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Abstract 

 

This thesis presents an investigation into a novel method of estimating the trajectory 

(future direction and elevation) of a vehicle, and subsequently influencing the control 

of an engine. The technique represents a convenient and robust method of achieving 

road prediction, to form a fuzzy system that „looks ahead‟, leading potentially to 

improved fuel consumption and a consequent reduction in exhaust emissions. The 

work described in this thesis brings together two modern technologies, Neuro-fuzzy 

techniques and Global Positioning System, and applies them to engine/vehicle 

control. 

 

The intelligent GPS-based control system presented in this thesis utilises information 

about the current vehicle position and upcoming terrain in order to reduce vehicle fuel 

consumption as well as improve road safety and comfort. The development of such 

in-vehicle control systems has provided static and dynamic road information. The 

vehicle running parameters have been mathematically defined whilst the engine 

control algorithms were derived from a custom-built engine test-rig. As the vehicle 

travelled along a particular route, the road information such as gradient and position 

was stored with the past trajectory using a Neuro-fuzzy technique. This road 

information was continuously updated and replaced by new data as the vehicle moved 

along, thereby adjusting the engine control parameters to reflect the actual current 

vehicle running data. The control system essentially used a fuzzy logic derived relief 

map of the test route and this was further validated and corrected based on the past 

trajectory from the in-vehicle GPS sensor. The simulation model demonstrated the 

feasibility and robustness of the control system for motor vehicle control applications. 
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Chapter 1 : Introduction 

The environmental challenges of the 21st century will require tremendous 

technological advancements in the automotive industry. The next generation of power 

unit in these vehicles has to be much cleaner and more efficient than the current 

„conventional‟ internal combustion engines. Ultimately, zero emission power units 

will be required, pushing the development of electric and fuel cell technologies. 

However, at the moment, fuel cells are complex and currently too expensive for 

widespread application. The advancement of battery and fuel cell technology still 

limits the potential of both developments. Hence, internal combustion (IC) engines are 

still widely used and available in automotive applications. 

 

1.1 Brief and Motivation 

Europe, the United States, and much of the rest of the world, have legislative controls 

which govern the permissible levels of pollutants in the exhausts of IC engines.  

Maintaining these standards in current engines demands strict control of operational 

parameters using a microprocessor-based  Engine Management System (EMS) or 

Engine Control Unit (ECU) and an increasingly comprehensive array of sensors. 

 

Engine management technology for controlling automotive engines is well 

established.  The EMS implements control strategies which aim to achieve optimum 

efficiency and high output power when required, whilst also maintaining low 

emission levels.  At the same time, in many cases, the EMS must operate the engine in 

a region favourable to the functioning of a three-way catalytic converter, which 

further reduces the harmful content of the exhaust. The EMS governs the ignition 

timing and the amount of fuel admitted to the engine; also, in some cases the amount 
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of exhaust gas recirculation (EGR), and other parameters in advanced engine designs, 

for example, the valve timing.  It selects values for these parameters from measured 

quantities such as engine speed, load torque, air mass flow rate, inlet manifold air 

pressure, temperatures at various points, and throttle position. The EMS has a further 

role, in that legislation in the US and now in Europe demands that automotive engines 

possess an on-board diagnostic (OBD) system.  The OBD system must indicate when 

emissions do not conform to standards, or when fault conditions occur that could lead 

to excessive emissions.  In modern automotive engines, the EMS and associated 

sensor technology forms a complex electronic system. 

 

The principal air pollutants emitted by small gasoline engines are HC and CO; total 

NOx emissions from these engines are insignificant. The European Commission 

Directorate-General for the Environment, the Auto Oil II study concluded that there 

was no strong environmental need for further controls on CO emissions [1]. 

Hydrocarbons contribute to ground level ozone formation leading to risk of damage to 

human respiratory systems. In addition some hydrocarbons are carcinogenic. Carbon 

monoxide is harmful to human health, interfering with the ability of the blood to 

supply oxygen to the body's tissues. However airborne CO concentrations are now 

sufficiently low as not to be a general concern. 

 

The legislative pressures that influence automotive engine manufacturers have not in 

the past been applied to small off-road engines in Europe. For this reason, complex 

electronic control, of the sort found in automotive engines, has seldom proved cost-

effective. However, current European emission standards are now forcing 

manufacturers to limit the emissions of IC engines [2]. In addition, there are 

increasing pressures from the environmental lobby in this direction.  This will make 

electronic control necessary, even for small engines where previously it has not been 

economical. 

 

The low-cost of small passenger vehicles will necessitate that control systems which 

are applied to them are themselves of minimum cost, with a requirement for a small 
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number of inexpensive sensors, and sensing and control algorithms that can be 

executed in real-time on simple microcontrollers. 

 

The UK and Europe have many major cities and surrounding villages which have 

excessive level of traffic, often making travel around the cities difficult. The exhaust 

emissions and noise of the increasing number of vehicles going in and around the city 

add to the problem. In urban areas, due to their beneficial effects on the environment, 

the use of small and fuel-efficient passenger vehicles could be a medium term solution 

for the improvement of traffic and more particularly for a healthier environment. 

 

A small vehicle is typically accommodating the driver and one or two passengers. 

Such vehicles are designed and produced for economic purposes when the use of 

materials, resources and fuel are the major consideration. The economy of operating 

such a small car has often been helped by simply-constructed three-wheeled carriages 

with very small engines. Two-stroke internal combustion engines are widely used in 

the early versions of such vehicles. Many evolve from a small motorcycle design, of 

the kind found in parts of developing countries, which currently use unsophisticated 

gasoline or diesel engines, and produce high levels of emissions. 

 

The Southeast Asian versions of such small cars, known as tuk-tuks are a form of 

urban transport. They are particularly popular where traffic congestion is a major 

problem, such as in Bangkok, Thailand and other Thai cities. These vehicles have a 

small cabin for the driver in the front and seating for three in relative comfort in the 

rear. They are very manoeuvrable and can turn around in one lane of traffic with room 

to spare. Tuk-Tuks were introduced in Brighton, England, in 2006, where a fleet of 

twelve, known as „TucTuc‟ here, operated using compressed natural gas, as the first 

motorised rickshaw service in Europe, between Brighton Marina and Hove, via 

Brighton railway station. The fleet is also planning to expand into London. 

 

These vehicles spend most of the time on journeys around town which involve a lot of 

stop-and-go traffic. Most of these journeys are repeated throughout their service life, 

for example between the railway station and the town centre. The current 
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advancement and availability of vehicle positioning and sensor technology, i.e. Global 

Positioning System (GPS) could be used to accurately pinpoint the location of the 

vehicle. This information provides a reference of the road ahead and thus be used to 

predict the future direction and elevation of the vehicle; this information is expected 

to be of use for dynamically tuning the engine and/or giving an inference command to 

the EMS. 

 

This project aims to benefit from the latest research project co-funded by the 

INTERREG IIIa European research programme, and carried out by the University of 

Brighton‟s Centre for Smart Systems on the development of Intelligent Vehicle On-

board Systems (VBIS). It has focused on the development of an innovative motive 

power control system from the fusion of externally-acquired positioning data and 

internal vehicle operating parameters; also from analysis and optimisation of these 

data using intelligent techniques and tools for application to small cars. These 

facilitate the reduction of exhaust emissions and fuel consumption through precise 

control of the combustion process. 

1.2 Project Aim 

The aim of this research project was to investigate the monitoring and control of small 

cars using intelligent techniques to achieve reduced emissions and improved fuel 

economy. 

1.3 Research Objectives 

The project was focussed on the development of engine control systems using the 

fusion of externally-acquired positioning data and engine operating parameters; also 

from analysis and optimisation of these data using intelligent techniques and tools for 

application to motor vehicles. These have facilitated the reduction of exhaust 

emissions and fuel consumption through precise control of the combustion process. 
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 To review small internal combustion engines, instrumentation and related global 

positioning technology; 

 To conduct a survey of current intelligent control techniques in automotive 

systems; 

 To devise a low-cost road mapping system and a computationally efficient 

intelligent control algorithm for small passenger vehicles; 

 To implement and evaluate the low-cost engine control system that has been 

devised. 

1.4 Rationale 

A considerable amount of research and development work has been expended on 

power units for automotive applications. However, there has been comparatively little 

work done on motive power units for small passenger vehicle applications mainly 

outside the mainstream automotive sector. In the longer term, fuel cells are likely to 

provide an efficient and clean method of converting fuel (hydrogen, methane, alcohol, 

diesel, etc) directly into electricity, which in turn may be converted into motive 

power. In the short to medium term, efficient small IC engine units form a 

compromise technology which offers benefits over un-regulated small engines. 

 

These efficient power units are expected to be better than un-regulated ones in terms 

of average fuel consumption, emissions and performance without compromising 

consumer expectations with respect to performance, comfort, safety, quality and cost 

of ownership. In order to achieve these goals, it is very important to optimise the 

architecture and components of the small engine, but, just as important is the control 

algorithm that is used to control the complete engine system. 

 

The prime motive power source of most small cars is a small internal combustion 

engine, fuelled using conventional diesel, petrol, liquefied petroleum gas (LPG) or 

natural gas.  The on-board EMS governs the control strategies aiming to achieve 

optimum efficiency and high output power. 
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With the help of GPS, intelligent techniques and low-cost sensors, information such 

as the gradient of the road and the past trajectory can be obtained and used to predict 

future possible control actions. An optimisation algorithm can be devised based on the 

captured information to find the best inputs with respect to the vehicle operating 

parameters, such as speed and load. Figure 1.1 shows the schematic diagram of a GPS 

acquisition system in conjunction with a fuzzy mapping technique developed for this 

project. The system is able to produce a relief map of a route derived from fuzzy logic 

processed GPS data where route parameters such as road gradient and curvature are 

stored. 

 

Figure 1.1: Extra-vehicular data sources for engine/vehicle control 

 

An essential component of such a complicated system will be a computer control 

system and software. The system will be able to combine the mapping data and the 

operating data from the vehicle. A major part of the work is to further consolidate and 

analyse these data; i.e.: vehicle, engine operating parameters and operating 

characteristic of the vehicle. The system will execute algorithms that optimise the 

operation of the engine, GPS sensor and other system components to ensure minimal 

use of energy and minimised emissions. 

Engine 
management 
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Gearbox 
management 

system 

GPS 

Signal 

Intelligent 
inference 
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1.5 Outline of the Thesis 

This thesis describes a novel method of mapping a route subsequently to be used for 

controlling a gasoline powered internal combustion engine. This is accomplished by 

analysing the effectiveness of the devised control system using Matlab/Simulink 

model. 

 

Chapter 1 (this chapter) has introduced the background, motivation and need for a 

low-cost control system in small city passenger vehicles. 

 

Chapter 2 gives the reader some background information on the four-stroke cycle of 

an internal combustion engine. 

 

Chapter 3 gives an introduction to fuzzy logic and Neuro-fuzzy techniques. 

 

Chapter 4 contains a literature review of relevant research being carried out by others 

in the area of engine and vehicle control. 

 

Chapter 5 details two previous experiments carried out at the beginning of this 

project. The work describes here was to ascertain two different fuzzy-derived 

techniques for controlling small internal combustion engine and modelling fuel spray 

penetration in the cylinder of a diesel internal combustion engine. The outcome and 

experience gained allows for the exploration of GPS vehicle control. 

 

Chapter 6 introduces a new and original method of Neuro-fuzzy road mapping 

technique. It also explains how the relief map is being derived from fuzzy logic 

processed GPS data and how it was further used as a reference for the vehicle/engine 

control. 

 

Chapter 7 continues by detailing the experimental set up and the experimental work 

performed on an engine test-rig. 
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Chapter 8 contains the results and general and specific conclusions drawn from the 

work carried out. 

 

Chapter 9 discusses further research work and recommendations are made in a 

number of areas. 

 

The Appendices contain samples of the program code which was developed and 

papers which were published by the author during the course of the investigation. 
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Chapter 2 : Engine Technology 

There are two types of internal combustion engines commonly used today, spark 

ignition (SI) or gasoline engines and compression ignition (CI) or diesel engines. In SI 

engines, the air and fuel mixture is ignited by an electrical spark. They are also known 

as Otto cycle engines after the name of its inventor, Nikolaus August Otto who 

invented the four-stroke engine in 1876. In CI engines, the rise in temperature due to 

compression pressure is sufficient to cause spontaneous combustion of the fuel 

without the need for a spark. The fuel diesel is named after the inventor of the engine, 

Rudolf Diesel who invented the diesel cycle engine in 1893. 

