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ABSTRACT 

Integrated Systems Modeling to Improve Watershed Habitat  

Management and Decision Making  

by 

Ayman Hashim Alafifi, Doctor of Philosophy 

Utah State University, 2018 

 

Major Professor: Dr. David E. Rosenberg 
Department: Civil and Environmental Engineering 

 

Regulated rivers provide opportunities to improve habitat quality by managing the 

times, locations, and magnitudes of reservoir releases and diversions across the watershed. 

To identify these opportunities, managers select priority species and determine when, 

where, and how to allocate water between competing human and environmental users in 

the basin. Systems models have been used to recommend allocation of water between 

species. However, many models consider species’ water needs as constraints on instream 

flow that is managed to maximize human beneficial uses. Many models also incorporate 

uncertainty in the system and report an overwhelmingly large number of management 

alternatives. This dissertation presents three new novel models to recommend the 

allocation of water and money to improve habitat quality. The new models also facilitate 

communicating model results to managers and to the public. First, a new measurable and 

observable habitat metric quantifies habitat area and quality for priority aquatic, floodplain, 

and wetland habitat species. The metric is embedded in a systems model as an ecological 
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objective to maximize. The systems model helps managers to identify times and locations 

at which to apply scarce water to most improve habitat area and quality for multiple 

competing species. Second, a cluster analysis approach is introduced to reduce large 

dimensional uncertainty problems in habitat models and focus management efforts on the 

important parameters to measure and monitor more carefully. The approach includes 

manager preferences in the search for clusters. It identifies a few, easy-to-interpret 

management options from a large multivariate space of possible alternatives.  Third, an 

open-access web tool helps water resources modelers display model outputs on an 

interactive web map. The tool allows modelers to construct node-link networks on a web 

map and facilitates sharing and visualizing spatial and temporal model outputs. The 

dissertation applies all three studies to the Lower Bear River, Utah, to guide ongoing 

habitat conservation efforts, recommend water allocation strategies, and provide important 

insights on ways to improve overall habitat quality and area. 

(161 Pages) 
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 PUBLIC ABSTRACT 

Integrated Systems Modeling to Improve Watershed Habitat  

Management and Decision Making  

Ayman Hashim Alafifi 

 
Existing river management tools prioritize human uses and provide for ecosystem 

water needs as minimum instream flow requirements. Management efforts to provide water 

for multiple human and ecological needs can be improved by tools that recommend when, 

where, and how to allocate water between competing users across a river basin. This 

dissertation presents a set of tools in three studies to help managers make decisions on the 

allocation of water and money to improve habitat quality and area. The first study develops 

a new metric to measure habitat quality and area for priority river, riparian, and wetland 

species. The second study presents a new approach to address uncertainty in habitat models 

and focus management efforts on important factors to measure and monitor more carefully. 

The third study develops a tool to help water resources modelers share and display model 

results with policy makers and the public on web maps. These studies are applied to real-

world problems in collaborations with river managers to provide insights and 

recommendation and help protect threatened species in the Lower Bear River, Utah. 

Results of the three studies show opportunities to most improve habitat area and quality 

while meeting human water needs. For example, releasing more water from Porcupine and 

Hyrum Reservoirs in winter months and reducing late spring spills can support brown trout 

spawning and Fremont cottonwood restoration efforts.  
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CHAPTER 1 

INTRODUCTION 

 
Rivers and their riparian and wetland areas provide numerous services for humans, 

including domestic and agricultural water supply, recreation, power generation, and flood 

control. They also provide ecological services, such as food and habitat, that contribute to 

sustaining ecosystem health (Delisle and Eliason, 1961; Frisell and Ralph, 1998). While 

policy makers acknowledge the need to allocate water to maintain a healthy and 

functioning riverine ecosystem, human beneficial water uses typically receive the highest 

priority (Bunn and Arthington, 2002; Petts, 2009). Regulated rivers provide an opportunity 

for managers to improve habitat conditions for valuable species while meeting human 

needs by managing the magnitudes, locations, times, and durations of reservoir releases 

and diversions (Jager and Smith, 2008; Tharme, 2003). To make these water allocation 

decisions across a watershed, managers can use models that consider the competing 

demands for water between multiple river habitat species, ecological response of species 

at different life stages to changes in flow regimes, and temporal and spatial dependency 

between flow control infrastructure in the basin. The effects of these decisions on habitat 

quality can be quantified using measurable and observable metrics that have a physical 

meaning that managers can relate to (e.g. area). Habitat models should also consider the 

inevitable uncertainty in river hydrology and ecology and quantify how multiple sources 

of uncertainty affect management decisions to improve habitat quality and area. In 

addition, managers can better communicate these decisions with the public using user-

friendly web maps. These maps allow policy-makers and the public to visualize and 
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interact with model outputs and recommendations.  

Previous work to recommend management actions to improve river habitat quality 

has modeled ecological needs of species as constraints on water and money allocations 

(Cioffi and Gallerano, 2012; Porse et al., 2015). In addition, previous work to quantify 

uncertainty in habitat models found that large uncertain ranges of input parameters 

propagate and generate an overwhelmingly large number of management alternatives 

(Groves and Lempert, 2007; Pappenberger and Beven, 2006). Also, previous work has 

found it challenging to build web maps for water allocation models because it is difficult 

to describe and include node-link data in GIS structure and format (McKinney and Cai, 

2002; Sui and Maggio, 1999). To address these challenges, this dissertation develops a 

measureable metric for habitat quality, quantify multiple sources of uncertainty, embed the 

metric in a systems model, and effectively communicate recommendations to managers 

and the public. Three tools (1) identify times and locations at which to apply scarce water 

to most improve habitat quality, (2) reduce a large uncertain space of possible habitat model 

alternatives and identify a few, easy-to-interpret management scenarios to improve overall 

habitat quality, and (3) provide a web-accessible tool to interactively describe and display 

spatial and temporal water resources model outputs. 

The tools of this dissertation are applied to Lower Bear River (LBR), Utah, basin 

which is the downstream sub-basin of the 491-mile Bear River that runs through Wyoming, 

Idaho, and Utah. The LBR is a snowmelt driven system that receives 60% of its water from 

runoff in April, May, and June. The river and its tributaries are used to irrigate over 300,000 

acres of agricultural land, supply water to numerous cities and counties, and generate 
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electricity at run-of-river hydroelectric plants. The river is central to future development 

and growth debate for many counties in Northern Utah and the Wasatch Front (UDWR, 

2004; UDWRe, 2000). In addition, the river is vital to maintain critical wildlife habitat for 

many native and threatened aquatic, floodplain, and wetland species (Bio-West, 2015). The 

Bear River is also the largest water source for the Great Salt Lake and the 30,000 acre-Bear 

River Migratory Bear Refuge, which is located in the Bear River delta at the northern part 

of the Great Salt Lake (Downard and Endter-Wada, 2013). The Refuge is home to over 

250 migrating bird species that use 25 impounded wetlands for feeding, resting, nesting, 

and breeding every year (Alminagorta et al., 2016).  

Land disturbances, water development, fish barriers, and intensive agricultural and 

grazing activities along the LBR led to degrading habitat conditions for many native and 

threatened species. The Nature Conservancy, Trout Unlimited, state, federal agencies, and 

landowners identified low flow regimes and reduced floodplain connectivity as major 

threats (Bear River CAP, 2008).  

This dissertation presents three sets of decision-support tools to improve habitat 

which are presented in three chapters: 

1. Systems Modeling to Improve River, Riparian, and Wetland Habitat Quality and 

Area 

Problems with allocation of scarce water and money between competing river, 

riparian, and wetland habitat species while meeting human needs in the basin are addressed 

by developing a new systems optimization model. The main contributions of this work 

include: 
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 Develop a habitat area metric, measured in acres, to quantify habitat quality and 

area across aquatic, floodplain, and wetland habitats, 

 Embed the metric in a new systems optimization model as an objective to 

maximize, and 

 Apply the systems model to the Lower Bear River as a case study and identify 

where and when to apply scarce water and money to most improve habitat 

quality and area 

 

2. Cluster Analysis to Improve Communicating Uncertainties in River Habitat 

Models 

Problems with communicating uncertainty in habitat models are addressed by 

applying cluster analysis to explore the large space of plausible alternatives and identify a 

smaller set of management actions to improve habitat quality and area. The main 

contributions of this work are to: 

 Identify the main sources of uncertainty in river, riparian, and wetland habitat 

models and quantify how multiple sources propagate to affect habitat model 

outputs and recommendations, 

 Use semi-supervised cluster analysis to include management preferences to 

explore a large multivariate space of possible management alternatives and 

search for clusters, 

 Identify a few management scenarios and define key uncertain parameters to 

monitor, and 
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 Apply this approach to a stochastic water and habitat optimization model for 

the Lower Bear River to infer management implications and tradeoffs between 

management scenarios and highlight opportunities to improve overall habitat 

quality and area 

 

3. Interactive Web GIS Applications to Visualize Water Resources Model Outputs 

Problems with describing node-link schema of water resources models as GIS 

layers are addressed with a web tool that facilitates developing user-friendly and interactive 

interfaces to communicate spatially and temporally-distributed water resources model 

outputs. The main contributions are: 

 Develop an open-access web tool that allows users to interactively create web 

GIS layers of water resources nodes and links, 

 Use the tool to create web maps that display water resources model outputs on 

a publically-available web GIS platform, and 

 Demonstrate use of the tool to build two web maps for optimization and 

simulation water allocation models in the Bear River basin and facilitate 

collaborative model development and communication of results. 
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CHAPTER 2 

SYSTEMS MODELING TO IMPROVE RIVER, RIPARIAN, AND WETLAND 

HABITAT QUALITY AND AREA1 

Abstract 

Improving river habitat is challenging because managers must identify priority 

species and determine when, where, and how to allocate water between competing 

ecosystem and other users in the basin. While prior systems modeling efforts to manage 

stream flow include ecological objectives as constraints on flow or to minimize deviations 

from natural flow regimes, we present a new systems optimization model that formulates 

and maximizes an ecological objective as the sum of aquatic, floodplain, and wetland 

habitat areas and quality. Embedding this measurable ecosystem objective in a systems 

model allows managers to identify when, where, and how to allocate scarce water and 

financial resources to improve habitat area and quality. We followed a participatory 

approach to apply our model to the Lower Bear River watershed, UT. Results show that 

increasing winter releases from reservoirs on the Little Bear River, a tributary to the Bear 

River, and minimizing spring spill volumes can create additional suitable habitat area 

without compromising urban and agricultural water demands.  Further, additional flow on 

the Little Bear River between August and December will most increase habitat area and 

quality compared to other locations. We display results on an open-access web map that 

allows stakeholders to visualize tradeoffs between habitats, identify opportunities to 

manage reservoirs that improve habitat, and validate results.  

                                                           
1 Co-authored by David E. Rosenberg 
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Highlights 

 A new measurable ecological objective for habitat area identifies when and 

where managers can most improve habitat quality and area in a watershed  

 A collaborative systems modeling approach that maximizes the new 

ecological objective and recommends the allocation of water between 

multiple competing aquatic, floodplain, and wetland habitat species 

 A case study in a snowmelt-driver river basin shows that reducing spring 

reservoir spills and increasing winter releases can increase habitat area and 

quality. 

 An open-access web map helps communicate opportunities to improve 

habitat area and quality to stakeholders. 
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Software and Data Availability 

Name of software: Watershed Area of Suitable Habitat (WASH) optimization 
model 

Developers: Ayman H. Alafifi and David E. Rosenberg 

Contact: aafifi@aggiemail.usu.edu 

Year first available: 2016 

Hardware required: A personal computer 

Software required: General Algebraic Modeling System software (GAMS) with 
non-linear global solver such as Branch-And-Reduce 
Optimization Navigator (BARON), MS Excel 2016, R 3.3.0, 
and a web browser 

Software availability: All source code, input data, post-processing file, and 
documentation are available on Alafifi (2017). The application 
of WASH to the Lower Bear River, Utah, for one year (2003) 
is displayed on an open-access web map at: 
https://www.WASHmap.usu.edu    

Cost: The source code is released under the BSD 3-Clause, which 
allows for reuse of the code. 
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2.1 Introduction 

Rivers and their riparian and wetland areas are managed to supply domestic and 

agricultural water users, generate hydropower , reduce flood damages, and support habitat 

for flora and fauna (Bernhardt et al., 2005). Although managers often prioritize human 

beneficial uses, regulated rivers also provide opportunities to improve habitat (Jager and 

Smith, 2008; Tharme, 2003). Improving river habitat requires defining measureable 

ecological objectives and determining the timing, magnitude, and locations of reservoir 

releases, diversions, and restoration efforts to advance the objectives. 

Determining timings, magnitudes, and locations often requires navigating a 

complex set of considerations. First, managers must identify and locate the aquatic, 

floodplain, and wetland habitat areas in the basin that need improvement. Second, they 

should select indicator species from among the numerous species available in each habitat. 

The presense of indicator species denotes a healthy ecosystem and that can be monitored 

for abundance and are impacted by flow conditions. Third, managers may use models to 

mathematically quantify each species’ response to changes in flow regimes. And finally, 

managers may collaborate with watershed stakeholders to identify when, where, and how 

to allocate water to meet other basin uses and improve habitat over observed conditions 

(Barbour et al., 2016).  

Some quantification and modeling approaches such as the natural flow paradigm 

define species hydrologic requirements to mimic important timing, duration, magnitude, 

and frequency features of the natural flow regime (Poff et al., 1997). These approaches 

assume that historical natural flows are known and adequate to create desired ecosystem 
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functions (Baron et al., 2002). Other approaches, such as Habitat suitability indices (HSI; 

U.S. Fish and Wildlife Service 1981) and dervatives (Hickey and Fields, 2013), use 

empirical relationships to describe the suitability of habitat to support the survival and 

productivity of a single species as a function of single or multiple habitat attributes such as 

instream water depth, water temperature, substrate, or flow duration. HSI values range 

from 0 (poor) to 1 (excellent) (Hemker et al., 2008; Hooper, 2010; Pinto et al., 2009). The 

Weighted Usable Area (WUA) method multiplies the HSI reach surface area by a unitless 

habitat suitability index and divides by reach length (Stalnaker, 1995). WUA can be used 

to describe habitat quality for a particular species at a specific site and time under prior or 

proposed flow regimes (Garcia-Rodriguez et al., 2008; Moir et al., 2005; Souchon and 

Capra, 2004). These approaches cannot determine whether a flow regime is feasible nor do 

they recommend locations, timings, or magnitudes of water allocations to improve multiple 

habitat types and species across a watershed. 

Water resources systems models include multiple ecosystem assets as part of a 

connected network of reservoir, river, tributary, diversion, demand, and return flow 

components and can determine the feasibility of proposed flow regimes. Models typically 

include habitat considerations as constraints, such as to meet a minimum required instream 

flow (see, for example, Cioffi and Gallerano, 2012; Harman and Stewardson, 2005; Porse 

et al., 2015; Ryu et al., 2003). In other cases, a suitability index is maximized or minimized 

as a single objective or tradeoff with water delivery, hydropower generation, or other 

objectives (Null et al., 2014; Simonović and Nirupama, 2005; Yang, 2011). Or the model 

tries to minimize deviations from a pre-defined target value. For example, Higgins et al. 
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(2011) developed a heuristic nonlinear integer optimization model to minimize the 

difference between managed and natural flow regimes in the Murray River, Australia. 

Steinschneider et al. (2014) used linear programming to minimize the deviation between 

model recommended reservoir releases and estimated natural flows in the Connecticut 

River basin. Szemis et al. (2012, 2014) developed a heuristic ant colony nonlinear model 

for the Murray River to minimize the inverse of an ecological index plus constraint 

violations. Minimizing deviations from an ecosystem target poses challenges because 

managers need to subjectively define the target, such as natural flow regime or species-

required flow (Barbour et al., 2016). Additionally, deviations and indices may not have 

physical meaning and are difficult to measure, validate, and communicate. Further, the 

habitat improvement to move a set number of units closer to the target depends on how 

close the current system state is to the ecological target. The above reasons make it difficult 

for managers to use deviation objectives to identify opportunities to improve habitat and 

compare potential improvements across watershed sites.  

This paper develops the Watershed Area of Suitable Habitat (WASH) systems 

model, which formulates and embeds a measureable and observable suitable habitat area 

metric as an ecological objective to maximize. Suitable habitat area represents the 

combination of habitat quality and area, is measured in acres, and indicates the area of good 

quality habitat with physical characteristics that can support the life needs of priority 

species. Suitable habitat area is the sum of suitable aquatic, floodplain, and wetland habitat 

areas. WASH recommends flow regimes that improve suitable habitat area for priority 

species. The WASH model and habitat area objective allow managers to (i) compare 
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ecological measures across sites; (ii) identify where and when to apply scarce water, 

money, and planting efforts to most improve habitat quality and area; (iii) involve 

stakeholders to help define ecological objectives, view, and validate results; and (iv) adapt 

the method to other basins, sites, habitat types, and species. Section 2 introduces the study 

area for the Lower Bear River, Utah. Section 3 describes the model formulation and system 

components. The remaining sections present results, management implications, and 

conclusions. 

2.2 Study Area 

The Lower Bear River (LBR) is part of the longer 491-mile Bear River that starts 

in Utah, flows north through Wyoming and Idaho, then returns south to Utah. The study 

area is the LBR basin, which includes the Bear River from the Utah-Idaho state line to the 

river’s terminus at the Great Salt Lake and tributaries (Figure 2.1). The Utah Division of 

Water Resources (2004) estimates that approximately 60% of LBR flow comes from 

snowmelt runoff in April, May, and June. The river and its tributaries irrigate over 300,000 

acres of agricultural land and supply water to numerous cities and communities, as well as 

run-of-river hydroelectric plants (UDWR, 2004; UDWRe, 2000). The river is central to the 

growth and development planning debate for several counties within the basin such as 

Cache and Box Elder Counties, Utah in addition to the off-basin Wasatch Front 

metropolitan region (UDWR, 2004; UDWRe, 2000). 

The LBR is also vital to maintaining critical wildlife habitat for many native and 

threatened fish, riparian plants, and migratory bird species (Bio-West, 2015). Intensive 

urbanization, water development, fish barriers, and grazing have led to distributed flow 
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regimes for native and game fish species, reduced floodplain connectivity, and altered 

native plant community composition (Bear River CAP, 2008; Bio-West, 2015). At the 

river’s terminus at the Great Salt Lake, the U.S. Fish and Wildlife Service (FWS) manages 

the Bear River Migratory Bird Refuge (hereafter the Bird Refuge), comprising 300 km2 of 

impounded wetlands that provide feeding, resting, and breeding grounds for over 250 

globally significant populations of migratory birds (Alminagorta et al., 2016a).  

According to the western U.S. prior appropriation doctrine, the Bird Refuge holds 

a more recent water right that is junior to more senior upstream agricultural users (Downard 

et al., 2014). Thus, senior irrigators take their entire water rights before the Refuge receives 

any water. Most other land in the LBR is privately owned and few formal or legal 

mechanisms exist to provide water to improve fish, riparian plant, and migratory bird 

habitats throughout the basin. The Nature Conservancy, Trout Unlimited, landowners, and 

local, state, and federal agencies have identified low flow as a major threat to fish 

populations, riparian plants, and migratory birds in the watershed (Bear River CAP, 2008). 

Thus, we selected the LBR because management efforts are already underway to restore 

valuable habitat and study results could allow managers to determine the amount of water 

needed to sustain ecosystem health for priority species.   

2.3 Model Development  

Improving river habitat quality and area requires a collective effort among 

researchers and managers to identify habitat types, priority sites, indicator species, habitat 

attributes, suitability of habitat attributes for species, and the network of water system 

components. Here, we demonstrate a participatory approach to develop a systems model 
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that maximizes the suitable habitat area, addresses multiple habitat management goals, and 

identifies promising management strategies to improve habitat area and quality. 

We began by soliciting support from river managers and stakeholders working to 

implement the Bear River Conservation Action Plan (Bear River CAP, 2008). The CAP 

team identified a management target to improve aquatic, floodplain, and wetland habitat 

quality for key species in the basin. Improving habitat quality requires determining where, 

when, and how to allocate water between priority species at multiple habitats across the 

watershed to improve overall habitat quality. Therefore, a systems model approach to guide 

management decisions needs to have a physically measureable and observable objective 

function that considers habitat quality and area so managers can compare habitat across 

diverse ecological sites, communicate results, and show implications of actions over time.  

