  is denoted by 

1( ) { , , }
n

attr R A A= K . The function attr  also operates on multi-relations, and the result is the set 

of the attributes of all the relations operated, i.e. 1
1

( , , ) ( )
n

n i
i

attr R R attr R
=

=K U . The value of 

attribute 
i

A  of tuple t  in a relation R  is denoted by . .
i

R t A . When it is discussed for a definite or 

the same relation, the prefix R  can be omitted, i.e. .
i

t A . 

Definition 1. Query Statement 
An SQL query statement submitted to the database can be initially considered as 5-tuple:  

, , , ,S opr Rs AT cond V=< >  

where 

� 
{ , , , , }opr select delete insert update execute∈ , 

� Rs  is the set of relations referred by opr ; 

� AT  is the set of attributes referred by opr ; 

� cond  is the specified condition in S , i.e. the where sub-clause. If there is no where sub-clause in 

the statement, we just have cond NULL= ; 

� V  is the set of values referred by opr  for each item in AT , denoted by . . .
i j

R t A v  where 

i
R Rs∈ , t  is the tuple affected by opr , and ( )

j i
A attr R∈ . 
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Example 1. 
For example, for the statement 

update table1 set col1=3, col2=’hello’ where col3=0; 

we suppose that tuple t  satisfies the condition . 3 0t col = , then we have 

,{ 1},{ 1, 2}, 3 0,{3, ' '}S update table col col col hello=< = >  

for the statement. 
Lemma 1. Equivalent Statements 

For SQL query statements 1S  and 2S , it is also defined: 

if  

1 2

1 2

1 2

1 2

. .

. .

. .

. .

S opr S opr

S Rs S Rs

S AT S AT

S cond S cond

=

=

=

=
 

then 1S  and 2S  are called Equivalent Statements, denoted by 1 2S S= . 

Definition 2. Pattern of Statemenst 

Given an SQL query statement S , by replacing .S V  and the specific data value in .S cond  with a 

uniform token $ $TOKEN , the pattern of S  can be obtained, which is denoted by p . This operation 

is defined as ( )
TOKEN

P S . p  is a 5-tuple: 

( ) , , , ,$ $TOKEN p p p pp P S opr Rs AT cond TOKEN= =< >  

where 

� .popr S opr= , 

� .
p

Rs S Rs= ; 

� .
p

AT S AT= ; 

� 
p

cond  is .S cond  with the specific data value replaced by $ $TOKEN . If there is no where 

sub-clause in the statement, we just have 
p

cond NULL= ; 

� $ $TOKEN  is the token by which the specific data values in S  are replaced. 

Example 2. 
For example, for the statement 

,{ 1},{ 1, 2}, 3 0,{3, ' '}S update table col col col hello=< = > , 

we have 

( ) ,{ 1},{ 1, 2}, 3 $ $,$ $TOKENp P S update table col col col TOKEN TOKEN= =< = >  

Lemma 2. Equivalent Pattern 

For patterns 1p  and 2p , it is also defined: 

if  

1 2

1 2

1 2

1 2

. .

. .

. .

. .

p p

p p

p p

p p

p opr p opr

p Rs p Rs

p AT p AT

p cond p cond

=

=

=

=

 

then 1p  and 2p  are called Equivalent Patterns, denoted by 1 2p p= . 

Definition 3. Transaction 

A transaction T  executed on a database can be regarded as 4-tuple: 
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, , ,T acct S m ts=< >  
where 

� acct  is the database account who executes T ; 

� S  is the statement submitted to the database in T ; 

� m  is the set of measures on T  to be monitored, which will be defined in detail in Definition 4; 

� ts  is the time stamp recording the time when T  is executed. 

Lemma 3. Equivalent Transactions 

For transactions 1T  and 2T , it is defined: 

if  

1 2

1 2

. .

. .
T acct T acct

T S T S

=

=
 

then 1T  and 2T  are called Equivalent Transactions, denoted by 1 2T T= . 

Definition 4. Measure of Transactions 

For a transaction T , there are two types of values of m , i.e. { , }
c s

m m m∈ . 
cm  is the frequent 

number of Equivalent Transactions of T  executed in a time window tw , denoted by 

. ( )
c i

T m Count T=
 

where . .
i

T ts T ts tw≥ −  and for i j≠ , 
i j

T T= . 

Given a relation . .
i

R T S Rs∈  and its attribute . . .
i j

R A T S AT∈ , supposing t  is the tuple affected 

by . .T S opr ,  
s

m  is defined as the sum of the margins between corresponding item 

. . . . .i jv R t A v T S V= ∈   (Definition 1) and the data of . .
i j

R t A  before S  is submitted in each T  in a 

time window tw , i.e. 

