
Fiscon et al. BioDataMining  (2016) 9:38 
DOI 10.1186/s13040-016-0116-2

RESEARCH Open Access

MISSEL: a method to identify a large
number of small species-specific genomic
subsequences and its application to viruses
classification
Giulia Fiscon1*† , Emanuel Weitschek1,2†, Eleonora Cella3,4, Alessandra Lo Presti3,
Marta Giovanetti3,5, Muhammed Babakir-Mina6, Marco Ciotti7, Massimo Ciccozzi1,3,
Alessandra Pierangeli8, Paola Bertolazzi1 and Giovanni Felici1

*Correspondence:
giulia.fiscon@iasi.cnr.it
†Equal contributors
1Institute of Systems Analysis and
Computer Science A. Ruberti (IASI),
National Research Council (CNR),
Via dei Taurini 19, 00185 Rome, Italy
Full list of author information is
available at the end of the article

Abstract
Background: Continuous improvements in next generation sequencing technologies
led to ever-increasing collections of genomic sequences, which have not been easily
characterized by biologists, and whose analysis requires huge computational effort.
The classification of species emerged as one of the main applications of DNA analysis
and has been addressed with several approaches, e.g., multiple alignments-,
phylogenetic trees-, statistical- and character-based methods.

Results: We propose a supervised method based on a genetic algorithm to identify
small genomic subsequences that discriminate among different species. The method
identifies multiple subsequences of bounded length with the same information power
in a given genomic region. The algorithm has been successfully evaluated through its
integration into a rule-based classification framework and applied to three different
biological data sets: Influenza, Polyoma, and Rhino virus sequences.

Conclusions: We discover a large number of small subsequences that can be used to
identify each virus type with high accuracy and low computational time, and moreover
help to characterize different genomic regions. Bounding their length to 20, our
method found 1164 characterizing subsequences for all the Influenza virus subtypes,
194 for all the Polyoma viruses, and 11 for Rhino viruses. The abundance of small
separating subsequences extracted for each genomic region may be an important
support for quick and robust virus identification.
Finally, useful biological information can be derived by the relative location and
abundance of such subsequences along the different regions.

Keywords: Classification of genomic sequences, Genetic algorithms, Supervised
learning, Extraction of multiple classification models
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Background
The analysis of DNA sequences of living organisms is relevant for many genetic, biologi-
cal, and medical purposes. It can support the automated recognition and classification of
organisms, genomic regions characterization, and the study of genetic evolution of pop-
ulation of individuals of the same species. Its deployment for taxonomic classification of
organisms is first proposed for archaea, bacteria, protists and viruses [1–3], and then for
many other domains [4, 5] becoming a central research topic in Bioinformatics.
DNA sequences used for this aim are different for diverse organisms and corresponds to

specific genomic regions, e.g., the mitocondrial DNA region associated with cytochrome
c oxidase I (COI), commonly refered to as Barcode, largely used for species classification
in the animal kingdom (see, among others, [6]).
The methods that are adopted to pursue this task are inherited from the more gen-

eral sequence analysis and supervised learning (i.e., classification) literature, and can
be divided into 3 main groups [7]: tree-based methods, similarity-based methods, and
character-based methods. The first ones make use of Parsimony (i.e., PAR [8]), or
Neighbor Joining (i.e., NJ [9]), or Bayesian Inference [10] to assign unidentified sequence
query to categories based on their clusters membership in a tree. The second group is
composed ofmethods such as BLAST [11], NN [12], TaxonDNA [13] that assign sequence
queries to categories based on how many nucleotide characters they share. The third
group of methods comprises tools like DNA-BAR [14], BLOG [15], CAOS [16], BRONX
[17], PTIGS-IdIt [18], Linker [19], and Alignment-free analytics [20, 21]. Methods in the
latter group are based on the identification of specific and limited nucleotides positions
of the DNA sequences that can be used for recognizing the class of the sample sequences.
All the mentioned approaches share the same supervised learning paradigm: a set of

sample sequences for which the class is known (the so-called training set, composed
of labeled sequences) is analyzed to derive rules that may recognize also unlabeled
sequences [22, 23].
Supervised learning is typically effective when the domain of the samples is well defined,

e.g., we know that the samples can belong to a known number of species or classes; good
examples can be found in [24], where supervised learning methods successfully classify
species through the analysis of DNA Barcode sequences.
The literature offers indeed several methods to identify virus species through the

analysis of DNA sequences (among them, [25–29]).
In this paper, we investigate some aspects that remained unexplored: in particular,

where the nucleotide changes that make one species different from another are located,
if such nucleotides are close to each other along the sequence, how many equivalent
characterizing subsequences are within the boundaries of the considered sequence. An
additional aspect, that will be considered also in this paper, is the differential analysis of
known genomic regions, to see if they show a different abundance of genetic variations
with respect to a number of taxa.
Based on these considerations, we address a different and original problem: within large

and well-defined DNA sequences, identify small subsequences that contain all the infor-
mation needed to classify new sequences with a good level of precision, and to measure
the abundance of such subsequences, their location, and their concentration in the origi-
nal sequences. Solving such a problem contributes to the characterization of the different
portions of the sequences, generating new insight on the role of certain genomic regions
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in species characterization. As shown in the last section of this paper, this spatial informa-
tion can be very relevant, and can be associated with biological properties of the original
sequence.
We design MISSEL (Multiple SubSequences Extractor for cLassification) - a new

method to solve this problem based on a meta-heuristic algorithm, which identifies
many small subsequences that retain enough information to classify the considered
species. Such subsequences are used to identify portions of the sequences that are rich of
discriminating information with respect to those that are non-meaningful.
We apply MISSEL to the genomes of Rhino, Influenza, and Polyoma viruses. These

three virus types, having positive and negative strand RNA or DNA genomes respectively,
present features that make them particularly suited for the proposed method.
The recent discovery of novel and divergent human Polyoma viruses raises key ques-

tions regarding their evolution, tropism, latency, reactivation, immune evasion and
contribution to diseases. Moreover, the increasing number of human and animal Polyoma
viruses suggests that many of them remain to be unveiled. The most common patholog-
ical manifestation is the reactivation in an immunosuppressed host, so that a molecular
characterization is often needed.
Influenza subtyping is of epidemiological and clinical significance, beside the obvious

interest during pandemic periods. In particular, seasonal Influenza A(H3N2) gener-
ally causes more severe outcomes among at risk groups than A(H1N1) or Influenza B
viruses [30]. For that reason, Influenza epidemic surveillance in Europe has been recently
implemented with virological surveillance to alert about the real-time predominating
subtype.
As far as human Rhino virus (HRV) is concerned, conflicting reports have associated