Reservoirs 
Demand Sites 

Bird Refuge 

State Lines  

Utah 
Idaho 

Wyoming 
Utah 

The Great Salt 
Lake 

 

Figure 2.1: The Lower Bear River, Utah including major tributaries, demand sites, and reservoirs 
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2.3.1 Selection of indicator species 

The presence and abundance of indicator species is a strong signal of ecosystem 

response to alterations in flow regimes (Carignan and Villard, 2002). We identified key 

native and game fish, riparian plants, and wetland migratory bird species in the LBR 

watershed based on their abundance in the watershed and sensitivity to changes in flow 

regimes. For each species, we defined suitable ranges of habitat attributes such as water 

depth and flood recurrence. We considered seasonal variations in habitat attributes for 

species different life stages (Table 2.1). We derived habitat attribute ranges from literature, 

empirical studies, and other models and verified them with project stakeholders. 

Fish spawning, seed recruitment, and migratory bird feeding, nesting, and breeding 

occur on a seasonal (multi-month) time scale. We selected a monthly time step (t) for 

WASH because watershed managers plan and schedule flow management actions at 

monthly intervals.  

Below we describe the general model formulation of decision variables, objective 

function, and constraints. In the formulation, capitalized terms represent variables, lower 

case indicates parameters and model inputs, and lettered subscripts denote indices for 

space, time, species, and habitat types (bottom of Figure 2.2).  

2.3.2 Decision Variables 

To improve habitat quality, managers can adjust reservoir releases RRv,t [million 

cubic meters per month, Mm3] at each reservoir v in month t. They also control diversion 

volumes Qj,dem,t [Mm3/month] from the river at node j to each demand site dem in each 

month t to satisfy urban and agricultural demand. Managers can also plant RVj,k,t,n [Mm2] 
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in the floodplain adjacent to the river reach from node j to node k during month t by seeding 

or planting species n. These variables control a group of state variables that include 

reservoir storage volume STORv,t [Mm3], reservoir surface area RAv,t [Mm2], river flow 

Qj,k,t  [Mm3/month] from node j to node k in month t, river water depth Dj,k,t [m/month], 

channel surface area Aj,k,t, [Mm2], channel width WDj,k,t [m], and floodplain plant cover  

Cj,k,t,n [Mm2]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 The WASH model connects decision variables, state variables, parameters, and 
suitability indices to an objective function measured as suitable habitat area. Physical, management, 

and plant constraints limit decisions 
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Table 2.1 Habitat indicator components by habitat type, species, species life stage, seasons, and 
ecosystem function 

 

 

Habitat Indicator 
Species 

Life 
Stage 

Aspects of 
life stage 
supported 
and (tim-
ing) 

Habitat 
Attribute 

Suitable 
Range of 
Habitat 
Attribute  

Affected 
Area 

Data 
Source(s) 

Aquatic Bonneville 
cutthroat trout  
(Oncorhynchus 
clarki utah) 

Adult Native 
spawning 
(Sep. – 
Mar.) 

Water 
depth (m) 

0.30 - 
0.75 

Channel 
surface 
area 

Hickman 
and Raleigh 
(1982), 
Braithwaite 
(2011), 
Gosse et al. 
(1977) and 
Gosse 
(1981) 

Fry Native 
maturing 
(Apr. – 
Aug.) 

0.10 - 
0.45 

Brown trout 
(Salmo trytta) 

Adult Game fish 
spawning  
(Sep. – 
Mar) 

0.10 - 
0.80 

Fry Game fish 
maturing  
(Apr. – 
Aug.) 

0.10 - 
0.50m 

Flood-
plain 

Cottonwoods 
(Populus 
fremontii) 

Germi-
nate & 
dis-
perse 
seeds 

Native re-
cruitment  
(Apr. – 
Aug) 

Flood re-
currence 

> Bank-
full flow  

Floodplain 
area 

Meier and 
Hauer 
(2010) 
Mahoney 
and Rood 
(1998) 

Wetland Black-necked 
stilt (Himan-
topus mexi-
canus) 

Adult Feeding, 
resting, 
and breed-
ing  
(Apr. – 
Sep.) 

Water 
depth (m) 

0.15– 
0.25m 

Impounded 
wetland 
area 

Alminagorta 
et al. (2016) 

Invasive 
plant 
cover (%) 

< 10% 

American avo-
cet (Recurvi-
rostra Ameri-
cana) 

Feeding, 
resting, 
and breed-
ing (Mar. 
– Oct.) 

Water 
depth (m) 

0.35- 
0.45m 

Invasive 
plant 
cover (%) 

< 10% 

Tundra swan 
(Cygnus co-
lumbianus) 

Feeding 
and resting  
(Nov.– 
Mar.) 

Water 
depth (m) 

> 0.55m 

Invasive 
plant 
cover (%) 

< 10% 
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2.3.3 Objective Function 

The objective function maximizes the weighted sum of the suitable areas of aquatic 

[INDaquatic,j,k,t], floodplain [INDfloodplain,j,k,t], and wetland [INDwetland,j,k,t] habitats [Mm2] in 

reach j to k in month t where 𝑤𝑔ℎ𝑡 , , ,  are stakeholder-decided weights for habitat indictor 

s in reach j to k at month t. Weight values range from 0 (not important) to 1 (important).  

𝑀𝑎𝑥  𝑍 = ∑ 𝑤𝑔ℎ𝑡 , , ,  ∙   𝐼𝑁𝐷 , , ,, , ,             [1] 

The value of each habitat indicator is the product of a suitability index representing 

habit quality and an affected area. Using the habitat suitability ranges in Table 1, we 

designed suitability indices (SIs) [unitless] for aquatic, floodplain, and impounded wetland 

habitats as functions of hydrologic and ecological habitat attributes that influence priority 

species survival and abundance, such as water depth, flood recurrence, and plant cover. 

Functions defining SIs are specific to the reach, species, species life stage, and habitat 

attribute. The SIs approach 1 (excellent conditions) when values for the habitat attribute 

support densities for the priority species that exceed a certain threshold. In contrast, SIs 

approach 0 (poor conditions) when the density of a priority species is below a threshold 

(Roloff and Kernohan, 1999). SIs are constructed using empirical data, literature, and 

expert opinion.  

Affected areas are the reach-specific habitat areas in the watershed at which each 

suitability index applies (Figure 2.1). Affected areas are also functions of flow and plant 

cover habitat attributes. We aggregate habitat indicators using spatial and temporal weights 

to express the overall WASH area for the watershed in area units (m2). Therefore, suitable 

habitat areas are the fraction of the total affected areas that are characterized by the good 
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habitat attributes to support the life needs of priority species. 

a. Aquatic Habitat 

Managers can improve fish habitat in the LBR by improving flow regimes that 

shape physical habitat health and determine biotic composition of riverine species (Bunn 

and Arthington, 2002). Here, we use water depth and temperature as two primary abiotic 

factors that define aquatic habitat quality and suitability for fish (Jackson et al., 2001). We 

designed water depth suitability curves and adjusted them to fish species tolerance for 

water temperature.  

The Bonneville cutthroat trout (BCT; Oncorhynchus clarki utah) is a critical native 

fish species in the Blacksmith Fork and Little Bear rivers, two Bear River tributaries, and 

is the target of many restoration efforts because of declining numbers in recent decades 

(Bio-West, 2015). Brown trout (Salmo trytta) is a popular non-native game fish species 

that has high tolerance to low summer flows, warmer lower-elevation reaches, and 

parasites causing whirling disease compared to other members of the trout family 

(UtahFishingInfo Website, 2016).  

The lower elevation Bear River main stem has warm summer water temperatures 

that reach 26o C. The higher elevation Little Bear and Blacksmith Fork rivers have cooler 

water temperatures that do not exceed 22.5o C (Watershed Sciences, 2007). Johnstone and 

Rahel (2003) report that water temperature at or above 25o C could be lethal for BCT, while 

Raleigh et al. (1984) reported that brown trout can tolerate water temperature up to 27.2o 

C. Currently, BCT is only abundant in the headwaters of the Blacksmith and Little Bear 

rivers (DeRito, pers. comm., 2016). Thus, we assigned BCT as the indicator fish species in 
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colder headwater reaches and brown trout in remaining warmer reaches. 

We developed the aquatic suitability index (rsi; unitless) as a function of water 

depth 𝐷 , ,  . The rsi curves vary between 0 at water depths in LBR reaches where empirical 

studies found no fish to 1 at water depths where fish (or redd counts) were abundant. The 

corresponding water depth ranges for BCT were obtained from a 2-year study in the nearby 

Strawberry River by Braithwaite (2011) and for brown trout from Gosse et al. (1977) and 

Gosse (1981) on the Logan and Provo rivers in northern Utah. Water depth ranges were 

also verified by the project stakeholders. For brown trout, we assigned a poor suitability 

index value of 0 at 10 cm water depth because brown trout can tolerate very shallow depths 

(Raleigh et al., 1984). We used Boltzmann and exponential decay functions to specify the 

shapes of suitability index curves for BCT and brown trout (Figure 2.3) based on similar 

FWS HSI curves for water depth (Hickman and Raleigh, 1982; Raleigh et al., 1984).   

 The aquatic habitat indicator is the product of rsi for each reach (j,k), month (t) and 

fish species (y) and the corresponding channel surface area (Eq. 2). With multiple fish 

species (y), we multiply suitability indices together to emphasize the concurrent need for 

Figure 2.3 Aquatic Suitability Index values for water depth for Bonneville cutthroat trout 
(left) and brown trout (right).  
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suitable water depths for all species at the same time and location.  

       𝐼𝑁𝐷 , , , = ∏ 𝑟𝑠𝑖𝑗,𝑘,𝑡,𝑦 𝐷𝑗,𝑘,𝑡𝑦  ∙  𝐴𝑗,𝑘,𝑡 ,        ∀ 𝑗, 𝑘, 𝑡              [2]  

Other methods to combine multiple species use arithmetic or geometric averages to 

aggregate multiple indices and assume that good habitat for one species compensates for 

poor condition for another species (Ahmadi-Nedushan et al., 2006).  

b. Floodplain Habitat 

Floodplain areas are adjacent to streams and are periodically inundated with water. 

Seasonally high water levels in these areas inundate riparian plant roots and keep soil moist 

(Meier and Hauer, 2010). The lateral connectivity between the river channel and its 

floodplain area is a primary factor shaping plant community composition, abundance, and 

survival (Merritt et al., 2010; Poff et al., 1997; Rivaes et al., 2013; Rood et al., 2005).  In 

connected floodplains, plant recruitment and seed germination coincide with flood events 

that occur when discharge exceeds the bankfull flood level (Meier and Hauer, 2010; 

Yarnell et al., 2010). This level is defined as the visible break in slope between the un-

vegetated bank and the adjacent vegetated floodplain surface (Li et al., 2015; Parker et al., 

2007). Bankfull discharge is often associated with the 1.5 year flood recurrence interval 

(Kilpatrick and Barnes, 1964; NOAA, 2015; Rosgen, 1994). Therefore, to restore lateral 

connectivity, managers need to determine the proximity of priority floodplain plants to 

riverbanks and manage streamflow to exceed bankfull discharge and inundate target plants 

during their seed germination season.  

We selected cottonwood trees (Populus fremontii) as an indicator native plant 

species in the LBR because it predominates in the basin’s floodplains and provides shade, 
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food, and habitat for mammals, birds, and insects (Bio-West, 2015). Cottonwoods release 

seeds just after peak flows in snowmelt-driven rivers (Bhattacharjee et al., 2006; Mahoney 

and Rood, 1998). Thus, lateral connectivity between the channel and floodplains is most 

important between April and June for successful seed dispersal and through August for the 

continued soil moisture needed to establish dispersed seeds (Bhattacharjee et al., 2008; 

Mahoney and Rood, 1998). Cottonwood trees grow adjacent to river channels and are likely 

to be inundated by flow magnitudes over bankfull flow (1.5-year flood recurrence value). 

Therefore, we designed the floodplain suitability index (fsi; unitless) as a function of 

streamflow 𝑄 , , . The index curves transition from 0 (poor lateral connectivity), when flow 

is at or below the 1-year recurrence value, to 1 (excellent connectivity) when the instream 

flow equals or exceeds the 2-year recurrence flow (Figure 2.4). The 1- and 2-year 

recurrence flow thresholds at different reaches in the basin are determined from historical 

flow records using the Log Pearson Type III distribution with mean and standard deviation 

of the log-transformed annual flow series. We measured initial existing cottonwood tree 

cover alongside every reach from NAIP Imagery.  

The floodplain connectivity indicator is calculated by multiplying fsi for reach, 

month, and riparian plant species by the area of plant cover (C) and then summing the 

values for each plant species n [eq. 3].  The summation across plant species in eq. [3] 

emphasizes that individual plant species can coexist at lateral different distances from the 

riverbank and these different lateral distances require different flood magnitudes to 

establish connectivity. For example, cottonwood trees lives adjacent to river banks and 

requires flood recurrence of 2-year for lateral connectivity (Richter and Richter, 2000). 
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Other riparian trees such as Pacific willow (Salix lasiandra) live further upslope in the 

floodplain and could require a higher flood frequency interval for lateral connectivity 

(Dettenmaier and Howe, 2015; Rood et al., 2003). 

𝐼𝑁𝐷 , , , = ∑ 𝑓𝑐𝑖𝑗,𝑘,𝑡,𝑛(𝑄
𝑗,𝑘,𝑡

) ∙  𝐶𝑗,𝑘,𝑡,𝑛𝑛   ∀ 𝑗, 𝑘, 𝑡             [3]   

c. Impounded Wetlands 

Wetlands are recognized as one of the most productive ecosystems for a variety of 

wildlife species, particularly water birds (Nikouei et al., 2012). Impounded wetlands have 

dikes, gates, weirs, canals, or other hydraulic structures that allow managers to control 

flows into and out of wetlands. The Bird Refuge comprises 25 impounded wetland units 

that draw water from the Bear River (Downard et al., 2014). Maintaining wetland 

Figure 2.4 Floodplain suitability index as a function of flow at the Bear River Corinne site. 
Floodplain suitability transitions from 0 to 1 between flow values with recurrence interval of 1- 

and 2-years  
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ecological services at the Bird Refuge requires managing water depth and plant cover 

habitat characteristics necessary for different bird species to feed, nest, rest, and breed 

(Downard and Endter-Wada, 2013; Faulkner et al., 2010; Rogers and Ralph, 2011).  

Prior work by Alminagorta et al. (2016b) developed a composite Usable Area for 

Wetland (WU) metric for the Bird Refuge (measured in km2) and embedded the WU metric 

in a systems model as an objective to maximize. The WU metric quantified the wetland 

surface area with water depth and plant cover habitat characteristics that support Black-

necked stilt, American avocet, and Tundra swan (Table 2.2). These three priority bird 

species were selected because they use a range of shallow, medium, and deep water depths 

that encompass depths used by 20 other priority bird species at the Refuge. 

We built on the WU work of Alminagorta et al. (2016a) at the Bird Refuge to 

develop a Wetland Suitability Index (wsi) for WASH. The wsi represents the suitability of 

impounded wetlands to improve water depth and native plant cover for priority bird 

species. Here, we estimated monthly wetland suitability index values by dividing 

Alminagorta’s monthly WU areas, generated for various water availability scenarios 

between 1992 to 2011, by the total Refuge area. Then we developed monthly relationships 

between the suitaibilty index values and monthly river flows measured just upstream of the 

Bird Refuge at the Corinne, UT USGS station (one example shown in Figure 2.5).  

The impounded wetland indicator is calculated by multiplying a wsi index (as a 

function of streamflow) by the total wetland surface area aw [Mm2]. In Eq. [4], the wsi 

defines an aggregate suitability index for multiple wetland bird species. 

𝐼𝑁𝐷 , , , =  𝑤𝑠𝑖 , , 𝑄 , ,  ∙   𝑎𝑤 , , ,           ∀ 𝑗, 𝑘, 𝑡                     [4] 
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2.3.4 Constraints 

Reservoir releases, diversions, planting, and other decisions are bound by physical, 

infrastructure, and management constraints (Appendix B, eqs.5-18). Physical constraints 

include low-order, finite-difference approximation to conservation of water mass balance 

at each reservoir, node, and demand site. They also include equations to constrain plant 

cover growth over time and define channel topography. Infrastructure constraints place 

minimum and maximum limits on reservoir and diversion canals capacity. Management 

constraints include urban and agricultural demand requirements and available budget. 

Nonlinear objective and constraint functions in WASH formulation are all continuous and 

smooth to avoid numerical difficulties in the optimization.  

2.3.5 Model Input Data 

WASH requires hydrologic, ecological, topological, and management data (Table 

2.1). We collected the required data from sources including the Utah Division of Water 

Figure 2.5 Example WASH wetland suitability index for February  

 

R² = 0.89

0.65

0.66

0.67

0.68

0.69

0.70

0.71

0.72

 50  70  90  110  130  150

W
et

la
nd

 S
ui

ta
bi

li
ty

 In
de

x 
(w

si
)

Flow (Mm3/month)



28 
 
Resources (DWRe) water supply/demand simulation model for the Lower Bear River 

(Adams et al., 1992). We also established two monitoring sites on the Bear River mainstem  

and one site on the Cub River to collect and ground truth hydrologic and ecological data 

between August 2012 and November 2016. We assumed a budget of $650,000 to plant 

native riparian trees based on the Cache County Water Masterplan estimated budget for 

Model 
Component 

Data Item Source(s) 
Component 
Type 

Aquatic 
Habitat 

Reach lengths  NHDPlus V2 (2016), USGS 
(2012), field measurements 

Link 

Water depth-ecological 
suitability curves  

FWS, stakeholders, and literature Link 

Floodplain 
Habitat 

Plant cover and distance from 
banks  

USDA (2014) NAIP Imagery, field 
measurements 

Link 

Floodplain area  NAIP Imagery, field measurements Link 

Flow-ecological suitability 
curves  

FWS, stakeholders, and literature Link 

Wetland 
Habitat 

Wetland unit water level-
storage curves  

LiDAR, field measurements Link 

Invasive plant cover  Landsat satellite imagery Link 
Evaporation rates  Western Regional Climate Center Link 
Flow-ecological suitability 
curves  

FWS, stakeholders, and literature Link 

Physical 
Constraints 

Reservoirs storage-elevation-
area, evaporation, and 
capacity  

Adams et al. (1992), U.S. BoR Node 

Diversions capacity  Adams et al. (1992) Link 
Natural 
Constraints  

Headwater and local inflows  USGS, NHDPlus V2, UWRL 
(2009) 

Node 

Water level and channel cross 
section  

Field measurements Link 

Evaporative losses on reaches  NHDPlus V2 Link 
Natural growth of riparian 
plants  

Stakeholders Link 

Management 
Constraints 

Urban and agricultural demand  GenRes Node 
Consumptive use of flow  GenRes Node 
Instream flow requirements Stakeholders Link 
Budget and unit costs  Stakeholders Link 

Model 
Formulation  

Weights Stakeholders 
Link 

 

Table 2.2 Data required for WASH model components 
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future ecosystem projects (JUB, 2013). Processed hydrologic and ecological data are 

available at the Bear River Fellows website (http://bearriverfellows.usu.edu). WASH 

model input data and code are available at the WASH GitHub repository (Alafifi, 2017). 

2.3.6 Model Scenarios  

We implemented the model on a monthly time scale for one calendar year (2003) 

to represent an average year, based on monthly headflows observed over the last 15 years. 

We selected a single year to run the model because most reservoir and watershed managers 

in the basin plan operations at monthly intervals for a one-year cycle. Also, spring 

snowmelt runoffs typically fills reservoirs in April, May, or June. We first ran the model 

in simulation mode for the base case year (2003) by fixing flows on all river segments to 

observed historical gaged values. We then compared WASH habitat area under observed 

flows to a second scenario with flow limits relaxed. This scenario showed potential habitat 

gains if water was managed as the model recommends. Two other scenarios with different 

headflows for a wetter (2005) and drier (2004) year allowed us to examine model response 

to changes in headflows. Additional scenarios multiplied each urban and agricultural 

demand in the basin by a fraction of total demand to explore the tradeoffs between WASH 

habitat area and water supply objectives. We also ran the model for 5 years (2003 to 2007)  

to identify the effects of annual flow variability. 