. ( . . . . . )
s i j i j

T m Sum R t A v R t A= −
, 

where the data type of .
i j

R A  is numeric and 

. . ;
for , ;

. . ;
( )

i

i j

i i

j i

T ts T ts tw

i j T T

R T S Rs

A attr R

≥ −

≠ =

∈

∈
. 

If the data type of .
i j

R A  is not numeric, it is defined that .
s

T m NULL= . 

Definition 5. Dubiety Degree of Transactions 

Given a transaction T , and a membership function f , ( . ) [0,1]f T m ∈  where . { , }c sT m m m∈  is 

called the Dubiety Degree of T . 0f =  means T  is normal or completely acceptable, and 1f =  

implies T  is malicious or completely unacceptable. 
Definition 6. Audit Record 

An audit record ar  for a transaction T  can be regarded as 6-tuple: 

, . , . , . , 1, 2ar aid T acct T S T ts data data=< >  

where 

� aid  is the unique ID for each audit record; 

� .T acct  is the database account who executes T ; 

� .T S  is the statement submitted to the database in T ; 

� .T ts  is the time stamp recording the time when T  is executed.; 

� 1data  and 2data  are the data values to which .T S  referred, respectively before and after 

.T S  is executed. 
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Definition 7. Cumulated Anomaly 

Given a membership function f  and a transaction T , the occurrences of T  with different time 

stamps are denoted by 
i

T . They consist of a set of transactions 1
1

{ , , } { }
n

n i
i

TS T T T
=

= =K U , where 

1 2 n
T T T= = =L . If there is 

1
{ }

j

m

i
j

STS T TS
=

= ⊆U , where [1, ]
j

i n∈  and 

1 2
. . .

mi i i
T ts T ts T ts≤ ≤ ≤L , and for STS , 

1 2
( . ) ( . ) ( . ) 1

mi i i
f T m f T m f T m≤ ≤ ≤ =L  

stands, it is said that T  causes Cumulated Anomaly. 

3.2. Statistical Sub-model of DDM 

Given a metric for a random variable X  and n  observations 1, ,
n

X XK , the purpose of the statistical 

sub-model of X  is to determine whether a new observation 1n
X

+
 is abnormal with respect to the 

previous observations. The mean avg  and the standard deviation stdev  of 1, ,
n

X XK  are defined as: 

1 2 n
X X X

avg
n

+ + +
=

L
                               (1) 

2

1

( )
n

i

istdev
n

X avg
=

=

−∑
                               (2) 

A new observation 
n 1

X
+

 is defined to be abnormal if it falls outside a confidence interval that is 

standard deviations from the mean, which is denoted by CI: 
CI avg dev= ±                                    (3) 

where dev d stdev= ×  with d  as a parameter. Given a time window tw , by letting .
n n

X T m= , this 

sub-model can be applied to . { , }
c s

T m m m∈ . Therefore, it would apply for the case of Cumulated 

Anomaly to determine .T m  for a transaction T . 

3.3. Membership Function Sub-model of DDM 

According to Definition 5, a membership function f  is used to “measure” the Dubiety Degree for each 

transaction T .  
An appropriate membership function is the basis of quantitative analysis on fuzzy attributes and plays a 

key role in fuzzy mathematics. The most widely used functions include S-shaped functions (
S

F ), Z-shaped 

functions (
Z

F ) and π -shaped functions ( F
π

). With U-shaped functions (
U

F ) defined as 

complementarities of π -shaped functions, these four types of membership functions are defined in Fig. 2. 

Their curves are illustrated in Fig. 3. 
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=
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−
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( , , )                    
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U
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F x a b c F x a b c
π

π

≤
=

>

= −





 

Fig.2 The Definition of the Membership Functions 

 

Fig.3 The Curves of the Membership Functions 

In Fig. 2 and Fig. 3, we assume that a b c≤ ≤ . It is straightforward to prove that when a b c= = , 
S

F  

and 
Z

F  both have only two values which are 0 and 1, while F
π

 only has 0 and 
U

F  only has 1 as their 

values. By adjusting the values of a, b and c, the shapes of F
π

 and 
U

F  can be changed. For example, 

the smaller the difference between a and c is, the narrower  F
π

 and 
U

F  are. However, 
S

F  and 
Z

F  

are not related to the parameter b according to the definition. Their shapes can only be adjusted by a and c. 
To make these two functions more flexible, we define b as the median point for them, i.e. 