(or not) HRV-C to a clinical severity greater than HRV-A and to recurrent wheezing
[31, 32], so that genotyping should be implemented to possibly clarify these issues.
In all three cases, it is important to classify with precision the different virus types, but

also to identify the regions that mostly support such classification, which are supposedly
the regions where mutations have occurred in the evolution process. The number and the
size of separating subsequences provide additional insight on the location of mutations
and on their uniques in characterizing the analyzed taxa.
In these data sets MISSEL identified 1164 equivalent small subsequences for all the

Influenza virus subtypes, 194 for the Polyoma viruses, and 11 for the Rhino viruses. The
size of such subsequences is rather small, as their are composed by no more than 20
contiguous nucleotides.
Below we provide a clear statement of the problem and a description of the proposed

method for its solution. A compact additional analysis of the related literature in the field
of meta-heuristic algorithms is also provided.

Problem statement

Given a set of genomic sequences belonging to different classes (i.e., species), find the
largest possible number of subsequences with the following properties:

• The values of the nucleotides (i.e., A,C,G,T/U) in the positions belonging to the
subsequence can be used to derive rules that can predict the class of new sequences
with high precision (i.e., considering the genomic region LT “if pos435 = C AND
pos436 = T , then the virus is a Polyoma HP9”);
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• The size of the subsequence is bounded and small if compared to the size of the input
sequences;

• The subsequence does not contain any other subsequence with the same properties.

Related work

The above problem contains several complex aspects. The main one is that search-
ing for many subsequences with desirable properties is much more difficult than
searching for a single optimal one. Additionally, the dimensions of the prob-
lem to be solved are typically very large (i.e., DNA sequences with thousands of
bases). The complexity of the problem does not suggest a straightforward deploy-
ment of a mathematical optimization model, and therefore we consider a meta-
heuristic approach that is much faster than enumeration, and sufficiently precise and
time-effective.
Meta-heuristics are nature-inspired algorithms that can be suitably customized to solve

complex and computationally hard problems, and can be inspired to different princi-
ples, such as Ant colony optimization [33], Genetic Algorithms [34], Simulated annealing
[35], Tabu Search [36], Particle swarm optimization [37]. Several authors in the literature
considered similar problems, although they cannot be reconducted to the framework of
multiple solutions that we adopt here.
Recent studies [38–40] focused on problems with multiple objective functions, often

used as a tool to counterbalance the measurement bias affecting solutions based on a
single objective functions, or to mitigate the effect of noise in the data. Deb et al. [41]
also approached the issue of identifying gene subsets to achieve reliable classification
on available disease samples by modeling it as a multi-objective optimization prob-
lem. Furthermore, they proposed a multimodal multi-objective evolutionary algorithm
that finds multiple, multimodal, non-dominated solutions [42] in one single run. Those
are defined as solutions that have identical objective values, but differ in their pheno-
types. Other works [43, 44] pointed to multiple membership classification, dealing with
the fitting of complex statistical models to large data sets. Again, Liu et al. [45] pro-
posed a subset gene identification consisting of multiple objectives, but, differently from
Deb et al. [41], they scalarize the objective vector into one objective that is solved by
using a parallel genetic algorithm, in order to avoid expensive computing cost. Kohavi
et al. [46] addressed the problem of searching for optimal gene subsets of the same size,
emphasizing the use of wrapper methods for the features selection step. Rather than try-
ing to maximize accuracy, they identified which features were relevant, and used only
those features during learning. The goal of our work is again different: to extract informa-
tion on interesting portions of the genomic sequences by taking into account equivalent
subsequences.
The rest of the paper is organized as follows: in Section “Materials and methods”, we

provide a detailed description of the algorithm. In Section “Results and discussion”, we
report and discuss the application of our algorithm to extract equivalent and multiple
subsequences from three experimental data sets of virus sequences, described at the
beginning of that section, and we describe the results of the classification analysis of the
species of those samples. Finally, in Section “Conclusions”, we delineate the conclusions
of the work both from the algorithmic and biological point of view jointly with its future
extensions.
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Materials andmethods
The main components of our work are described below, starting from a detailed descrip-
tion of the algorithm.

MISSEL: multiple subsequences extractor for classification

In this section, we present MISSEL (Multiple SubSequences Extractor for cLassification),
a method to extract alternative and equivalent subsequences that can be applied in super-
vised classification problems for biological sequences belonging to different classes. A
subsequence is a set of consecutive nucleotide positions of the sequence. Given a set of
aligned sequences of equal length n, belonging to different classes, we look for the largest
number of subsequences with the following characteristics:

• They are separating subsequences, i.e., knowing the nucleotide in the positions of the
subsequence allows one to predict, with high reliability, the class of sequences whose
class is unknown;

• The length of the subsequence (also referred to as its size) is small and anyway not
larger than a given threshold.

MISSEL is an ad-hoc nature-inspired meta-heuristics based on an evolutionary
approach [34], which identifies the desired subsequences in a reasonable computational
time. In the following, we discuss the details of the algorithm.

Genetic algorithm

MISSEL is based on an ad-hoc developed Genetic Algorithm (GA). It implements a
search paradigm that exploits an ever-changing population whose individuals represent
possible solutions of the given problem. Such a population evolves according to a set of
genetic operators.
Each individual si (i.e., candidate solution) is a set of consecutive positions of the input

sequences. To each individual, the following values are associated:

• βi, its length;
• σi, its starting position;
• αi, its discriminant power (described in detail in the following);
• nαi , number of pairs of sequences of different class not covered at level αi (better

explained in the following);
• F(si), its fitness value (better explained in the following).