2.1 The Internal Combustion Engine 

The engine is a device for converting the internal energy stored in its fuel into 

mechanical energy. An internal combustion engine is an engine in which the 

combustion, or rapid oxidation, of gas and air occurs in a confined space called a 

combustion chamber. A supply of air and fuel mixture is fed to the inside of the 

cylinder where it is compressed and then burnt. This internal combustion releases heat 

energy which is then converted into useful mechanical work as the high gas pressure 

generated forces the piston to move along its stroke in the cylinder. 

 

To enable the piston movement to be harnessed, the driving thrust on the piston is 

transmitted by means of a connecting-rod to a crankshaft whose function is to convert 

the linear piston motion in the cylinder to a rotary crankshaft movement as shown in 

Figure 2.1. The piston can thus be made to repeat its movement to and fro, due to the 

constraints of the crankshaft crankpin‟s circular path and the guiding cylinder. 
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Figure 2.1: Sectioned view of the basic engine 

2.1.1 Operating Principles 

The four-stroke cycle of an internal combustion engine is the cycle most commonly 

used for automotive and industrial purposes today, for example, cars and trucks, small 

motive units, etc. The first engine to operate successfully on the four-stroke cycle was 

constructed in 1876 by Nicolaus August Otto. In this type of engine a sequence of 

events is continuously repeated all the time it is running; this sequence of operation 

and the associated pressure & volume graph are shown in Figures 2.2 to 2.5. 

 

Figure 2.2: Induction stroke 

 

Figure 2.3: Compression stroke 
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Figure 2.4: Power stroke 

 

 

Figure 2.5: Exhaust stroke 

 

 The induction stroke, during which the combustible charge of air and fuel is 

drawn into the combustion chamber and cylinder, as a result of the partial 

vacuum or depression created by the retreating piston. 

 The compression stroke, which serves to raise both the pressure and 

temperature of the combustible charge as it is compressed into the lesser 

volume of the combustion chamber by the advancing piston. 

 The power stroke, immediately preceding which the combustible charge is 

ignited by the sparking plug and during which the gases expand and perform 

useful work on the retreating piston. 

 The exhaust stroke, during which the products of combustion are purged from 

the cylinder and combustion chamber by the advancing piston, and discharged 

into the exhaust system. 
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It thus follows that one complete cycle of operation occupies two complete 

revolutions of the engine crankshaft. Since energy is necessarily required to perform 

the initial induction and compression strokes of the engine piston before firing occurs, 

an electrical starter motor or a pull-start device (in the case of small utility engines) is 

used for preliminary cranking of the engine. Once the engine is running the energy 

required for performing subsequent induction, compression and exhaust strokes is 

derived from the crankshaft and flywheel system, by virtue of its kinetic energy of 

rotation. 

2.1.2 Fuel Systems 

A fuel system for a gasoline engine stores, transfers and filters the gasoline required 

either by a carburettor or by the pressure regulated circuit of a fuel injection system. 

2.1.2.1 Carburation 

The function of the carburettor is to mix the fuel with the incoming air in the correct 

proportions to form a mixture which is combustible under engine operating 

conditions. Gasoline is a liquid fuel derived from crude petroleum, whose major 

constituent elements are carbon and hydrogen but also contains three minor elements: 

sulphur, nitrogen and oxygen. The mixing of gasoline with air in a carburettor is 

achieved by introducing the liquid gasoline into a rapidly moving air stream which 

suspends and breaks up the liquid into very tiny droplets. This process is known as 

atomising the fuel. 

2.1.2.2 Air and Fuel Mixture Strengths 

The air-fuel ratio (AFR) is often defined in terms of the excess air factor, or lambda 

(). Lambda is defined such that a lambda factor of unity corresponds to an AFR of 

14.7:1 at normal temperature and pressure. This is termed the stoichiometric ratio, 

corresponding to the proportions of air and fuel which are required for complete 

combustion. A greater proportion of fuel gives a lambda of less than unity, termed a 

rich mixture, while a greater proportion of air gives a lambda of greater than unity, 

termed a weak or lean mixture. Maximum power is obtained when lambda is 

approximately 0.9 and minimum fuel consumption occurs when lambda is 
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approximately 1.1. The AFR essentially sets the operating point of the engine, and in 

conjunction with the ignition timing angle, determines the output power and the 

resulting levels of emissions. 

 

A rich mixture containing more than the optimum amount of gasoline, usually 

produces more power than optimum and lean mixtures, the engine power generally 

being at its maximum when the mixture is about 15 to 20% rich, that is with the air-

fuel ratio of between 12 to 1 and 13 to 1. The exhaust products of these rich mixtures 

normally have an excess of carbon monoxide and are visually observed as dark cloudy 

exhaust smoke. Prolonged running with a very rich mixture will result in sooting up 

of the combustion chamber and of the spark plug electrodes. 

 

A lean mixture, however, containing less than the optimum amount of gasoline, 

usually produces less power than optimum and rich mixtures, but fuel economy is 

normally much better than those for the other conditions. For minimum fuel 

consumption, the mixture can be 15 to 20% weak, that is, with the AFR of between 17 

to 1 and 18 to 1. Burning is generally slow, and misfiring, overheating, and 

incomplete combustion will result if sufficient ignition timing advance is not provided 

to compensate for this prolonged combustion period [3]. 

2.1.3 Fuel Injection Systems 

The function of a fuel injection system is to monitor the engine‟s operating 

parameters, to transfer this information to a metering controller, then to discharge and 

atomise the fuel into the incoming air stream. The position where the fuel is injected 

into the air charge considerably influences the performance of the engine. 

The advantage of this system is accurate control of the fuel quantity injected into the 

engine. The idea is that if gasoline is supplied to an electrically controlled fuel 

injector, at a constant differential pressure, then the amount of fuel injected will be 

directly proportional to the injector open time termed „fuel pulse width‟. These 

systems are electronically controlled, allowing the operation of the injection system to 

be very closely matched to the requirements of the engine. This matching process is 

carried out during development on test beds. The ideal operating data for a large 
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number of engine operating conditions are stored in a memory in the ECU. Close 

control of the fuel quantity injected allows the optimum setting of mixture strength. 

Further advantages of electronic fuel injection control are that overrun cut-off can 

easily be implemented, fuel can be cut at the engines rpm limit and information on 

fuel used can be supplied to an on-board computer. 

 

Figure 2.6: Typical control layout for a fuel injection system 

 

 

Figure 2.7: Block diagram of input and output parameters 

 

Figure 2.6 shows a typical control layout for a fuel injection system; a block diagram 

in Figure 2.7 shows the inputs and outputs of a common system. The two most 

important input parameters to the system are speed and load. The basic fuelling 
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requirement is determined from these inputs in a similar way to the determination of 

ignition timing. 

 

The development of fuel injection in general and the reduced manufacturing cost have 

now started to make the carburettor obsolete. As the emission regulations continue to 

become more stringent, engine manufacturers are being compelled to adopt fuel 

injection, even on small engines. The adoption by larger engine manufacturers will, in 

turn, bring the price of the systems down, making them comparable to carburetion 

techniques on price but better in performance. 

2.1.3.1 Mapping 

A three-dimensional map shown in Figure 2.8 is used to represent how the 

information on an engine‟s fuelling requirements is stored. The information is held in 

memory in the ECU. When the ECU has determined the look-up value of the fuel 

pulse width required, corrections to this quantity can be added for engine temperature, 

throttle opening rate or position and fuel cut-off according to the control strategy of an 

ECU. 

 

Figure 2.8: Three-dimensional map showing the variation of  with engine load and 

speed 

 

Idle speed and fast idle are generally controlled by the ECU and a suitable actuator. It 

is also possible to have a form of closed-loop control with electronic fuel injection. 

This involves a lambda sensor to monitor exhaust gas oxygen content. This allows 

very accurate control of the mixture strength, as the oxygen content of the exhaust is 
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proportional to the air-fuel ratio. The signal from the lambda sensor is used to adjust 

the fuel pulse width in modern automotive engines. 

2.1.4 Ignition Systems 

The primary function of the ignition system is to supply a spark inside the cylinder of 

an internal combustion engine, near the end of the compression stroke, to ignite the 

compressed charge of air-fuel mixture. For a spark to jump across an air gap of 0.6 

mm under normal atmospheric conditions (1 bar), a voltage of 2 to 3 kV is required 

[4]. In order to generate a high-voltage, an ignition coil, which consists of two 

coupled coils known as the primary and secondary windings, is fitted. The two coils 

are wound on to the same iron core, so any change in magnetism of one coil will 

induce a voltage into the other. This happens when a current is switched on and off to 

the primary coil. This transformer action is the basic principle of all ignition systems. 

2.1.4.1 Magneto 

A magneto is a type of ignition system, it provides pulses of electrical power to the 

spark plugs in some gasoline-powered internal combustion engines where batteries 

are not available. Magneto are most commonly found on two-stroke and four-stroke 

engines used in small motorcycles, lawnmowers and chainsaws, and thus serve a 

similar function as the coil-type ignition system found in cars. In these cases, the 

magneto‟s advantage is in its compact nature and simple reliable function. They are 

used in most small aircraft, some racing cars and in older tractors. In aircraft, typically 

each cylinder has two spark plugs, each driven from a separate magneto. This 

arrangement provides redundancy in the event of a failure of one of the magnetos, and 

two sparks burn more efficiently than one. 

 

Magnetos combine the functions of a dynamo, contact breaker points and coil into one 

unit. The engine rotates a coil of wire between the poles of a permanent magnet to 

provide a basic source of electrical energy. On each revolution, a cam opens the 

contact breaker one or more times, interrupting the current, causing the voltage in the 

secondary winding of the coil to reach a very high figure; enough to produce an arc 

across the electrodes of the spark plug. Because no battery or other source of energy is 
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required, the magneto is a rugged, reliable and self-contained solution to providing 

ignition of the air-fuel mixture. In some modern small engine designs, an electronic 

switch replaces the contact breaker. 

 

Since the magneto is a single integrated unit providing its own power source, a 

vehicle using one has no means of providing electrical power for other needs, such as 

lighting, which would readily be available from an external dynamo or alternator. 

Most importantly, there is no provision for a starter motor, so that an alternative 

starting means will be required for a machine using a magneto. Such means may be a 

kick-start, starting crank or pull-start. 

 

2.1.4.2 Ignition Timing 

For optimum engine operating efficiency the ignition advance facilitates maximum 

combustion pressure to occur about 10º after top dead centre (TDC). The ideal 

ignition timing is dependent on two main factors, engine speed and engine load. An 

increase in engine speed requires the ignition timing to be advanced. The cylinder 

charge, of air-fuel mixture, requires a certain time to burn. At higher engine speeds 

the time taken for the piston to travel the same distance reduces. Advancing the time 

of the spark ensures complete combustion is achieved. 

 

A change in timing due to engine load is also required as the weaker mixture used on 

low-load conditions burns at a slower rate. In this situation, further ignition advance is 

necessary. Greater load on the engine requires a richer mixture, which burns more 

rapidly. In this case some retardation of timing is necessary. In summary, under any 

condition of engine speed and load an ideal advance angle is required to ensure 

maximum pressure is achieved in the cylinder just after top dead centre. The ideal 

advance angle may be further refined by engine temperature and the need to reduce 

any risk of detonation or knocking. 

 

Spark advance is achieved in a number of ways. The simplest of these is the 

mechanical system comprising a load sensing device. The manifold air pressure 
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(MAP) is directly proportional to engine load. A microprocessor-based engine 

management system may adjust the timing in relation to the temperature as well as 

speed and load. The values of all ignition timing functions are combined either 

mechanically or electronically in order to determine the ideal ignition point. The 

ignition timing also has a significant effect on fuel consumption, torque, and exhaust 

emissions. Because ignition timing is critical to engine performance, controlling it 

precisely through all operating conditions has become a major application of digital 

electronic engine control. 