1
( )

2S
F b =                                     (4) 

and 

1
( )

2ZF b =                                     (5) 

As a result, the shapes of 
S

F  and 
Z

F  can be adjusted by adjusting b as well as by a and c. According to 

(4) and (5), 
S

F  and 
Z

F  are made Modification 1, as Fig. 4 shows. 
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−
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≤

=
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Fig.4 Modification 1 of the Membership Functions 

3.4. Integration of the Two Sub-models of DDM 

Given a set P  containing n  observations 1, ,
n

X XK  of a metric for a random variable X , i.e. 

{ , 2,| 1 }
n

P X n == K , there must be a minimum 
min

X  and a maximum 
max

X  in it. The mean of all the 

elements in P is avg  as (1) defines. By (3), we have 

[ ]CI = avg - d stdev,avg + d stdev× ×                          (6) 

with ( )d d 0≥  as a parameter. By defining 
min min
l avg X= −  and 

max max
l X avg= − , we additionally  

define  max( , )
min max

d stdev l l× =   (so that the smaller one of 
min

l  and 
max

l  is included in CI as 

well). By taking 
max

d stdev l× =  as example, we can prove it is reasonable to do so. 

Proof.  

max( , )  and  
min max max

min min max max

i max

d stdev l l d stdev l

l avg X X avg l

X avg X avg

× = × =

∴ = − ≤ − =

∴ − ≤ −

Q

 

Additionally, by (6) and (2), 

2

1

2

2
1

     

( )

1 1

n

i

i
max

n
i

i max

avg d X
n

X avg

X avg

d n X avg

=

=

+ × =

−

 −
⇒ =  

− 

∑

∑
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2

2

1

2

2
1

1

1 1
1

i max

i

max

n
i

i max

n
i

i max

X avg X avg

X avg

X avg

X avg
n

X avg

X avg

d n X avg

=

=

− ≤ −

 −
∴ ≤ 

− 

 −
∴ ≤ 

− 

 −
∴ = ≤ 

− 

∑

∑

Q

 

Only in the case that 1 2 n
X X X= = =L , 

2

1
1

d
=  stands. By Chebyshev’(???)s inequality, the 

probability of a value falling outside the interval [ ]avg - d stdev,avg +d stdev× ×  is at most 
2

1

d
. 

The statement above is valid because 
2

1
1

d
≤ . The proof for 

min
d stdev l× = is similar. �  

To be precise, we define [ ]
min max

CI = avg - l ,avg +l  which is [ ]
min max

CI = X , X . Initially, by 

assigning 
min

X , avg  and 
max

X  to the parameters of membership functions a, b and c, respectively, CI 

is mapped to the interval [0,1] . As a result, 
min

X   and 
max

X  are mapped to 0 or 1 (depends on 

different membership functions), and avg  is mapped to a value within [0,1] . However, as defined 

previously, 0 means completely acceptable and 1 means completely unacceptable (implying anomaly). 

Because 
min

X  and 
max

X  are both in CI, we should make sure that ( ) 1
min

XF <  and ( ) 1
max

XF <  

(meaning 
min

X  and 
max

X  do not cause anomaly), where { , , , }
Z S U

F F F F F
π

∈ . From the definitions 

of 
S

F , 
Z

F , F
π

 and 
U

F  (Fig. 2 and Fig. 4), it can be seen that 
S

F  is the basis of the rest three ones. 

Thus, we only need to adjust 
S

F  to make ( ) 1
max

XF <  for it. To remain b as the median point, the 

values in [0,0.5]  are unchanged. On the contrary, to make ( ) 1
max

XF <  for 
S

F , the values in 

(0.5,1]  are reduced by (0 1)α α< < , i.e. 

2

2

1 1 1
1

2 2 2

1
    

2 2

S
F

c x

c b

c x

c b

α

α α

 − 
= − − +  

−   

+ − 
= −  

− 

   ( )b x c< ≤ . 

Thus, we have Modification 2 of the membership functions, as Fig. 5 shows. As a result, we have 

1
( ) ( ) 1

2S max S
F FX c

α +
= = <  but not ( ) 1

S max
F X = . The rest three functions have the homologous 

consequence. The parameter α  can be assigned to a proper value by users according to the applications. 

Nevertheless, it is recommended that α  is not less than 1 significantly. That ensure ( )
S max

F X  less than 

1 not too much, and the result values in ( , ]b c  differentiable. 