Firstly, a population S0 of candidate individuals is generated and initialized (at time
t = 0). Then, the population evolves (t > 0), selecting each individual according to a
randomized rule based on its fitness value, and computing a new individual by means of
different genetic operations. At each iteration, the survival capacity of each i-th individual
of the population is defined according to its fitness value, so that the new population will
have improved overall fitness. New generations of the population are iteratively computed
until one stopping criterion is verified. Once the genetic algorithm has been run, the best
individuals are returned.

Population and fitness

At the t-th iteration of our scheme a population St is available.
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We recall that a subsequence is fully identified by βi and σi, and it is also referred to as
an individual of the population. A generic individual in St is referred to as si. We note that
two individuals (i and j) with same starting position (σi = σj) and same length (βi = βj)
identify exactly the same positions and are therefore equal.
Additionally, we refer to R as the repository of individuals that are candidate for being

part of the final solution. The discriminant power of si (referred to as αi) is derived from
a feature selection model based on an integer program already discussed in [47–50]: for
a set of features of a given size, it indicates a lower bound on how many times a pair of
samples of different classes is separated by a feature in the set. Intuitively, such a value
represents how many different discriminating models can be build with the considered
features. In this case, the features are the positions of the small subsequence that cor-
responds to the individual. Additionally, we also take into account the value nαi , that
indicates how many pairs of samples of different classes are separated exactly by αi fea-
tures. We observe that individuals with a high value of αi are very rich of discriminating
information; moreover, a small value of nαi indicates that the value of αi may be further
increased with few additional features (for this reason, αi and nαi are the main ingredi-
ent of the fitness function of si, described below). Given an individual si identified by its
length βi and its starting point σi, the computation of αi is straightforward: build a matrix
withm rows indexed by the pairs of samples belonging to different classes and n columns
indexed by the positions in si; then, each element of this matrix shows the value 1, if the
value of the nucleotide in the position indexed by the column is different from the pair
indexed by the row, and 0 otherwise. The row-wise minimum number of ones for the βi
columns that start from σi is exactly αi. To complete this description, we note that αi ≤ βi
and that nαi ≤ K , where K is the number of pairs of input sequences that belong to
different classes.
With the above ingredients, the fitness function F(si) can be computed, based on the

value of αi (to which fitness is directly related), βi and nαi (fitness being indirectly related
with both of them). Then, F(si) takes into account:

• The quality of individual si (related with αi
βi
, the larger, the better).

• The size of individual si (βi, the smaller, the better);

using the following formula:

F(si) = ωA · A + ωB · B (1)

where:

A = αi
βi

+
(
K − nαi

)

K
(2)

B = n − β + 1
n

(3)

A,B ∈ [ 0, 1], ωA and ωB are weights for the terms A (2) and B (3) of F, respectively.
The complete list of parameters used in the algorithm is provided in Table 1. Given

the parameters of Table 1, we can specify that si ∈ St , with i = 1, · · · , I, |I| ∈
[Initipop,Dimstore] and t ∈[ 0,Maxiter]. The algorithm terminates when one of
the following stopping criteria is verified: (i) the fixed number of iterations exceeds the
value of Maxiter; (ii) the number of individuals exceeds the value of Dimstore; (iii)
the number of extracted individuals does not change anymore.
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Table 1 Overview of the parameters of the genetic algorithm

Parameter Description

Maxiter maximum number of iterations

Maxβ maximum length of the subsequences

Baseσ starting value of σ

Dimstore maximum cardinality of R

Initpop cardinality of the initial population

Relationship among individuals: equivalence and dominance

Among all the computed subsequences, we focus on the equivalent and non-dominated
ones. Let S be the set of individuals in the repository R, and consider the following
definitions:

Definition 1 Equivalent individuals
Given two individuals s1, s2 ∈ S,they are equivalent if the following 3 conditions are
verified: 1) α1 = α2; 2) β1 = β2; 3) σ1 �= σ2.

two equivalent individuals should not be both stored in R. We now turn to consider a
dominance relation between individuals.

Definition 2 Domination between individuals
Given two individuals s1, s2 ∈ S, we say that s1 dominates s2 (s1 � s2) if one of the following
2 conditions is verified: 1) α1 > α2 and β1 ≤ β2; 2) α1 ≥ α2 and β1 < β2.

As a consequence, we have that individual si ∈ S is non-dominated if there is no
individual sj ∈ S, sj �= si, such that sj � si.
Less formally, individual i dominates individual j if it has the same length

(
βi = βj

)
,

but it shows a higher separation power
(
αi > αj

)
, or if it has the same value of separa-

tion power (αi = αj), but it has a shorter length
(
βi < βj

)
. Our algorithm computes all

the equivalent individuals by filtering out any individual that is dominated by another
one in R. Moreover, if a new individual is equivalent to an individual already in R can be
computed in constant time.
The quality of the final subset of solutions mostly depends on the way the genetic algo-

rithm is implemented; that is, how the fitness of each solution is measured and how
subsequences are selected and extended in each iteration. The main idea is that, when
properly designed, the genetic algorithm can determine populations that are sufficiently
heterogeneous and whose solutions have good values.

Genetic operations

We summarize below the genetic operators adopted in MISSEL.
Selection: individuals are selected from the population at randomwith probability pro-

portional to the value of their fitness function. At the initialization step, all candidate
individuals are assigned the same value of fitness.
Parthenogenesis: each selected individual in the current population generates a new

one. The parthenogenesis operator expands the selected individual by increasing the
subsequence length of a given γ value, selected at random in the interval [ 0,Maxβ−βi+1];
γ is then split at random into γ1, γ2 (γ1 + γ2 = γ ): the first one (γ1) is the number of
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positions that will be added at the head of the new subsequence, the second one (γ2)
the ones to be appended at the end. The name of this operator is inspired to the bio-
logical form of reproduction in which the ovum develops into a new individual without
fertilization.
Trimming: this operator is executed in order to reduce the length of the extracted sub-

sequences, maintaining the separating power of the subsequence, and is applied to an
individual just before it is entered in R. Starting from an individual s1 (α1,β1, σ1), the
trimming operator looks for another individual s2 (α2,β2, σ2), such that α1 = α2 and
σ1 ≤ σ2 ≤ σ1+β1−β2 (i.e., s2 is a subsequence of s1, with the same discriminating power
(α1 = α2).
Mutation: Mutation is needed to prevent an irrecoverable loss of potentially useful

information that parthenogenesis and trimming may occasionally cause. This operator is
a random alteration of the length of an individual that occurs with small probability, and
randomly cuts at the head or tail of the subsequence.

