3,666 research outputs found

    A Synopsis of Global Mapping of Freshwater Habitats and Biodiversity: Implications for Conservation

    Get PDF
    Accurately mapping freshwater habitats and biodiversity at high-resolutions across the globe is essential for assessing the vulnerability and threats to freshwater organisms and prioritizing conservation efforts. Since the 2000s, extensive efforts have been devoted to mapping global freshwater habitats (rivers, lakes, and wetlands), the spatial representation of which has changed dramatically over time with new geospatial data products and improved remote sensing technologies. Some of these mapping efforts, however, are still coarse representations of actual conditions. Likewise, the resolution and scope of global freshwater biodiversity compilation efforts have also increased, but are yet to mirror the spatial resolution and fidelity of mapped freshwater environments. In our synopsis, we find that efforts to map freshwater habitats have been conducted independently of those for freshwater biodiversity; subsequently, there is little congruence in the spatial representation and resolution of the two efforts. We suggest that global species distribution models are needed to fill this information gap; however, limiting data on habitat characteristics at scales that complement freshwater habitats has prohibited global high-resolution biogeography efforts. Emerging research trends, such as mapping habitat alteration in freshwater ecosystems and trait biogeography, show great promise in mechanistically linking global anthropogenic stressors to freshwater biodiversity decline and extinction risk

    100 key questions to guide hydropeaking research

    Get PDF
    As the share of renewable energy grows worldwide, flexible energy production from peak-operating hydropower and the phenomenon of hydropeaking have received increasing attention. In this study, we collected open research questions from 220 experts in river science, practice, and policy across the globe using an online survey available in six languages related to hydropeaking. We used a systematic method of determining expert consensus (Delphi method) to identify 100 high-priority questions related to the following thematic fields: (a) hydrology, (b) physico-chemical properties of water, (c) river morphology and sediment dynamics, (d) ecology and biology, (e) socio-economic topics, (f) energy markets, (g) policy and regulation, and (h) management and mitigation measures. The consensus list of high-priority questions shall inform and guide researchers in focusing their efforts to foster a better science-policy interface, thereby improving the sustainability of peak-operating hydropower in a variety of settings. We find that there is already a strong understanding of the ecological impact of hydropeaking and efficient mitigation techniques to support sustainable hydropower. Yet, a disconnect remains in its policy and management implementation.publishedVersio

    Baseline Review of the Upper Tana, Kenya

    Get PDF
    http://greenwatercredits.net/sites/default/files/documents/isric_gwc_report8.pd

    Inland Waters

    Get PDF
    Inland waters, lakes, rivers, and their connected wetlands are the most important and the most vulnerable sources of freshwater on the planet. The ecology of these systems includes biology as well as human populations and civilization. Inland waters and wetlands are highly susceptible to chemical and biological pollutants from natural or human sources, changes in watershed dynamics due to the establishment of dams and reservoirs, and land use changes from agriculture and industry. This book provides a comprehensive review of issues involving inland waters and discusses many worldwide inland water systems. The main topics of this text are water quality investigation, analyses of the ecology of inland water systems, remote sensing observation and numerical modeling methods, and biodiversity investigations

    TOWARDS IMPROVED HYDROLOGIC LAND SURFACE MODELLING: ENHANCED MODEL IDENTIFICATION AND INTEGRATION OF WATER MANAGEMENT

    Get PDF
    Large-scale hydrological models are essential tools for addressing emerging water security challenges. They enable us to understand and predict changes in water cycle at river-basin, continental, and global scales. This thesis aimed to improve ‘land surface models’ for large-scale hydrological modelling applications. Specifically, the research contributions were made across four fronts: (1) improving the conventional procedure for parameter identification of hydrological processes by using new sources of remotely-sensed data in addition to streamflow data within a multi-objective optimization and sensitivity analysis framework, (2) developing and integrating an efficient parameterization scheme for the representation of reservoirs into the land surface model for realistic representation of downstream flows, which can further feedback to land surface and atmospheric models, (3) demonstrating how precipitation uncertainty from multiple high-resolution precipitation products influences the performance of a land-surface based hydrological model, and (4) developing an enhanced and comprehensive large-scale hydrologic model for a complex and heavily regulated watershed. The analyses and results of this thesis illuminated important issues and their solutions in large-scale hydrological modelling. First, the multi-objective optimization and sensitivity analysis approach using multiple state and flux variables and performance criteria enables robust model parameterization and lessens issues around parameter equifinality in the highly-parameterized land surface models. Second, the dynamic parameterization of reservoir operation, based on multiple storage zones and reservoir release targets, improves the simulation of reservoir storage dynamics and downstream release, and subsequently, significantly improves the fidelity of land surface models when modeling managed basins. Third, there is a critical need for a rigorous evaluation of precipitation datasets widely used for forcing land surface models. The datasets investigated here showed considerable discrepancies, bringing their utility for land surface modelling into question. Fourth, effective parameterization and calibration of land surface models is critically important, particularly in large, complex, and highly-regulated basins