 

 10

2

2

0                                     

                

( , , , )
1

   , 0 1
2 2

1                                      

( , , , ) 1 ( , , ,

1

2

S

S

Z

x a

x a
a x b

b a
F x a b c

c x
b x c

c b

x c

F x a b c F x a b c

α α
α

≤

−
< ≤

−
=

+ −
− < ≤ < <

−

>

= −




 
   


 
   




)

( , , , )            

( , , , )

( , , , )            

( , , , ) 1 ( , , , )

2

2

S

Z

U

F x a b x b

F x a b c

F x b c x b

F x a b c F x a b c

a b

b c

π

π

≤

=

>

= −

+



+


 

Fig.5. Modification 2 of the Membership Functions 

By Definition 5, any .
n n

X T m=  can be mapped to a real number in [0,1] . This real number denotes 

the Dubiety Degree of 
n

T . 

3.5. Training the Parameters of Membership Functions 

An automated solution to train the rules in DDM to “learn” the parameters both in advance and during 
monitor is developed. So that the values of parameters a, b and c of membership functions in the rules can 
be assigned automatically according to normal audit sets. In this way, they can be adjusted during the 
monitoring process as well. 

Given 

1
1

{ , , } { }
n

n i
i

TS T T T
=

= =K U , where 1 2 n
T T T= = =L , 

and 

1 1
{ } { . }

n n

n i i
i i

P X T m
= =

= =U U
, 

as it is stated above, we have 

min

max

a X

X

b avg

c

=


=
 = . 

Thus, for 1{ , , }
n n

P X X= K , we have 

( ) 1

1

( ) 1

min( , , )

max( , , )

n min n n

n
n n

n max n n

a X

X

X X

X X
b avg

n

c X X

= =


+ +
= =


= =

K

L

K
. 

When a new value 1 1.n n
X T m

+ +
=  comes, for 1 1 1 1{ } { , , , }
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Consequently, a parameter n is employed to “remember” the number of times of previous calculations. 
As a result, the parameters a, b and c of membership functions can be calculated basing on their historical 
values, as (7) shows. We call n as Maturation Degree of monitoring rules. It indicates how the parameters 

of membership functions can be affected by a new value 1N
X

+
. According to statistic theory, the bigger n 

is, the smaller probability of 1N N
a a

+
≠  and 1N N

c c
+

≠  is, and the less 
N

b  can be affected by 1N
X

+
. 

3.6. Deriving Patterns from Audit Records 

Given a set of audit records 1 2
1

{ , , , } { }
n

n i

i

ARS ar ar ar ar
=

= =K U , with a token $ $SOMEVALUE , we have 

pattern for each .
i

ar S  in it: 

( . )
i SOMEVALUE i

p P ar S= . 

By selecting . .
i

ar T acct  and 
i

p  as cluster-features, a cluster is processed on ARS  to derive patterns 

from audit records: 

if . . . .  and ,

then 

i j i j

i j

ar T acct ar T acct p p

ar ar

= =

≅
 

where 1 i j n≤ ≠ ≤ , and 
i j

ar ar≅  means 
i

ar  and 
j

ar  belong to the same cluster. All of the audit 

records in the same cluster form a subset of ARS , which is denoted by ARC . This cluster process 

generates (1 )a a n≤ ≤  cluster subsets 
k

ARC : 

1

a

k

k

ARC ARS
=

=U  

If 
k

ARC  has 
k

m  items in it, and ARS  has 
total

m  items in total, we will have 

100%k
k

total

m
percentage

m
= × . 

If we order 
k

ARC  by 
k

m  or 
k

percentage  in descending order, it can be known that what patterns 

by which accounts have occurred, and their frequencies of occurrences. By taking this result for reference, 
a database administrator can easily decide to set up monitor rules aiming at what patterns. The 
administrator also can set up any arbitrary rules whose patterns have not appeared. 

4. The DDM-Based Software Architecture 

4.1. The Software Architecture 

The architecture for database transaction monitoring based on DDM is designed as shown in Fig. 6. 
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Fig.6 The Architecture for Database Transaction Monitoring Based on DDM 

The user interface (UI) provides tools for interactions, which includes Setting Rules and display 
Dubiety-Determining Results. Setting Rules allows users to set up monitoring policies. These monitoring 
policies are then formatted and transferred into Monitoring Rules Base by Mapping to Rules. The 
information about each database transaction is organized into Audits Base by Sensor. Event Analyzing 

Module selects every new audit record from Audits Base, and then checks against the monitoring rules in 
Monitoring Rules Base. Finally, Event Analyzing Module calculates dubiety degree for the audit record, and 
forwards the results to Dubiety-Determining Result. 