Steps of the algorithm

In the following, we describe the steps of the algorithm:

1. Initialize a random population St , t = 0 of individuals. Set R = ∅.
2. Create a new population St+1 by repeating the following steps until no new solution

is found, i.e., until the solution does not change any more respect to the others:

• Through the selection operator, select an individual from the population;
• By means of the parthenogenesis genetic operator, expand the selected

individual, by increasing the subsequence length of a given γ value and form a
new individual. If no more expansion are allowed (βi = Maxβ ), the new
individual is the exact copy of the old one.

• By using the mutation operator and according to a mutation probability,
randomly cut the new solution at a random position.

• Perform the trimming of the new individual to reduce its βi.
• Check if the new individual is dominated by one in the repository R; if not,

discard from the repository all individuals dominated by the new one and
insert the new individual in R and in St+1 and compute its fitness value.

3. Set t = t + 1
4. Check termination conditions: (i) the R has not changed in the last k > 10

iterations; (ii) the maximum number of iterations (Maxiter) has been reached;
(iii) the number of individuals exceeds the value of Dimstore. If one of the
stopping condition is satisfied, stop, and return R.

5. Go to the step 2.

An extended flowchart of our algorithm is drawn in Fig. 1.

Score computation

Once the final repository of individuals R is obtained, we can derive aggregate information
from the individuals contained therein. By the construction of R, we know that R contains
non-dominated and possibly equivalent individuals (according to definition 1, these are
subsequences of the same length and the same discriminatory power that do not fully
overlap over the sequence). The density of the individuals along the sequence will be used
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Fig. 1 Extended flowchart of MISSEL. Graphical representation of the whole procedure implemented by
the genetic algorithm: (i) initialization of a random population of individuals; (ii) evolution of the current
population according to a set of genetic operators; (iii) evaluation of the fitness of each individual in the
population according to fitness function F and updating of the fitness value; (iv) checking the termination
conditions. The evolution step is further composed of probability computation, selection of individuals,
parthenogenesis, mutation, trimming and dominance checking; then the individual is inserted into the
current population, where a proper cleaning is also made according to dominance rules

in the experiments described in the following to characterize different genomic regions
of the same virus type. To bring this information to light, we compute, for each position j
of the sequence, the ratio between the sum of the αi for the individuals si ∈ R that contain
that position, and the similar sum over the βi (see Eq. 4).

score(j) =
∑

si∈Hj αi
∑

si∈Hj βi
,Hj = {

si ∈ R : σi ≤ j ≤ σi + βi
}
, j = 1, .., n (4)

Such score measures can be charted over the length of the complete sequence to see
if the discriminating power is concentrated in some portion of the sequence. When the
scores are charted for different genomic regions, we are interested in comparing the
landscape of discriminating power along the regions, to see where and how they concen-
trate or exhibit isolated peaks. Within each region, we can then point out sets of specific
consecutive nucleotide positions that discriminate for the considered classes.
Finally, we store the equivalent and non-dominated solutions, measuring for each

of them the effective discriminating power with a classification method, and summa-
rizing the results according to characteristics of the individuals (e.g., their length and
discriminating power).

Classification of sequences through individuals in R

To evaluate the equivalent, non-dominated individuals, we adopt an automatic classifier,
based on the well-known approach of supervised learning [51]: a classification model is
computed from objects with known classes (training set), and then unknown objects (test



Fiscon et al. BioDataMining  (2016) 9:38 Page 10 of 24

set) are automatically assigned to a class by analyzing the classification model. An addi-
tional goal is also to compute a clear and compact classification model that fits the data,
for example “if-then” rules that have been extracted by rule-based classifiers. The classi-
fication model aids biologists to extract relevant positions that are discriminant for new
sequence samples [22].
Proper validation can be performed splitting the available labeled data at random into

training and test sets, and computing correct classification percentages for both. An
important aspect of automated classification is the prevention of overfitting, which can
manifest itself with very high correct classification percentages in the training sets, and
very poor ones on the test sets. Additional validation can be performed by random per-
mutations of class labels; solutions extracted from data with randomly permuted labels
should not exhibit separating power. Results from these validation analyses, which we
provide for our experiments, give us additional confidence in the quality of our proposed
method and in the fact that we are properly handling overfitting risks.
Our method is released as a software package called MISSEL and is available at http://

dmb.iasi.cnr.it/missel.php. For installation and usage the reader may refer to the user
guide provided as Additional file 1.

Results and discussion
In this section, we present the main results of our method applied to three experimental
data sets of virus sequences.