2.1.5 Engine Operating Conditions 

When the engine changes from one operating speed condition to another, additional 

fuel mixture is necessary to compensate for the inertia lag of the heavier fuel injected 

into the relatively light incoming air stream, and this temporarily produces an 

overweak mixture. These operating conditions will have to be considered towards the 

development of intelligent control strategy. 

2.1.5.1 Acceleration Response 

Enrichment for acceleration is achieved when the throttle is opened suddenly. The 

rapid rush of intake air through the air flow-meter causes an increased fuel demand 

signal to be passed to the ECU. If the engine is warming up, the overswing 

enrichment may have to be supplemented with additional fuel, which signalled to the 

ECU by the air speed from the air flow sensor. 

2.1.5.2 Cold Start 

During engine starting up, the very low crankshaft speed of rotation does not produce 

sufficient air velocity to atomise and support the fuel droplets in the air stream while 

some of the fuel which has atomised will then condense in the induction ports and on 

the cylinder walls. To compensate for the loss of effective air-fuel mixture reaching 

the cylinder, a cold start facility is provided to supply extra fuel only when the engine 

is being started. 
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2.1.5.3 Warm-up Period 

When starting a cold engine, between 30% and 60% more fuel is required depending 

on the surrounding temperature. Once the engine is operating, a smaller additional 

amount of fuel to that normally supplied is still necessary to counteract mixture 

condensation, and the strength of the mixture should be gradually decreased as the 

engine warms up, until only the normal operating quantity of fuel is injected into the 

induction manifold. Information on the operating temperature of the engine is 

obtained by the temperature sensor which relays a signal voltage to the ECU to enable 

a mixture correction to be made. 

2.1.6 Engine Management 

A modern engine management system is essentially a combination of ignition, fuel 

management and OBD. As the stringent requirements for lower emissions continue, 

together with the need for better performance under all engine operating conditions, 

other areas of the engine are constantly being monitored. This control is becoming 

even more important with the carbon dioxide emission being included in regulations. 

As more and more systems are integrated then the cost of the electronics necessary 

will reduce. The computing power required for this type of development is increasing, 

and use of 32-bit microcontrollers is becoming the norm. The down-side of using a 

single ECU to control the entire engine or vehicle is the replacement cost of the unit. 

At present, even a single system ECU can cost a significant amount. However, a 

comprehensive control unit its advantages such as allowing the expansion of OBD to 

cover any other system, potentially saving repair time and running costs. 

2.1.7 Sensory Systems 

In an EMS, sensors and actuators are in many cases the vital components for 

determining system performance. The sensors and actuators that are available to an 

EMS are not always what the actual system needs, because the ideal device may not 

be commercially available at acceptable cost, especially in the case of small engine 

applications. Often the signal interface or conditioning circuits are designed to adapt 
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to an available sensor or actuator, or the control system is designed in a specific way 

to fit available sensors or actuators. 

 

Figure 2.9: Typical engine sensory systems 

 

There are many subsystems in modern engine control systems that operate with 

sensors and actuators. Figure 2.9 shows a block diagram of a typical electronic engine 

control system illustrating most of the relevant sensors used for engine control. The 

position of the throttle, determined by the throttle position sensor (TPS), directly 

regulates the air flow into the engine, thereby controlling output power. A set of fuel 

injectors delivers the correct amount of fuel to a corresponding cylinder during the 

intake stroke under control of the electronic engine controller. The ignition control 

system fires each spark plug at the appropriate time under control of the electronic 

engine controller. The EGR is controlled by another output from the engine controller. 

All vital engine control parameters are based on measurements made by various 

sensors connected to the engine. Computations made within the engine controller 

based on these inputs yield output signals to the actuators according to their own 

control strategy and algorithm used. However, part of the investigation here will be 

focused on the sensors and actuators that are likely to be used in small engine control. 

Variables to be measured in a small internal combustion are engine speed, throttle 

position, engine temperature, air temperature, manifold air pressure, exhaust gas 

temperature and engine load. 

2.1.7.1 Thermistors and Thermocouples 

Engine temperature measurement is carried out by a simple thermistor, and in many 

cases the same sensor is used for the operation of the temperature gauge and to 
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provide information to the fuel control system. The mass of air drawn into the engine 

depends on the air density, which varies directly with its temperature. The colder the 

air, the denser it becomes. Therefore, for a given throttle opening, a greater mass of 

air will enter the cylinder as the temperature of the air intake rises, however its density 

decreases so that less air is drawn into the cylinder. A separate memory map is used to 

correct the ideal timing settings. Timing may be retarded when the engine is cold to 

constitute a more rapid warm up. 

 

The principle of measurement is that a change in temperature will cause a change in 

resistance of the thermistor, and hence an electrical signal proportional to the 

measurand can be obtained. Thermocouples on the other hand have two different 

metals joined together at two junctions. If one junction is at a higher temperature than 

the other junction, then this will be registered on the engine controller. They are 

commonly used for measuring high temperature, e.g. exhaust and turbo charger 

temperature. 

2.1.7.2 Engine Speed and Position Sensors 

An engine speed sensor consists of a permanent magnet, a winding and a soft iron 

core. They tend to work on the basic principle of electrical induction and are mounted 

in proximity to a reluctor disc. The disc has 34 teeth, spaced at 10° intervals around 

the periphery of the disc. The disc also has two teeth missing, 180° apart, one of 

which is at a known position before top dead centre (BTDC). Many engines use this 

technique with minor variations. As a tooth from the reluctor disc passes the core of 

the sensor, the reluctance of the magnetic circuit is changed. This induces a voltage in 

the winding, the frequency of the waveform being proportional to the engine speed. 

The missing tooth causes a „missed‟ output wave and hence the engine position can be 

determined. The output voltage of such type of sensors approximates to a sine wave. 

The amplitude of this signal depends on the rate of change of flux induced by the 

sensors winding. The most common way of converting this output waveform is to 

pass it through a Schmitt trigger circuit. This produces constant amplitude but a 

variable frequency square wave. The analogue signal of the engine speed can be 

determined by using a suitable signal conditioning circuit. 
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2.1.7.3 Variable Resistance Sensors 

An application for a variable resistance sensor is the throttle position sensor. A device 

known as a potentiometer produces a voltage proportional to the throttle position. The 

device can also be used to indicate the rate of change of throttle position. This 

information is used when implementing acceleration enrichment or inversely, over-

run fuel cut-off. 

2.1.7.4 Manifold Pressure Sensors 

The engine load is proportional to inlet manifold pressure in that high-load conditions 

produce high pressure and lower load conditions produce low pressure such as 

cruising. These load sensors are therefore pressure sensors. These pressure sensors are 

either a gauge or differential package. They are based around a power active element 

piezo-resistive bridge construction which has been laser-trimmed to enhance device 

performance. The „gauge‟ sensors use atmospheric pressure as a reference whereas 

the „differential‟ sensors will accept two independent pressure sources 

simultaneously. The manifold vacuum pressure sensors use atmospheric pressure as a 

reference; they can either be mounted in the ECU or as a separate unit, and are 

connected to the inlet manifold with a pipe. These sensors are very responsive to 

change in throttle position and engine speed, and also they are robust and low cost 

which make them ideal for small engine control applications. 
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Chapter 3 : Intelligent Techniques 

Intelligent systems, i.e. software systems incorporating artificial intelligence, have 

shown many advantages in engineering system control and modelling. They have the 

ability to rapidly model and learn characteristics of multi-variate complex systems, 

exhibiting advantages in performance over more conventional mathematical 

techniques. This has led to them being applied in diverse applications in power 

systems, manufacturing, optimisation, medicine, signal processing, control, robotics, 

and social/psychological sciences [5, 6]. In industrial automation and process control, 

fuzzy logic technologies enable the efficient and transparent implementation of 

human control expertise. For example, an individual control loop of a single industrial 

process has variables mostly remaining controlled by conventional models such as 

proportional-integral-derivative (PID). The fuzzy logic system then gives the set 

values for these controllers based on the process control expertise put in the fuzzy 

logic rules. In Japan, Germany and France, cars with intelligently controlled 

components are quite common; the reasons being the control systems in cars are 

complex and involve multiple parameters. The optimisation of these systems is based 

on engineering expertise rather than mathematical models. Criteria such as ride-

comfort and handling are optimisation goals that cannot be defined mathematically. 

3.1 Fuzzy Logic 

Fuzzy logic is a problem-solving technique that derives its power from its ability to 

draw conclusions and generate responses based on vague, ambiguous, incomplete and 

imprecise information. To simulate this process of human reasoning it applies the 

mathematical theory of fuzzy sets first defined by Zadeh, in 1965 [7]. Fuzzy inference 

is the process of formulating a mapping from a given input value to an output value 

using fuzzy logic. The mapping then provides a basis from which decisions can be 
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made, or patterns discerned. It has been proved that the system can effectively express 

highly non-linear functional relationships [8]. Fuzzy inference systems (FIS) have 

been successfully applied in fields such as automatic control, data classification, 

decision analysis, expert systems and computer vision. Fuzzy control has been shown 

to provide a convenient calibration procedure that has the potential to lower costs 

through reducing the effort required in calibrating the engine. 

 

Fuzzy logic provides a practical way to understand and manually influence the 

mapping behaviour. In general, fuzzy logic uses simple rules to describe the system of 

interest rather than analytical equations, making it easy to implement. For advantages, 

such as robustness and speed, fuzzy logic technique is one of the best solutions for 

system modelling and control. An FIS contains three main components, the 

fuzzification stage, the rule base and the defuzzification stage. The fuzzification stage 

is used to transform the so-called crisp values of the input variables into fuzzy 

membership values. Then, these membership values are processed within the rule-

base using conditional „if-then‟ statements. The outputs of the rules are summed and 

defuzzified into a crisp analogue output value.  The effects of variations in the 

parameters of a FIS can be readily understood and this facilitates calibration of the 

model. 

 

The system inputs, which in this case are the cylinder pressure and the air density, are 

called linguistic variables, whereas „high and „very high‟ are linguistic values which 

are characterised by the membership function. Following the evaluation of the rules, 

the defuzzification transforms the fuzzy membership values into a crisp output value. 

The complexity of a fuzzy logic system with a fixed input-output structure is 

determined by the number of membership functions used for the fuzzification and 

defuzzification and by the number of inference levels. The block diagram of a general 

fuzzy logic system is shown in Figure 3.1 where x1, x2,…xn stand for n crisp input 

and y is the crisp output. 
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Figure 3.1: Block diagram of a general fuzzy logic system 

 

A fuzzy system of this kind requires that a knowledgeable human operator initialises 

the system parameters e.g. the membership function bounds. The operator must then 

optimise these parameters to achieve a required level of mapping accuracy of the 

physical system by the fuzzy system. While the visual nature of a fuzzy system 

facilitates the optimisation of the parameters, the need for it to be accomplished 

manually is a disadvantage. 

3.2 Neuro-fuzzy Systems 

Adaptive Neuro-Fuzzy Inference Systems (ANFIS), developed in the early 1990s by 

Jang [9], combines the concepts of fuzzy logic and neural networks to form a hybrid 

intelligent system that enhances the ability to automatically learn and adapt. Hybrid 

systems have been used by researchers for modelling and prediction in various 

engineering systems. The basic idea behind these neuro-adaptive learning techniques 

is to provide a method for the fuzzy modelling procedure to learn information about a 

data set, in order to automatically compute the membership function parameters that 

best allow the associated FIS to track the given input/output data. The membership 

function parameters are tuned using a combination of least squares estimation and 

backpropagation algorithm for membership function parameter estimation. These 
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parameters associated with the membership functions will change through the 

learning process similar to those of a neural network. Their adjustment is facilitated 

by a gradient vector, which provides a measure of how well the FIS is modelling the 

input/output data for a given set of parameters. Once the gradient vector is obtained, 

any of several optimisation routines can be applied in order to adjust the parameters 

so as to reduce error between the actual and desired outputs. This allows the fuzzy 

system to learn from the data it is modelling. The approach has the advantage over the 

pure fuzzy paradigm that the need for the human operator to tune the system by 

adjusting the bounds of the membership functions is removed. 