In a final scenario, we substituted habitat suitability curves for the bluehead sucker 

(Catostomus discobolus) aquatic fish species for brown trout downstream of Cutler 

reservoir to identify the effect of indicator species on habitat quality and area. Bluehead 

sucker is a non-game fish and is listed as a sensitive species by state and federal agencies. 
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Declining bluehead sucker numbers in the Utah Bonneville Basin might warrant listing 

bluehead sucker as a threatened or endangered species (UDNR, 2006; Webber et al., 2012). 

Based on the suggestion of project stakeholders, we designed bluehead sucker suitability 

index curves using the empirical study of Anderson and Stewart (2003). These functions 

are Blotzmann curves that transition from 0 at a water depth of 100 cm to 1 at 150 cm for 

both adults and fry. 

In a final scenario, we substituted habitat suitability curves for the bluehead sucker 

(Catostomus discobolus) aquatic fish species for brown trout downstream of Cutler 

reservoir to identify the effect of indicator species on habitat quality and area. Bluehead 

sucker is a non-game fish and is listed as a sensitive species by state and federal agencies. 

Declining bluehead sucker numbers in the Utah Bonneville Basin might warrant listing 

bluehead sucker as a threatened or endangered species (UDNR, 2006; Webber et al., 2012). 

Based on the suggestion of project stakeholders, we designed bluehead sucker suitability 

index curves using the empirical study of Anderson and Stewart (2003). These functions 

are Blotzmann curves that transition from 0 at a water depth of 100 cm to 1 at 150 cm for 

both adults and fry.  

2.3.7 Model Implementation  

We segmented the Bear River and its main tributaries into a network of 43 nodes 

and 56 links, with 3 reservoirs, 12 municipal and agricultural demand sites, and 26 

environmental sites where species of concern live (Figure A.1; Appendix A). We ran the 

model with the same weight value of 1 for all indicators to equally favor all locations, 

species, and months. 
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We coded the WASH model [equations 1–17] using the General Algebraic 

Modeling System software (GAMS; Hozlar, 1990) and solved the model using the non-

linear global solver Branch-And-Reduce Optimization Navigator (BARON; Sahinidis, 

1996). The GAMS code uses GDX (GAMS Data Exchange format) to read all input data 

from an MS Excel spreadsheet and pass it to the model. The 1-year implementation of the 

model for the Lower Bear River system has approximately 27,000 variables and 5,300 

equations and takes 2 hours and 15 minutes to find a global optimal solution on a Dell XPS 

Windows10 64-bit computer.  

2.3.8 Model Outputs and Visualization  

WASH results include recommended flows, reservoir releases, storage volumes, 

and temporal and spatial variations of suitable aquatic, floodplain, and impounded wetland 

habitat area. We display model results in an open-access, interactive web map application 

(http://WASHmap.usu.edu). With the web map, users can compare modeled and simulated 

results, add base maps and data layers, and customize the tool. The WASH map displays 

results in US Customary Units to better communicate with local stakeholders. All WASH 

model input data, code, and post-processing files are available at the WASH GitHub 

repository (Alafifi, 2017). 

2.4 Results 

The model run that simulated 2003 flows shows nearly 100 thousand acres of 

suitable aquatic, floodplain, and wetland habitat in the watershed. The WASH global 

optimal solution shows a potential to increase the overall suitable habitat area by 25 

thousand acres (25%). This overall increase is achieved with 3-, 10-, and 7-fold increases, 
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respectively, of the suitable areas of aquatic, floodplain, and wetland habitats over 2003 

modeled historical conditions in several months (Figure 2.6). The largest aquatic habitat 

increases for fish occur in May, June, and November and help BCT and brown trout fry to 

mature and adults to spawn. The largest floodplain habitat increases for plants occur in July 

and August and help cottonwood to reestablish on the Bear River reaches above Cutler 

reservoir. Wetland habitat increases occur from June to August at the Bird Refuge and help 

stilts, avocets, and swans to nest, breed, and feed. These suitable areas approach 53%, 3%, 

and 40% of the total aquatic, floodplain, and wetland habitat areas in the basin.  

The WASH model improves suitable habitat area by increasing winter and early 

spring releases at Hyrum Reservoir and minimizing late spring spills at Hyrum and 

Porcupine reservoirs in May (Figure 2.7). The model increases habitat area while 

continuing to meet human water uses at all demand sites during all months. This 

recommended release pattern supports brown trout spawning in late fall, and maintains the 

eggs in gravel redds until they hatch in spring.  

Although wetland suitable area at the Bird Refuge increases to only 40% of the 

total suitable area, improvements occur during critical summer months when Bear River 

flows at Corrine typically did not satisfy the Bird Refuge’s junior water rights (Figure 2.8). 

Overall, the model recommended habitat area approaches 18% of the total available habitat 

area in the watershed if all suitability index values are at 1. Additional river flow, habitat 

suitability, reservoir release, and demand site results are available on an interactive 

webmap at http://WASHmap.usu.edu.   
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Running the model for 2005 (wet year) increased the suitable habitat area by 18 

thousand acres (Figure 2.9, red circle), while using 2004 flows (dry year) decreased the 

suitable habitat area by 15 thousand acres (orange triangle). Reducing urban and 

agricultural demand in 10% increments increased habitat suitability area by approximately 

4,000 acres per 10% reduction in demand, with most of the initial increases in habitat area 

occurring at the Bird Refuge and in aquatic habitat on the Little Bear River. The model 

becomes infeasible when human demands in the 2003 base case scenario exceed 110% of 

existing demand.  

 

 

 

 

Figure 2.6 Monthly suitable aquatic, floodplain, and wetland habitat areas in the Bear River 
watershed compared to total available areas (dashed, horizontal lines)  
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Running the model for 5 years, from January 2003 to September 2007, shows that 

the model can sustain habitat increases across seasonal and annual variations in flows 

compared to modeled historic conditions (Figure 2.10). For instance, aquatic habitat 

suitability for spawning and maturing dropped in 2004 but remains higher than in the 

modeled historic conditions case. Monthly flows and reservoir storage volumes minimize 

late spring spills, increase winter releases, and conform to storage and release patterns seen 

in the single-year run (Figure 2.8).   

Figure 2.7 Comparison between model recommended and current reservoir releases for 2003 for (top) 
Porcupine and (bottom) Hyrum reservoirs  
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Figure 2.8 Model recommended improvements at the Bird Refuge compared with simulated historic 
conditions in (A) wetland suitability index and (B) flows  

A. Wetland habitat suitability index at the Refuge 

B. River flow at the Refuge 
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Using bluehead sucker to define aquatic habitat suitability downstream of Cutler 

reservoir decreased the overall WASH habitat area by 6 thousand acres, as compared to the 

base case with two trout species. This decrease occurs because adult Suckers use deeper 

water depths (3.3–5 ft) to spawn.  Also, the model has a difficult time allocating water 

downstream of Cutler reservoir in summer months because most upstream water is diverted 

to the Bear River Canal Company, the largest and most senior agricultural water user in 

the watershed.  

To identify when and where the greatest ecological benefits for each additional unit 

of flow will occur in the system, we examined the shadow values (Lagrange multipliers) 

associated with the water mass balance constraints for nodes with headwater flow 

[Appendix B Eq. 7]. Shadow values report the increase in the WASH objective function 

value—acres of suitable habitat—per one additional flow unit (cfs) (Table 2.3). The largest 

Figure 2.9 Tradeoff between WASH suitable area and annual demand delivery targets 
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shadow values occur on the East Fork of the Little Bear River for most months of the year. 

There are also increases greater than 2.5 acres/cfs on the Bear River in August, Blacksmith 

Fork from April to October, and South Fork of the Little Bear in August and September. 

Similarly, we examined shadow values for the budget constraint [Appendix B Eq. 18] and 

found that the objective function value increases by 30 acres per additional $10,000 

available for planting floodplains.     

2.5 Discussion 

Formulating the WASH model objective function as a habitat area to maximize 

allowed us to examine ways to manage water and plants in the Lower Bear River to increase 

aquatic, floodplain, and wetland habitat area for priority species in the watershed while 

satisfying water demands of existing human users. Managing river flow, water depth, flood 

recurrence, and vegetation cover in the Lower Bear River supports ecosystem functions of 

aquatic, floodplain, and wetland species and improves habitat quality, which in turn 

increases the area of suitable habitat.  

 

 
Table 2.3 Shadow values of additional water by location and month (acres/cfs) 

Shadow 
Values/ Month 

Jan Feb Mar Apr Jun Jul Aug Sep Oct Nov Dec 

Bear River  2.19 1.54 1.54 1.54 2.40 2.44 7.62 1.73 1.09 0.73 1.09 
Cub River 1.35 0.75 0.53 2.26 0.66 2.09 0.95 0.86 1.07 0.97 0.98 
Blacksmith 
Fork River  

1.80 1.20 1.10 2.87 3.29 3.25 3.32 2.43 2.50 1.41 1.42 

Little Bear 
River at East 
Fork  

4.36 3.36 4.73 2.73 3.73 4.27 7.80 12.15 3.99 3.81 3.81 

Little Bear 
River at South 
Fork  

1.80 1.20 1.10 2.87 1.29 1.25 3.32 3.43 2.50 2.41 1.42 

Malad River 0.80 0.20 0.12 0.15 0.11 0.12 0.15 0.18 0.43 0.32 0.39 
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To increase habitat area in the Lower Bear River, the model recommends releasing 

more water from Porcupine and Hyrum reservoirs in winter months and reducing late 

spring spills. These changes in reservoir releases would support brown trout spawning in 

late fall. The gradual release of water from reservoirs also protects trout eggs from winter 

Figure 2.10 Comparison of suitable aquatic habitat area (acres), habitat index (unitless), flow 
(cfs), and reservoir releases (acre-ft) between model recommendation and modeled historical 

conditions for 5 years (2003 – 2007) on the Little Bear River downstream of Hyrum Reservoir 
and just before Cutler dam 
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and spring flood events that could scour or kill incubated eggs and newly emerged fry 

(George et al., 2015). These changes in reservoir releases would likely result in small 

improvements in floodplain habitat area relative to aquatic habitat because several 

summertime diversions lower the instream flows and decrease lateral connectivity to 

adjacent floodplains. Also, many watershed reaches border private agricultural fields and 

grazing lands and have narrow riparian corridors. Improving floodplain habitat area will 

require water and managers to set up agreements and easements with riparian landowners 

to return lands to floodplain functions. Changing reservoir operations, diversions, and other 

management actions higher up in the basin can also increase impounded wetland habitat 

during summer months. These results support Bird Refuge managers’ recent efforts to 

actively communicate with upstream users and establish conservation easements, and 

suggest that these managers should acquire upstream storage rights, forecast supply and 

demand, and plan for droughts. 

Formulating the WASH objective function as a habitat area to maximize also shows 

where and when to direct scarce water, money, and planting efforts to most improve 

habitat. Water is scarce during summer months, but WASH results suggest managers can 

create 2.5 to 12 acres of additional suitable habitat per additional cfs of flow acquired 

during summer, fall, or winter on the East Fork of the Little Bear River or during late 

summer and fall months on the Blacksmith Fork and South Fork of the Little Bear. These 

increases contrast with increases of 30 acres per additional 10,000 dollars available to plant 

floodplains and can help managers prioritize where to focus restoration and habitat 

improvement efforts. 
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In the scenario for bluehead sucker, the modeled aquatic habitat area for the fish 

decreased compared to the base case with brown trout, and improving habitat quality and 

area will require managers to release more water below Cutler Reservoir. This flow is not 

currently available because of upstream diversions. Thus, future conservation efforts for 

bluehead sucker will likely need to include innovative water procurement plans. 

WASH recommends flow regimes that increase flood recurrence to improve 

floodplain connectivity. Most of the land adjacent to the Bear River is privately owned by 

PacifiCorp, which operates several run-of-river hydroelectric plants, or private individuals. 

Therefore, managers need to consider the effects of increasing flood flows to encourage 

seed recruitment and growth in floodplains on neighboring farmers, ranchers, and hunters. 

Recent conservation easements made by PacifiCorp illustrate one way to co-manage for 

multiple objectives. These easements are used for riparian plant restoration projects or as 

flood buffer zones. WASH results can help identify promising location to procure 

additional conservation easements to improve habitat quality for multiple aquatic and 

floodplain priority species.   

WASH results were corroborated using an end use validation approach (Bockstaller 

and Girardin, 2003) and the results were used as a benchmark for habitat management 

decision making. We presented the results to the project stakeholders using WASH 

interactive web map (http://washmap.usu.edu) that the authors developed and used to 

communicate WASH outputs with basin stakeholders. For example, during an August 2016 

model workshop, we presented key reservoir release and habitat area results (earlier 

versions of Figures 2.6, 2.7, and 2.8) while stakeholders simultaneously explored results in 
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real time on their phones, tablets, and laptops. Their explorations identified a problematic 

aspect of reservoir releases for BCT and motivated us to update aquatic suitability indices 

to reflect temperature-water depth relationships, base water depth ranges on recent fish 

ecology studies, and differentiate BCT and brown trout distributions.  

Because WASH multiplies habitat suitability indices by affected areas, the model 

structure is flexible and can be extended to explicitly include additional water quality 

parameters such as dissolved oxygen or turbidity. This requires describing relationships 

between model decision variables and additional indices. Similarly, one can add other 

species, habitat attributes, or habitat types such as natural, oxbow, seasonal, or other 

wetlands in the watershed that were not included in the Lower Bear River study.   

The WASH model quantifies some habitat quality conditions that are necessary for 

the survival and productivity of priority species. However, it does not predict or model 

species distribution across the watershed. While we have validated habitat quality 

conditions with available and collected cutthroat trout and cottonwood tree sightings, the 

authors see value to couple WASH with a predictive species distribution model. This 

coupling will permit managers to more accurately locate ecological functions in need of 

improvements across different sites.  

The WASH model assumes that measured and modeled water depths and channel 

widths are uniform along reaches that are few miles long. This assumption was made using 

the best available, measured data and does not capture the dynamics of stream habitat 

ecology. A finer spatial resolution could improve our findings. At the same time, more 

spatially resolved ecological data can help determine where finer and coarser data is 
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appropriate for modeling. Including other water quality constituents such as dissolved 

oxygen and ecological variables such as competition could improve estimates of habitat 

quality. We also assume that inundating the floodplains during seed germination and 

dispersal will help riparian plants to reestablish. This assumption neglects seedling 

survival, which requires other biotic and abiotic conditions such as groundwater level, soil 

salinity, and other plants’ competition for water (Bhattacharjee et al., 2008).  

As a first cut effort to examine the effects of uncertainties in the empirically 

established habitat suitability curves, we substituted the bluehead sucker indicator fish 

species for brown trout. Bluehead sucker use deeper water to spawn and a different SI 

curve form. The scenario showed less flow available for environmental purpose and less 

bluehead sucker habitat area available. We recognize that suitability indices (SI) carry 

along statistical errors that result from measurement error, spatial and temporal variability, 

and function form (Van der Lee et al., 2006). In ongoing research, we are evaluating and 

quantifying uncertainties in SI curves and their implications for water management. 

The WASH model allocates water using perfect foresight of future water 

availability. Managers never have perfect information about future flows. However, Bear 

River flows are snowmelt driven, and managers use snowpack measurements throughout 

the winter to forecast spring, summer, and fall water availability. Forecast reliability 

decreases in successive years; thus multi-year scenario results are more appropriately 

interpreted as the upper bound on potential habitat gains (when future flows are known 

perfectly).  

Implementing WASH recommendations to improve habitat will also require 
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recognizing and protecting environmental flows in the water permitting and planning 

process. Although Utah water law does not currently allow new appropriations of water for 

instream flow, more restrictive temporary or permanent transfers of existing rights to 

environmental users are possible (Szeptycki et al., 2015). Transfer mechanisms may 

include donation, lease, or purchase but must go to either the Utah Division of Wildlife 

Resources, the Division of Parks and Recreation, or a nonprofit fishing group such as Trout 

Unlimited. The State Engineer must approve all transfers (Szeptycki et al., 2015). Even if 

approved, the next downstream water right holder may file on and withdraw the instream 

flow for their beneficial use.  

Despite these limitations, the WASH model objective to maximize habitat area 

helps to identify and quantify the habitat benefits of environmental flows. The approach 

also helps identify within a watershed the locations and times where water, money, and 

staff effort can most improve habitat quality and area. The approach can be extended to 

other regulated river systems by defining species of concern, habitat attributes, and sites 

and then establishing relationships between river flow and habitat attributes of the species 

of concern. Quantifying results as an observable habitat area allows managers to compare 

model recommendations to current conditions and could motivate changes to state water 

law that allow more flexibility to transfer existing water rights or appropriate new water 

for aquatic, floodplain, wetland, or other ecological purposes.  

2.6 Conclusions 

Improving habitat in a watershed requires determining when, where, and how to 

allocate water between competing users in the basin. Prior systems models that manage 
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stream flow to improve habitat quality have focused on maximizing human benefits of 

water and have included habitat quality as constraints on flow. Other models tried to 

minimize deviations from natural or species-required flow regimes. Here, we developed a 

measurable and observable suitable habitat area metric measured in acres and embedded 

the metric in a systems optimization model named WASH. The WASH model maximizes 

habitat area, which allows comparison of locations, times, and species to identify 

opportunities in the basin to most improve overall habitat quality. WASH recommends 

reservoir releases, river flows, and planting efforts to maximize habitat area subject to 

physical, infrastructure, and management constraints.  

We applied WASH to the Lower Bear River, UT using stakeholder-verified 

species- and site-specific habitat suitability curves for cutthroat trout, brown trout, 

cottonwood, black-necked stilt, American avocet, and tundra swan. WASH identified 

opportunities to increase aquatic, floodplain, and impounded wetland habitat area by 25 

thousand acres over existing conditions. This increase could be realized by releasing more 

water from Porcupine and Hyrum reservoirs in winter months and reducing late spring 

spills. Further, procuring additional flow in the East Fork of the Little Bear River during 

summer, fall, and winter months would most increase habitat area per cfs of new flow. 

Other scenarios showed WASH results are sensitive to hydrologic conditions, length of the 

simulation period, and consideration of additional species. The WASH web map 

application provided managers with direct access to model results, helped us validate 

results, and motivated further model development to make scenarios and results more 

relevant to managers. Overall, developing and embedding a measurable and observable 
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habitat area metric in a systems model as an ecological objective to maximize has allowed 

us to compare habitats across watershed sites and identify sites and times where managers 

can apply scarce water, money, and planting efforts to most improve habitat quality and 

area. This approach allowed us to involve stakeholders in the process and adapt the method 

to other basins, sites, habitat types, and species. 
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CHAPTER 3 

CLUSTER ANALYSIS TO IMPROVE COMMUNICATING UNCERTAINTIES IN 

RIVER HABITAT MODELS2 

Abstract 

River habitat models are useful to recommend management actions to improve 

habitat conditions for priority species. However, these models have multiple hydrologic, 

ecological, and management input data that are uncertain. These uncertainties are often not 

communicated to highlight risks of water management decisions. Prior work to quantify 

uncertainty in habitat models found that large uncertain ranges propagate and produce an 

overwhelmingly large number of management alternatives. Here, we apply semi-

supervised cluster analysis to reduce a large dimensional space of plausible alternatives 

and identify a few, easy-to-interpret management scenarios that consider multiple sources 

of uncertainties. We apply this approach to a large watershed-scale nonlinear optimization 

model for the Lower Bear River, Utah to recommend water and money allocation to 

improve valuable habitat quality and area for selected river, floodplain, and wetland 

species. We include management preferences to subset uncertain parameters into two 

groups. One improves habitat quality under 3 uncertain input parameters and the other 

improves quality under 7 uncertain ecological parameters. Results identified four possible 

management scenarios to operate reservoirs and enhance habitat quality based on modeled 

uncertainties. Budget to plant riparian trees in addition to indicator species and their 

conditions defining habitat quality are the main factors in guiding management decisions. 