Experimental data sets

We analyze data sets of sequences belonging to three virus groups: Influenza, Polyoma,
and Rhino viruses.
Influenza. Influenza viruses (INL) are involved in the etiology of acute respiratory

infections of the upper and lower respiratory tract. They are RNA viruses belonging to the
Orthomyxoviridae family. We can distinguish Influenza virus types A, B, and C. Influenza
virus types A and B cause annual epidemics in temperate climates, while Influenza virus
C is less common. Influenza A epidemics follow the emergence of a novel virus result-
ing from genetic shift and a new combination of hemagglutinin (HA) and neuraminidase
(NA) genes. Based on the antigenic differences in the neuraminidase and hemagglu-
tinin glycoproteins, Influenza virus A is subdivided into several subtypes. New strains of
Influenza virus B are instead the result of selective immune pressure that results in small
antigenic changes of the hemagglutinin gene. We analyzed the sequences of the H1N1
and H3N2 subtypes of Influenza A (INL A); these subtypes co-dominated the last three
influenza seasons in Europe with different distribution of cases between Northern and
Southern Europe.
The Influenza viruses data set is composed of more than 40,000 sequences from the

NA, HA, and MP genomic regions of H1N1 and H3N2 subtypes (serotypes) of Influenza
type A. The average fragment length is 1291 nucleotides and the average number of
sequences from each genomic region is greater than 6000. The reader may refer to Table 2
for additional details.
Human Polyoma viruses. Currently, 13 human polyomaviruses have been identified:

BKPyV, JCPyV, KIPyV, WUPyV, MCPyV, HPyV6, HPyV7, TSPyV, HPyV9, HPyV10 (MW
andMX isolates), STLPyV, and HPyV12. Members of the Polyomaviridae family are small

http://dmb.iasi.cnr.it/missel.php
http://dmb.iasi.cnr.it/missel.php
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Table 2 Data set description of Influenza viruses

Class/genomic region NA HA MP

H1N1 5999 6110 11994

H3N2 4716 4715 9427

Number of sequences 10715 10825 21421

Number of nucleotides 1410 1701 756

The number of sequences and their corresponding nucleotides is shown for each virus subtype (H1N1 and H3N2), which is
considered as a different class, and for each genomic region

non-enveloped DNA viruses with an icosaedral capsid which surrounds a circular double
stranded DNA genome of about 5 Kb in length. The genome can be subdivided into three
functional regions: the early region encoding for the large and small tumour antigens (LT-
ag and ST-ag); the late region encoding for the structural proteins (VP1, VP2 and VP3);
and the non-coding control region containing the origin of replication and transcriptional
control elements.
The Polyoma viruses data set is composed of BKPyV, JCPyV, KIPyV, WUPyV, MCPyV,

HPyV6, HPyV7, TSPyV, HPyV9, HPyV10 (MW and MX isolates), STLPyV, and HPyV12
sequences. In particular, for each human Polyoma virus five genomic regions (i.e., VP1,
VP2, VP3, ST, LT) have been considered. Each genomic region is composed of more than
120 sequences, longer than 450 nucleotides, and belonging to the 13 different species.
The reader may refer to Table 3 for additional details.
Human Rhino viruses. Human Rhino viruses (HRV) are considered as the cause of

the common cold, but their association with lower respiratory tract infections and with
asthma inception has been recently acknowledged [52, 53]. They have been historically
classified into 99 reference serotypes in the genus Rhino virus of the family Picornaviri-
dae [54], but more than 160 genotypes are now reclassified into three species (HRV-A,
B, and C) into the Enterovirus genus of the same family [55, 56]. The increasing use of
molecular techniques led to identify species and genotype through phylogenetic analysis,

Table 3 Data set description of Polyoma viruses

Class/genomic region VP1 VP2 VP3 ST LT

BKPyV 26 25 25 13 26

HPyV6 7 7 7 7 7

HPyV7 7 7 7 7 7

HPyV9 2 2 2 2 2

HPyV10 1 1 1 1 1

HPyV12 2 2 2 2 2

JCPyV 23 20 21 15 21

KIPyV 10 8 8 14 8

MCPyV 3 2 2 28 13

MW 19 19 19 15 19

MX 1 1 1 1 1

STLPyV 6 6 6 6 6

WUPyV 14 23 14 16 14

Number of sequences 121 123 115 127 127

Number of nucleotides 1065 726 588 519 828

The number of sequences and their corresponding nucleotides is shown for each virus subtype, which is considered as a
different class, and for each genomic region
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as well as to detect associations with clinical syndromes. Most PCR-based tests for HRV
detection target short conserved fragments of 5’ Untranslated Region (UTR) in order to
detect the majority of HRVs in one run, but typing of HRVs requires sequencing of longer
and more variable genomic regions. In several studies a large portion of the 5’UTR and/or
the region coding for viral protein (VP4) and part of the VP2 have been amplified. How-
ever, genetic categorization of HRVs is complicated by a wide genetic diversity generating
minor variants and novel strains and by recombination events that occurred in the evolu-
tionary history, as in the case of HRV-C [57–60]. As an example, most HRV-C strains have
a 5’UTR derived from recombination events with HRV-A and would segregate together
with HRV-A in a phylogenetic analysis conducted only on the 5’UTR.
For the HRV data set, we choose the VP4 and part of the VP2 region that codes for

structural viral protein, which are phylogenetically characterized in several previous stud-
ies [32, 61]. The data set is composed of 1316 sequences from the VP4/2 genomic region
with an average length of 222 nucleotides, that belong to the three different species of
Rhino virus (species A, B, and C). The reader may refer to Table 4 for additional details.
All the above-mentioned data sets are available at http://dmb.iasi.cnr.it/missel.php.

The sequences were originally downloaded from GenBank (http://www.ncbi.nlm.nih.
gov/genbank/) and have been aligned with Clustal W of the Bioedit software [62], and
then manually edited. We remark that each virus data set includes several gene regions,
and that only the sequences of the same gene region are aligned and of the same length.

Experimental results

We test MISSEL on the viral genomic sequence data sets of Influenza, Polyoma, and
Rhino viruses described above. The parameters used for running MISSEL are reported
in Table 5. To assess overfitting of the classification models, we chose different percent-
age splits into training and test sets for the different data sets under analysis. In order
to further validate our approach and ensure that our results are not unduly affected by
overfitting, we performed random permutations of class memberships for each data set.
Through these random permutations we test the null hypothesis under which MISSEL is
able to extract meaningful subsequences regardless of the class partition imposed on the
training set. Such hypothesis would be accepted only in the presence of a marked over-
fitting behavior of the algorithm. The details are reported in each subsection related to
the different viral data sets. The parameter setting we selected are proven to be robust
and effective to achieve reliable results. For what concerns the Maxβ choice, we run
MISSEL with an increasing value of β (up to 20) in order to find the right balance
between the length of the solutions and the number of equivalent solutions for each data

Table 4 Data set description of Rhino viruses

Class/genomic region VP4/2

A 752

B 209

C 355

Number of sequences 1316

Number of nucleotides 369

The number of sequences and their corresponding nucleotides is shown for each virus subtype (A, B, C), which is considered as a
different class, and for the VP4/2 genomic region

http://dmb.iasi.cnr.it/missel.php
http://www.ncbi.nlm.nih.gov/genbank/
http://www.ncbi.nlm.nih.gov/genbank/
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Table 5 Setting of parameters used for the execution of MISSEL

Maxiter Maxβ Baseσ Dimstore

Influenza viruses 5 · 104 10–20 5 106

Polyoma viruses 5 · 104 20 5 106

Rhino viruses 5 · 104 20 5 106

set. We remark that we are interested in extracting short subsequences and we chose β

accordingly for each data set.