Other main modules/components of the architecture are: 
Audits Base is built to store the audit records generated by Sensor, while Monitoring Rules Base is used 

to store monitoring rules defined manually. 
Setting Rules, used to define monitoring rules, specifies which attributes of transactions to monitor, what 

types of membership functions to use, and what the values of the parameters in membership functions are, 
etc. 

Mapping to Rules. When the information about the monitoring policy and membership function is 
decided, Mapping to Rules converts it into the format of monitoring rules. The rules are stored in 
Monitoring Rules Base. 

Sensor. This module monitors the transactions of application databases in real time. By analyzing each 
transaction processed, it collects information about the transaction, and then stores it in Audits Base. 

Event Analyzing Module. This is the centre of the whole architecture. The monitoring algorithm is 
implemented in this module. For each record in Audits Base, Event Analyzing Module is processed and 
matched against the rules in Rules Base. The value of the monitored attribute is then obtained. By 
substituting this value in the membership function defined in the rule, the result of the function is calculated 
as the degree of dubiety. The detail of this algorithm is presented in the next section. 

4.2. Basic Data Structures Required in DDM 

There are two basic data structures required in DDM: Audit Record and Monitoring Rule. Audit Record is 
for recording the information about each database transaction. Monitoring Rule is the structure for 
specifying the format of the monitoring rules. The details of the two structures are defined as follows. 

Audit Record. This data structure is 6-tuple recording information of each database transaction, which 
matches Definition 6 completely: 

<AID, UID, SQLText, Time_stampe, Data1, Data2> 
where 

� AID is the identifier for each audit record. 
� UID records the user name of the transaction. 
� SQLText records the content of the SQL statement of the transaction. 
� Time_stamp records the time when the transaction is executed. 
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� Data1 is the first data field that the transaction relates to. For example, the data value before 
update. 

� Data2 is the second data field that the transaction relates to. For example, the data value after an 
update. 

To make it clearer, from now on in this paper, we will use the term audit record instead of transaction. 
Monitoring Rule. This data structure is 6-tuple defining the format of the monitoring rules: 

<RID, UID, Action, Obj1, Obj2, Condition, Time_window, Mon_type, Function, Enable> 
where 

� RID starting with the letter R is the identifier for each monitoring rule. 
� UID indicates which user the rule is aimed at. 
� Action indicates what type of operations the rule is related to, such as select, update, delete and 

so on. 
� Obj1 and Obj2 records for which database object (table, view, procedure, and so on) the rule is 

valid. Obj1 is the first object that Action refers to, such as a table, a view or a procedure. Obj2 is 
the second one. If Obj1 is a table or a view, Obj2 will be a field name. 

� Condition indicates the condition of Action. Usually it is the condition part (where clause) of the 
SQL statement. 

� Time_window specifies a number of hours as a time range. The audit records occurred in that 
time range before the currently being checked one will be sought by the rule. 

� Mon_type is the type of monitor. It has two values: C and S. C is used for counting numbers and 
S is for recording the sum value.  

� Function is sub-tuple recording the information of the membership function used by the rule: 
<FID, A, B, C> 

where 

� FID specifies which type of membership function to use. It has four values. ‘Z’ means 
Z

F . 

‘S’ means 
S

F . ‘P’ means F
π

, while ‘U’ means 
U

F . 

� A, B, and C store the values of a, b, and c respectively (definition of membership function). 
Enable is a switch. When it is 1, the rule is valid; otherwise, it is not. 

4.3. The Algorithm of Dubiety Determining in DDM 

The algorithm of calculating the dubiety degrees of audit records by membership functions is illustrated in 
Fig. 7. If an audit record is not matched by any monitoring rule, there will be no detection result for it. If it 
is matched by more than one rule, the one generating the highest result will be selected. 
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Fig.7 Flow Diagram of the Algorithm 

Algorithm 1 MembershipFunctions (x, a, b, c, fid) 

1: Select case fid 

2: Case ”s” or ”S” 

3: return ( , , , )
S

F x a b c  

4: Case ”z” or ”Z” 

5: return ( , , , )
Z

F x a b c  

6: Case ”p” or fid =”P” 

7: return ( , , , )F x a b c
π

 

8: Case ”u” or fid =”U” 

9: return ( , , , )
U

F x a b c  

10: End select 

 

Algorithm 2 Determining the dubiety value of a designated audit record 

Input: aid, which is the AID of the audit record whose dubiety value will be determined 

Operation: If any rule matches, record information of aid, rid, fid, a, b, c, x, and result 

1: select the enabled rules which match aid on UID and roughly on SQLTEXT 

2: initialize buf = 0 as a buffer variant 

3: for each selected rule do 

4:   if the rule matches the audit in detail then 

5:     Obtain fid and the values of a, b and c 
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6:    Compute the measured value of the audit as x, such as the times of executed or accumulated value of updated 
data 

7:     result = MembershipFunctions (x, a, b, c, fid) 

8:     if result ≥  buf then 

9:       buf=result 

10:       update the record with aid, rid, fid, a, b, c, x and result 

11:     end if 

12:   end if 

13: end for 

 

Algorithm 1 implements the membership functions. Algorithm 2 determines the dubiety degree of a 
designated audit record. 