 

ANFIS largely removes the requirement for manual optimisation of the fuzzy system 

parameters. A neural network is used to automatically tune the system parameters, for 

example the membership function bounds, leading to improved performance without 

operator intervention. In addition to a purely fuzzy approach, an ANFIS was also 

developed for the estimation of diesel spray penetration because the combination of 

neural network and fuzzy logic enables the system to learn and improve its 

performance based on past data. The Neuro-fuzzy system with the learning capability 

of neural network and with the advantages of the rule-base fuzzy system can improve 

the performance significantly and can provide a mechanism to incorporate past 

observations into the classification process. In a neural network the training 

essentially builds the system. However using a Neuro-fuzzy scheme, the system is 

built by fuzzy logic definitions and then it is refined using neural network training 

algorithms. 

3.2.1 Architecture 

The initial membership functions and rules for the FIS are designed by employing 

human knowledge about the target system to be exploited. ANFIS can then refine the 

fuzzy if-then rules and membership functions to describe the input/output behaviour 

of a complex system. In practical applications Sugeno type FISs have been considered 

most suitable for constructing fuzzy models due to their more compact and 

computationally efficient representation of data than the Mamdani fuzzy systems. A 

typical zero-order Sugeno fuzzy system has the form: 
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If x is A and y is B then z = c 

 

where A and B are fuzzy sets and z is a crisply defined function. A singleton spike is 

often completely sufficient to cater for a given problem‟s needs. Alternatively a more 

general first-order Sugeno can be used by setting the consequent to a higher order 

function, for example z = px + qy + c. 

 

 

Figure 3.2: ANFIS Sugeno fuzzy system. 

 

However a higher-order system often adds an unwarranted level of complexity 

because of the algorithm needed to optimise the parameters. For this reason a zero-

order Sugeno FIS is used in this investigation. Figure 3.2 shows the equivalent ANFIS 

architecture which consists of five layers [9]. The nodes in the input layer are 

adaptive. Any appropriate membership functions can be used. In this experiment 

generalised bell-shaped membership functions were chosen to describe the input 

parameters because of their smoothness and concise notation. Variables x and y form 

input values of A1, B1 and A2, B2 respectively. A1, A2, B1 and B2 are the linguistic 

labels (small, large, etc.) used in the fuzzy theory for dividing the membership 

functions. The membership relationship between the output and input in this layer can 

be expressed as: 
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 (1) 

2,1),(,1  jyO
jBj   (2) 

where  and   represent the output functions,  and 
jB  are the membership 

functions. 

Layer 2, sometimes referred to as the rule layer, consists of two fixed nodes which 

represent the fuzzy strengths of each rule. The product rules can be used to calculate 

the weighting function for the fuzzy operator „AND‟ of a Sugeno FIS. The outputs 

W1 and W2 are the weight functions for the next layer. The input and output 

relationship in this layer is: 

 

2,1)()(,2  iyxWO
ii BAii   (3) 

where  is the output of layer 2. 

 

The third layer is the normalised layer and its function is to normalise the weight 

function. 

 




 (4) 

where  is the layer 3 output. 

 

The fourth layer containing adaptive nodes is the defuzzification layer. The output 

from this layer is: 

 

  where , and are the consequent parameters of the node. 

 

The input and output relationship in this layer can be defined as: 

 

 (5) 

where  is the layer 4 output. 
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The fifth layer consists of a single fixed node, it is the summation of the weighted 

output of the consequent parameters in layer 4. The output layer is given by: 

 




  (6) 

 

Although any feedforward network can be used in an adaptive network-based fuzzy 

inference system, Jang [9] implemented a hybrid learning algorithm that converges 

much faster than using the gradient descent method alone. During the forward pass, 

the node outputs advance until the output membership function layer, where the 

consequent parameters are identified by the least-squares method. The backward pass 

uses a backpropagation gradient descent method to update the premise parameters, 

based on the error signals that propagate backward. Under the condition that the 

premise parameters are fixed, the consequent parameters determined are optimal. This 

reduces the dimension of the search space for the gradient descent algorithm, thus 

ensuring faster convergence. 

 

Fuzzy logic and neural networks are two different kinds of mathematical tools. But in 

reality, there are a number of similarities. Neural networks are models of brain 

architecture. They have simple processing elements that collectively form a complex 

network structure. Fuzzy logic, however, is based on the way the brain deals with 

imprecise information. Fuzzy systems combine fuzzy sets with fuzzy rules to produce 

overall complex structure too. Both neural networks and fuzzy systems have the 

capability of modelling complex non-linear problems to some degree of accuracy. In 

light of these similarities, both fuzzy logic and neural networks are suitable for 

solving many similar problems. The combined techniques have been proven to 

improve accuracy [9]. Internal combustion engine controllers are exactly the types of 

problems and issues for which an AI approach appears to be most applicable and has 

the potential for making better, quicker and more accurate predictions than traditional 

methods. 
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Chapter 4 : Literature Survey 

4.1 Intelligent techniques in Automotive Systems 

AI consist of five major categories, i.e. neural network, genetic algorithms (GA), 

expert systems and various hybrid systems which are the combination of two or more 

of the categories. Expert systems are based on rule-based inference, in which previous 

knowledge are used to process data. Neural network are collections of individually 

interconnected processing nodes. Information is passed between these nodes along 

interconnections. The output of the node is a function of the summed value. The 

network is being trained with respect to the data sets to perform a specific task. Once 

they are trained, new patterns may be presented to them for prediction or 

classification. 

 

GA are inspired by the way living organisms adapt to the harsh realities of life in a 

hostile world, i.e. by evolution and inheritance. The algorithm imitates in the process 

the evolution of population by selecting only fit individuals for reproduction. 

Therefore, a GA is an optimum search technique based on the concepts of natural 

selection and survival of the fittest. It works with a fixed-size population of possible 

solutions of a problem, called individuals, which are evolving in time. A GA utilises 

three principal genetic operators: selection, crossover, and mutation. 

 

Fuzzy logic is a powerful way to put engineering expertise into products in a short 

period of time. Therefore, it is highly beneficial in automotive engineering, where 

many system designs involve the experience of research and development engineers 

as well as test drivers. In an automotive engine with electronic control, the amount of 

fuel that is supplied to the engine is controlled by an ECU. This is a microprocessor 

based system that controls the frequency and width of the control pulses supplied to 
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the fuel injector. The AFR is important in the combustion and calibration processes. 

These ECUs use three-dimensional mappings (3-D maps), in the form of look-up 

tables, to represent the non-linear behaviour of the engine in real-time.  A modern 

automotive ECU can contain up to 50 or more of these maps to realise complex 

functions.  These real-time control applications and the use of 3-D maps are very 

common in the area of engine modelling and simulation. In addition the engine will be 

equipped with a wide range of sensors to gather input data for the control system. A 

major disadvantage of the look-up table representation is the time taken to determine 

the values it should contain for optimal engine operation; a process known as 

calibration of the ECU.  These 3-D maps are typically manually calibrated or tuned, 

using an engine dynamometer to obtain desired levels of power, emissions and 

efficiency. The calibration process is an iterative one that requires many cycles of 

engine measurements and is very time consuming. Techniques that reduce the time 

and effort required for the calibration process are of considerable interest to engine 

manufacturers. This is especially the case where the engine is a small capacity non-

automotive engine.  These engines are particularly price sensitive and any additional 

cost, including the cost of extended calibration procedures, is likely to make the 

engine un-economic to manufacture.  For similar economic reasons, any control 

strategy intended for application to a small engine has to be achievable using only a 

small number of low-cost sensors. 

 

From the description of the various applications presented in this chapter, one can see 

that intelligent techniques have been applied in a wide range of fields for modelling, 

prediction and control in automotive systems. What is required for setting up such a 

system is data that represents the past history and performance of the real system and 

a selection of a suitable model. The selection of this model is done empirically and 

after testing various alternative solutions. The performance of the selected models is 

tested with the data of the past history of the real system. 

 

Certainly, the number of applications presented here is neither complete nor 

exhaustive but merely a sample of applications that demonstrate the effectiveness and 

possible applications of intelligent techniques. Same as to all other approximation 
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techniques, intelligent techniques have relative advantages and disadvantages. There 

are no rules as to when this particular technique is more or less suitable for an 

application. Based on some previously works and survey presented here it is believed 

that intelligent techniques offer an alternative method, which should not be 

underestimated. Automotive engineering is competitive on an international scale. A 

technology such as fuzzy logic that proves a competitive advantage will soon be 

commonly used in both automotive and non-automotive applications. 

4.1.1 Braking System 

Boeing developed the first mechanical antilock braking systems (ABS) in 1947 for 

aeroplanes. Today, ABS is standard equipment on most cars. A microcontroller and 

electronic sensor measure the speed of every wheel and control the fluid pressure for 

the brake cylinders hence regulating the braking force on each road wheel. Although 

mathematical models for a car‟s braking system exist, the interaction of the braking 

system with the road is far too complex to model adequately. Hence, today‟s ABS 

contains the engineering experience and knowledge of years of testing in different 

roads and climates. 

 

ABS also benefits from the high computational efficiency of fuzzy logic. During a 

control loop time of 2-5 ms, the controllers must fetch all sensor data, pre-process it, 

compute the ABS algorithm, drive the by-pass valves, and conduct the test routines. 

Any additional function thus has to be computationally efficient. Most ABS systems 

use 16-bit controllers, which can compute a medium-size fuzzy logic system in about 

0.5ms, using only about 2-KB-ROM of memory space [10]. Faster times can be 

achieved by using different microcontrollers [11]. 

 

Nippondenso, the automotive components manufacturer implemented fuzzy logic in 

ABS design; experiments showed that a prototype with just six fuzzy logic rules 

improved performance significantly [12]. On a test track alternating from snowy to 

wet roads, the fuzzy ABS detected the road-surface changes even during braking. 
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4.1.2 Transmission 

The vehicle transmission is a gear system that adjusts the ratio of engine input speed 

to output speed. The transmission essentially enables the engine to operate within its 

optimal performance range regardless of the load or speed. It provides a gear ratio 

between the engine speed and vehicle speed such that the engine provides adequate 

power to drive the load at any speed. A transmission (either manual or automatic) is 

crucial to deliver the power from an internal combustion engine to the wheels. 

Maintenance of both high fuel efficiency and high performance are becoming 

important issues; therefore, the control of an automatic transmission has become 

much more complex. 

 

Modern automatic gear changes are electronically-controlled, rather than 

hydraulically-controlled, as with previous conventional gearboxes. One of the 

advantages of electronic management is to provide a faster gearchange response. The 

control unit of the transmission employs fuzzy logic to determine the gear up-shift and 

down-shift points. Instead of having predetermined points for up-shift and down-shift, 

the control unit takes into account several influencing factors before deciding to shift 

up or down. These factors include engine speed, driving resistance or engine load, 

brake pedal position, throttle position, and the rate at which the throttle pedal position 

is changed. This results in an almost infinite number of shift points, which the control 

unit can tailor to match the driving style, be that sporty or economical. 

4.1.3 Heating, Ventilating and Air Conditioning 

Fuzzy logic design technologies are well-established in heating ventilation and air 

conditioning (HVAC) in buildings. Many car manufacturers also use fuzzy logic in 

their HVAC system design. While most car manufacturers work on these systems, 

very little of their work is being published. The control approach in general and hence 

the use of fuzzy logic in the design, differs significantly for each manufacturer. 

 

The fundamental goal of HVAC in cars is to make vehicle occupants comfortable. 

Human comfort however is a complex reaction, involving physical, biological and 
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psychological responses to the given conditions. The performance criterion „comfort‟, 

is not some well-defined mathematical formula but an inconsistent and empirically 

determined goal. In a typical HVAC system, temperature sensors measure cabin 

temperature, ambient temperature, sun heating load, humidity, and the engine 

operating conditions. Typical actuators are variable speed blowers, means for varying 

air temperature, ducting and internal flaps to control the direction of air flow, and the 

ratio of fresh to re-circulated air. This multiple input, multiple output control problem 

doesn‟t fall into any convenient category of traditional control theory. Figure 4.1 

shows the control surface of part of an HVAC system [13]. The blower speed is 

determined by the temperature error i.e. the in-car temperature minus the set-point 

temperature, and the engine coolant temperature. It also shows how the two 

parameters of engine temperature and temperature error affect the blower speed. 