Influenza viruses

Table 6 reports the equivalent and non-dominated solutions for the Influenza viruses data
set obtained by the algorithm.We fix the maximum solutions length to 10 for HA and NA
genomic regions (i.e., β ≤ 10) and to 20 for the largest MP genomic region (i.e., β ≤ 20).
We provide the score value (formula 4) along the positions of the sequence, see Panels

(a)-(c) of Fig. 4. Positions with high score values indicate locations of the sequence where
a large number of discriminant subsequences intersect - higher values indicating portions
more interesting and rich in separating power.
Then, we test all the extracted classification models using a percentage split schema

of 30% for training and 70% for testing for the NA and HA genomic regions, and 15%
for training and 85% for testing for the MP genomic region. We choose the previously
mentioned training and test percentage splits because of the high number of sequences
(i.e., more than ten thousands) and in order to obtain balanced training sets of adequate
size. The results are listed in Table 7, where we highlight how the classification accuracy
rates stand out at an average of 99–100% for both training and test set for HA and NA
genomic regions (β ∈[ 1, 10]). As far as the MP genomic region is concerned, we observe
a higher variability of results and an average correct classification rate on training and
test set of 71%. Furthermore, Panel (a)-(c) of Fig. 2 and Fig. 3 report the bar plots with the
percentage of correct recognition rates, averaged on the same β values, and obtained on
the test and training set of Influenza viruses, respectively.
Additional validation is performed by applying the algorithm to data with random

permutations of class membership. Such a test is repeated for 100 different random
permutations. The average classification performances obtained from the solutions are
extremely poor, never exceeding 52% in training or 38% in testing, with an empirical
p-value below 0.001, thus confirming the validity of our method.

Polyoma viruses

Table 8 lists the number of solutions that are equivalent and non-dominated. Here, we
extract alternative solutions of maximum size 20 (i.e., β ≤ 20) for the Polyoma viruses
data set.

Table 6 Number of equivalent and non-dominated solutions for Influenza viruses H1N1 and H3N2
with β ≤ 10 for HA and NA genomic regions and β ≤ 20 for MP genomic region

Genomic region Number of solutions

HA 655

MP 23

NA 486

Total number of solutions 1164
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Table 7 Classification accuracy on training and test set for the 3 genomic regions of Influenza viruses
(mean ± standard deviation computed on all solutions)

Genomic region β Train [%] Test [%]

HA 2 95.44 ± 17.14 95.46 ± 17.05

3 99.99 ± 0.06 99.98 ± 0.08

4 99.99 ± 0.11 99.96 ± 0.15

5 100 ± 0.06 99.98 ± 0.09

6 100 99.99 ± 0.04

7 100 99.99 ± 0.04

8 100 99.98 ± 0.05

9 100 99.98 ± 0.06

10 100 99.98 ± 0.07

NA 2 100 ± 0.01 99.98 ± 0.02

3 99.98 ± 0.11 99.96 ± 0.13

4 100 99.99 ± 0.02

5 100 99.99 ± 0.02

6 100 99.99 ± 0.02

7 100 99.99 ± 0.03

8 100 99.99 ± 0.03

9 100 99.99 ± 0.02

10 100 100 ± 0.01

MP 2 56.72 ± 29.09 56.41 ± 28.95

3 84.59 ± 5.75 83.94 ± 5.48

5 38.46 ± 2.44 38.39 ± 2.54

8 71.15 ± 40.04 71.24 ± 40.10

9 81.01 80.96

12 81.51 80.72

19 91.66 91.14

Accuracy rates of extracted equivalent and non-dominated solutions with β ≤ 10

Fig. 2 Bar plots of the classification performances on the test sets for the three analyzed types of viruses. The
reported values are averaged on the solutions with the same value of β ; the error bars refer to the
corresponding standard deviations computed on all solutions. a HA bMP c NA data sets of Influenza viruses,
d LT e ST f VP1 g VP2 h VP3 data sets of Polyoma viruses, and i VP4/2 data sets of Rhino viruses
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Fig. 3 Bar plots of the classification performances on the training sets for the three analyzed types of viruses.
The reported values are averaged on the solutions with the same value of β ; the error bars refer to the
corresponding standard deviations computed on all solutions. a HA bMP c NA data sets of Influenza viruses,
d LT e ST f VP1 g VP2 h VP3 data sets of Polyoma viruses, and i VP4/2 data sets of Rhino viruses

We compute the above-mentioned scores that provide a map of the solutions with
respect to their location along the sequence -see panels (d)–(h) of Fig. 4.
Then, we evaluate how those solutions perform in terms of classification rate. We use a

percentage split schema with 80% for training and 20% for testing. The results of the clas-
sification of alternative solutions on Polyoma viruses are reported in Table 9. Ranging β

from 1 to 20, we obtain averaged correct classification rates of 100% on training set and
93% with very low standard deviation values on test set for all the extracted solution. The
bar plots with the correct classification rate averaged on the same β values and obtained
on the test and training set of Polyoma viruses are reported in Panels (d)-(h) of Fig. 2
and Fig. 3. When compared with the classification performance under random permuta-
tions of class memberships, the subsequences obtained on real classes result significantly
different from those obtained on random ones (p < 0.001).

