1,805 research outputs found

    Smart Traction Control Systems for Electric Vehicles Using Acoustic Road-type Estimation

    Full text link
    The application of traction control systems (TCS) for electric vehicles (EV) has great potential due to easy implementation of torque control with direct-drive motors. However, the control system usually requires road-tire friction and slip-ratio values, which must be estimated. While it is not possible to obtain the first one directly, the estimation of latter value requires accurate measurements of chassis and wheel velocity. In addition, existing TCS structures are often designed without considering the robustness and energy efficiency of torque control. In this work, both problems are addressed with a smart TCS design having an integrated acoustic road-type estimation (ARTE) unit. This unit enables the road-type recognition and this information is used to retrieve the correct look-up table between friction coefficient and slip-ratio. The estimation of the friction coefficient helps the system to update the necessary input torque. The ARTE unit utilizes machine learning, mapping the acoustic feature inputs to road-type as output. In this study, three existing TCS for EVs are examined with and without the integrated ARTE unit. The results show significant performance improvement with ARTE, reducing the slip ratio by 75% while saving energy via reduction of applied torque and increasing the robustness of the TCS.Comment: Accepted to be published by IEEE Trans. on Intelligent Vehicles, 22 Jan 201

    Robust condition monitoring for modern power conversion

    Get PDF
    The entire US electrical grid contains assets valued at approximately $800 billion, and many of these assets are nearing the end of their design lifetimes. In addition, there is a growing dependence upon power electronics in mission-critical assets (i.e. for drives in power plants and naval ships, wind farms, and within the oil and natural-gas industries). These assets must be monitored. Diagnostic algorithms have been developed to use certain key performance indicators (KPI) to detect incipient failures in electric machines and drives. This work was designed to be operated in real-time on operational machines and drives. For example the technique can detect impending failures in both mechanical and electrical components of a motor as well as semiconductor switches in power electronic drives. When monitoring power electronic drives, one is typically interested in the failure of power semiconductors and capacitors. To detect incipient faults in IGBTs, for instance, one must be able to track KPIs such as the on-state voltage and gate charge. This is particularly challenging in drives where one must measure voltages on the order of one or two volts in the presence of significant EMI. Sensing techniques have been developed to allow these signals to be reliably acquired and transmitted to the controller. This dissertation proposes a conservative approach for condition monitoring that uses communications and cloud-based analytics for condition monitoring of power conversion assets. Some of the potential benefits include lifetime extension of assets, improved efficiency and controllability, and reductions in operating costs especially with remotely located equipment

    Tree-based ensembles unveil the microhabitat suitability for the invasive bleak (Alburnus alburnus L.) and pumpkinseed (Lepomis gibbosus L.): Introducing XGBoost to eco-informatics

    Full text link
    [EN] Random Forests (RFs) and Gradient Boosting Machines (GBMs) are popular approaches for habitat suitability modelling in environmental flow assessment. However, both present some limitations theoretically solved by alternative tree-based ensemble techniques (e.g. conditional RFs or oblique RFs). Among them, eXtreme Gradient Boosting machines (XGBoost) has proven to be another promising technique that mixes subroutines developed for RFs and GBMs. To inspect the capabilities of these alternative techniques, RFs and GBMs were compared with: conditional RFs, oblique RFs and XGBoost by modelling, at the micro-scale, the habitat suitability for the invasive bleak (Alburnus alburnus L.) and pumpkinseed (Lepomis gibbosus L). XGBoost outperformed the other approaches, particularly conditional and oblique RFs, although there were no statistical differences with standard RFs and GBMs. The partial dependence plots highlighted the lacustrine origins of pumpkinseed and the preference for lentic habitats of bleak. However, the latter depicted a larger tolerance for rapid microhabitats found in run-type river segments, which is likely to hinder the management of flow regimes to control its invasion. The difference in the computational burden and, especially, the characteristics of datasets on microhabitat use (low data prevalence and high overlapping between categories) led us to conclude that, in the short term, XGBoost is not destined to replace properly optimised RFs and GBMs in the process of habitat suitability modelling at the micro-scale.This project had the support of Fundacion Biodiversidad, of Spanish Ministry for Ecological Transition. We want to thank the volunteering students of the Universitat Politecnica de Valencia, Marina de Miguel, Carlos A. Puig-Mengual, Cristina Barea, Rares Hugianu, and Pau Rodriguez. R. Munoz-Mas benefitted from a postdoctoral Juan de la Cierva fellowship from the Spanish Ministry of Science, Innovation and Universities (ref. FJCI-2016-30829). This research was supported by the Government of Catalonia (ref. 2017 SGR 548).Muñoz-Mas, R.; Gil-Martínez, E.; Oliva-Paterna, FJ.; Belda, E.; Martinez-Capel, F. (2019). Tree-based ensembles unveil the microhabitat suitability for the invasive bleak (Alburnus alburnus L.) and pumpkinseed (Lepomis gibbosus L.): Introducing XGBoost to eco-informatics. Ecological Informatics. 53:1-12. https://doi.org/10.1016/j.ecoinf.2019.100974S1125

    New Approaches in Automation and Robotics

    Get PDF
    The book New Approaches in Automation and Robotics offers in 22 chapters a collection of recent developments in automation, robotics as well as control theory. It is dedicated to researchers in science and industry, students, and practicing engineers, who wish to update and enhance their knowledge on modern methods and innovative applications. The authors and editor of this book wish to motivate people, especially under-graduate students, to get involved with the interesting field of robotics and mechatronics. We hope that the ideas and concepts presented in this book are useful for your own work and could contribute to problem solving in similar applications as well. It is clear, however, that the wide area of automation and robotics can only be highlighted at several spots but not completely covered by a single book
    • …
    corecore