5. Experimental Assessment 

This section presents the measure performance of a number of experiments. We implemented a system 
based on the architecture introduced in Section 3, which was used to test and verify the DDM method. The 
experiments are performed on a computer with one CPU of 2.99GHz and 512MB RAM. The operating 
system is Microsoft Windows Server 2003 SP1. The DBMS is Microsoft SQL Server 2000. The example 
database Northwind of SQL Server is used in this study. It includes trade data records for a company called 
Northwind Traders, which engaged in the import and export trade business. 

5.1. Experiment 1 

In Experiment 1, Audits Base and Monitoring Rules Base are built according to the two basic structures 
defined. According to Section 3.1, 30,000 typical audit records are generated and 19 monitoring rules are 
set up. 

Data set. AIDs are generated in ascending order of Time_stamp, the values of which are randomly 
generated precise to second (system clock) in a period of three months (from 2006-07-22 to 2006-10-23). 
Seven user names appear in the field of UID: Ann, Bob, Charles, Dennis, Eva, Fabre, and Gama. The 
values of fields SQLText are randomly generated as common database operations in the form of SQL 
statements. The content of SQLText includes selecting data from a table, updating the data in a table, 
inserting data into or deleting data from a table, executing a procedure, or opening a database. 

By applying the patterns deriving approach as Section 3.6 states, 183 patterns of all the 30000 audit 
records are derived. After sorting them by Percentage in descending order, Table 1 shows the top 10 ones. 
UID is the database account. SQL Text is the SQL statement with specific data values replaced by token 

$ $SOMEVALUE . UID and SQL Text compose a pattern. Count is the number of occurrences of a 

pattern. Percentage is the occurrence percentage of a pattern in all of the 30000 audit records. 

Table 1 Top 10 Ones of the Derived Patterns 

UID SQL Text Count Percentage 

Administrator select * from orders where customerid=$SOMEVALUE$ 740 2.466667 
Ann select * from orders where customerid=$SOMEVALUE$ 730 2.433333 

Dennis select * from orders where customerid=$SOMEVALUE$ 729 2.43 
Eva select * from orders where customerid=$SOMEVALUE$ 708 2.36 

Fabre select * from orders where customerid=$SOMEVALUE$ 707 2.356667 
Bob select * from orders where customerid=$SOMEVALUE$ 693 2.31 

Clerk select * from orders where customerid=$SOMEVALUE$ 693 2.31 
Administrator select * from [order details] where orderid=$SOMEVALUE$ 180 0.6 

Eva update orders set freight=$SOMEVALUE$ where orderid=$SOMEVALUE$ 170 0.566667 
Administrator update customers set phone=$SOMEVALUE$ where costomerid=$SOMEVALUE$ 168 0.56 
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Finally, 19 typical monitoring rules are set up into the Monitoring Rules Base according to the patterns. 
Each rule is specified with one of the four types of membership functions, and the parameters a, b, and c 
are assigned manually. For instance, as Table 2 shows (in which the column of Enable is not listed to make 
the table not too wide), we have 

R09=< R09, Fabre, update, order details, UnitPrice, ProductID=43, 5000, S, < S, 5.0, 10.0, 32.0 >, 1>. 

Table 2 Monintoring Rule R09 

RID UID Action Obj1 Obj2 Condition Time_window Mon_type FID A B C 

R09 Fabre Update order details UnitPrice ProductID =43 5000 S S 5 10 32 

That means R09 is used to monitor the audit records where UID is Fabre, update [order details] set 

UnitPrice=p where ProductID=43 as SQLText, and p is a number. The data items before and after update 
operation are recorded in the fields Data1 and Data2. When an audit record of that type occurs, R09 seeks 
the audit records of that type which have occurred over the past 5000 hours, and sums up the difference 
between each pair of Data1 and Data2 in each audit record. Then, the sum is substituted into the 

( ,5.0,10.0,32.0)SF x  defined in R09. Finally, a result value of the function is assigned as the dubiety degree 

of that audit record. As this is a real-time process; an audit record has been examined as soon as it has 
arrived. All of the 19 monitoring rules are listed in Table 3. To make the table not too wide, the column of 
Enable is not listed. 