Rhino viruses

Table 10 lists the number of all the equivalent and non-dominated solutions. We set the
maximum solution length to 20 (i.e., β ≤ 20). We compute the scores for each position
of the sequence and provide a map of the sequence in Panel (i) of Fig. 4. Several peaks
in score appear for Rhino virus genomic region VP4/2. We note how some areas appear
much denser than others.

Table 8 Number of equivalent and non-dominated solutions for Polyoma viruses with β ≤ 20

Genomic region Number of solutions

LT 53
ST 17
VP1 84
VP2 22
VP3 18

Total number of solutions 194
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Fig. 4 Distribution of non-dominated solutions for genomic regions: a HA bMP c NA of Influenza viruses, d
LT e ST f VP1 g VP2 h VP3 of Polyoma viruses, and i VP4/2 of Rhino viruses

Coming to classification performances, we use a percentage split schema of 80% for
training and 20% for testing. Table 11 shows the classification results.We point out that all
the alternative classification models perform with a really high reliability, i.e., an average
of 100% correct classification rate on training set and 99.96% on test set, with β ∈[ 1, 20].
Panel (i) of Fig. 2 and Fig. 3 report the bar plots with the percentage of correct classifica-
tions averaged on the same β values and obtained on the test and training set of Rhino
viruses, respectively.
The comparison with the performance under random permutations of class member-

ships confirms that our method is able to identify meaningful signals in the data: correct
classification rates on 100 randomly permuted instances are always below 20%, and the
related p-value below 0.001.
All the results described above, as well as the extracted subsequences for each virus

data set are available at http://dmb.iasi.cnr.it/missel.php and provided as Additional file 2,
where the reader may also find all the specific nucleotides distinguishing the species for
further investigation.

Comparative analysis

In order to validate the results of MISSEL, we perform a comparative analysis. Since we
have not found other supervised classification methods that are able to extract multiple
human-readable models, we compare our method with the state-of-the art motif discov-
ery approach, i.e., the MEME suite [63]. In particular, we select the DREME software
[64], which discovers short, ungapped motifs (i.e., recurring, fixed-length patterns) that
are relatively enriched in the input sequences compared with shuffled sequences or con-
trol ones. Indeed, DREME provides a list of statistically significant motifs related to each
virus class. In order to fully exploit the computational approach of DREME, we set up the
following experimental scheme for each virus type:

http://dmb.iasi.cnr.it/missel.php
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Table 9 Classification accuracy on training and test set for the 5 genomic regions of polyomaviruses
(mean ± standard deviation computed on all solutions)

Genomic region β Train [%] Test [%]

LT 2 100 93.94

4 100 92.93 ± 1.75

6 100 93.18 ± 1.56

8 100 93.94

9 100 93.94

11 100 93.94

13 100 93.94

15 100 93.94 ±1.50 · 10−14

16 100 93.94

18 100 93.94

20 100 93.94 ±2.92 · 10−14

ST 3 100 93.75

5 100 93.75

8 100 93.75

11 100 93.75

12 100 93.75

17 100 93.75

20 100 93.75

VP1 2 100 90.32

4 100 93.55

6 100 93.55 ±2.97 · 10−14

8 100 93.15 ± 1.45

9 100 93.55

11 100 92.38 ± 2.61

12 100 93.55

14 100 93.55

17 100 93.55

19 100 92.74 ± 2.20

20 100 93.55

VP2 2 100 93.55

4 100 93.55

7 100 92.96 ± 1.31

8 100 93.55

10 100 93.55

12 100 93.55

13 100 93.55

19 100 93.55

20 100 93.55

VP3 2 100 93.33

4 100 91.11 ± 1.92

6 100 93.33

8 100 93.33

13 100 93.33

15 100 93.33

16 100 93.33

17 100 93.33

19 100 93.33

Accuracy rates of extracted equivalent and non-dominated solutions with β ≤ 20
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Table 10 Number of equivalent and non-dominated solutions for Rhino viruses with β ≤ 20

Genomic region Number of solutions

VP4/2 (ABC-Rhino) 11

1. For each genomic region we set as input sequences the ones belonging to a given
class, e.g., Rhino viruses A of VP4/2 region;

2. For each genomic region we set as control sequences the ones belonging to all the
other classes, e.g., Rhino viruses B and C of VP4/2 region;

3. We set the E-value threshold (i.e., the expected number of false positives) to 10−40

for Influenza and Rhino viruses and to 10−10 for Polyoma viruses; we set this
threshold very near 0 since also MISSEL is designed to discover short
subsequences resulting in the accuracy range of 99% - 100%;

4. We extract the motifs that characterize each class in the considered genomic region.

The above-mentioned motifs are compared with those extracted by MISSEL that, con-
versely to DREME, is able to compute the species specific subsequences for all classes at
once.
When considering Influenza viruses, DREME identifies a total of 290 motifs: 76 for HA,

129 forMP, and 85 for NA gene region, respectively. In this case, MISSEL extracts a larger
number of subsequences (more than one thousand with an average accuracy of 99.9%)
and therefore it provides the investigator with a larger number of solutions.
For Polyoma viruses, we perform the motif discovery only on gene region ST due to the

large number of comparisons among the available classes that one would otherwise have
to run with DREME. In this case, it identifies a total of 481 motifs. The number of the
motifs extracted by MISSEL (i.e., 17) is smaller, and hence our approach allows focusing
on core subsequences related to the investigated virus class. Furthermore, DREME does
not find enriched short motifs for those classes with a set of under-represented sequences,
conversely to MISSEL that finds solutions even for classes with a small number of
sequences.
When considering Rhino viruses, DREME identifies a total of 101 motifs for VP4/2

region. The size of the motifs extracted by MISSEL is smaller (i.e., 11 subsequences), and
hence our approach allows focusing on core motifs related to the investigated class of the
virus.
To summarize, when dealing with a few number of classes (e.g., Influenza viruses) an

approach like DREME is viable when dealing with problems with a small number of
classes; when dealing with more than three classes, in order to extract a manageable
number of motifs, one has to set an unrealistically high E-value threshold. Conversely,

Table 11 Classification accuracy on training and test set for Rhino viruses genomic region (mean ±
standard deviation computed on all solutions). Accuracy rates of extracted equivalent and
non-dominated solutions with β ≤ 20

Genomic region β Train [%] Test [%]

VP4/2 2 100 99.81 ± 0.27

4 100 100

8 100 100

13 100 100

16 100 100

18 100 100
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a supervised-based method like MISSEL can be preferable when addressing multiclass
problems (e.g., Polyoma viruses) both from a computational point of view and in terms of
classification performance.
To conclude, we wish to highlight that most of the subsequences extracted by MISSEL

are different from the ones computed by state-of-the-art motif discoverymethods provid-
ing additional knowledge to the investigators and enhancing the novelty of our approach.
Finally, unlike motif discovery approaches, MISSEL is able to identify the discrimi-
nating subsequences, their contiguous position, and is able to locate them along the
region.