                                                           
2 Co-authored by James H. Stagge, Sarah E. Null, and David E. Rosenberg 
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These key parameters define possible future scenarios. Examining variability within each 

cluster help highlighting tradeoffs and identifying more desirable alternatives than cluster 

centroids. Our approach helps focus efforts on identifying few management actions to 

improve overall habitat quality. Our approach helps identify a few management actions to 

improve overall habitat quality, guides resource allocation, quantifies tradeoffs, and 

highlights promising management alternatives. 

3.1 Introduction 

Managing river systems to improve habitat requires allocating water between 

multiple human and environmental uses. Habitat models recommend management actions 

to operate reservoirs, restore floodplain connectivity, and prioritize restoration to improve 

habitat conditions for river, floodplain, and wetland species (e.g. Null and Lund, 2012; 

Shiau and Wu, 2013). However, the inherent fluctuations of hydrologic and hydraulic 

conditions, our incomplete understanding of the complexity of the ecosystem, and lack of 

sufficient empirical data to validate results mean that habitat models are almost always 

uncertain (Lek, 2007; Wilhere, 2012). Characterizing uncertainties in habitat models 

generates more informative and reliable management strategies that improves model 

credibility (Ahmadi-Nedushan et al., 2006; Pinto et al., 2009; Vucetic and Simonović, 

2011). However, there are limited applications of uncertainty analysis to ecology and water 

resources decision-oriented habitat models (Hamel and Bryant, 2017; Pappenberger and 

Beven, 2006). One of the main reasons for not conducting uncertainty analyses for habitat 

models is that the propagation of multiple uncertainties through model components makes 

it challenging to communicate results and identify a clear set of management actions 
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(Groves and Lempert, 2007; Pappenberger and Beven, 2006). 

Uncertainties in habitat models exhibit multiple sources of uncertainty and are 

derived from the input data, model structure and formulation, and lack of understanding of 

complex ecosystem (Hughes et al., 2005; Lek, 2007; Li and Wu, 2006a). Input data include 

hydrologic, hydraulic, habitat conditions and quality, and management inputs to a model 

and may have errors deriving from sampling quality, errors in measurements, or incomplete 

and missing information (Katz, 2002; Li and Wu, 2006b). Habitat model structure can 

introduce error when numerical formulas do not adequately represent ecological 

complexities (Cao and Carling, 2002; Clifford et al., 2008). For example, habitat models 

often assume non-linear processes to simplify the response of a species to changes in 

habitat conditions. Also multiple processes operate at different or varying spatial and 

temporal scales. This is evident, for example, in selecting parameters to describe the shape 

of numerical equations that mathematically describe species response to alterations in flow 

regime (Rivaes et al., 2013). 

Uncertainty analysis in habitat models is often conducted by defining upper and 

lower bounds on one or multiple uncertain input data or parameters, selecting 

representative probability distributions, and sampling from each distribution (Li and Wu, 

2006b; Pianosi et al., 2016b). Probability distributions define a range and likelihood of 

values representing variations around mean estimates that the value of a certain parameter 

is likely to have within a specified probability (Bender et al., 1996). Often, bounds on input 

parameters and their corresponding probability distributions are constructed using 

triangular and uniform distributions using empirical data or expert opinion (O’Hagan, 
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2012; Van der Lee et al., 2006). Different Monte Carlo (Mooney, 1997), bootstrap 

(Williams, 1996), Bayesian networks (Douglas and Newton, 2014), and fuzzy numbers 

(Burgman et al., 2001) can sample values from the distributions. The outcomes of sampling 

are confidence intervals for model results and recommendations. For example, Burgman 

et al. (2001) used fuzzy numbers to bound habitat suitability index (HSI) curves for Florida 

scrub-jay based on uncertain measurements of canopy and shrub cover and other ecological 

attributes. Similarly, Ayllon et al. (2012) used bootstrap sampling to measure the effects of 

uncertain channel hydraulic variables on HSI curves for brown trout and developed 95% 

confidence intervals for uncertain curves. Van der Lee et al. (2006) used Monte Carlo 

simulation to sample uncertainties from channel hydraulics and quality parameters for 

pondweed and developed ranges for HSI curves based on standard deviations. The common 

approach of developing ranges for uncertain parameters and input data propagates 

uncertainty through models and affects results (Di Baldassarre and Montanari, 2009; 

Janssen et al., 2010). 

The propagation of uncertainty through model components makes it difficult to 

identify the factors that contribute to producing uncertain results (Cressie et al., 2009; 

Saltelli et al., 2008). Zajac et al. (2015) analyzed the propagation of uncertain input data 

and model structure on the results of HSI models using Sobol’s global sensitivity analysis 

(Sobol, 1993) to determine the relative importance of uncertain input factors. Sobol’s 

method generates sensitivity indices to explore which inputs contribute to the total variance 

of the model outputs. However, drawbacks of applying variance-based methods to 

ecological models include high computational costs that grow exponentially with the 
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number of uncertain parameters, a large number of possible management alternatives, and 

difficulty of interpreting results as management decisions (Harper et al., 2011; Poudyal et 

al., 2009). Communicating a large number of model alternatives creates a challenge to 

decision makers to select a clear path forward with management actions (Hamel and 

Bryant, 2017 ; Pappenberger and Beven, 2006).  

Well-developed methods exist to select a small number of scenarios to summarize 

a large set of management alternatives. Scenarios are often selected to explore different 

combinations of the forces driving decisions in large multivariate spaces where each 

scenario describes a distinct possible future (Schwartz, 2012). Cluster Analysis (CA) is a 

data-mining technique that groups (i.e. clusters) observations or results that are more 

similar to each other. It can be applied to decision making to represent plausible 

management scenarios that might otherwise be overlooked in large multivariate spaces of 

possible futures (Groves and Lempert, 2007). Each cluster can be represented by its 

centroid or medoid. The medoid is most centrally located member in the cluster (Sarstedt 

and Mooi, 2014). CA can also identify the most important parameters that drive 

dissimilarities between clusters and that characterize key sources of uncertainty in habitat 

models.  

Clustering is traditionally considered a type of unsupervised learning method that 

considers all of the dimensions of a large dataset and find similarities with no knowledge 

about expected outcomes or relationships between observations (Romesburg, 2004; 

Sarstedt and Mooi, 2014). A semi-supervised approach can improve the clustering 

outcomes and serve explicit management preferences by providing clustering algorithm 
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with information about data (Bair, 2013). This approach groups dataset dimensions into 

subsets that have common attributes. Then, it performs clustering on observations using 

each subset of dimensions, which helps localize the search for clusters and uncover clusters 

that might be overlooked by unsupervised clustering (Parsons et al., 2004). A semi-

supervised clustering can be useful in cases where some dimensions in the dataset are more 

dominant than others, which means unsupervised clustering algorithms will always 

consider some dimensions to be irrelevant (Basu et al., 2002). It is also useful in high 

dimensional datasets where distance measures become meaningless as the number of 

dimensions increase and observations become more sparse (Parsons et al., 2004). 

Applications of CA data mining to water resources problems have primarily 

explored historical patterns and forecasted future water demand functions by clustering 

consumption data among household connections or cities (e.g. Candelieri and Archetti, 

2014; Noiva et al., 2016; Veerender, 2007). For example, Groves and Lempert (2007) used 

unsupervised CA to define two possible future scenarios from a robust decision making 

space (Lempert et al., 2010) that is described by 16 supply and demand uncertainties for 

California’s south coast region. They concluded that their two clusters (i.e. scenarios) were 

defined by three parameters: population growth, rate of exogenous conservation, and cost 

of efficiency programs. More recently, Chen et al. (2017) applied unsupervised CA on the 

results of an evolutionary algorithm optimization model to identify promising re-operation 

of multiple reservoirs on the Columbia River with multiple inflow scenarios. They used 

the centroid to represent the mean recommended reservoir elevations of each cluster. They 

also concluded that temporal distribution of the inflow is the main driver to select reservoir 
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operations. These applications of CA algorithms to water resources models are promising 

and suggest that the technique may also quantify and communicate uncertainties in habitat 

models. In habitat models, these techniques could be improved by applying semi-

supervised clustering to localize the search for clusters within a large number of uncertain 

parameters. In addition, quantifying variability within each cluster could help find better 

alternatives to represent each cluster other than the medoids. 

This paper demonstrates a method to effectively communicate uncertainty in 

habitat models and improve water and habitat management decision making capability 

using data-mining techniques. Here, we use a semi-supervised CA approach to (1) perform 

localized search for clusters within a large multivariate space of possible management 

alternatives, (2) identify key driving forces that form dissimilarities between alternatives, 

(3) compare management implications and tradeoffs within and between clusters, and (4) 

define a few easily-interpretable management scenarios to allocate resources to improve 

habitat quality. We apply this approach to a study area in the Lower Bear River, Utah where 

efforts are underway to restore valuable habitat (Bear River CAP, 2008) using a watershed-

scale nonlinear deterministic optimization model that recommends reservoir releases and 

riparian planting to improve aquatic, floodplain, and wetland habitat quality (Alafifi and 

Rosenberg, In Review). The following sections of this paper describe the study area, 

present the model framework and sources of uncertainty, describe results, discussion, and 

conclusions.  

3.2 Study Area 

The Lower Bear River (LBR), Utah is a snowmelt driven system that receives most 
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runoff in April, May, and June (Figure 1). The LBR provides vital wildlife habitat for native 

and game fish including Bonneville cutthroat trout (Oncorhynchus clarki utah), brown 

trout (Salmo trutta), and native riparian plant species such as cottonwood trees (Populus 

spp.) (UDWR, 2004). The river is the largest water source to the Great Salt Lake and to the 

30,000 acre-Bear River Migratory Bird Refuge. The Refuge’s impounded wetlands provide 

feeding, resting, and breeding habitat for over 250 migratory bird species every year 

(Alminagorta et al., 2016). The LBR and its tributaries irrigate over 300,000 acres of 

agricultural land with a total annual consumptive water use of approximately 535,000 acre-

feet (UDWRe, 2000). Intensive agricultural and grazing activities along the river triggered 

habitat conservation efforts to identify critical areas and species for restoration. Efforts are 

underway to allocate water and management resources between human and environmental 

Figure 3.1 The Lower Bear River, Utah including major tributaries, demand sites, and 
reservoirs  
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users in the watershed (Bear River CAP, 2008). Understanding and quantifying 

uncertainties in such a large watershed with multiple habitats and key species is important 

to prioritize management efforts to restore and improve valuable habitat.   

3.3 Optimization Framework  

The Watershed Area of Suitable Habitat (WASH) model is a generic nonlinear 

systems optimization approach that was applied to the LBR to guide the allocation of 

money and water to increase aquatic, floodplain, and wetland habitat area for priority 

species in the watershed while satisfying agricultural and urban demands for human users 

(Alafifi and Rosenberg, In Review). WASH formulates ecological objectives based on 

habitat areas weighted by habitat suitability, which allows managers to identify when and 

where to allocate scarce money for planting and water to most improve habitat quality and 

area. WASH was applied to the LBR for a single year (2003 as a representative year 

between 1990 and 2010) of measured or modeled flows. Urban and agricultural demand 

requirements and other hydrologic, habitat, infrastructure, water management data were 

collected from a variety of sources including several U.S. Geological Survey (USGS) gage 

stations along the LBR and its tributaries, the Utah Division of Water Resources GenRes 

simulation model (Adams et al., 1992), and other flow monitoring sites.  

We segmented the LBR basin (Figure 3.1) into a network of 43 nodes and 56 links 

with 12 urban and agricultural demand sites. The 1-year implementation of the model for 

the LBR system has approximately 27,000 variables and 5,300 equations. The full model 

formulation is available in appendix B. Next, we highlight the main components of WASH 

optimization model including decision variables, objective function, and constraints and 
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discuss sources of uncertainties in WASH that were not considered in the original 

deterministic analysis. 

3.3.1 Decision variables 

The optimization model has three main decision variables: (1) volume of reservoir 

releases, (2) diversion volumes, and (3) floodplain plant cover that is controlled by seeding 

or planting species. These decision variables affect reservoir storage, river flow, river water 

depth, and other model state variables. 

3.3.2 Objective function 

The WASH objective function (Z) maximizes the weighted sum of the suitable 

areas of aquatic [INDaquatic,j,k,t], floodplain [INDfloodplain,j,k,t], and wetland [INDwetland,j,k,t] 

habitats in reach j to k in month t [eq.1]. s is the habitat indicator (aquatic, floodplains, or 

wetlands) and 𝑤𝑔ℎ𝑡 , , ,  are the stakeholders-decided weights for habitat indictor s in 

reach j to k at month t. Weights take values from 0 (not important) to 1 (important).  

𝑀𝑎𝑥  𝑍 = ∑ 𝑤𝑔ℎ𝑡 , , ,  ∙   𝐼𝑁𝐷 , , ,, , ,       -- [1] 

Where   𝐼𝑁𝐷 , , , = ∑ 𝑆𝐼 , , , ,  ∙   𝐴 , , ,, , ,                     ∀ 𝑠    -- [2] 

The value of each habitat indicator 𝐼𝑁𝐷 , , ,  is the product of a suitability index 

𝑆𝐼 , , , ,   and an affected area 𝐴 , , , . Each suitability index SI is specified for species n at 

life stage t along the reach between nodes j and k. Alafifi and Rosenberg (In Review) 

collaborated with river managers and local stakeholders to identify important native and 

game fish, riparian plants, and wetland bird species in the LBR watershed. They designed 

SI curves for cutthroat trout (Oncorhynchus clarki utah), brown trout (Salmo trytta), 

cottonwood (Populus fremontii), black-necked stilt (Himantopus mexicanus), American 
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avocet (Recurvirostra Americana), and tundra swan (Cygnus columbianus). Each SI is a 

function of a measureable habitat attribute that influences priority species’ survival and 

abundance. For fish species, water depth and water temperature determine the ability of 

fish to spawn and mature (Braithwaite, 2011). For cottonwoods, the flood recurrence 

interval influences seedling recruitment and germination and defines connectivity between 

the river and floodplain (Kauffman et al., 1997; Mahoney and Rood, 1998). For wetland 

bird species, water depth and plant cover allow birds to rest, nest, and breed (Downard and 

Endter-Wada, 2013). The relationships between SIs and habitat attributes were estimated 

using empirical data (Alminagorta et al., 2016; Braithwaite, 2011; Hickman and Raleigh, 

1982; Mahoney and Rood, 1998), or where data was not available, they were assigned 

based on expert opinion and described in WASH by nonlinear curves (Table 1). 

3.3.3 Constraints  

Reservoir releases and riparian planting are bound by physical, infrastructure, and 

management constraints. Physical constraints include mass balance for reservoirs, rivers, 

and demand sites that account for reservoir storage volume and water availability from 

upstream reaches, diversions, and return flows from demand sites. They also include 

equations to constrain plant cover growth over time and define channel topography. 

Infrastructure constraints place minimum and maximum limits on reservoir and diversion 

canals capacity. Management constraints include urban and agricultural demand 

requirements and available budget to plant floodplain species. 

3.4 Sources of Uncertainty in WASH 

The WASH model has multiple sources of uncertainty in the hydrologic and 
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management input data in addition to ecological uncertainties which we described as 

follows. 

1. Input data: Uncertainty in input data surrounds inflow supply, water demands, and 

budget to plant cottonwood trees. Although managers have control over water from 

upstream reaches and human demands within the watershed, water inflow and demand 

requirements are almost always uncertain and challenging to project in the future 

(Loucks et al., 2005). Another uncertain management input was the budget of $650,000 

to plant cottonwood trees and restore floodplain habitat. This budget value was based 

on expected costs for future ecosystem projects listed in the Cache County Water 

Masterplan (JUB, 2013) which could change based on the County’s future priorities. 

2. Ecological parameters: Our incomplete understanding of natural variability and 

species’ response to changes in habitat conditions mean that suitable habitat attributes 

and SI curve parameters are uncertain (Wilhere, 2012). Suitable habitat attributes (e.g. 

water depth range) that define SI curves were primarily driven from empirical studies 

of similar streams and relevant literature, and were only verified by the project 

stakeholders. Measuring these habitat attributes is another source of uncertainty. For 

example, water depth was calculated based on stage-flow rating curves. Curve 

parameters are uncertain because they are based on field measurements of flow and 

channel cross sections. Another source of uncertainty is the shape of SI curves. WASH 

primarily uses Boltzmann sigmoidal function, which is most common in the Fish and 

Wildlife Service habitat suitability estimates for water depth-habitat suitability indices.  
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3.5 Methods 

To identify and characterize a few management options from a large multivariate 

space of alternatives, we follow a five-step approach to propagate and reduce uncertainties 

(Figure 3.2). First, we run a conventional one-at-a-time sensitivity analysis (Pianosi et al., 

2016a) to identify the uncertain parameters that have the largest effects on system outputs. 

Second, we run Monte Carlo simulations to sample from the main uncertain parameters. 

Third, we group uncertain parameters together based on management goals and priorities 

to improve habitat quality under multiple sources of uncertainty. Fourth, we apply a semi-

supervised cluster algorithm to each group. And fifth, we develop scenarios and infer 

management implications from each resultant cluster.  

3.5.1 Sensitivity Analysis 

We first do a one-at-a-time sensitivity analysis for the 28 uncertain WASH input 

data and parameters to identify the  uncertain parameters that most affect the variance of 

the objective function (Saltelli et al., 2008). In the one-at-a-time sensitivity analysis, we 

vary each parameter value while keeping all other parameters fixed and recorded the 

objective function value.  

3.5.2 Monte Carlo Simulations 

Next, we run Monte Carlo simulations to sample from the probability distributions 

of all main uncertain parameters and pass sampled values to the WASH optimization 

model. The outputs of each Monte Carlo simulation consist of the objective function value 

(the weighted sum of suitable habitat areas in all reaches and months, km2), suitable 

aquatic, floodplain, and wetland habitat areas (km2), time series of reservoir releases for 
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each reservoir (Mm3/mo), and planted area for every reach (km2). We filter out all 

infeasible runs and record the inputs and outputs for each feasible run. We continue 

sampling to 800 runs until the variance of the objective function value for the feasible runs 

does not change by more than 10% with additional runs. Filtering out infeasibilities result 

in nearly 200 feasible runs. Each run represents a possible management alternative and is 

defined by a combination of uncertain parameters.  

3.5.3 Group Parameters 

Exploring a large multi-dimensional space of Monte Carlo runs can be improved 

by performing a localized search for clusters. This search is performed on subsets of model 

Figure 3.2 Methods to generate a few management options from large uncertainty space 
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parameters that managers want to consider together. For example, in a multi-habitat model, 

managers could group uncertain parameters together by habitat type. In a reservoir 

operation model, managers could group parameters based on uncertainty sources such as 

inflows and water delivery target uncertainties. Grouping parameters could reduce 

uncertainty problems and help focus efforts on finding important parameters to measure. 

Here, we group parameters based on uncertainty sources which allows managers to 

explore the effects of certain parameters on specific system functions. In particular, we 

formulate two groups of parameters based on the two groups of uncertainty sources in 

section 3.4 to reflect two management goals. These groups are: 

1. Parameters that describe the human system: (1) boundary flows into the river system 

from upstream reservoirs releases and diversions, (2) urban and agricultural demands, 

and (3) budget to plant riparian trees. This group uncertainties in more-readily 

measured conventional water management system components and ignores 

uncertainties in harder to measure ecological and habitat system components. 

2. Parameters that describe ecological and habitat system components including SI curve 

parameters and habitat attributes for aquatic, floodplain, and wetland habitats. This 

group also considers uncertainties in selecting indicator species to denote healthy 

ecosystem in addition to assumptions of available floodplain area and impounded 

wetlands area. These ecosystem parameters are more difficult to measure, less 

frequently included in uncertainty analyses for habitat models, and showcase a way to 

approach systems with multiple habitats and multiple uncertain ecological parameters.   
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3.5.4 Cluster Analysis 

Next, we apply semi-supervised cluster analysis for each parameter group 

clustering feasible Monte Carlo runs on both the uncertain input parameters and outputs 

(objective function and three habitat areas). Clustering using both inputs and outputs helps 

to understand relationships between model components and tradeoffs between the three 

habitats. However, highly correlated parameters with a Pearson correlation coefficient of 

more than 0.9 are excluded because they could skew clustering (Sarstedt and Mooi, 2014). 