Table 3 19 Monitoring Rules 

RID UID Action Obj1 Obj2 Condition Time_window Mon_type FID A B C 

R01 Fabre select orders EmployeeID <NULL> 3000 C S 10 50 80 
R02 Fabre select orders CustomerID <NULL> 3000 C S 10 41 72 

R03 Dennis select order details UnitPrice 
OrderID 
=11545 

3000 C S 5 35 85 

R04 Ann update customers Phone <NULL> 3000 C U 10 50 78 
R05 Charles update order details Discount <NULL> 3000 S P -1 0 1 

R06 Eva delete orders <NULL> 
EmployeeID 

=2 
3000 C S 0 0 0 

R07 * insert customers <NULL> <NULL> 3000 C Z 5 40 100 
R08 Ann update customers Address <NULL> 3000 C Z 0 60 350 

R09 Fabre update order details UnitPrice 
ProductID 

=43 
5000 S S 5 10 32 

R10 * use master <NULL> <NULL> 5000 C S 0 0 0 
R11 Gama exec SalesByCategory <NULL> <NULL> 3000 C S 5 25 50 
R12 Bob use monitor <NULL> <NULL> 2400 C P 10 33 50 
R13 Dennis use monitor <NULL> <NULL> 2400 C P 15 52 80 

R14 Charles exec 
Ten Most 
Expensive 
Products 

<NULL> <NULL> 2400 C S 5 5 5 

R15 Eva logon <NULL> <NULL> <NULL> 2400 C S 1 50 200 
R16 Bob select customers <NULL> <NULL> 5000 C S 20 100 190 
R17 * select customers CustomerID <NULL> 3500 C S 50 200 300 

R18 * select orders <NULL> 
CustomerID 

= 
3500 C S 50 200 400 

R19 * select order details <NULL> OrderID = 3500 C U 50 180 330 

Results. Experiment 1 consists of two tests. In Test 1, all of the 19 monitoring rules are enabled. 9971 of 
the 30000 audit records are detected as dubious or anomalous. The rest are regarded as normal, as these 
audit records do not match any of the 19 rules. Among the 9971 results, there are 1380 ones with results 
being neither 0 nor 1. The rest ones are either 0 or 1. Table 4 lists 5 examples. In Table 4, all of the dubiety 
degrees of these audit records are between 0 and 1. That means they are “dubious”: not completely 
acceptable or unacceptable. By the “degree”, we know how dubious a record is. 

Table 4 5 Example Results of Test 1 

AID RID FID A B C X Result 

1118 R18 S 50 200 400 192 0.329208 
1124 R02 S 10 50 72 41 0.5 
1126 R18 S 50 200 400 194 0.338547 
1127 R18 S 50 200 400 195 0.343265 
1128 R07 Z 5 40 100 26 0.8120439 
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For the record of AID 1118, RID is R18, while X is 192.0. When R18 is matched again in the record of 
AID 1126, X is 194.0. This can be explained because both R02 and R18 matched the AID 1124. For R18, 
its X is 193.0, while for R02, X is 41.0. Therefore, AID 1124 has 0.5 as Result by R02 and 0.333861 by 
R18. Because the Result of R02 is greater than that of R18, the audit record is more dubious as measured 
by R02 than by R18. As a result, R02 is selected for AID 1124.  

In Test 2, 6 rules including R02 are disabled. In the results, all the records picked up by R02 in Test 1 are 
now picked up by R01 (in Test 1, R02’s dubious degree is higher than R01’s). This is because these records 
are matched by both R01 and R02. When R02 is disabled in Test 2, R01 is used where R02 was selected 
before. The results of these two tests are summarized in Table 5. 

Table 5 Summarized Data of the Two Tests 

Test  Total 
UID 

Ann Bob Charles Dennis Eva Fabre Gama 

1 
All results 9971 1463 1431 1383 1357 1422 1549 1366 

Not 1 1380 219 247 130 186 275 152 171 

2 
All results 1811 152 307 136 64 170 982 2 

Not 1 558 66 207 0 63 153 69 0 

5.2. Experiment 2 

In Experiment 2, it is supposed that there is a product whose ProductID is 9 in Products. Assume a member 
of staff, Ann, is authorized to modify UnitPrice of Product 9. However, if the UnitPrice has been changed 
too much or too often, it could be suspicious. It is defined that UnitPrice should not be changed for more 
than 4 times in 30 days, and the sum of changed value should not be more than 3 dollars in 90 days. A 
practical case is simulated by previous assumptions. 