Conclusions
In this paper, we have presented a method that extracts, from a set of sequences belonging
to different classes, small subsequences that contain sufficient information to discrimi-
nate among the classes. The method addresses a new problem in sequence analysis and
is based on a specifically designed genetic algorithm. Data sets of sequences from viral
species belonging to different types (DNA virus, positive stranded RNA virus, negative
stranded fragmented RNA virus) were used to test the method.
We can draw several conclusions based on the work that has been presented, below

we divide these into algorithmic conclusions, which concern MISSEL in general, and
biological conclusions, which concern the virus classification applications we presented.
The latter are indeed important to show the potential of the proposed method in other
applications.
From the algorithmic standpoint, the method appears to be effective both for the qual-

ity of its solutions and for the small computational effort required. The use of a properly
designed genetic algorithm seems to be the right choice for this problem, and cuts down
significantly the search time. The abundance of alternative solutions for the three appli-
cations poses a challenge to experts that use supervised learning methods: how many
alternative solutions of high quality can one find for a classification task? MISSEL answers
this question for a specific environment and it is clearly shown by the experimental results
that the identified subsequences are all of utmost quality when tested with standard clas-
sifiers. Such a fact is strongly confirmed by the tests run on randomized data, for all three
cases. We highlight that the method can be applied straightforwardly to any supervised
learning setting where data is described by strings on any alphabet.
From the biological standpoint, the results indicate several aspects worthy of further

analysis and investigation that are beyond the scope of this paper, but will stimulate future
research.
A first aspect is related with cardinalities of the solution sets. Influenza viruses have

a much larger number of mutations associated with their different classes, while much
fewer are present in Polyoma viruses and indeed very few in Rhino viruses, where the
essential information needed to separate among their classes seems to be concentrated in
11 very small sequences of no more that 20 nucleotides. The differences registered for the
three types of viruses in terms of number of solutions and density of the subsequences
along the regions suggest a link between local density of separating subsequences and
local mutation rates and evolutionary pressure. Such a link would indicate that regions
with many separating subsequences are critical in virus replications and thus subject
to higher selective pressure; besides, the specific locations of the regions characterized
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Fig. 5 Distribution of the number of extracted solutions for each β value of genomic regions: a HA bMP c
NA of Influenza viruses, d LT e ST f VP1 g VP2 h VP3 of Polyoma viruses, and i VP4/2 of Rhino viruses. The x
axes report the length of solution (β); y axes refer to the number of extracted solutions for each β

by a large relative abundance of separating sequences are indeed those where selective
pressure has been stronger.
A second interesting aspect is related to the small length (i.e., value of β) of the sepa-

rating subsequences - summarized in Fig. 5, where we provide the number of equivalent
and non-dominated subsequences identified, averaged on their length (i.e., on each β). An
overview of the all the β values of each extracted solution is reported in Fig. 6, according
to decreasing values of β . While we provide a bound to the length of the subsequences,
results show that the vast majority of solutions have much smaller length.

Fig. 6 Distribution of β values for the whole sequences of genomic regions: a HA bMP c NA of Influenza
viruses, d LT e ST f VP1 g VP2 h VP3 of Polyoma viruses, and i VP4/2 of Rhino viruses. The x axes report the
solutions; y axes refer to the corresponding β value according to a decreasing order
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Thirdly, length distributions vary markedly from region to region within the same virus:
the skewness of the distribution exhibited by solutions in the Influenza MP region when
compared with HA and NA regions, as well as the large number of solutions of maximal
size for LT-Polyoma, indicate that characterizing mutations may happen in nucleotide
positions, which are distant along the sequence.
Finally, the abundance of small separating subsequences may be an important sup-

port for quick and robust virus identification in settings where samples are drawn
from different locations in the host body, and different - possibly unknown - virus
types may be present. The availability of a well-characterized set of subsequences
that can identify a virus class with respect to the other known classes would allow
the construction of a reliable ensemble classifier even in the presence of unknown
types.
In conclusion, we list some future extensions of the work presented in this paper. We

plan to apply our method to different genomic viral sequences, as well as to more general
species classification problems (e.g., DNA Barcoding [24]). It would be also interesting
to extend our algorithm to deal with other classification problems within the domain of
DNA, RNA or protein sequences. To conclude, it would be very useful to set up an open-
access and comprehensive database comprising all separating subsequences identified in
the analyzed species.

Additional files

Additional file 1: The user guide for MISSEL software, which is a pdf file with all the instructions for the user to run
the software. (PDF 891 KB)

Additional file 2: This supplementary data package includes the experimental results of MISSEL.
In particular, the reader may find three folders.

(1) classification_results: the spreadsheet files with the classification results for the three viral data sets (3 gene
regions for Influenza, 5 gene regions for Polyoma, 1 gene region for Rhinoviruses) on training and test sets.

(2) discriminating_positions: the comma separated spreadsheet files with the discriminative positions for the three
viral data sets (3 gene regions for Influenza, 5 gene regions for Polyoma, 1 gene region for Rhinoviruses).

(3) positions_score: the comma separated spreadsheet files with the score values on the three viral data sets
(3 gene regions for Influenza, 5 gene regions for Polyoma, 1 gene region for Rhinoviruses). (RAR 292 KB)
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