 

 

Figure 4.1: Blower control surface 

 

The rule-base of the fuzzy logic blower speed control in Table 1 demonstrates that 

when the temperature error is zero, low blower speed is desired. If the in-car 

temperature is high i.e. positive temperature error, high blower speed is needed. When 

the temperature error is negative, indicating that it is too cold inside, and the engine is 

cold, little blower speed is needed for defrost. However, if the temperature error is 

negative but the engine is warm, high blower speed is needed to heat up the cabin. 
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Matrix IF THEN 

Utilities EngCoolTemp TempError BlowerSpeed 

1  zero low 

2 high negative high 

3  positive high 

4 low negative med_low 

 

Table 1: Blower control – rule-base 

4.1.4 Engine Control 

The control of internal combustion engines is becoming increasingly complex with 

more stringent emission standards and constant effort to gain higher fuel efficiency. 

Twenty years ago, fuel and ignition control systems were purely mechanical i.e. 

carburettor, distributor and contact breaker.  

 

Much of the research in the past has been done in the area of engine modelling [14-

17]. A large portion of that research was prompted by the automotive industry in 

search of accurate engine models that are needed to develop sophisticated controllers. 

Internal combustion engines exhibit inherently non-linear characteristics under 

different operating conditions. These are also characterised by a time delay associated 

with the combustion cycle of the engine. Time delays in the engine model tend to 

degrade the performance of controllers by introducing overshoot and oscillations. 

Modern engines employ microcontroller-based systems to control fuel injection and 

ignition. The control strategy for an engine depends heavily on the current operating 

point, for example engine speed, throttle position, etc., therefore linear control models 

over classical methods such as PID are not suitable. On the other hand, no 

mathematical model fully describing the complete behaviour of an engine exists. Most 

engine controllers use look-up tables to present the control strategy instead. Currently, 

engine tuning, generation and interpretation of these look-up tables is typically 

performed by a skilled technician who manually adjusts the operating parameters for 

each zone of the engine look-up map on a dynamometer or while testing. The engine 

is tuned to the desired specification for each zone in which the engine is expected to 

be operated. This process is iterative and time consuming, creating the potential for 
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significant time savings, additional repeatability and more accurate results via fuzzy 

logic control. Engine tuning is a well-known art, documented in a variety of texts on 

the topic of internal combustion engine performance. Prior research in the area of 

intelligent control of small IC engines and tuning is limited, with most research in the 

area of engine tuning on modifying specific engine functions to enhance performance. 

No references were found specifically addressing small engine control processes, this 

is partly because engine manufacturers are reluctant to publish any details on a fuzzy 

logic engine control solution. This secretiveness is due to the fact that the rules of a 

fuzzy logic system make the entire engine control knowledge of the company 

completely transparent. They are afraid competitors will learn too much about the 

solution by disassembling the fuzzy logic rules. 

 

A conventional engine controller consists of a closed loop PID, and an open loop 

control. A feedforward controller provides the theoretical injection time, necessary to 

obtain a value of lambda equal to 1 at the output of the engine. It consists of a two-

dimensional look-up table that contains the necessary injection times to achieve 

lambda equal to 1 on steady state, as a function of the throttle position and the engine 

speed. 

 

Figure 4.2: The engine controller of NOK Corporation contains three fuzzy logic 

modules 

 

Fuzzy logic is known to be more robust than classical control schemes, resulting in 

less susceptibility to nonlinearities and modelling uncertainties, making it a viable 
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option for control of ICEs [18]. Several pieces of work on fuzzy logic engine 

controllers [19-23] have demonstrated improved performance over the method of PID 

control. Some of this work was directed towards idle speed control [19-21] and some 

to the tuning of PID control parameters [22]. 

 

The major components of a fuzzy engine controller which contains three fuzzy logic 

modules are shown in Figure 4.2. The system first notes the engine‟s operational 

condition by the linguistic variable „situation‟. This variable has the linguistic terms in 

Table 2. Each linguistic term represents a typical operating point. Because each term 

is represented as a fuzzy logic membership function, the linguistic variable can also 

classify all other operation points. The determination of „situation‟ is a state 

estimation of the operation point. Because „situation‟ is a linguistic variable, more 

than one term can be valid at the same time, so combinations of the operating points 

can be expressed as defined by the terms. A possible value of „situation‟ could be 

(0.8; 0; 1; 0; 0; 0.3). Linguistically this value represents the driving condition „engine 

started a short while ago, normal drive condition at medium or low load, slightly 

accelerating‟. 

 

Situation 1 Start Control strategy is that the cold engine runs smooth, 

ignition is timed early, and the mixture is rich 

Situation 2 Idle Control ignition timing and fuel injection depending on 

engine temperature to ensure that the engine runs 

smoothly 

Situation 3 Normal 

drive, 

low/medium 

load 

Maximise fuel efficiency by controlling mixture, monitor 

knocking 

Situation 4 Normal 

drive, high 

load 

Rich mixture and ignition advance to maximise 

performance, limited by the permitted emission 

boundaries 

Situation 5 Cruising Fuel cut-off, depending on situation 

Situation 6 Acceleration Depending on load, increasing the mixture strength 

 

Table 2: Linguistic variable situation of a fuzzy engine controller 
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Similarly to ABS, engine control needs a very rapid computation speed. Some 

systems are as fast as 1ms for an entire control loop. Some manufacturers design the 

system using fuzzy logic but then translate it into a look-up table for faster processing. 

Although a look-up table computes rapidly, memory requirements may prohibit its 

use. A look-up table with two inputs and one output, all of 8-bit resolution, already 

requires 64KB of ROM. Restricting the resolution of the input variables to 6-bits 

each, the look-up table still requires 4KB. A table with three inputs and one output, all 

inputs 6-bit resolution, requires 250KB. Some researchers have implemented a look-

up table with a limited resolution and used an interpolation algorithm; however, the 

interpolation needs about as much computing time as the fuzzy logic system itself. 

4.1.5 Development Tools for Fuzzy Systems 

Fuzzy development software is a collection of functions built in a fuzzy computing 

environment. It provides tools to create and edit fuzzy inference systems within a 

framework. Functions are provided for many common fuzzy logic methods, including 

fuzzy clustering and adaptive Neuro-fuzzy learning. The software provides a 

convenient facility for modelling complex system behaviours using simple logic rules, 

and then implements these rules in a fuzzy inference system. Most of these tools can 

be used as a stand-alone fuzzy inference engine. Some even can be used in a 

simulation environment and these simulate the fuzzy systems within a comprehensive 

model of the entire dynamic system. 

4.1.5.1 Fuzzy Development Environment 

The Fuzzy Development Environment (FDE) was developed in-house by the 

Intelligent Systems & Signal Processing Laboratories at the University of Brighton. 

The software enables an FIS to be developed and evaluated at the same time. The 

import and export functions allow for connection to machines and for developing 

web-based applications. Figure 4.3 shows a sequence of screenshots of the FDE.  The 

top figure illustrates an example of a FIS with two input fuzzy sets and one output 

fuzzy set, this is a process of formulating the mapping from a given input to an output 

using fuzzy logic. The figure on the right shows a selected input fuzzy set, the graphic 

editor facilitates the comprehension of membership functions whilst the rule-base 
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editor allows for the creation of if-then rules. This software has been used extensively 

during the course of this project and has proven extremely effective and convenient in 

developing dedicated FIS. 

 

Figure 4.3: The Fuzzy development environment 

4.1.5.2 Matlab/Simulink 

Similar to the FDE, the fuzzy logic toolbox in Matlab developed by Mathworks can 

be customised in its own developing environment. It also offers the facilities to 

inspect algorithms, modify source code, and add customised membership functions or 

defuzzification techniques. Some of its key features include specialised graphical user 

interfaces for building fuzzy inference systems, viewing and analysing results; 

provide membership functions for creating fuzzy inference systems; support for: 

AND, OR, and NOT logic in user-defined rules; automated membership function 

shaping through neuro-adaptive and fuzzy clustering learning techniques; ability to 

embed a fuzzy inference system in a Simulink model and generate embeddable C 

code or stand-alone executable fuzzy inference engines. The package has a wide 

selection of dynamic systems for modelling, analysing and simulation. It offers a user 

interface for creating block diagram models. A system is configured in terms of block 

diagram representation from a library of standard components. During the course of 
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the simulation, algorithms and parameters can still be changed to get intuitive results, 

thus providing the user with a readily accessible knowledge tool for simulating many 

of the operational problems found in the real world. It also provides immediate access 

to the mathematical, graphical and programming capabilities. 

4.2 Embedded Control Design 

Embedded control design has been widely applied in automotive systems such as 

vehicle and engine control.  Such a system is dedicated to specific tasks; design 

engineers can optimise, reducing the size and cost of the product, and/or increasing 

the reliability and performance. Some embedded systems are mass-produced, 

benefiting from economies of scale. Typically, several complex algorithms are 

running in this embedded system most of them are based on operating information 

from the vehicle. Thus a reliable estimation of running parameters is very important in 

determining that the control regime consequently improves vehicle performance. The 

vehicle mass, road gradient and air drag are essentially the major factors which 

influence a vehicle‟s performance. These parameters are experimentally significant in 

the case of buses due to their weight and particularly large frontal area. Many modern 

vehicle control systems consist of engine, transmission, brake and auxiliary functions. 

There are large numbers of dedicated algorithms in these sub-systems ranging from 

pure control tasks to running resistance estimation. To develop such a system with 

precision requires time and knowledge, increasing complexity in some systems 

making design and development of such system even more difficult. Hardware-in-the-

Loop (HIL) simulation is a technique that is used in the development and testing of 

complex real-time embedded systems. HIL simulation provides an effective platform 

by adding the complexity of the system under control to the test platform. The 

complexity of the system under control is included in test and development by adding 

a mathematical representation of all related dynamic systems. 
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4.3 GPS-based Engine/Vehicle Control 

The use of externally acquired information such as GPS data is believed to be useful 

in engine and vehicle control. It has been increasingly used in real-time tracking of 

vehicles, especially when GPS is integrated with ever increasingly powerful 

Geographic Information System (GIS) technologies. The accuracy and reliability of 

low-cost, stand-alone GPS receivers can be significantly improved to meet the 

technical requirements of various transportation applications of GPS, such as vehicle 

navigation, fleet management, route tracking, vehicle arrival/schedule information 

systems (bus/train) and on-demand travel information. Systems that were previously 

only intended for fixed installation in vehicles are gradually being replaced on the 

market by portable systems that require no connection to the vehicle other than the 

power supply. To an increasing extent, GPS navigation is becoming a software 

product that can also be installed on handheld computers, laptops and mobile phones. 

Global positioning determination is based primarily on the use of GPS. Stand-alone 

systems, such as handheld computers, use this exclusively, whereas fixed installation 

systems also run „dead reckoning‟ if they have additional in-vehicle sensors. Dead 

reckoning ensures exact position determination even if no GPS signals can be 

received, e.g. in tunnels. To measure the distance travelled, all that is needed is a 

speedometer output signal. The change of direction is ascertained by a rotation rate 

sensor or gyroscope. Hence, the absolute direction of travel can be determined by the 

Doppler effect of the GPS signals [24]. The levels of accuracy that can be achieved is 

in the range of 3 to 5m, and 10 to 20m in the case of measuring altitude relative to sea 

level. With the autonomous European Satellite Navigation System Galileo, an 

opportunity of a joint system „GPS + Galileo‟ with more than 50 satellites will 

provide many advantages for civil users and vehicle systems, in terms of availability, 

reliability and accuracy [25]. Vehicle drive cycle simulation model incorporating 

vehicle telematics systems can provide vehicle control system with the information of 

the road topography [26]. The study demonstrated an effective approach for design 

and analysis of powertrain. It is shown that simulation is easy to set up and provided 

consistent results. The simulation of the drive cycle and road profile was useful 

especially in situation when developing engine and powertrain control strategies. In 
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addition, the use of telematics could cut vehicle running costs up to 10% according to 

the report by Zurich Financial Services Group. The company examines how a 

combination of technology and driver-development programmes can help to improve 

vehicles‟ safety, reduce their effect on the environment and cut their running cost. The 

study showed a vehicle which integrate GPS sensors with wireless communications 

not only can give companies vital information on location, behaviour and 

performance of the drivers but also save up to 11% on fuel bills and 10% on operation 

costs [27]. 