We use semi-supervised clustering to reduce the number of alternatives and identify a few 

manageable and interpretable scenarios. The semi-supervised approach is appropriate 

because we subset the large multivariate space of uncertain parameters into groups and 

apply the clustering algorithm separately for each group using the selected parameters 

within each group.  

Two common clustering methods are applied in water resources applications: 

hierarchical and k-means partitioning (Chen et al., 2017). Hierarchical agglomerative 

clustering uses the Euclidean (or straight line) distance between members. All member 

attribute values are standardized. In contrast, k-means partitioning minimizes within-

cluster variation and is less sensitive to outliers (Sarstedt and Mooi, 2014). Here we applied 

hierarchical clustering using the ‘gower’ distance method (Gower and Ross, 1969) because 

k-means partitioning cannot handle nominal and categorical data. To select number of 

clusters, we plotted the Silhouette index, which indicates dissimilarity between clusters 

(Rousseeuw, 1987). 
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3.5.5 Management Scenarios 

The CA yields a small number of clusters. Each cluster consists of similar Monte 

Carlo runs representing a possible future scenario, where the likelihood of a scenario 

happening is proportional to the number of members in the cluster. To characterize each 

cluster, we perform a one-way ANOVA (ANalysis Of VAriance) with post-hoc Tukey 

HSD (Honestly Significant Difference) test and examine the p-value for each parameter to 

determine the statistical significance in the difference of means between clusters. We use 

the p-value to identify the most important parameters for clustering. We label each cluster 

by these parameters to facilitate communicating future scenarios.   

Finally, we compare clusters based on their clustering parameters and select model 

outputs. We compare select model outputs for each run in each cluster with the 

deterministic model solution to infer management options that improve the model objective 

function value. We show results for Hyrum Reservoir, one the two active reservoirs in the 

system. We also examine the tradeoffs between the three aquatic, floodplain, and wetland 

habitat areas for each cluster. In addition, we explore the variability within each cluster in 

parallel coordinate plots to infer management options that improve overall habitat quality. 

3.5.6 Stochastic WASH Model 

In our case study, we modify the deterministic version of WASH to include 

uncertain parameters. WASH was coded using the General Algebraic Modeling System 

software (GAMS; Hozlar, 1990) and solved using the non-linear global solver Branch-

And-Reduce Optimization Navigator (BARON; Sahinidis, 1996). The solve took 2 hours 

and 15 minutes to find a global optimal solution on a Dell XPS Windows10 64-bit. We 
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update the original code to add Monte Carlo sampling for all 28 uncertain parameters of 

WASH (Table 3.1). The large size of the problem and number of Monte Carlo runs require 

that we use CONOPT solver (Drud, 1996) to find a local optimum for each run. The 

optimization code uses GAMS Data Exchange (GDX) format to read all deterministic and 

stochastic input data and their ranges from both MS Excel spreadsheet and R scripts and 

pass them to the model. The model outputs for each run are stored in an output GDX file 

and passed to R for analysis. We used the R ‘cluster’ package (Maechler et al., 2016; R 

Core Team, 2016) for cluster analysis and the ‘parcoords’ package for parallel plots 

(Bostock et al., 2016). The model code and post-processing scripts and data are available 

on a GitHub repository (Alafifi, 2017). 

3.6 Results 

3.6.1 Sensitivity Analyses 

We adjusted boundary flows by a percentage and sampled from a discrete 

distribution to capture variability in the last 10 years based on historical data (Table 3.1). 

In the absence of data to inform the selection of a probability distribution for ecological 

and management parameters, a uniform distribution with assumed upper and lower bounds 

were assumed appropriate (Fox et al., 2010). For example, we varied demand requirements 

and available budget by a percentage and used uniform distributions assuming equal 

probability of any value within selected ranges (Table 3.1). For ecological parameters, we 

varied available floodplain areas and wetland area to reflect errors in measurements. We 

tested the objective function sensitivity to two water depth ranges for Bonneville cutthroat 

trout (Oncorhynchus clarki utah) and brown trout (Salmo trytta) based on literature. We 
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discretely generated 80 habitat suitability curves for each fish species by varying the slope 

and centroid parameters to sample the curve region (Figure 3.3). We also tested the 

sensitivity to two riparian plants (Figure 3.4). First, Fremont cottonwood (Populus 

fremontii) which largely lives adjacent to river banks and requires flood recurrence of 2-

year for lateral connectivity (Richter and Richter, 2000). Second, Pacific willow (Salix 

lasiandra) which lives further upslope in the floodplain and requires 5-year flood 

frequency interval (Dettenmaier and Howe, 2015; Rood et al., 2003). Some values reported 

in Table 3.2 (marked with asterisk) show examples of reach-and time-specific data values. 

Full ranges of uncertain parameters are available on the GitHub repository (Alafifi, 2017). 

We selected 10 key parameters that the variance of the objective function value was most 

sensitive to (Figure 3.5).  

3.6.2 Cluster analysis for two management objectives 

3.6.2.1 Improve habitat under uncertain parameters describing human system 

We performed cluster analysis on three uncertain input data parameters: boundary 

flows, demand requirements, and budget, in addition to the four model outputs: the 

objective function maximizing total habitat, and aquatic, floodplain, and wetland habitat 

areas. We explored a range of two to six clusters and two distinct clusters were identified 

based on the Silhouette index. The first cluster contained 87 (44%) of the feasible runs that 

had relatively lower mean total habitat area objective function of 501 km2 and low mean 

suitable floodplain area of 12.4 km2 that was driven by a lower mean budget of nearly 

$562,000 to plant riparian trees. Cluster 2 contained 111 (56%) of feasible runs that had 

higher mean total habitat area objective function of nearly 504 km2, higher mean suitable 
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floodplain area of 15.7 km2, and higher mean budget of nearly $689,000.   

 

 

Figure 3.3 Habitat suitability curves for cutthroat trout (right) and brown trout (left). Red dashed 
lines are the curve used in the deterministic model. Black curves are alternative curves with 
varying slopes and centroids of Boltzmann sigmoidal for the water depth range used in the 

uncertainty analysis 
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 Figure 3.4 Flood recurrence curves at the Blacksmith fork river headwater for two riparian plants 
with two different flood recurrence needs 

 
 
 
 

Figure 3.5 Sensitivity analyses results for 10 key parameters against the objective function value. 
Vertical red dashed line is the objective function value for the deterministic model. Boxplots right 
and left edges are the 25th and 75th percentile and vertical black lines are the 50th percentile. Red 

circles are outliers 

5-year flood recurrence 
for Pacific willow 

2-year flood recurrence 
for Fremont cottonwood  
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The one-way ANOVA test in Table 3.1 shows that there is a statistically significant 

difference between the two cluster means which was determined by the budget at the 

p<0.05 value. Therefore, the model was insensitive to changes in boundary flows and 

demands and within the group’s 7-dimensional variate space, the two clusters are primarily 

separated by the budget parameter. Thus, model runs with a budget below $628,000 are 

members of the first cluster, labelled Low Budget. Conversely, model runs with a budget 

of over $628,000 are members of the High Budget cluster. 

To identify and characterize the management implications of low and high budget 

clusters, we compared recommended releases from Hyrum Reservoir for each cluster with 

the deterministic model solution and historical releases. Figure 3.6 shows that the high 

budget scenario increased releases in spring to benefit riparian plants. In contrast, the low 

budget scenario increased releases in late summer and early fall to benefit trout species and 

the aquatic habitat area. 

The tradeoffs between the two budget clusters and their three habitat area objectives 

can further characterize the variability within each cluster. Figure 3.7 shows that, in high 

budget cluster, suitable floodplain habitat area (purple circle for medoid) increased by 25% 

compared to the deterministic model solution (black circle). In contrast, 10% more suitable 

aquatic habitat area was available in low budget cluster. The high budget cluster mediod 

increased suitable floodplain habitat area whereas the low budget mediod decreased 

floodplain habitat. While both medoids show some improvements and decreases over the 

deterministic model solution, numerous other Monte Carlo runs in both clusters 

simultaneously improve all three aquatic, floodplain, and wetland habitat areas over the 
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mediod and deterministic solutions (areas in Figure 3.7 up, to the right, and with darker 

blue color than the mediods). Similarly, many runs simultaneously decrease all three 

habitat areas compared to the mediod run and deterministic solution. 

 

Table 3.1 One-way ANOVA table for the three uncertain parameters in the input data uncertainty 

 

 

 

 
 

 

 

 

Figure 3.6 Monthly reservoir releases for Hyrum Reservoir for 2003 for the two clusters, 
deterministic model, and historical releases. Dashed lines are the medoids and background lines 

are Monte Carlo runs for each cluster 

Parameters  
Mean Square 

Error 
F value p-value 

Demand Requirements (Mm3/yr) 281 3.814 0.062 

Boundary Flows (Mm3/yr) 22658 0.289 0.592 

Budget ($) 5,211,186,505 605.182 0.001 

Jan   Feb     Mar    Apr     May   Jun     Jul      Aug    Sep    Oct    Nov     Dec 
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Table 3.2 List of uncertain parameters in WASH model and their probability distribution 

*  A sample data for one reach at one-time step. Full time-series of stochastic data for all rivers are 
available on GitHub (Alafifi, 2017). 

Parameter Model 
Symbol 

Habitat 
Type 

Unit Value in 
Deterministic 

Model 

Probability 
Ranges 

Distribu
tion 

Sources/ 
References 

Management Objective 1: Improve habitat under uncertain human system parameters  
Boundary 
flows 

reachGain All 
habitats 

Mm3/
mo 

Bear River 
head flow on 
January: 21* 

75%, 150%, 
180% of base 
value 

Discrete (USGS, 
2012; 
UWRL, 
2009) 

Budget b All 
habitats 

$ 650,000 min = 500,000 
max = 750,000  

Uniform JUB (2013) 

Demand 
requiremen
ts  

dReq All 
habitats 

Mm3/
mo 

Bear River 
Canal 
Company on 
May: 42* 

min = 70% 
max = 120% 

Uniform Adams et al. 
(1992) 

Management Objective 2: Improve habitat under ecological uncertainty 

Floodplain 
area 

Cmax Floodplai
n 

Mm2 Site just 
below Cutler 
Reservoir on 
the Bear: 0.7* 

min = 80% 
max =120% 

Uniform USDA 
(2014) 

Impounded 
wetlands 
area 

aw Wetland Mm2 156 min= 90% 
max = 110% 

Uniform Alminagorta 
et al. (2016) 
UDWR 
(2004) 

Suitable 
depth 
ranges for 
adult BCT  

rsi Aquatic m Adult 
Bonneville 
cutthroat 
trout: 
0.1 – 0.45 

Adult brown 
trout: 
0.3 – 0.75 

Discrete Gosse 
(1981), 
(Braithwaite, 
2011) 

Suitable 
flood 
recurrence 
to inundate 
cottonwood 

fci Floodplai
n 

- Fremont 
cottonwood: 
2-year flood 
recurrence at 
Stateline*: 
centroid= 
252.3 
slope= 15.31 

Pacific willow: 
5-year flood 
recurrence at 
Stateline*: 
centroid= 
140.17,  
slope= 14.75 

Discrete Derived 
analytically 
from 
Kauffman et 
al. (1997), 
Dettenmaier 
and Howe 
(2015), 
Richter and 
Richter 
(2000) 

Aquatic 
suitability 
relationship 
parameters 

rsi_par Aquatic - Adult BCT: 
centroid 
=0.29 
slope=  0.02 

Cutthroat trout: 
centroid=  
[0.15 – 0.4] 
slope = 
 [0.01 – 0.06] 
Brown trout: 
centroid=  
[0.35 – 0.70] 
slope = 
[0.01 – 0.06] 

Discrete 
pairs of 
centroid 
and 
slope 

Sampled 
from 
Hickman 
and Raleigh 
(1982) SI 
relationship 
ranges 

Wetland 
suitability 
relationship 
parameters 

wsi_par Wetland - January*: 
intercept=0.3
3 
 

January (µ, σ): 
intercept= 
(0.56, .014) 

Normal Constructed 
relationships 
from 
Alminagorta 
et al. (2016) 
data 
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To examine the input parameters for all these runs, we plotted the deterministic 

model solution (black line), the two medoids (dashed lines), the better- (thick lines), and 

the worse- (thin lines) performing runs on a parallel coordinate plot (Figure 3.8). Each line 

crosses the parameter axis at the parameter value for the solution or simulation run. The 

medoids in the figure show that high budget allows for more floodplain area but slightly 

less aquatic and wetland areas. However, this increase in floodplain area was possible even 

with higher human demand requirements. The figure shows many other opportunities to 

improve overall habitat quality. For example, with a low budget of $538,000, reducing 

urban and agricultural demand in the basin by 5%, and having additional water from 

upstream rivers flowing into the system increase by 16% could increase aquatic, floodplain, 

and wetland habitat areas by 4%, 15%, and 1% respectively. The Pareto frontier for the 

both clusters (thick lines) show there are very few opportunities to improve overall habitat 

quality if human demand requirements increased or if boundary flows decreased with 

reference to deterministic model scenario.  

3.6.2.2 Improve habitat quality under ecological uncertainty  

We ran a second cluster analysis for 7 ecological parameters (Table 3.1) and four 

model outputs: the total habitat area objective function and three habitat areas. We used the 

Silhouette index to determine that two clusters are sufficient to describe the data. Exploring 

the two clusters using a one-way ANOVA test shows a statistically significant difference 

between the two cluster means. This difference was determined by indicator species and 

their habitat attributes defining habitat quality. Therefore, suitable water depth for trout 

and flood recurrence level for riparian trees were more prominent in defining the two 
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clusters. The clusters were insensitive to variations in wetland and floodplain areas, and 

habitat suitability curve parameters.  

The 75 members (42% of feasible Monte Carlo runs) of the first cluster: brown 

trout and Fremont cottonwood have higher suitable water depth of 30-75 cm and lower 

flood recurrence value of 2 years. In contrast, the 105 members (58%) of the cutthroat trout 

and Pacific willow cluster have lower suitable water depth of 10-45 cm and higher flood 

recurrence of 5 years.  

Figure 3.7 Tradeoff plots of normalized aquatic, floodplain and wetland habitats for all Monte 
Carlo runs. All values are normalized on the same scale [0-1]. Black circle is the deterministic 

model solution and purple circle is the medoid of each cluster 
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Figure 3.8 Parallel plot of the high budget cluster (red), low budget cluster (blue), and 
deterministic model (black). Dashed lines are the medoids of two clusters. Thick lines are the run 
that perform better than the medoid (Paretor-forntier) and thin lines are the worse performing runs 

for the two clusters respectively 

 

Examining recommended reservoir releases for Hyrum Reservoir shows that both 

clusters, in general, have larger summer releases but different operations to improve habitat 

for the indicator species (Figure 3.9). For brown trout and cottonwood cluster, the model 

recommends releasing more water in late spring which primarily helps improve lateral 

connectivity with cottonwood trees that live adjacent to streams. In the cutthroat trout and 

willows cluster, the model recommends releasing more water in late summer and winter 

months which could provide more water for cutthroat trout spawning season.  

Examining the tradeoffs between the two clusters in Figure 3.10 shows that, in the 
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cutthroat and willow scenario, the suitable aquatic habitat area (purple circle for medoid) 

increased by 19% compared to the deterministic model solution (black circle) while the 

floodplain area decreased by 10%. In contrast, 9% more floodplain area and 17% less 

aquatic area was available in the brown trout and cottonwood scenario. This tradeoff and 

the input conditions for each cluster is better illustrated in the parallel coordinate plot 

(Figure 3.11) for all the parameters used in cluster analysis. Similar to Figure 3.8, the plot 

shows all better and worse performing Monte Carlo runs with reference to the two medoids. 

 

 

 

 

 Figure 3.9 Monthly reservoir releases for Hyrum Reservoir for 2003 for two clusters derived 
from ecological parameters, the deterministic model, and historical releases. Background lines are 

Monte Carlo runs 

  Jan     Feb     Mar    Apr     May     Jun     Jul     Aug   Sep     Oct     Nov    Dec 
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Figure 3.11 shows that the cutthroat trout and Pacific willow cluster medoid 

increased aquatic habitat area over floodplain area because of the low water depth suitable 

range of cutthroat trout. Conversely, brown trout and Fremont cottonwood increased 

floodplain area because cottonwood trees live adjacent to the river banks and have low 

flood frequency suitable range. However, the two clusters had only two Monte Carlo runs 

that performed worse than the medoid for all three habitats. This means that the medoids 

here might not be good representatives of their clusters. Other runs that increased all three 

habitats show better management alternatives. For example, while managing for brown 

trout and cottonwood trees, increasing available floodplain area to plant riparian trees in 

the basin by 8% could help increase floodplain suitable habitat area by 30%.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 3.10 Tradeoff plots of the aquatic, floodplain and wetland habitats for all observations. 
All values are normalized on the same scale [0-1]. Purple circle is the medoid of each cluster and 

black circle is the deterministic model solution 
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3.7 Discussion 

Incorporating uncertainty into a deterministic habitat management model 

emphasized the importance of understanding the sources, ranges, and impacts of 

uncertainties in water management decisions. Many uncertainty analysis studies use 

visuals such as scatter and parallel coordinates plots to assess the credibility of the 

sensitivity analysis approach and identify trends in model results. However, for large 

problems with lots of uncertain input parameters, these visuals might not be useful to 

evaluate model robustness and cannot identify spatial or temporal trends or implications 

Figure 3.11 Parallel plot of the two clusters in red for cutthroat and willow, blue for brown 
trout and cottonwood, and black for the deterministic model. Dashed lines are the medoids of 

two clusters. Thick lines are the better performing runs and thin lines are the worse performing 
runs for the two clusters respectively 

 



82 
 

 
 

for management (Pianosi et al., 2016b). In the case of the Watershed Area of Suitable 

Habitat model for the lower Bear River, our approach used semi-supervised cluster analysis 

to improve understanding of uncertain model behavior, reduce the uncertain space, and 

assess the credibility of sensitivity assumptions.  

Further, our approach showed that performing a local search for clusters helped 

discover clusters that would be otherwise overlooked. For example, we tested a case of 

unsupervised clustering where we considered all WASH parameters in a clustering 

algorithm. The results of this test case were very similar to the results of the first group of 

parameters where only hydrologic and management inputs (i.e. inflow, demand, and 

budget) were considered. This similarity indicated that although selection of indicator 

species and their habitat quality attributes are significant factors in water management 

decisions, these ecological parameters were overshadowed by more dominant parameters 

such as budget and boundary flows.  

Examining the variability within clusters is also important to recommend 

management decisions. While other water resources cluster analysis studies have used the 

centroids or medoids as representatives of their clusters, our analysis showed that the 

variability within each cluster can reveal many alternatives that may be more desirable to 

managers such as opportunities to simultaneously improve all three aquatic, floodplain, 

and wetland habitat areas beyond the medoids and the deterministic model solution. These 

opportunities were more evident for the second group of uncertain ecological parameters 

where only two runs performed worse than the medoids for both clusters. For habitat 

models with many uncertain parameters distributed over different scales, our results 
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indicate that cluster means or mediods may overshadow more desirable alternatives within 

clusters. 

Figures on reservoir releases (Figures 3.6 and 3.9) and tradeoff analyses (Figures 

3.8 and 3.11) show opportunities to improve habitat quality under different sources of 

uncertainty. For example, if managers have a budget to plant cottonwood trees in riparian 

areas, they can release more water in spring and early summer to increase instream flow 

and allow lateral connectivity to coincide with seed germination for successful recruitment. 

This could increase available and suitable floodplain area to plant riparian trees which 

could help improve habitat quality, return lands to floodplain functions, and restore lateral 

connectivity with the river. However, for a low budget scenario, managers can release more 

water to maintain water depth in late summer and early fall spawning seasons to improve 

aquatic habitat quality. Further, ecological uncertainty and assumptions of indicator 

species’ response to changes in flow regimes translate into different reservoir operational 

schemes. For example, releasing more water in late spring primarily helps achieve lateral 

connectivity with cottonwood trees that live adjacent to streams over brown trout. 