The existing 30000 audit records in Experiment 1 are considered as normal ones here. Besides them, 
more 12 additional ones for Ann’s updating UnitPrice of Products 9, which may cause Cumulated Anomaly, 
are imitated into Audits Base. All of the audit records distribute in three months.  

In Monitoring Rules Base, two new monitoring rules R01 and R02 are set up for the assumptions in 
Experiment 2, instead of all of the 19 ones in Experiment 1.

SF  is used for R01 while 
U

F  is used for R02, 

as Table 6 lists.  

Table 6 Two Monitoring Rules in Experiment 2 

RID UID Action Obj1 Obj2 Condition Time_window Mon_type FID A B C 

R01 Ann update Products UnitPrice ProductID=9 720 C S 0 0 0 

R02 Ann update Products UnitPrice ProductID=9 2160 S U 0 0 0 

Initially, the values of the parameters a, b and c of 
SF  and 

U
F  are 0, and the Maturation Degrees of 

the two rules (N described in Section 3.5) are both 0. 89 imitated normal audit records for Ann’s updating 
UnitPrice of Products 9 in 4 years are used to train the two rules, and then the two trained rules are used to 
detect Cumulated Anomaly in Audits Base. Fig. 8 shows the process of training the two monitoring rules. In 
the figure, A, B and C respectively stands for the parameters a, b and c. After training, for R01, we have 

0a = , 2.5b ≈  and 4c = ; for R02, we have 2.95a = − , 0.068b ≈  and 2.92c = . In the 
experiment, we let 0.9α = , which makes ( ) ( ) 0.95

S max S
F X F c= = . 
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(a) 

 
(b) 

Fig.8 Training of the Two Monitoring Rules 

Fig. 9 shows all results. Fig. 9 (a) shows the value of UnitPrice after Ann updates it for each time. Fig. 9 
(b) shows the monitor result of using the rule of R01. We can see that the dubiety degree is increasing 
gradually.  However, it does not reach 1 all the while. That means Ann’s operations become more and 
more malicious but no anomaly occurs by R01. Fig. 9 (c) shows the results of monitoring the modified 
UnitPrice of Product 9 over 90 days by R02. It is shown that the dubiety degree is more and more close to 
1. At the end the dubiety degree reaches 1. According to the definition of DDM, anomalies may occur. 
When R01 and R02 are both enabled, the results are shown in Fig. 9 (d). Fig. 9 (d) also can be regarded as 
the combinations of Fig. 9 (b) and Fig. 9 (c) by selecting the point with the higher dubiety degree between 
(b) and (c) for each AID. In general, when several monitoring rules are matched to the same audit record, 
the one with the highest dubiety degree will be selected. From the results, we can see Ann’s operations 
cause anomaly. 
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Fig.9 Result of Experiment 2 

6. Conclusion 

The cumulated information of data changed by database transactions may give the hints about malicious 
intrusions, which is an issue has not been well focused in previous studies. In this paper, we expose a novel 
concept: Cumulated Anomaly. The goal of this study was to give an insight into the database transactions 
when Cumulated Anomaly would occur. A novel detection method Dubiety-Determining Model (DDM) has 
been proposed aiming at the detecting Cumulated Anomaly intrusions.  
 
 
By generalizing the audit records with a token and the cluster process on them, the DDM derives patterns 
of SQL statements in the database transactions. Monitoring rules are initialized according to the patterns. A 
learning solution ensures the DDM being trained with a normal audit records set. It also makes the DDM to 
“learn” during the process of monitoring. During the monitoring process, the DDM assigns a real number 
between 0 and 1 to each database transaction. The real number is called dubiety degree, which tells how a 
transaction is dangerous, and whether Cumulated Anomaly occurs. 

Basing on the DDM, software system architecture is designed and implemented. Two experiments are 
performed to verify the effectiveness of the DDM with it. The experiment results mainly identify two 
things. Firstly, Cumulated Anomaly does exist in database transactions. Secondly, the DDM is rule-based 
model, and it measures transactions quantitatively in real time. Finally, the DDM can monitor database 
transaction in real time to predict before and discover after Cumulated Anomaly has occurred. In conclusion, 
a novel database anomaly Cumulated Anomaly is defined and represented in this paper, and the DDM 
proposed aiming at Cumulated Anomaly is capable of identifying it. By the DDM, database security is 
focused on from a new aspect. 

We currently work on improving the performance of the algorithms and constructing the entire detection 
system. The research on considering anomalies caused by cumulative updates to sets of variables in DDM 
that, for example, jointly describe a state of an asset to be protected, would be an interesting area. 
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