 

Future GPS may not only be used to guide the vehicle but information from the 

system may also be used to control or influence the engine, through given control 

parameters in a safe and cost-effective manner. A GPS receiver provides reliable 

reference position data which can be manipulated to provide more significant road 

information such as gradients or even road traffic congestion updates when it is 

combined with the vehicle telematics. It is a technology integrated with computers 

and mobile communications technology in vehicle navigation systems. This 

information can be used to not only inform the driver but also to enhance the control 

of several systems of the vehicle. Ultimately, for example, the vehicle speed, gear 

selection and even the application of brakes could be appropriately chosen and 

strategically designed. The idea is to provide the control system with this essential 

information that the driver normally uses when driving. Good driving requires 

consideration of several inputs; it can be a complex, exhausting and demanding task, 

even for commercial vehicle drivers and thus supporting control functionality is of 

great interest. It is believed to be even valuable to obtain road information beyond the 

line of sight of the driver. Whilst all of these driving decisions have to be made 

manually by the driver in the interest of comfort and fuel efficiency, the newly 

intelligent vehicle controller aims to address these tasks. 

 

This work, in pursuit of sustainable transportation, will lend to dramatically reduced 

fuel consumption and emissions. This project has addressed the issues and challenges 

imposed by legislation and guidelines with the aim of facilitating the reduction of 

exhaust emissions and fuel consumption through precise control of the vehicle. 
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Techniques include the fusion of data from sources that are external as well as internal 

to the vehicle; also from analysis of these data using special intelligent systems 

techniques and tools. The resulting system essentially used a fuzzy logic derived relief 

map of the test route, and this was further validated and corrected based on the past 

trajectory from the GPS sensor. The information was then processed and translated in 

order to estimate the future elevation of the vehicle. Similar techniques based on 

predictive parameters have been proven useful and achieved better results. Model 

Predictive Control (MPC) is an optimisation algorithm which has shown that a 2.5% 

reduction of fuel consumption can be achieved by controlling the speed of a vehicle. 

The control signals were; percentage of throttle opening, activation of brakes and gear 

selection. The control algorithm there was tuned and optimised according to some 

criteria, e.g. the main issues were to minimise costs, time and fuel consumption [28]. 

Similar work described in another publication has been designed and simulated on 

cruise control [29]. The simulation showed that a reduction of fuel consumption in the 

range of 1.5 to 3.4% was achieved. It used a dedicated logic in a finite number of 

simulated driving situations, given that the topography of the road such as gradient 

was a known input to the system. Control of the vehicle powertrain has been 

undertaken by DaimlerChrysler; the research suggested usage of a three-dimensional 

digital road map in order to let the cruise control replicate a skilled driver [30]. A 

reduction in fuel consumption of 4.1 to 5.2% was attained. Furthermore, cruise 

control has now been incorporated with radar technology to record the distance and 

speed relative to the vehicle in front as well as additional data such as position of 

other vehicles in the vicinity. The system used such information to regulate the time 

gap between vehicles. The interface was developed under the framework of the 

European project MAPS&ADAS to obtain the map data from the on-board data 

provider [30]. This is a predictive system which adapts the speed to the surrounding 

vehicles and keeps a safe distance. 

 

All in all, a number of approaches have been researched. A substantial amount of 

work has been carried out on how the interface between vehicle control system and 

the GPS system should be designed.  The investigation was focused on information 

retrieval and processing. Location data could be available to the vehicle control unit in 
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a variety of formats, resolutions and temporal accuracies. Data processing and fusion 

forms the main part of this project. This information was made available and able to 

combine with other sensory data of the vehicle. 

 

The simulation model in Chapter 6 generated using Matlab/Simulink showed the 

effectiveness of the system. Simulink has a wide selection of dynamic systems for 

modelling, analysing and simulating. It offers a graphical user interface for creating 

block diagram models. A system is configured in terms of block diagram 

representation from a library of standard components. In the middle of a simulation, 

algorithms and parameters can still be changed to get intuitive results, thus providing 

the user with a readily accessible learning tool for simulating many of the operational 

problems found in the real world. It also provides immediate access to the 

mathematical, graphical, and programming capabilities of Matlab. The effective 

engine/vehicle control system devised using Simulink could potentially be used in 

vehicle control for reduced fuel consumption and emissions. 
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Chapter 5 : Engine Control and 

Modelling 

The experimental work was conducted to determine the performance and 

characteristic of two different fuzzy-derived techniques for controlling small 

combustion engine and modelling fuel spray penetration in the cylinder of a diesel 

internal combustion engine. 

 

The first study was to derive a cost-effective fuzzy control system applied to a small 

spark-ignition internal combustion engine to achieve regulation of the fuel injection 

system. The control system determined the amount of fuel required from a fuzzy 

algorithm using engine speed and manifold air pressure as input values which has led 

to improved fuel regulation, and a consequent reduction in exhaust emissions. The 

aim of the second study was to demonstrate the effectiveness of an ANFIS for the 

prediction of diesel spray penetration length in the cylinder of a diesel internal 

combustion engine. The technique involved extraction of necessary representative 

features from a collection of diesel engine spray data. A comparative evaluation of 

two fuzzy-derived techniques for modelling fuel spray penetration was also described. 

5.1 Engine Fuel Injection Control using Fuzzy Logic 

A fuzzy control system (FCS) was applied to a small engine to achieve regulation of 

the fuel injection system. It was demonstrated that intelligent systems can be used for 

the computer control of the fuel supply of a small internal combustion engine. The 

technique represented a convenient and quick method of achieving engine control unit 

(ECU) calibration; conventionally, ECUs use three-dimensional mappings (3-D 

maps), in the form of look-up tables, to represent the non-linear behaviour of the 
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engine in real-time. As discussed, the major disadvantage of the look-up table 

representation is the time taken to determine the values it should contain for optimal 

engine operation; the calibration process is an iterative one that requires many cycles 

of engine measurements. 

5.1.1 Fuzzy Feedforward Control 

The aim of the control strategy here was to govern the value of AFR in the engine, 

keeping it at a desired optimal value, and minimising the influence of changes in 

speed and load. Engine load was estimated indirectly by measurement of the inlet 

manifold air pressure (MAP). The parameters of the FCS and rule-base contents in the 

FCS were determined during test-rig trials and implanted as a system reference into 

the control unit. The details of the creation of such a control algorithm for this 

experiment are explained in the next section of the paper. The minor drawback of this 

feedforward control is lack of feedback information; factors such as wear and spark 

plug deterioration will detract from optimum fuel injection quantity in what is still 

effectively an open-loop system.  Feedback control of AFR is often provided in 

automotive engines, but this is seldom economic on small engines.  

A suitable model was created to predict throttle position by using the MAP and the 

engine rotational speed.  The feedforward fuzzy control scheme was used in order to 

reduce deviations in lambda value. The scheme also has the benefit of reducing the 

sensitivity of the system to disturbances which enter the system outside the control 

loop. This fuzzy model offers the possibility of identifying a single multi-input single-

output non-linear model covering a range of operating points [31]. 

 

Figure 5.1 shows the block diagram of the test system. The system determines the 

amount of fuel required from a fuzzy algorithm that uses the engine speed and MAP 

as input values. These input variables were converted to digital form and the crisp 

digital signals were then applied to a fuzzy algorithm implemented in the C 

programming language on a PC. The crisp output from the algorithm was equal to the 

width of the pulse applied to the fuel injector, the fuel pulse width (FPW). The 

parameters of this fuzzy control paradigm were a collection of rules and fuzzy-set 
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membership functions. These were intuitively comprehensible by the operator. This 

facilitated the calibration process, leading to relatively quick and convenient tuning. 

 

Figure 5.1 Block diagram for fuzzy logic control scheme 

5.1.2 Engine Load Estimation 

In a spark-ignition engine the induction manifold pressure varies with engine speed 

and throttle opening according to a non-linear mapping. Figure 5.2 shows the three 

dimensional relationship between these operating parameters for the Bosch Suffolk 

engine. By measuring these two variables, the engine load/throttle position can be 

determined.  A conventional look-up table can be used, although in the case of this 

work fuzzy logic was used to represent the non-linear relationship between functions. 

5.1.3 Fuzzy Control Algorithm 

The FCS was devised using the Fuzzy Development Environment (FDE). Although 

the commercial software, Matlab provides a similar facility in creating and evaluating 

fuzzy systems, the FDE provided a better developing platform for this work.  Fuzzy 

sets, membership functions and rule sets for this project were all created, and 

modified where required, using the FDE.  Parameters derived from the FDE, specific 

to the particular set-up devised, were transferred to an execution module, known as 

the Fuzzy Inference Kernel (FIK).  The FIK is a module programmed in C++ code.   

To make it possible to embed the FIK directly into an ECU, the code was compiled to 

.obj format, and incorporated into the rest of the control code by the linker. 
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Figure 5.2: Variation of MAP with speed and throttle opening  

 

Figure 5.3: Air-fuel ratio fuzzy control loop 

 

The fuzzy control loop illustrated in Figure 5.3 was implemented in order to optimise 

the AFR.  To determine the effectiveness of the control loop, the AFR was monitored 

using a commercial instrument, a Horiba Lambda Checker. The engine speed was 

determined by an optical sensor while the MAP was measured by a pressure sensor 

located in the intake manifold. These instruments sampled individual parameters and 

through the medium of signal conditioning circuitry provided analogue output voltage 

levels proportional to their magnitude. These were converted to digital form and the 

crisp digital signals were then applied to a fuzzy algorithm implemented in the C 
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programming language on a PC. The crisp output from the algorithm was the width of 

the pulse applied to the fuel injector (the FPW). 

 

The fuzzy sets shown in Figures 5.4 and 5.5 were used in the fuzzy controller. The 

engine speed fuzzy set used three trapezoidal membership functions for classes low, 

medium and high. The MAP fuzzy set consisted of four trapezoidal membership 

functions for classes Very Low, Low, High, Very High. Experimental adjustment of 

the limits of the membership classes enabled the response of the control kernel to be 

tailored to the physical characteristic of the engine. 

The optimisation of the rule-base and the membership functions underwent 

experimental refinement as part of the calibration process. The final set of rules 

contained in the rule-base is shown in Figure 5.6. 

 

The fuzzified values for the outputs of the rules were classified into membership sets 

similar to the input values. An output membership function of output singletons, 

illustrated in Figure 5.7, was used.  This was defuzzified to a crisp value of FPW. 

 

 

Figure 5.4: Fuzzy input set – engine speed 
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Figure 5.5: Fuzzy input set – vacuum pressure 

 

Rule 1: If the speed is low and the vacuum is very high then fuel pulse width is 

very small 

Rule 2: If the speed is medium and the vacuum is very high then fuel pulse 

width is very small 

Rule 3: If the speed is high and the vacuum is very high then fuel pulse width is 

very small 

Rule 4: If the speed is low and the vacuum is high then fuel pulse width is very 

small 

Rule 5: If the speed is medium and the vacuum is high then fuel pulse width is 

small 

Rule 6: If the speed is high and the vacuum is high then fuel pulse width is small 

Rule 7: If the speed is low and the vacuum is low then fuel pulse width is small 

Rule 8: If the speed is low and the vacuum is very low then fuel pulse width is 

small 

Rule 9: If the speed is medium and the vacuum is low then fuel pulse width is 

large 

Rule 10: If the speed is medium and the vacuum is very low then fuel pulse width 

is very large 

Rule 11: If the speed is high and the vacuum low then fuel pulse width is very 

large 

Rule 12: If the speed is high and the vacuum is very low then fuel pulse width is 

very large 

 

Figure 5.6: The fuzzy rule base 
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Figure 5.7: Fuzzy output set – FPW (ms) 

 

Figure 5.8: Three-dimensional FCS map 

5.1.4 The Mapping 

Engine control typically requires a two-dimensional plane of steady state operating 

points with engine speed along the horizontal axis and throttle position along the 

vertical axis. The control surface in Figure 5.8 shows the crisp value of FPW at 

different combinations of speed and vacuum pressure using FCS. Each of these 

intersection points indicates the differing requirement for fuel, which is determined by 

the design of fuzzy sets and membership functions. The control surface acts as a 

means of determining the FPW needed for each combination of speed and MAP 

value. 
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5.1.5 Results and Discussion 

Figures 5.9 and 5.10 illustrate that the power produced by the engine with the FCS 

exhibited an increase of between 2% and 21% with an average of approximately 12% 

compared with the original mechanical fuel delivery system. 