Similarly, releasing more water in late summer and winter months could improve habitat 

quality of cutthroat trout over willows. This means that selection of indicator species is 

important and has the potential to fundamentally change results, quantity and timing of 

reservoir releases and available habitat for different priority species. Therefore, reservoir 

operators can benefit from our analysis that considers management and ecological 

parameters to select an operating scheme that meets human needs and improves habitat 

quality.  
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While the WASH stochastic model represented the budget to plant riparian trees as 

an uncertain parameter, restoration projects are more likely to have an incremental budget 

that is conditioned on completing project phases. This practice could reduce uncertainty in 

meeting restoration project expected outcomes. The WASH model used an expected 

budget for future restoration projects and therefore we assumed a range of possible 

available budget. This assumption could be further improved if river managers have a set 

budget or a clear target for restoration projects. 

Our analysis considered a large number of uncertainties in habitat models’ data and 

parameters. However, uncertainties in model formulation and structure were not 

considered. One change in model structure could include using arithmetic or geometric 

means to aggregate multiple indices where multiple species are managed in the same 

habitat (Ahmadi-Nedushan et al., 2006). Another change in structure would be to use 

different weights to reflect management preferences for species, times, and locations.  

Using Monte Carlo simulation to randomly sample from probability distributions 

of many uncertain parameters required that we generate a sufficient number of runs to span 

the uncertain space. We compared model results for a single run using BARON global and 

CONOPT local solvers and found that the objective function value of the local solution is 

only 3% lower than the value for the global solver and took 2 minutes compared to 2 hours 

and 15 min. Performing runs with a global solver will likely produce slightly higher habitat 

areas but will not affect our reservoir release and tradeoff findings. 

Other sampling approaches such as Latin Hypercube, which stratifies the 

probability distributions of uncertain parameters into equal intervals and takes a random 
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sample from each interval (Helton and Davis, 2003), could also improve our methods. This 

sampling approach is promising because it could significantly reduce the number of runs 

required for sensitivity analysis and could potentially allow use of a global optimum solver. 

However, Latin Hypercube sampling assumes all uncertain parameters with different 

probability distributions are independent and therefore ignores correlated parameters 

(Vořechovský and Novák, 2009) that often occur in habitat models. Another promising 

approach is conditional sampling, such as Gibbs (Casella and George, 1992), which could 

be used to condition sample the combinations of parameters that only produce feasible 

alternatives, thus eliminating the need to generate a large number of observations and 

filtering infeasible alternatives before clustering.  

While our analysis showed a promising application of cluster analysis to water and 

habitat management, there are some limitations to this approach. First, the clustering 

algorithm will always produce clusters regardless of parameter values or data structure. 

Second, there is no consensus on the best clustering algorithm or distance method to use 

for different numeric and nominal data sets. Therefore, selecting the number of clusters, 

cluster approach, and interpreting management scenarios is specific to the data and 

management objectives of the clustering exercise. Third, the grouping of uncertain input 

parameters could dictate the outcomes. Therefore, the modeler should test and select a 

method (e.g. variance to the objective function) to filter uncertain parameters and 

objectively select inputs to the cluster analysis algorithm.   

The approach of this paper can be applied to other uncertain water and habitat 

models. While many habitat model uncertainty analyses narrowly focus on a few stochastic 
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parameters and produce ranges of possible model results, our approach can help mangers 

better explore the large space of possible alternatives, define key uncertain parameters, and 

identify few promising management actions to improve habitat quality. Applying this 

approach to other habitat models requires identifying uncertain parameters and sampling 

from their probability distributions to generate model runs. Then, managers need to define 

groups to subset parameters based on their management priorities or preferences. Using 

semi-supervised cluster analysis can reduce hundreds of model runs into a few plausible 

future scenarios which facilitates communicating uncertainty to water and habitat 

managers. 

Communicating uncertainty in habitat models can be improved by identifying a few 

management scenarios within the large and multivariate space of possible alternatives. 

Narrowing to a few scenarios helps focus management efforts on the important parameters 

to measure and monitor more carefully. Characterizing clusters and exploring variability 

within clusters also allows manager to infer tradeoffs between alternatives and recommend 

management options that improve overall habitat quality.  

3.8 Conclusions  

Managing rivers to improve habitat quality should consider a large number of 

hydrologic, ecologic, and management uncertainties. Identifying and quantifying multiple 

uncertainty sources and how they propagate through the model results makes it challenging 

to find and communicate useful insights to manage complex ecological systems . Here, we 

presented an application of semi-supervised cluster analysis as a data-mining tool to reduce 

a large dimensional uncertainty problem and focus management efforts on important 
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parameters to measure and monitor more carefully. Applying cluster analysis to water and 

habitat management problems allow managers to identify few scenarios to allocate 

resources to improve habitat quality.  

We applied this approach to a case study of a large nonlinear habitat optimization 

model for the Lower Bear River, Utah. The model recommends water and money 

allocations to improve habitat quality and area for selected aquatic, floodplain, and wetland 

species. We characterized and quantified uncertainty in the model and applied cluster 

analysis to two groups of parameters, one group with only uncertain parameters describing 

human systems and a second group with only uncertain ecological parameters. Results 

identified four possible management scenarios where budget to plant riparian trees in the 

floodplains in addition to the attributes defining habitat quality for indicator species were 

the main factors that guided management decisions. Our analysis also recommended four 

reservoir operations alternatives that improve habitat quality under different uncertainty 

schemes. Reservoir operations can coordinate spring and summer releases with both 

planting efforts for successful plant recruitment and fish restoration efforts to maintain 

water depth for fish spawning and maturing. Our approach allowed for examining the 

tradeoffs between different habitats and finding the conditions that can improve all three 

habitats together for selected species in the watershed.  
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CHAPTER 4 

INTERACTIVE WEB GIS APPLICATIONS TO VISUALIZE WATER RESOURCES 

MODEL OUTPUTS3 

Abstract 

Interactive interfaces can help researchers and managers communicate water 

resources model outputs with policy makers, the public, and solicit feedback on model 

development and results. Web GIS applications offer platforms that provide spatial 

representation of water resources system components and help make spatially-informed 

decisions. Current web GIS platforms display spatial data in GIS-accepted file formats. 

While the outputs of some hydrologic models are described in GIS formats, many river and 

reservoir water allocation models use node and link concepts to represent the spatial 

network of rivers and on- and off-stream infrastructure such as reservoirs, demand sites, 

and diversion canals. Constructing a node-link network for a web map requires 

considerable time, technical web, and GIS experience. Here, we present an open-access 

tool that simplifies the creation of nodes and links networks on web maps. The tool allows 

water resources modelers to create web GIS layers and use a web GIS platform as an 

interactive interface for model outputs. The interfaces require only a web browser to access 

and can display, disseminate, and communicate water resources model outputs in user-

friendly web maps We demonstrate the tool for a Watershed Area of Suitable Habitat 

(WASH) optimization model for the lower Bear River, Utah and a Water Evaluation and 

Planning (WEAP) simulation model of the tri-state Bear River Basin of Utah, Idaho, and 

                                                           
3 Co-authored by David E. Rosenberg  
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Wyoming.. The two apps facilitated the collaborative development of water resources 

models and helped communicate water allocation and habitat improvement decisions to 

river managers. The apps also provided venues for collaboration between model developers 

and policy makers, and made model outputs accessible to the public. Interactive web maps 

can be easily constructed to visualize results for many types of node-link water resources 

models. 

4.1 Introduction  

Water resources models are computer-aided mathematical tools that inform 

decisions to help plan and manage water resources systems. Models can include 

components such as water sources, water uses, reservoirs, conveyance, and operation of 

these and other natural and engineering infrastructure for a variety of purposes such as 

water supply, hydropower generation, habitat improvement, and/or flood damage reduction 

(Loucks et al., 2005). These models are often spatially distributed across cities, watersheds, 

and regions. They also vary over time (Barbour et al., 2016). Water managers work with 

complicated systems and must effectively present, share, and communicate their work with 

policy makers and the public in user-friendly interface  (Verma et al., 2012). Successfully 

engaging policy makers and the public will also allow managers to solicit feedback on 

model development and results to improve models. 

Many existing water resources decision support systems have three architecture 

components: data, a computational algorithm, and a user interface (Figure 4.1). Water 

resources model data are the inputs to and outputs from the mathematical algorithm and 

are often defined spatially on a grid or on a network of nodes and links. Computational 
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algorithms process input data and generate outputs that are displayed by the user interface. 

These interfaces often use Geographic Information Systems (GIS) to spatially represent 

hydrologic and hydraulic systems (Martin et al., 2005). Therefore, many hydrologic models 

have integrated GIS interfaces and geoprocessing capabilities to perform spatial analyses 

to generate model inputs such as surface runoff, flood zoning, and drainage areas. Example 

models include the Soil and Water Assessment Tool (SWAT; Gassman et al., 2007) and 

the Water Erosion Prediction Project (WEPP; Flanagan and Nearing, 1995).  

Other models, such as water allocation models, use a network of nodes and links as 

a schematic representation of the spatial distribution of river basin features (Meeks and 

Rosenberg, 2017). These models are based on water volume-balance and are used to 

simulate the storage, flow, and water supply in a system of reservoirs and river reaches 

(Porse and Lund, 2016; Wurbs, 2005). Wurbs (2005) reviewed 15 of the most common 

node-link river and reservoir models including the river basin management decision 

support system MODSIM (Labadie, 2005), Water Evaluation And Planning (WEAP; 

Kirshen et al., 1995), RiverWare (Zagona et al., 2005), and the U.S. Army Corps of 

Engineers Hydrologic Engineering Center Reservoir System Simulation (HEC-ResSim; 

Klipsch and Hurst, 2007). All 15 software products integrate model outputs within the 

software interface. This integration poses a challenge to interpret and disseminate model 

outputs without the modeling software. Users and stakeholders need to use, often 

proprietary, software to view and interact with model results. It is also difficult to compare 

results generated using different modeling software systems. While many software 

products allow modelers to export tabular outputs as text files, communicating these 



97 
 

 
 

outputs to decision makers and the public can be improved by using model-agnostic, web-

accessible, and interactive mapping platforms. 

Web GIS platforms can offer a model-agnostic alternative to using software-

specific user interfaces (McKinney and Cai, 2002). Web GIS applications (or apps) are 

web-accessible interfaces that provide an online hosted GIS platform without the need for 

GIS desktop software (Choi et al., 2005). These apps can facilitate and complement node-

link water resources model development and communication of results by providing a 

mapping interface to display, query, analyze, and interact with spatially- and temporally-

distributed data  (Delipetrev et al., 2014; Sui and Maggio, 1999; Swain et al., 2015). Web-

accessible GIS apps can disseminate water resources model data, solicit a focused 

participation in the modeling process, and communicate specific and targeted results to 

non-technical users (Rathore et al., 2010; Verma et al., 2012). For example, Castrogiovanni 

et al. (2005) developed an interactive web GIS interface to display the results of a 

Figure 4. 1 General architecture of water resources models 
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hydrologic model for flood discharge and risk assessment in Sicily, Italy. Similarly, 

Rathore et al. (2010) created an app to display drought conditions and reservoir operations 

for water availability scenarios in India. Developing these web apps, however, requires 

considerable technical experience to synthesize a multitude of services including database 

servers to store spatial data, geoprocessing servers with mapping libraries to perform 

analysis, and web development languages to customize and configure user interfaces 

(Chang and Park, 2006; Delipetrev et al., 2014; Zhao et al., 2012). 

Some commercial and open-source software have been developed to provide 

coding-free platforms to interactively design, publish, and host web GIS apps. For 

example, Esri’s Web AppBuilder is part of the ArcGIS Online platform (www.arcgis.com) 

that allows novice users to create, deploy, and customize web mapping apps without 

coding. Web AppBuilder uses JavaScript custom-made templates to build web apps with 

no need for an on-premises GIS server (Fu, 2016). Since its inception in 2009, ArcGIS 

Online has been a popular platform for many users and has been used to assist water and 

natural resources management (Scopel, 2015). Esri, a proprietary software vendor, has 

documented the geospatial web services used in ArcGIS Online, allowing developers to 

build, customize, and deploy applications on their own machines (Esri, 2010). Another web 

app platform is HydroShare (https://www.hydroshare.org) which was developed for 

sharing water and hydrologic models and data. HydroShare provides an applications 

programming interface (API) and mechanism for web apps developed in any environment 

to be launched from and interact with data in HydroShare. These include a suite of web 

applications for acting on and visualization of hydrologic data, some of which were 
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developed using the Tethys Python-powered platform and are hosted at 

http://apps.hydroshare.org (Tarboton et al., 2013). One example is the HydroShare GIS 

app that facilitates interactive display and sharing of spatial data (Crawley et al., 2017). 

Another app platform is Google Earth Pro, developed using Google Earth Engine’s 

JavaScript and Python libraries. Google Earth Pro allows its users to utilize Google’s large 

set of spatial data and web services to build web applications and perform spatial analysis 

(Gorelick et al., 2017). Carto Builder (https://www.carto.com) is another platform that 

allows users to create and customize web applications to share and visualize spatial data. 

Carto Builder allows users to perform spatial analysis, query, and filter their data using 

PostrgreSQL geodatabase.  

Despite their many advantages, these web GIS platforms are underutilized. One 

main challenge for water resources modelers to use these platforms is that the platforms 

require geo-referenced data. None of the reviewed web GIS platforms allow water 

resources modelers to create these layers. Creating web GIS layers on desktop GIS 

software requires considerable time and GIS experience to describe all river nodes and 

links in GIS data structure and format (McKinney and Cai, 2002; Sui and Maggio, 1999).   

Describing nodes and links model data in GIS map format is challenging because, 

whereas GIS seeks to accurately represent the world’s geography, node and link networks 

seek to simplify the actual system. Similarly, GIS wants to accurately locate point, line, 

polygon and other features in space. In contrast, Node-Link networks are only concerned 

about connectivity between nodes. For example, GIS maps display natural rivers and lakes 

based on geography (Cai et al., 2006). However, nodes and links conceptually represent 
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the spatial distribution of rivers including on- and off-stream infrastructure such as 

reservoirs, demand sites, water supply sources, and diversion canals within the basin 

(Loucks et al., 2005). Water resources modelers will need to create GIS layers of nodes 

and links in order to publish their model outputs to a GIS map. This requires creating new 

or editing existing GIS layers of rivers to capture the modeler specific design. For example, 

a shapefile layer in a GIS map could have a single line to represent a river (e.g. Logan 

River in Figure 4.2a). The modeler’s specific network could have multiple connected links 

to describe the same river (e.g. 5 links for the Logan River in Figure 4.2b). In addition, the 

network could have nodes that aggregate and represent other features such as demand sites 

and reservoirs. Building this network of nodes and links in a GIS map (Figure 4.2c) requires 

considerable time, access to and good knowledge of GIS software (Taher and Labadie, 

1996).   

Here, we present an open-access web tool to help water resources modelers 

interactively build web GIS layers of river nodes and links with no coding. Modelers can 

use the GIS layer in a web GIS app to share spatially and temporally distributed model 

outputs.  

Section 2 presents the new tool to build web GIS layers for river networks. Section 

3 overviews how to use these web layers to build an interactive web GIS app as an interface 

for water resources model outputs. Section 4 presents two use cases for water resources 

web apps that were developed using the new tool to provide interfaces to an optimization 

and a simulation water resources models. Section 5 discusses the benefits of web apps to 

facilitate collaborative decision making to manage scarce water. 
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4.2 Create River Network web tool 

To create nodes and links directly on a web map, we developed and published a 

geoprocessing tool named ‘Create River Network’. The geoprocessing tool was first 

developed and tested on Esri ArcMap, published to a GIS web server, and then hosted on 

an ArcGIS Online web application using the web server-provided Representational State 

Transfer (REST) URL. The tool is accessible at: http://WebMapBuilder.usu.edu. The tool 

Python script, REST URL, and detailed instructions are available on a GitHub repository 

(Alafifi, 2017). The tool geoprocessing workflow is described in more details in Figure C.1 

in appendix C. The tool significantly reduces the time and effort required to construct and 

customize web GIS layers of river nodes and links as evident by the workflow of the tool 

in comparison to traditional desktop GIS methods in Figure 4.3.  

Logan 
City 

Logan 
City 

 

(a) GIS map for a 
river basin 

(b) Node-link 
schematic 

(c) GIS map for 
node-link network 

Figure 4.2: Examples of a GIS map and a node-link schematic for the Little Bear Basin, Utah  
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Figure 4.3: Workflow of the Create River Network web tool verses tradition methods to 
create web GIS layers for river network 

 

 

The tool website comes preloaded with the United States Rivers layer (NOAA, 

1998), but users can load their own river basins as a shapefile using the add icon. We 

selected the NOAA rivers because they only show common natural rivers, while other 

databases such as the National Hydrography Dataset (NHDPlus V2, 2016) displays 
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additional artificial pathways and canals.  

The user then selects the following inputs (Figure 4.4a): 

 Watershed boundaries: select or manually draw the basin boundary area 

directly on the map 

 River nodes: click on the map to add nodes, using the ‘ctrl’ button to snap 

nodes to rivers 

 Demand sites and reservoirs: Similarly, click on the map to locate demand 

sites and reservoirs 

 Engineered links: draw lines on the map to denote diversions and return 

flow. The lines snap to existing nodes and river features. 

Click ‘Execute’ creates 5 web GIS layers for river nodes, demand sites, reservoirs, 

river links, and engineered links (Figure 4.4b). The tool creates river links by first 

dissolving all river lines together and then splitting river lines at user-selected on-river 

nodes where river links are created between nodes. Each web GIS layer will have a field 

for unique identifiers for every feature, for example “N1” and “L1” for every on-river node 

and river link. Once the tool is executed, new layers will appear on the tool web map and 

the user will be able to download or save them directly on their Esri ArcGIS Online 

account.  
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4.3 Using the tool to develop water resources web GIS apps 

The Create River Network tool could be used as a first step to create web GIS layers 

for river network (Figure 4.5). To create a web GIS application, water resources modeler 

will need to (1) upload their model data to a web map, and (2) configure the user interface, 

and (3) share settings. Here we demonstrate this approach using Esri’s ArcGIS Online 

  Figure 4.4 Screenshots of the Create River Network geoprocessing tool. Top: tool inputs 
selected from a list or drawn directly on the map. Bottom: outputs of river network layers 
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platform because the platform allows joining tabular data (model outputs) with web layers. 

Completing these steps requires an Esri ArcGIS Online publisher account: 

4.3.1 Load model outputs and layers into a new web map 

The user here creates a new web map on ArcGIS Online and follows these steps to add 

model outputs: 

1. Export water resource model outputs to a text file, such as comma separated values 

(csv). Assign the same identifiers that were generated by the Create Network tool to 

all node and link entities in text file. 

2. Create a new web map on ArcGIS Online. Upload to the web map all model output 

files and the web GIS layers created by the Create Network tool. 

3. Use the ‘join layers’ option in ArcGIS Online to merge web GIS layers with their 

respective model output files. 

4.3.2 Configure interactive interface 

Next, customize the user experience:  

1. Add basemaps and additional layers that provide geographical context. 

2. Add interactive tools and widgets such as informational popups that appear when a 

user clicks on a feature in the map, time-animated slider to visualize temporal data 

and patterns, chart-builder to compare two or more features, query data, and editing 

tools to allow users to add to the map or comment on data. 

3. Add meta data to describe the web app, data, and results 

The Create River Network tool, coupled with ArcGIS Online interactive 

functionalities, enables water resources modelers to build user-friendly interfaces that only 
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require a web browser and internet connection to access. In the next section, we provide 2 

use cases as examples of the interface functionalities that were accessible in ArcGIS online 

using our tool.  

4.4 Use Cases for the Water Resources Web Apps 

We present two use cases for two apps that were developed as a web interfaces for 

a Watershed Area of Suitable Habitat (WASH) optimization model for the lower Bear 

River, Utah and a Water Evaluation and Planning (WEAP) simulation model of the tri-

state Bear River Basin of Utah, Idaho, and Wyoming. Both apps were developed on the 

web using the Create River Network tool and ArcGIS Online and were used to support 

water resources decision making. The two models are developed at different spatial and 

temporal scales and have different networks. We developed web apps to complement these 

two models and communicate targeted information to river managers to better formulate 

strategies to manage scarce water.  