    Integrated Systems Modeling to Improve Watershed Habitat Management and Decision Making

    Get PDF
    Regulated rivers provide opportunities to improve habitat quality by managing the times, locations, and magnitudes of reservoir releases and diversions across the watershed. To identify these opportunities, managers select priority species and determine when, where, and how to allocate water between competing human and environmental users in the basin. Systems models have been used to recommend allocation of water between species. However, many models consider species’ water needs as constraints on instream flow that is managed to maximize human beneficial uses. Many models also incorporate uncertainty in the system and report an overwhelmingly large number of management alternatives. This dissertation presents three new novel models to recommend the allocation of water and money to improve habitat quality. The new models also facilitate communicating model results to managers and to the public. First, a new measurable and observable habitat metric quantifies habitat area and quality for priority aquatic, floodplain, and wetland habitat species. The metric is embedded in a systems model as an ecological objective to maximize. The systems model helps managers to identify times and locations at which to apply scarce water to most improve habitat area and quality for multiple competing species. Second, a cluster analysis approach is introduced to reduce large dimensional uncertainty problems in habitat models and focus management efforts on the important parameters to measure and monitor more carefully. The approach includes manager preferences in the search for clusters. It identifies a few, easy-to-interpret management options from a large multivariate space of possible alternatives. Third, an open-access web tool helps water resources modelers display model outputs on an interactive web map. The tool allows modelers to construct node-link networks on a web map and facilitates sharing and visualizing spatial and temporal model outputs. The dissertation applies all three studies to the Lower Bear River, Utah, to guide ongoing habitat conservation efforts, recommend water allocation strategies, and provide important insights on ways to improve overall habitat quality and area

    Global solutions to regional problems: Collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study

    Get PDF
    In early August 2014, the municipality of Toledo, OH (USA) issued a ‘do not drink’ advisory on their water supply directly affecting over 400,000 residential customers and hundreds of businesses (Wilson, 2014). This order was attributable to levels of microcystin, a potent liver toxin, which rose to 2.5 mg L1 in finished drinking water. The Toledo crisis afforded an opportunity to bring together scientists from around the world to share ideas regarding factors that contribute to bloom formation and toxigenicity, bloom and toxin detection as well as prevention and remediation of bloom events. These discussions took place at an NSF- and NOAA-sponsored workshop at Bowling Green State University on April 13 and 14, 2015. In all, more than 100 attendees from six countries and 15 US states gathered together to share their perspectives. The purpose of this review is to present the consensus summary of these issues that emerged from discussions at the Workshop. As additional reports in this special issue provide detailed reviews on many major CHAB species, this paper focuses on the general themes common to all blooms, such as bloom detection, modeling, nutrient loading, and strategies to reduce nutrients

    Human-water interface in hydrological modeling: Current status and future directions

    Get PDF
    Over the last decades, the global population has been rapidly increasing and human activities have altered terrestrial water fluxes at an unprecedented scale. The phenomenal growth of the human footprint has significantly modified hydrological processes in various ways (e.g., irrigation, artificial dams, and water diversion) and at various scales (from a watershed to the globe). During the early 1990s, awareness of the potential water scarcity led to the first detailed global water resource assessments. Shortly thereafter, in order to analyse the human perturbation on terrestrial water resources, the first generation of large-scale hydrological models (LHMs) was produced. However, at this early stage few models considered the interaction between terrestrial water fluxes and human activities, including water use and reservoir regulation, and even fewer models distinguished water use from surface water and groundwater resources. Since the early 2000s, a growing number of LHMs are incorporating human impacts on hydrological cycle, yet human representations in hydrological models remain challenging. In this paper we provide a synthesis of progress in the development and application of human impact modeling in LHMs. We highlight a number of key challenges and discuss possible improvements in order to better represent the human-water interface in hydrological models
    • …
    corecore