 

A corresponding improvement in output torque also resulted from the use of the fuel 

injection system with the FCS compared to when the original fuel delivery system 

was used.  With its injector located at the entrance to the air intake just ahead of the 

throttle butterfly-value. Air/fuel mixing and atomisation take place at low injection 

pressure upstream of the throttle. The carburettor system however relies heavily on 

negative pressure created by the venture to induce the metered fuel to enter the 

incoming air stream, the pressure drop in a carburettor also impairs the volumetric 

efficiency of an engine and reduces its power output whereas the FCS injected fuel 

into an unrestricted air stream above atmospheric pressure. Figures 5.11 to 5.12 show 

that the average torque exhibited an increase of between 2% and 20% with an overall 

average of 12%. These increases in engine performance are partly due to the 

improvement in charge preparation achieved by the fuel injection process; the 

improvement in fuel metering also results in improved combustion efficiency hence 

increased engine power. 
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Figure 5.9: Engine power when throttle=50% 

0.4

0.5

0.6

0.7

0.8

0.9

1

1700 1900 2100 2300 2500 2700 2900

Speed (RPM)

P
o

w
e
r
(
k
W

)

FCS

Basic engine

 

Figure 5.10: Engine power when throttle=75% 
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Figure 5.11: Engine torque when throttle=50% 
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Figure 5.12: Engine torque when throttle=75% 
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Figure 5.13: Variation in lambda with original fuel regulation system 
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Figure 5.14: Variation in lambda with fuzzy-controlled fuel-injection system 

 

Figures 5.13 and 5.14 illustrate how the value of  varied with different combinations 

of speed and throttle position using the original fuel regulation system and the fuzzy-

controlled fuel-injection system, respectively. Figure 5.13 shows that wide variations 

in  occurred when the original fuel regulation system was used, this being due to 

non-linearities in the characteristic of the carburettor.  This resulted in an excessively 

rich mixture at small throttle openings and an excessively weak mixture when the 
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throttle opening was large.  The large variations in  suggested poor combustion 

efficiency and higher, harmful, exhaust emissions. An improved and refined contour 

was found to occur when the FCS was employed, Figure 5.14. Reasonable regulation 

of  was achieved, the value being maintained between 0.8 and 1.0 in approximately 

90% of the experimental operating region. 

 

The complexity of such a fuzzy logic system with a fixed input-output structure is 

determined by the number of membership functions used for the fuzzification and 

defuzzification and by the number of inference levels. Clearly a fuzzy system of this 

kind requires that a knowledgeable human operator initialises the system parameters 

e.g. the membership function bounds. The operator must then optimise these 

parameters to achieve a required level of accuracy of mapping of the physical system 

by the fuzzy system. 

5.2 Fuzzy and Neuro-fuzzy Modelling 

This section describes another linked piece of work on fuel spray penetration in the 

cylinder of a diesel internal combustion engine. The aim is to demonstrate the 

effectiveness of an ANFIS for the prediction of diesel spray penetration length in the 

cylinder of a diesel internal combustion engine. 

 

The first model was implemented using a conventional fuzzy-based paradigm, where 

human expertise and operator knowledge were used to select the parameters for the 

system. The second model used an ANFIS, where automatic adjustment of the system 

parameters was effected by a neural network, based on prior knowledge. 

 

A large collection of diesel spray data was generated using a Ricardo Proteus test 

engine. These data comprised images depicting the spray patterns of diesel injection 

processes, under selected conditions of relative pressure, nozzle size and type and in-

cylinder air temperature. The images representing time-varying spray patterns under 

each relative pressure condition were examined and processed using a thresholding 
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technique; each image representing the instant of maximum penetration length was 

then determined, yielding a maximum penetration value which could be linked with 

its corresponding relative pressure across the injector. The collected maximum spray 

penetration values and corresponding relative pressures then formed labelled data to 

be modelled by the FIS. 

 

Two engine operating parameters were used as inputs to the model; namely in-

cylinder pressure and air density. Spray penetration length was modelled on the basis 

of these two inputs. The models derived using the two techniques were validated 

using test data that had not been used during training; please see Figure 5.15. 

 

Figure 5.15: Schematic diagram of FIS modelling 

 

The generalised bell-shaped membership functions were used for classes: low, 

medium and high; this was empirically selected, based on the features of all data 

under consideration, although in many cases membership functions are fixed and 

somewhat arbitrarily chosen. The process was carried out by examining the ranges of 

all data sets to determine where the majority of points were located. The functions 

were also created to have an approximately equal amount of overlap between each 

membership curve. Experimental adjustment of the limits of the membership classes 

enabled the response of the model to be tailored to the experimental output from the 

experimental data. The rule structure was essentially predetermined by the user‟s 
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interpretation of the characteristics of the input parameters in the model. The contents 

of these rule-base and membership functions undertake many modifications as part of 

the process of heuristic optimisation and in many cases it is a continuing process. 

 

A second model was devised using Matlab based application, ANFIS.  A neuro-

adaptive learning technique facilitated the learning of dataset information by the fuzzy 

modelling procedure; it was then possible to compute the membership function 

parameters that best allowed the associated FIS to track the given input/output data, 

rather than choosing the parameters associated with a given membership function 

arbitrarily.  

5.2.1 Pre-processing 

Raw penetration lengths were plotted against time under each relative pressure and 

density condition. Polynomial fitting was employed to produce best fitted curves 

where maximum penetration values can be depicted. As an example, Figure 5.16 

shows a selected plot when relative pressure is 60MPa and air density is 14kg/m
3
. 

 

Figure 5.16: Selected polynomial curves fitting & maximum spray penetration 

seeking 
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Various values of relative pressure and density were selected and the resulting 

maximum penetration was recorded. These were combined into a vector with which 

were used in the training of the ANFIS, as illustrated in Table 3. During training in 

ANFIS, 6 sets of pre-processed data were used to conduct 180 cycles of learning. 

 

Data set 

Parameters 

Measured penetration (mm) Relative pressure 

(MPa) Density (kg/m3) 

1 60 14 53 

2 60 35 32 

3 100 14 52 

4 100 35 38 

5 160 14 54 

6 160 35 36 

 

Table 3: Training data sets and results 

 

 

 

Figure 5.17: Pure fuzzy logic model – surface plot 
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Figure 5.18: ANFIS surface plot 

 

The control surface in Figure 5.17 shows the crisp value of penetration depth at 

different combinations of in-cylinder pressure and air density, using a pure fuzzy logic 

model. Each of these intersection points indicates the differing predicted value of 

spray penetration depth, which is determined by the design of the fuzzy sets, the rule-

base and the membership functions. The surface plot acts as a practical means of 

determining the output needed for each combination of input parameters. 

 

Figure 5.18 depicts a three-dimensional plot that represents the ANFIS mapping from 

relative pressure and air density to spray penetration length. As the relative pressure 

and air density increase, the predicted penetration length increases in a non-linear 

piecewise manner, this being largely due to non-linearity of the characteristic of the 

input vector matrix derived from the raw image data. This assumes that these raw 

image data are fully representative of the features of the data that the trained FIS is 

intended to model. 

5.2.2 Results and Discussion 

The validation data in Table 5 was used as checking data to see how well the FIS 

model could predict the corresponding penetration length. Figure 5.19 shows a scatter 
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plot of the measured and FIS-modelled penetration lengths utilising six sets of testing 

data. These two sets of data demonstrate that the predicted values are close to the 

experimentally-measured values, as many of the data points fall very close to the 

diagonal (dotted) line, indicating good correlation. Figure 5.20 shows similar 

comparisons between the FIS-modelled and measured values of the penetration length 

using the same testing data. Clearly the model created by ANFIS has a better 

agreement than the pure fuzzy logic model. The correlation coefficient also suggested 

identical findings. 

 

Data 

set 

Parameters Penetration (mm) 

Relative pressure 

(MPa) 

Density 

(kg/m3) Measured 

Pure Fuzzy 

Paradigms ANFIS 

1 60 28 33 30 33 

2 60 40 35 28 35 

3 100 28 40 40 41 

4 100 40 29 23 29 

5 160 28 40 39 40 

6 160 40 30 21 30 

  
Correlation 

coefficient 0.971 0.997 

Table 4: Testing data 

 

 

Figure 5.19: Scatter plot of measured penetration and predicted penetration 
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Figure 5.20: Comparisons between predicted and measured penetration 

 

This technique ANFIS has several advantages when assigned to applications in which 

only partial knowledge of the system characteristic exists, as is typically the case with 

engineering systems. Additionally, the ANFIS can rapidly identify important 

characteristics of the data, which is an important and useful feature of models used for 

estimation purposes in internal combustion engines research. In the experiment, an 

ANFIS was used to predict changes in diesel spray penetration depth as a potential 

means to evaluate impending changes in combustion chamber and fuel injector 

design. As an initial step toward modelling and prediction with an ANFIS for this 

particular application, it has proven very useful for short-term prediction of 

penetration depth using engine operating parameters as the input. Both models 

performed fairly well and approximated the output function to a reasonable extent 

whilst the ANFIS model exhibited improved performance in this respect. Pure fuzzy 

logic models were conveniently constructed whilst the ANFIS performed well in 

cases where the input to output relationships became more complex. 
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Chapter 6 : Experimental Work 

This chapter describes an intelligent GPS based control system utilising information 

about the current vehicle position and upcoming terrain in order to reduce vehicle fuel 

consumption as well as improve road safety and comfort. The development of the in-

vehicle control systems has provided static and dynamic road information. The 

vehicle running parameters have been mathematically defined whilst the engine 

control algorithms were derived from a custom-built engine test-rig. As the vehicle 

travelled over a particular route, road information such as gradient and position was 

stored with the past trajectory using a Neuro-fuzzy technique. This road information 

was continuously updated and replaced by new data as the vehicle moved along, 

thereby adjusting the engine control parameters to reflect the actual current vehicle 

running data. 

6.1 Vehicle Model 

The model developed using Simulink was based on a Volkswagen Golf with a 

standard gasoline-powered internal combustion engine. This model has formed a core 

part of the simulation, intending to predict the amount of torque required to balance 

the loads exerted on the vehicle. This model consisted of two major input 

components, the engine speed and the predictive gradient of the road. The outputs 

from the model are the ignition timing and the engine torque. The ultimate objective 

here is to control the ignition timing so that the engine is operated in its optimised 

condition. Ignition timing in an internal combustion engine is the process of setting 

the time that a spark will occur in the combustion chamber, relative to piston position 

and crankshaft angular velocity. Setting the correct ignition timing is crucial in the 

performance of an engine. The ignition timing affects many variables including 

engine longevity, fuel economy and engine output. 
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6.1.1 Vehicle dynamics 

Consider a vehicle with a mass „m‟ travelling on a road with an incline „θ‟ shown 

schematically in Figure 6.1. The resultant force acting on the vehicle was simplified to 

the sum of the driving force generated by the engine, the air drag and the gravitational 

force. The rolling resistance between the road and the tyres was assumed to be zero. 

The car was travelling in a straight line and must maintain constant speed with change 

in θ. 

 

Figure 6.1 Schematic force diagram 

 

 

Figure 6.2: Uphill scenario 
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Applying Newton‟s second law, the resultant motive force, Fm on the vehicle is given 

by the resolved component parallel to the slope: 

 

sinmgFFmaF dragenginem   (1) 

 

where „m‟ is the vehicle mass, „a‟ is the acceleration of the vehicle, „g‟ is the gravity, 

Fengine is the driving force produced by the engine and Fdrag is the resistance due to 

aerodynamic drag. 

 

The engine controller was to maintain the vehicle at a constant speed regardless of the 

change in road gradient, as shown in Figure 6.2. In the case of an uphill scenario, the 

controller adjusted the ignition timing according to the loads i.e. air drag and gravity, 

and associated with the advance road gradient derived from the predictive algorithm. 