4.4.1 Study Area: The Bear River Watershed 

The Bear River is a 491-mile long river that runs through Wyoming, Idaho, and 

Utah and covers an area of about 7,600 square miles. The river and its tributaries provide 

water to numerous cities and counties across the three states. It also provides water to five 

run-of-river hydroelectric plants and over 450 irrigation companies delivering water to over 

400,000 acres of agricultural land (UDNR, 2017). The river is central to the growth and 

development planning debate for several counties within the basin such as Cache and Box 

Elder Counties, Utah, in addition to the off-basin Wasatch Front metropolitan region 

(UDWR, 2004; UDWRe, 2000). The river is also vital to maintain critical wildlife habitat 
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for many native and threatened river and floodplain species (Bio-West, 2015). It also serves 

as the largest water source flowing into the Great Salt Lake and the 30,000 acre-Bear River 

Migratory Bear Refuge. The Refuge is home to over 250 migrating bird species that use 

the Refuge for feeding, resting, nesting, and breeding every year (Alminagorta et al., 2016). 

Sustainable management and future development of the Bear River needs to 

consider multiple competing demands and objectives to ensure that ecosystem health and 

human beneficial uses for irrigation and water development are maintained into the future. 

Interactive and user-friendly web maps can help facilitate collaborative modeling to 

manage scarce water in the Bear River and communicate model outputs with regional water 

managers. 

Figure 4.5 Workflow to build a water resources model web app using the Create River 
Network web tool  
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4.4.2 Use Case 1: Water Management to Improve Habitat 

The Lower Bear River is the downstream sub-basin of the Bear River from the 

Utah-Idaho state line to the river terminus at the Great Salt Lake. Threats of land 

development and intensive agricultural and grazing activities along the Lower Bear River 

triggered habitat conservation efforts to identify important areas for restoration, prioritize 

species, and allocate water between human and environmental users in the watershed (Bio-

West, 2015). The efforts led by The Nature Conservancy in collaboration with several state 

agencies, counties, private businesses, and landowners resulted in developing the Bear 

River Conservation Action Plan (CAP). One of the primary objectives of CAP is to 

determine the amount, timing, and location of water needed to sustain key riparian, aquatic, 

and wetland species (Bear River CAP, 2008).  

A mathematical systems model determined the allocation of water to maximize 

aquatic, floodplain, and wetland habitat quality while meeting or exceeding municipal and 

agricultural water needs. Alafifi and Rosenberg (In Review) developed the Watershed Area 

of Suitable Habitat (WASH) systems optimization model using the General Algebraic 

Modeling System software (GAMS; Hozlar, 1990) for the Lower Bear basin. WASH 

measures habitat quality and area for every reach in the basin using stakeholder-verified 

habitat suitability indices for cutthroat trout (Oncorhynchus clarki utah), brown trout 

(Salmo trytta), cottonwood (Populus fremontii), black-necked stilt (Himantopus 

mexicanus), American avocet (Recurvirostra Americana), and tundra swan (Cygnus 

columbianus). Each suitability index is a function of a measureable habitat attribute that 

influences priority species’ survival and abundance, such as water depth, flood recurrence, 
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and Phragmites (Phragmites australis) invasive plant cover. Indices take values between 0 

at poor habitat conditions to 1 at excellent conditions. Some of the key results of WASH 

include recommending monthly reservoir releases and diversion volumes that improve 

habitat quality for priority species over observed conditions. In addition, WASH reports 

the suitability index values for every reach, month, and habitat type based on recommended 

instream flow. These indices help identify which species is in need for restoration, where 

in the watershed, and at what seasons.  

The WASH web app (Figure 4.6; http://WASHmap.usu.edu) was developed 

following the steps in Table 4.1. GAMS, the optimization engine of WASH model, 

generates these key results as tabular data defined on 46 nodes and 51 links over 12 months 

in 2003 (Figure 4.7). We used the Create River Network tool to create web layers of on- 

and off-stream features with unique identifiers. Then, we added these identifiers to the 

model outputs files. We created a new web map on ArcGIS Online, loaded river network 

layers, and uploaded WASH output files. Then, we joined the data with the web layers for 

all features and configured interactive settings (Table 4.1). 
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Figure 4.6 Lower Bear River watershed area of suitable habitat model web app, available at: 
http://WASHmap.usu.edu 

 
 
 

4.4.3 Use Case 2: Urban and Agricultural Water Supply and Demand 

Management  

 
Managing and planning water resources are often a challenge in urban and rural 

communities. In semi-arid climates like Utah and Southern Idaho, the challenge is even 

greater as an inadequate supply might result in conflicts over land and water use in addition 

to economic losses for farmers (BRAG, 2015). The Bear River is one of the few rivers in 

Utah that has water development potential (UDWRe, 2000). To meet future water demand 

requirements for multiple urban and agricultural users, managers need tools to help them 

quantify and understand the reliability of current water supply system in the basin. 
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Figure 4.7 Lower Bear River Network of Nodes and Links. j and L denotes nodes and links 

 



112 
 

 
 

 Table 4.1  Steps to build a web GIS app for the Lower Bear River habitat management case 

  

1. Build River Network on a 
Web Map 

2. Prepare and Upload 
Model Results 

3. Configure Interactive 
Features 

Go to 
http://webmapbuilder.usu.edu  to 
access the ‘Create River 
Network’ tool: 
- Draw basin area on the map 
- Click on the map to draw on-

river nodes, demand sites, off-
stream links, and reservoirs 

- Click ‘execute’  

- Use the same unique 
identifiers created in Step 1 
to assign identifiers for 
WASH nodes and links 
input data 
 

Some of the main features of 
the WASH app are labeled on 
Figure 4.7 and include:  
- Categorized and symbolized 

reaches into excellent, good, 
and poor habitat based on the 
suitability index values for 
every habitat type at every 
month 
 

Run the optimization model 
and export the following 
outputs as csv files: 
- Demand sites: monthly 

demand requirements 
(Mm3/month) 

- Reservoirs: monthly 
releases and storage 
(Mm3/month) 

- River links: monthly flows, 
habitat suitability index 
values (0-1; unitless) 

- Engineered links: diversion 
and return flow monthly 
volumes (Mm3/month) 

 

- Popups (label 1) to display 
model-recommended vs 
historic volumes of reservoir 
releases, storage, river flow 

- List of layers (label 2), model 
background (3), node-link 
network (4), and ability to 
add own data to the map (5) 
 

- Chart widget (label 6) to plot 
monthly releases for multiple 
reservoirs 

-  

The following layers are created 
and unique identifier are given to 
each feature: 
- A layer for 29 on-river nodes 
- A layer for 27 river links 
- A layer for 5 reservoirs 
- A layer for 12 municipal and 

agricultural demand sites 
- A layer with 24 off-stream 

links for diversions and return 
flow canals 
 

- In ArcGIS Online: Create a 
new web map 

- Vertical swipe widget (label 
7) to compare multiple habitat 
layers.  

 

- Load created layers from 
Step 1 to the new web map 
 

- Time-slider (label 8) to 
visualize monthly variations 
in habitat suitability for every 
habitat type.  
 

- Upload WASH outputs as 
csv files to the map 

Query widget (label 9) to 
select reaches that meet user-
specific criteria, such as 
reaches with poor aquatic 
habitat stability in February 
2003. 

- Join each output layer with 
its respected map layer by 
matching the identifier 
field in both layers 

- Save all created layers to 
ArcGIS publisher account 

- Download layers attribute 
tables as csv including unique 
identifiers for all features 
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The Water Evaluation And Planning (WEAP) software was used to simulate water 

supply, demands, and allocations across the Bear River basin. WEAP is a software package 

that operates on the principles of water mass balance to allocate water based on available 

water supply and priorities for demand sites (Stockholm Environmental Institute, 2016). A 

WEAP model for the Bear River was developed to plan and manage available water 

resources. The model simulates 40 years (1966 – 2006) of monthly historical water supply 

from the Bear River and its tributaries and allocates water for 34 urban and agricultural 

demand sites in Wyoming, Idaho, and Utah (Figure 4.8). Results of the WEAP model 

include time series of monthly unmet demand (or shortage) for each demand site. These 

results can help managers identify shortages in the basin and measure reliability of water 

supply system. 

While a software package like WEAP provides a user interface to display model 

schematic of nodes and links overlaid on GIS layers, WEAP users need a software license 

in addition to training to access, find, and interpret the Bear River model results within the 

WEAP interface. They also need a local copy of the WEAP area with model results.  

Therefore, to disseminate and communicate WEAP results to policy makers across the 

basin, we created a web app to display WEAP model outputs. First, we exported unmet 

demand results from WEAP as csv files. Second, we assessed and described water supply 

performance for each demand site by measuring the reliability (%), which is the likelihood 

of a supply system to meet delivery targets, resilience (%), which describes how quickly 

the system recovers once a shortage occurs, and vulnerability (acre-ft), which measures the 

magnitude of shortage (Hashimoto et al., 1982). We also measured the longest period of 
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shortages in months. The WEAP web app was developed following the steps in Table 4.2 

and is available at: http://BearRiverWEAP.usu.edu. In this use case, we assigned the 

unique identifiers from the Create River Network tool to WEAP outputs after exporting 

the results to a csv file.  

 

 

 

Figure 4.8 WEAP interface and schematic of the Bear River network model 
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 Table 4.2 Steps to build a web GIS app for the Bear River water demand management case 

1. Build River Network on a 
Web Map 

2. Prepare and Upload Model 
Results 

3. Configure Interactive 
Features 

Go to 
http://webmapbuilder.usu.edu to 
access the ‘Create River 
Network’ tool: 
- Select Bear River watershed as 

the basin for study area 
- Click on the map to draw on-

river nodes and demand sites 
- Click ‘execute’  

Run WEAP model and export 
these outputs for demand sites as 
csv files: 
- Monthly demand requirements 

(acre-ft) 
- Unmet demand (acre-ft) 
 

Some of the main features of 
the WEAP water demand app 
are labeled on Figure 4.8 and 
include:  
- Categorized and 

symbolized reaches by 
shortage as (%) of annual 
demand  Measure additional indicators for 

water supply system performance 
for each demand site: 
- Shortage as (%) of annual 

demand 
- Reliability (%) 
- Resilience (%) 
- Vulnerability (acre-ft) 
- Longest period of shortage 

(months) 
- Number of months in shortage 

 
The following layers are created 
and unique identifiers are given to 
each feature: 
- A layer for 22 on-river nodes 
- A layer for 31 river links 
- A layer for 34 municipal and 

agricultural demand sites 

- Update all model output csv 
files and add an identifier field 
to match the names created 
using the tool in Step 1 
 

- Popups (label 1) to display 
information about each 
demand site including 
supply performance and 
monthly delivery targets 

- In ArcGIS Online: Create a new 
web map 
 

- List of layers and legend 
(label 2)  
 

- Load created layers from Step 1 
to the new web map 
 

- Upload WEAP outputs as csv 
files to the map 

- Time-slider (label 3) to 
visualize monthly 
variations of shortage 

- Join Demand Sites output layer 
with its respected map layer by 
matching the identifier field in 
both layers 

- Save all created layers to 
ArcGIS publisher account 

- Download layers attribute tables 
as csv including unique 
identifiers for all features 
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Figure 4.9 A screenshot of the Bear River Urban and Agricultural Water Management web app, 
available at: http://BearRiverWEAP.usu.edu 

 
 

4.5 Discussion  

The WASH web app was first presented to CAP stakeholders on December 2, 2015 

as part of the model development process, where we solicited feedback on the spatial 

distribution of the node-link network and used the app to define sites for priority species. 

Next, we added the optimization model results to the app which included recommended 

and historical reservoir releases and instream flows. We presented these model results to 

CAP stakeholders during a workshop session on July 21, 2016. We encouraged participants 

to use the available tools to spatially and temporally compare habitats using the swipe and 
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time-slider widgets. They were asked to report on what they thought are promising results 

to improve habitat quality and flag data, model components, or results that they saw as 

missing or problematic. For example, participants liked comparing recommended and 

historic releases and highlighting months of reservoir spills. They also liked the ability to 

visually compare water allocation and restoration needs for different locations, times, and 

species. However, they pointed out the need to further disaggregate agricultural demand 

sites served by the Little Bear River into smaller water users. They also provided feedback 

on the spatial distribution of cutthroat trout, brown trout, and bluehead suckers which 

assisted selecting indicator species for every reach in the model. We updated the web app 

to incorporate these improvements on the model network and the results. Between 

September and December, 2016, the app was also presented to various other groups within 

the study area and at national conferences (Alafifi, 2016b, a; Alafifi and Rosenberg, 2016). 

Over the course of 10 months from July 2016 to May 2017, the app received 331 views, or 

an average of over 1 view per day (Figure 4.10). 

The WEAP web app supports ongoing research to formulate strategies to manage 

water in the face of drought events in the Bear River basin. The current version of the 

WEAP model simulates 40 years (1966-2006) of system operations using historic flows 

and current demand to provide insights into the reliability of the water supply system. This 

web app complements the WEAP model and allows for a better dissemination of results 

among water managers across the three states. Further work on the Bear River WEAP 

model will include scenarios of extreme drought events that are estimated from 4 centuries 

(1605-2006 CE) of reconstructed monthly natural flows generated using tree rings (Allen 
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et al., 2013; DeRose et al., 2015). New scenarios will also include changes in water demand 

projected until 2050. Following our approach, these scenarios can be added to the web app 

in future iterations to provide managers with an interactive tool to visually compare system 

response to multiple drought events.  

The approach we presented in this paper can be used to build similar web GIS apps. 

First, use the Create River Network tool that we published at http://webmapbuilder.usu.edu 

to interactively draw on the map to create their network. Clicking execute will create web 

GIS layers of their network with unique identifiers. They can then create a new map in 

ArcGIS Online, upload these web layers along with their model outputs and use the 

identifiers to join both layers. Detailed instructions and examples are provided in the tool 

GitHub repository (Alafifi, 2017). This framework allows to relatively quickly build and 

design a targeted web GIS app to communicate water resources models.  

Developing an interactive web GIS app encompasses a planned workflow that starts 

with knowing the target audience for the app, selecting the information to be shown on the 
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Figure 4.10 Lower Bear River web app usage activity 
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AWRA Annual 
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map, and designing user experience and customizing interactivity based on the audience. 

The recommended approach of building apps using ArcGIS Online allows for the 

separation of web maps and web apps. For example, a single web map was developed for 

the WASH optimization model to host several layers of the model spatial and temporal 

data. However, multiple apps were built and configured to communicate different parts of 

the model to different users, such as single reservoir operators, or water managers from a 

sub-basin in the watershed. It is also important for web app developers to consider that 

users need to use the app and access its data with minimal instructions. Therefore, in 

building the two use cases web apps, we followed best practices in web design and 

development such as colors, fonts, symbols, and authorship. For example, we provided 

users with a welcome window screen that appears before users start to interact with the 

app. The screen provides information about the app purpose and authors and instructions 

to use. Also, we also made the symbols and labels legible and dynamic with map extent. 

The tool we presented in this paper facilitates displaying and interacting with model 

outputs in web app environments. Interactivity can be further improved beyond viewing 

outputs to connecting the web interface to the water resources model computational 

algorithm (Figure 1). This will allow users to ask “what if” questions on model inputs and 

see new outputs on the web map. This integration could be achieved by running a water 

resources model on a web server and enabling the web GIS app to manipulate model inputs, 

perform web-based simulations, and display new outputs (Byrne et al., 2010). 

While ArcGIS Online provides many functionalities and options to develop web 

apps, users might need to supplement their apps with their own tools to perform analyses 
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that are not supported by ArcGIS Online platform. For example, users can author a 

geoprocessing tool that measures the inundated area for user-predicted flood level on 

ArcMap and share it on a web app. Users will need to host their geoprocessing tools on a 

web server to share it on a web app. In addition, users can produce and add their own charts 

to the popups as images which could be more informative and useful to communicate 

model results than existing chart-building tools. Another important consideration for 

ArcGIS Online is the costs associated with developing a web app. ArcGIS Online is freely 

available for noncommercial use with a public account that allows users to publish data 

and create apps with limited functionalities. A free public account allows uploading node 

data, but does not allow merging layers with user data. ArcGIS Online full capabilities are 

available with premium plans that are based on annual subscription to use Esri’s online 

servers in addition to number of credits in exchange of some spatial analysis tools. 

While ArcGIS Online offers many features that are not available in other platforms, 

some water resources modelers might hesitate to sign up for a paid account. Therefore, we 

see a great value in developing and incorporating our approach in other free and open-

source platforms such as HydroShare. For example, allowing users to create river networks 

directly on a web map in addition to the ability to join features can further advance the use 

of HydroShare GIS to display, collaborate on, and share water resources data. This will 

also further encourage researchers to develop and share tools that will improve the ability 

to run models and update results directly from a web app. 

Web apps provide interactive user interfaces that only require a web browser to 

access which facilitates discussions between model developers and river managers. The 
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two web apps developed for the Bear River use cases are examples of the power of using 

web interfaces to facilitate sharing and communicating model outputs with decision 

makers. 

4.6 Conclusions  

This paper addressed the problems to represent node-link networks of water 

allocation models as GIS layers and allow users to interact with model results and the 

network in an interactive web mapping app. Building web GIS apps for water resources 

models makes spatial and temporal information convenient and readily-accessible and 

independent of modeling software. Web GIS apps are useful tools to provide a venue for 

collaboration between model developers and policy makers, facilitate communication of 

model outputs, and make outputs accessible to the public. Current web GIS platforms can 

only display spatial data in GIS-accepted formats. While the outputs of some hydrologic 

and water resources models are described in GIS formats, many water allocation models 

use node and link network schema. Constructing a node-link network on web maps requires 

technical experience that can be a challenge for many water resources modelers. Here, we 

presented an open-access tool to build a node-link network and use it to create a web GIS 

app without coding or GIS desktop software. Our new tool allows users to click on a map 

to place on- and off-stream nodes and links and returns layers of river network with unique 

identifiers. Users can then use available tools in ArcGIS Online to upload and join their 

model outputs with network layers on the web map.  

We demonstrated two use cases of web apps that were developed to complement 

the collaborative approach of two water resources models to allocate water in the Bear 



122 
 

 
 

River basin. One case study showed that model development process was supported by a 

web app to define node-link network, priority sites, and species. The web app was then 

used to facilitate communicating model results of recommended reservoir releases and 

instream flow with project stakeholders and guided locating habitat restoration needs. 

 Both web apps allowed presenting model outputs in a focused and directed format 

and enabled decision makers to prioritize restoration sites and assess vulnerability of the 

watershed supply system. The Create River Network tool leverages advances in web 

technology to support general trends in water resources models towards making model data 

and results available and accessible to users, which opens up new opportunities to 

collaborate on water research and to better communicate with non-technical users.   
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CHAPTER 5 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

5.1 Summary and Conclusions 

Managing regulated rivers to improve habitat can be improved by tools that 

determine when, where, and how to allocate water between competing users in the basin. 

These tools need to capture the inevitable uncertainty in habitat models and provide ways 

to communicate model outputs to policy makers and the public. This dissertation presented 

three tools to: (1) recommend times, locations, and magnitudes of water and budget 

allocation to improve aquatic, floodplain, and wetland habitat quality, (2) quantify and 

communicate uncertainty in habitat models by inferring few management scenarios from 

large multivariate space of alternatives, and (3) build web maps that allow water resources 

modelers to share and display model outputs in user-friendly, accessible, and interactive 

platforms. These tools and their applications to improve water and habitat management and 

decision making were presented in three studies for the Bear River Basin.  

Chapter 2 addressed the problems of determining when, where, and how to allocate 

water between competing users in the basin. While prior system models to manage stream 

flow have included species’ water needs as constraints on flow or as a penalty to minimize 

deviations from natural flow regimes, this chapter presented a novel systems optimization 

model that formulates and maximizes an ecological objective as the suitable aquatic, 

floodplain, and wetland habitat area. This measurable and observable habitat area objective 

allows for comparison of locations, times, and species to identify opportunities in the basin 

to most improve overall habitat quality. The new systems model was applied to the Lower 
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Bear River, Utah, using stakeholder-verified species- and site-specific habitat suitability 

curves. The model recommended reservoir releases, river flows, and planting efforts to 

maximize habitat area subject to physical, infrastructure, and management constraints.  

Chapter 3 addressed the problems of communicating a large number of alternatives 

from habitat models that consider hydrologic, ecologic, and management uncertainties. 

Prior work on uncertainty analysis in habitat models have recommended large ranges of 

possible management alternatives. Chapter 3 presented a semi-supervised cluster analysis 

approach to reduce a large dimensional uncertainty problem and focus management efforts 

on important parameters to measure and monitor more carefully. This approach was 

applied to the deterministic systems model of chapter 2 using the Lower Bear River, Utah, 

as a case study. This approach helped characterize and quantify the effects of uncertainty 

on model results. It also facilitated including management preferences in the search for 

clusters and identifying few possible reservoir release patterns that most improve habitat 

quality.  

Chapter 4 addressed the problems to represent node-link networks of water 

allocation models as GIS layers and allow users to interact with model results and the 

network in an interactive web mapping app. Prior tools required GIS and web technical 

experience to share model outputs on web maps. Chapter 4 presented an open-access web 

tool that allows modelers to create water resources model nodes and links on web maps. 

The tool returns web layers of river network with unique identifiers which allows creating 

web applications for water allocation models. The chapter presents an approach that uses 

this tool to develop user-friendly and interactive interfaces to communicate spatially and 
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temporally-distributed water resources model outputs with policy makers and the public. 

Chapter 4 demonstrated this tool with two use cases. First, a web application was developed 

to display some results from Chapter 2 optimization model application to the Lower Bear 

River. This web app supported the model development process and was used to 

communicate model results with project stakeholders to guide locating habitat restoration 

needs. A second web app was developed to display results of ongoing simulation modeling 

efforts to manage water for future supply and demand scenarios for the entire Bear River 

Basin. The second web app helps formulate strategies to manage water in the face of 

drought events in the Bear River basin. 

All the modeling tools presented in this dissertation offer novel approaches to 

improve water and habitat management decisions. These tools provide managers with an 

integrated approach to identify opportunities to effectively allocate resources to most 

improve habitat quality and area. Together, these tools provide managers with a better 

understanding of the tradeoffs in river habitat decisions and facilitate communicating these 

decisions with policy makers and the public. All the tools presented in this dissertation 

were developed in collaboration with stakeholders and decision makers in the Bear River 

basin. Several state and county regulators, environmental groups, river and wetland 

manager, and landowners provided data and significant feedback on the tools development 

process and applications. The participatory modeling approach helped tailor the 

applications of the presented tools to management objectives and priorities and facilitated 

the adoption of these tools in habitat management decision-making process. 
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5.2 Management Recommendations 

Recommendations from applying the tools of this dissertation to the Lower Bear 

River basin include: 

 Release more water from Porcupine and Hyrum reservoirs in winter months 

and reduce late spring spills. Comparing recommended releases of these 

two reservoirs to historic releases in Chapter 2 showed that these changes 

in releases patterns will improve brown trout spawning in late fall and 

maintain the eggs in gravel redds until they hatch in spring.  

 Restoration efforts on the Lower Bear River basin should focus on the Little 

Bear River and the Blacksmith Fork rivers. Shadow value results in Chapter 

2 showed that the greatest returns for each unit of water flow in the system 

occurred on both the East Fork of the Little Bear River for most months of 

the year and on the Blacksmith Fork from April to October. Efficient water 

management of these two rivers can most improve habitat quality. 

 River managers should set up agreements and conservation easements with 

riparian landowners, particularly along the Bear River main stem, to protect 

floodplains and encourage seed germination for native riparian trees. 

Model results in Chapter 2 showed that floodplain area along the river is 

restricted by private agricultural fields and grazing lands. Results in 

Chapter 3 showed that an increase in available floodplain area to plant 

riparian trees could help improve habitat quality, return lands to floodplain 

functions, and restore lateral connectivity with the river. 
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 Wetlands managers at the Bear River Migratory Bird Refuge should 

actively communicate with upstream users to protect the Refuge’s summer 

water rights. Comparing wetland habitat suitability index and 

recommended flows at the Refuge against historic conditions in Chapter 2 

showed that the Refuge currently does not receive its allocated water rights 

during summer months. The model flow recommendations can improve the 

Refuge habitat conditions but the Refuge managers should acquire 

upstream water storage rights.  

 River managers should work collaboratively with local, federal, and 

nonprofit organizations to accurately forecast supply and demand and plan 

for high flow year and for droughts. The 5-year analysis in Chapter 2 

showed that the ecosystem quality responded to variations in available 

water. Therefore, managers should be directly involved in ongoing 

discussions of future water developments in the Bear River basin and 

carefully consider water availability to the Refuge and to the Great Salt 

Lake. 

 Managers should also work with stakeholders to recognize and protect 

environmental flows in the water permitting and planning process. 

Although Utah water law does not currently allow new appropriations of 

water for instream flow, more restrictive temporary or permanent transfers 

of existing rights to environmental users are possible. Transfer mechanisms 

may include donation, lease, or purchase but must go to either the Utah 
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Division of Wildlife Resources, the Division of Parks and Recreation, or a 

nonprofit fishing group such as Trout Unlimited.  

 Managers should consider tradeoffs between habitats and plan timely-

reservoir releases to improve habitat quality when species need water. For 

example, recommended reservoir releases in Chapters 2 and 3 showed that 

spring and early summer releases that coincide with seed germination 

improves cottonwood recruitment. Late summer and early fall releases 

support spawning seasons for brown trout. 

5.3 Future Work 

This dissertation presented novel decision-support tools that improve water and 

habitat management. There are several opportunities to further improve these tools and 

extend their applicability to other river systems. Future work includes: 

 Extend the WASH model of Chapter 2 to explicitly include water quality 

parameters such as dissolved oxygen or turbidity. The model currently only 

includes water depth and flood frequency as the flow-related attributes 

defining habitat quality. Including water quality parameters can provide 

insights on other attributes that are critical for the survival of priority 

species. Including other attributes requires describing relationships 

between these attributes and model decision variables (i.e. reservoir 

releases, diversions, and planting area). 

 Extend the WASH model to include additional species, habitat attributes, 

or habitat types such as natural, oxbow, seasonal, or other wetlands in the 
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watershed that were not included in the Lower Bear River study. This will 

be useful to demonstrate the applicability of the systems model to new or 

additional parameters. It could also reveal more sources of uncertainty that 

were not included in Chapter 3. 

 Apply the WASH model on a finer (e.g. reach-level) scale and include the 

dynamics of stream habitat ecology. This will help test the model 

assumptions of riparian trees proximity to river banks and could help 

include other important biotic and abiotic factors for seedling survival, such 

as groundwater level, soil salinity, and other plants’ competition for water. 

 Couple the WASH systems model with a hydrologic model that more 

accurately accounts for water availability in the basin and considers 

variability in snowpack, losses in instream flow, and return flow. This 

could improve the model assumptions of water availability in the system 

and help plan for possible future water development or draught conditions. 

 Extend the sources of uncertainties considered in Chapter 3 to include 

model formulation and structure uncertainty. This includes WASH 

aggregation method for habitat suitability indices for multiple species 

within a habitat. This also includes how WASH aggregates multiple habitat 

areas and the use of weights to reflect management preferences for species, 

times, and locations. These additional sources of uncertainty could test the 

robustness of the cluster analysis approach by adding more nominal and 

ordinal dimensions to the clustering algorithm.  
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 Extend the sampling approach of Chapter 3 by using other sampling 

methods such as Latin Hypercube and Gibbs conditional sampling. This 

could reduce the number of runs required for sensitivity analysis and could 

allow for using a global optimum solver. 

 Extend the approach of Chapter 4 beyond viewing water resources model 

outputs to connecting the web interface to the models themselves. This will 

allow users to ask “what if” questions on model inputs and see new outputs 

on the web map. This integration could be achieved by running a water 

resources model on a web server and enabling the web GIS app to 

manipulate model inputs, perform web-based simulations, and display new 

outputs.  

Managing river flow involves making decisions on the allocation of water between 

different users across the basin. Managers look for tools to help them make holistic 

decisions on the amounts, times, and locations to apply scarce resources. This dissertation 

presented a set of management tools that aim to improve water and habitat management 

decision making. These tools were developed in collaboration with river managers and 

stakeholders and were applied to real-case problems. The applications of these tools provid 

river managers with recommendations and insights to make informed decisions to improve 

river habitat quality. 
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Appendix A: Lower Bear River Network 

 
  

Figure A.1 Lower Bear River network represented as a group of nodes and links 
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Appendix B: Model Formulation for the Watershed Area of Suitable Habitat 

This appendix provides the model formulation for the Watershed Area of Suitable 

Habitat (WASH) including the decision variables that managers control, the objective 

function to maximize, and the physical, infrastructure, and management constraints. 

Decision Variables 

Decision variables include reservoir releases RRv,t [million cubic meters per month, 

Mm3] at reservoir v in month t, diversions volumes Qj,dem,t [Mm3/month] from the river at 

node j to demand sites dem in month t to satisfy urban and agricultural demand, floodplain 

planting area RVj,k,t,n [Mm2] by seeding or planting species n. These variables control a 

group of state variables that include reservoir storage volume STORv,t [Mm3], reservoir 

surface area RAv,t [Mm2], river flow Qj,k,t  [Mm3/month] from node j to node k in month t, 

river water depth Dj,k,t [m/month], channel surface area Aj,k,t, [Mm2], channel width WDj,k,t 

[m], and floodplain plant cover Cj,k,t,n [Mm2]. 

Objective Function 

The WASH objective function maximizes the weighted sum of the suitable areas 

of aquatic [INDaquatic,j,k,t], floodplain [INDfloodplain,j,k,t], and wetland [INDwetland,j,k,t] habitats 

[Mm2] in reach j to k in month t where 𝑤𝑔ℎ𝑡 , , ,  are the stakeholders-decided weights for 

habitat indictor s in reach j to k at month t. Weights take values from 0 (not important) to 

1 (important).  

𝑀𝑎𝑥  𝑊𝐴𝑆𝐻 = ∑ 𝑤𝑔ℎ𝑡 , , ,  ∙   𝐼𝑁𝐷 , , ,, , ,         -- [1] 

The value of each habitat indicator is the product of a suitability index and an 

affected area. Suitability indices (SIs) are functions of the habitat attribute(s) that influence 
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priority species survival and abundance. Values of SIs approach 1 (excellent conditions) 

when priority species exist (or their density exceeds a certain threshold). In contrast, SIs 

tend towards 0 (poor conditions) when priority species do not live or their density is below 

a threshold (Roloff and Kernohan, 1999). SIs are constructed using empirical data, or 

absent data, they are assigned based on expert opinion.  

Aquatic Habitat 

The aquatic habitat indicator is calculated by multiplying the Aquatic Suitability 

Index (rsi; unitless) and channel surface area (Eq. 2). With multiple fish species (y), we 

multiply suitability indices together to emphasize the concurrent need for suitable water 

depths for all species at the same time and location.  

       𝐼𝑁𝐷 , , , = ∏ 𝑟𝑠𝑖𝑗,𝑘,𝑡,𝑦 𝐷𝑗,𝑘,𝑡𝑦  ∙  𝐴𝑗,𝑘,𝑡 ,        ∀ 𝑗, 𝑘, 𝑡         ---- [2]  

Floodplain Habitat 

 The floodplain connectivity indicator is calculated by multiplying a 

floodplain connectivity index (fci) by the area of plant cover (C) for each month t and then 

summing the values for each plant species n [eq. 3]. fci is a function of streamflow and 

takes the value of 1 [excellent lateral connectivity] if the instream flow 𝑄 , ,  equals or 

exceeds the 2-year recurrence flow. fci takes the value of 0 [poor connectivity] when flow 

is at or below the 1-year recurrence value. 

𝐼𝑁𝐷 , , , = ∑ 𝑓𝑐𝑖𝑗,𝑘,𝑡,𝑛(𝑄
𝑗,𝑘,𝑡

) ∙  𝐶𝑗,𝑘,𝑡,𝑛𝑛   ∀ 𝑗, 𝑘, 𝑡         ----[3]  

Impounded Wetlands 

The Wetland Suitability Index (wsi) of WASH represents the suitability of 

impounded wetlands to improve water depth and native plant cover for priority bird 
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species. In Eq. [4], we use WSI to define an aggregate index that describes the suitability 

of water depth and native plant cover for multiple wetland bird species. The impounded 

wetland indicator is calculated by multiplying a wsi index by the total wetland surface area 

aw [Mm2].  

𝐼𝑁𝐷 , , , =  𝑊𝑆𝐼𝑗,𝑘,𝑡 𝑄𝑗,𝑘,𝑡  ∙   𝑎𝑤𝑗,𝑘,𝑡,           ∀ 𝑗, 𝑘, 𝑡                  ----- [4] 

Constraints 

a. Reservoir storage balance: reservoir storage for each reservoir v at the beginning of 

each time step t+1 equal storage at the beginning of prior time step t plus net flows of 

links leading to the reservoir minus reservoir releases and minus evaporation losses 

[eq. 5]. Reservoir releases are flows along all links that leave reservoir v in month t 

[eq. 6]. Evaporation losses are estimated by multiplying a monthly evaporative rate 

𝑒𝑣𝑎𝑝 ,  [m/month] by the reservoir surface area. 𝑅𝐴 ,  is a function of reservoir 

storage. The term 𝑙𝑠𝑠 , ,  [%] is the net loss rate on links connecting to reservoir v and 

is expressed as a fraction of link flow. 

𝑆𝑇𝑂𝑅 , = 𝑆𝑇𝑂𝑅 , + ∑ 𝑄 , , ∙ (1 − 𝑙𝑠𝑠 , , ) − 𝑅𝑅 , −  𝑒𝑣𝑎𝑝 , ∙ 𝑅𝐴 , 𝑆𝑇𝑂𝑅 ,  ∀𝑣, 𝑡  -- [5] 

𝑅𝑅 ,  = ∑  𝑄𝑣,𝑗,𝑡    ∀𝑣, 𝑡                    ----- [6] 

b. Mass balance at junctions. Flows entering each non-reservoir node j must equal or 

exceed evaporative losses plus flows leaving the node [eq. 7]. localInflowj,t 

[Mm3/month] are reach gains, groundwater inflows, or other flows that accumulate at 

node j in time t. At the most upstream nodes in a network, localInflow is the head flow 

and represents the boundary condition and cumulative contribution of climate, runoff, 

and other hydrologic processes. linkEvap [m/month] describes the evaporative loss 
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rate on links; link evaporation [m3/month] is the product of the evaporative loss rate 

and channel surface area. 

𝑙𝑜𝑐𝑎𝑙𝐼𝑛𝑓𝑙𝑜𝑤 , +  ∑ 𝑄 , , ∙ 1 − 𝑙𝑠𝑠 , , −  ∑ 𝐴 , , ∙ 𝑙𝑖𝑛𝑘𝐸𝑣𝑎𝑝 , ,  ≥ ∑ 𝑄 , ,  ∀𝑗, 𝑡    ---[7] 

c. Mass balance at each demand site. Total flow to each demand site dem in time t must 

equal or exceed the return flow back to the river [eq. 8]. Total flow is reduced by the 

depleted flow amounts that include diversion losses 𝑙𝑠𝑠 , ,  and urban or 

agricultural consumptive use fraction 𝐶𝑜𝑛𝑠 , ,  [both % of inflow received]. 

∑ 𝑄 , , ∙ 1 − 𝑙𝑠𝑠 , , ∙ 𝐶𝑜𝑛𝑠 , ≥  ∑ 𝑄 , ,            ∀𝑑𝑒𝑚, 𝑡     ---- [8] 

d. Plant cover. Plant cover 𝐶 , , ,  [Mm2] for each species n in each link j to k at time step 

t equals cover at prior time step t-1 plus planted areas 𝑅𝑉 , ,  [Mm2] and natural growth 

or death 𝑔 , ,  [Mm2; eq. 9]. Plant cover 𝐶 , , ,  cannot exceed the total floodplain area 

adjacent to each reach 𝑐𝑚𝑎𝑥 ,  [eq. 10]. Planting 𝑅𝑉 , ,  is also limited to growing 

season [eq. 11] 

𝐶 , , , = 𝐶 , , , + 𝑅𝑉 , , , + 𝑔 , ,                       ∀ 𝑗, 𝑘, 𝑡, 𝑛                              ---- [9]    

∑ 𝐶 , , , ≤  𝑐𝑚𝑎𝑥 ,                                                  ∀ 𝑗, 𝑘, 𝑡             ---- [10] 

∑ 𝑅𝑉 , , , ≤
𝑐𝑚𝑎𝑥 , ,  𝑡 ∈ 𝑔𝑟𝑜𝑤𝑖𝑛𝑔 𝑠𝑒𝑎𝑠𝑜𝑛

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
             ∀ 𝑗, 𝑘, 𝑡            ---- [11]  

e. Channel topology relationships. River flow, channel stage, width, and surface area 

are related on each link j to k in each time step t [eqs. 12-14]. These relationships are 

established based on measured data. We use linear relationship for stage-flow (𝑠𝑓) and 

(Leopold and Maddock (1953)) power function for width-flow (𝑤𝑓) relationships. 

𝑙𝑛𝑔 ,  is the length of each river segment [m]. 
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Stage-flow relationships:  𝐷 , , = 𝑠𝑓 , ∙ 𝑄 , , + 𝑠𝑓 ,   ∀ 𝑗, 𝑘, 𝑡          ---- [12] 

Width-flow relationships: 𝑊𝐷 , , = 𝑤𝑓 , ∙ 𝑄 , , +  𝑤𝑓 ,   ∀ 𝑗, 𝑘, 𝑡        ---- [13] 

Channel surface area: A , , =  𝑊𝐷 , ∙ 𝑙𝑛𝑔 ,                           ∀ 𝑗, 𝑘, 𝑡              ---- [14] 

f. Reservoir storage limits. Storage in each reservoir v cannot go below a minimum 

storage volume minstorv [Mm3] which is the reservoir dead pool; similarly reservoir 

storage cannot exceed the storage capacity maxstorv [Mm3] at any time t or the top of 

the flood control pool, whichever is smaller [eq. 15]. 

    𝑚𝑖𝑛𝑠𝑡𝑜𝑟 ≤  𝑆𝑇𝑂𝑅 ,  ≤ 𝑚𝑎𝑥𝑠𝑡𝑜𝑟     ∀𝑣, 𝑡                              ---- [15] 

g. Meet demand requirements. Diversions to each demand site dem should meet 

requirements dReqdem,t [Mm3/month] in each time t [eq. 16]. 

 ∑ 𝑄 , , ∙ (1 − 𝑙𝑠𝑠 , , )  ≥  𝑑𝑅𝑒𝑞 ,           ∀𝑑𝑒𝑚, 𝑡 --- [16] 

h. Flow limits. Minimum and maximum values 𝑞𝑚𝑖𝑛 , ,  and 𝑞𝑚𝑎𝑥 , ,  bound flow in 

each link j to k in time t [eq. 17]. Minimum levels may be minimum instream flow or 

diversion requirements. Maximum bounds can be channel, diversion, or other 

capacities.  

 𝑞𝑚𝑖𝑛 , , ≥ 𝑄 , , ≥ 𝑞𝑚𝑎𝑥 , ,           ∀𝑗, 𝑘, 𝑡                       ---- [17] 

i. Management budget. The total cost to plant floodplain species [ctn; $/m2], make 

reservoir releases, or adjust diversion gates [stn; $/m3] should not exceed the financial 

budget b [$; eq.18]. 

 ∑ ∑ ∑ ∑ (𝑐𝑡 ∙ 𝑅𝑉 , , ,  ) + ∑ ∑ ∑ (𝑠𝑡 , , ∙ 𝑄 , , )  ≤ 𝑏               ------[18] 
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Appendix C: Build River Network Workflow 

 
 
 
 

 
 Figure C.1 Workflow of the Build River Network tool using ArcMap Model Builder 
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On 12/14/2017 
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to Improve River, Riparian, and Wetlands Habitat Quality Under Uncertainty. Advisor: 
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allocate water to restore stream habitat quality for priority fish, tree, and bird species 
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and vegetation cover 
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