 

For a vehicle travelling at constant speed, i.e. a=0, equation (1) is reduced to:- 

 

sinmgFF dragengine   (2) 

 

The vehicle drag force is given by:- 

 

ddrag ACvF 2

2

1
  (3) 

 

The gross indicated power, Ip is given by: 

  

.

2










 


h
p

VGIMEP
I  (4) 

 

By rearranging and substituting relevant parameters in the equation (2), (3) and (4), 

the power balance of the system is given by:- 
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where GIMEP is the gross indicated mean effective pressure of the engine, Vh is the 

engine capacity, is the engine speed, v is the speed of the vehicle, ρ is the air 

density, A and Cd are the frontal area and the drag coefficient of the vehicle, 

respectively. 

 

The term Ip, gross indicated power of an engine is the theoretical power of an internal 

combustion engine, given that it is completely efficient in converting the energy 

contained in the expanding gases in the cylinders. The term GIMEP is effectively 

torque without losses. Losses and efficiency can be built into a more complex model. 

An essential part of this vehicle model however is to obtain optimised engine 

operating parameters in order to achieve reduced fuel consumption and emissions. As 

the GIMEP is directly related to the engine control parameters „ignition timing‟ and 

„engine operating speed‟, a series of engine tests were carried out so that the 

optimised control map could be obtained and included in the simulation model. 

6.1.2 Test engine 

A single-cylinder Ricardo Mk I Hydra engine was built using a production B230 

Volvo cylinder head, cut from a multi-cylinder head. Modifications to the camshafts, 

the oil and water systems were carried out. An intake manifold was fabricated from 

the multi-cylinder manifold (including the injector boss) to fit the cylinder head, 

throttle body and intake plenum. The fuel injector was directed down the intake port. 

The angle of the injector to the machined gasket face of the cylinder head was the 

same as the production engine configuration. A low-pressure fuel rail was 

manufactured to fit the injector. An exhaust manifold was fabricated to fit the cylinder 

head with bosses for a lambda sensor and thermocouple.  The basic engine 

specifications are given in Table 5. 

 

 

 

.
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Bore 92 mm 

Stroke 80 mm 

Number of cylinders 1 

Head one cylinder of B230 4 valve multi-cylinder 

Compression ratio 10:1 (nominal) 

Maximum valve lift 9.8 mm 

Ignition system Brighton with Mitsubishi coil-on-plug  

Coil charge duration 3, 4 ms 

Spark plug NGK BP8EVX 

Spark plug gap 0.85 mm 

Fuel injection system Brighton with Bosch injector  

Fuel pressure 3.5 bar 

Injection timing 90 CA BTDC firing (F) 

 

Table 5: Engine specification 

6.1.2.1 Test bed and installation 

The engine was installed on a test bed in the Sir Harry Ricardo Laboratories at the 

University of Brighton. The facility was equipped with a Plint dynamometer and 

electrically-driven pumps for oil, coolant and fuel supplies. The oil and coolant 

temperatures were maintained at 80°C and 90°C ± 2°C respectively. Oil, coolant, fuel, 

intake air and exhaust gas temperatures were recorded using type-K thermocouples. 

Intake manifold pressure was recorded using two, 2 bar absolute pressure transducers 

(Kistler 4045A2, Druck DPI 201). In-cylinder pressure was recorded using a gauge 

pressure transducer (Kistler 6125).  

 

The rotational speed of the engine was measured using an optical encoder (Leine and 

Linde) with a resolution of 720ppr directly coupled to the crankshaft. The engine 

speed was maintained to an accuracy of ± 5 rpm. Mass flow of air through the engine 

was measured using a thermal mass flow meter (Endress and Hauser, AT70F). The 

minimum flow measurement (and the greatest uncertainty) was approximately 4 

kg/hr. It was not possible to record the mass flow of air for engine speeds less than or 

equal to 1000rpm. The throttle valve was driven by a geared stepper motor. The 

throttle position was controlled with a multi-turn potentiometer.  
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AFR was measured close to the exhaust port using a calibrated wide-range lambda 

sensor (ETAS LA3). A greater proportion of fuel gives a lambda of less than unity, 

termed a rich mixture, while a greater proportion of air gives a lambda of greater than 

unity, termed a weak or lean mixture. The calibration of the sensor was checked 

periodically against a Horiba MEXA 7170DEGR exhaust gas analyser.  

 

The fuel rig comprised of production automotive components (tank, regulator, and 

pump) integrated within a standalone unit with provision for fuel cooling. The low 

pressure part of the circuit was used for the Port Fuel Injection (PFI) injector. The fuel 

rail was fabricated from a modified Bosch production fuel rail. The fuel used 

throughout was pump grade BP 95 RON unleaded gasoline. 

 

An AVL INDISET 620 data acquisition system and INDICOM V1.5 software were 

used to record data for combustion analysis over 400 consecutive cycles with a 

resolution of 0.5°CA. The in-cylinder gauge pressure was not pegged to the intake 

manifold absolute pressure conditions. The AVL thermodynamic correction was 

applied to in-cylinder pressure. In addition to in-cylinder pressure, the data acquisition 

system was used to record AFR, intake manifold absolute pressure, air mass flow rate, 

ignition timing signal, injection timing signal and engine coolant, air, exhaust and oil 

temperatures. The greatest error in the engine load condition was ± 0.04 bar recorded 

at the lowest speed condition. 

 

All instrumentation was calibrated prior to engine testing and periodically throughout 

the programme. Before each test run, a hot, motored TDC determination was 

performed. The engine test installation is shown in Figure 6.3.  
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Figure 6.3: Engine test installation 

 

6.1.2.2 Programme of work 

The operating points for engine speed and load were selected to be representative of 

the conditions typically encountered during city driving between 1st and 4th gear. The 

engine was tested using the baseline production operating parameters for three speed 

and part load conditions: 1000 rpm and 1.0 bar GIMEP, 1500 rpm and 1.5 bar GIMEP 

and 1800 rpm and 1.8 bar GIMEP. At each part load condition, a mixture response 

swing was completed using MBT ignition timings (minimum ignition advance for 

best torque). Fuel was injected at 90°CA BTDC firing (CVI - Closed-valve injection). 

The spark plug gap was optimised for the ignition system used. 
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6.1.3 Engine mapping 

The data obtained from the instruments were manipulated and analysed. An engine 

control map was generated using a Neuro-fuzzy modelling approach whereby two 

input and one output parameters were configured in the FIS. This Neuro-fuzzy system 

automatically adjusted the parameters of the basic fuzzy logic system very efficiently 

and identified the unknown process mapping from input to output data. The basic idea 

behind these neuro-adaptive learning techniques was to provide a method for the 

fuzzy modelling procedure to learn information about the data set, in order to 

automatically compute the membership function parameters that best allowed the 

associated FIS to track the given input/output data. The fuzzy membership function 

parameters were tuned using a combination of least squares estimation and a 

backpropagation algorithm for membership function parameter estimation. These 

parameters associated with the membership functions changed through the learning 

process similar to those of a neural network. Their adjustment was facilitated by a 

gradient vector, which provided a measure of how well the FIS was modelling the 

input/output data for a given set of parameters. Once the gradient vector was obtained, 

any of several optimisation routines could be applied in order to adjust the parameters 

so as to reduce the error between the actual and desired outputs. This allowed the 

fuzzy system to learn from the data it is modelling. The approach had the advantage 

over the pure fuzzy paradigm that the need for the human operator to tune the system 

by adjusting the bounds of the membership functions was removed. 



Experimental Work 

 

 

 

 

71 

 

 

Figure 6.4: Engine control map devised using Hydra test-rig 

 

Engine parameters were collected from 1000 rpm to 1800 rpm; ignition timing was 

recorded at each operating point where the AFR was monitored and maintained at 

=1.0 throughout, ensuring optimal combustion efficiency [32]. Small reductions in 

AFR can optimise power output but may lead to sizeable increases in emissions. 

Figure 6.4 depicts a three-dimensional plot representing the resulting Neuro-fuzzy 

mapping of engine speed, GIMEP and ignition timing. It can be seen that as the 

engine speed and GIMEP increased, the ignition timing increased in a non-linear 

piecewise manner, this being largely due to non-linearity of the characteristic of the 

input vector matrix derived from the raw engine data. This assumed that these raw 

engine data are fully representative of the features of the data that this Neuro-fuzzy 

FIS was intended to model. 

 

By combining the optimised engine operational map with equation (3), the primary 

aim of the controller was to maintain the ignition timing with respect to the predictive 
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gradient of the road, θ. This has formed a major part of this engine sub-system in the 

simulation. 

6.2 Fuzzy Predictive Model 

6.2.1 Techniques 

A challenge of the project was how to meet higher safety standard requirements and 

obtain reduced fuel consumption through the use of live GPS road information for 

vehicle control. The approach was to use GPS to track the vehicle, and also to create 

the base map. At all other times GPS readings were used to validate or correct the 

base map when a reliable signal was available and of sufficient accuracy. The correct 

vehicle position was achieved by tracing this GPS signal received at a predetermined 

time interval. 

 

 

Figure 6.5: Engine/vehicle control using internally and externally acquired data 

 

The conceptual overview of this model is shown in Figure 6.5. The control system 

acquired the position data through the serial interface, so that it could be used to 

improve the operation of several sub-systems in the vehicle, e.g. controlling a series 

of actuators or settings. Distance travelled and vehicle speed were recorded along the 
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way. A 10 m distance span was used initially and this was maintained by on-board 

timers. The Neuro-fuzzy technique was used to derive a relief map of the test track, 

and here the position data was translated and represented by two input and one output 

membership functions together with twelve rules as part of the optimisation routine. 

The relief map that was devised under the scheme was used for future gradient 

prediction. The chosen intelligent technique involved extraction of necessary 

representative features from a series of data points. An experiment using this Neuro-

fuzzy derived technique for modelling fuel spray penetration was described in Chapter 

5 and achieved good results. 

 

6.2.2 Experimental setup 

The experiments were performed on a small passenger vehicle. A test route was 

established on the outskirts of Eastbourne in East Sussex, UK. A stand-alone laptop 

with a handheld GPS device was used throughout the experiment. The devised system 

was not connected to the vehicle control system. Therefore, an external GPS receiver 

was used and data were logged together with the time from the on-board clock 

through a serial Bluetooth interface.  
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Figure 6.6: Researcher capturing live GPS data 

 

The aim of this investigation was to use a GPS receiver in conjunction with custom-

written Matlab software to collect and store three-dimensional vehicle position data. 

The incoming stream of data was used to estimate the future elevation of the vehicle; 

this data was also expected to be of further use for dynamically influencing the 

control of an engine. The programme flowchart in Figure 6.7 showed how these 

algorithms integrated together to form a fuzzy predictive control system. 
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Figure 6.7: Predictive fuzzy inference system 

 

The main software was divided into several functional modules, each of which 

performed its own set of calculations. The optimisation was performed by the Neuro-

fuzzy module, the generated FIS was stored in the computer memory, whilst the 

timing of all these activities was governed by the on-board clock and timers. 

 

6.2.3 Road gradient estimation 

The fuzzy predictive control scheme is shown in Figure 6.8. The operation was 

triggered by a start signal and the status of the GPS data. A few given set points were 

GPS data capture, 
validate and 

process 

Speed=0? 

Derive fuzzy relief map 

Storage 

Height prediction 

Predictive 

distance, z 

Engine inference 

signal 

No 

Yes 

GPS receiver 

initialisation 

START 



Experimental Work 

 

 

 

 

76 

 

needed i.e. predictive distance and sampling rate. The initial position data of the 

vehicle was registered and as a result a reference trajectory could be designed. From 

the reference trajectory, the next reference position was obtained according to the 

preset distance span. Meanwhile, the predictive algorithm calculated the next position 

of the vehicle using the current speed gathered from the GPS receiver. Based on the 

difference between the current and the predicted position, the fuzzy controller 

deduced the height at a set distance ahead and subsequently calculated the gradient. 

 

 

Figure 6.8: Road gradient predictive scheme 

 

To calculate the distance between two points on the Earth required the use of the 

Great Circle Distance Formula [33]. 
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where r was the radius of the earth, 6378.7km. The variables lat1, long1 and lat2, 

long2 were the current position and predicted position, respectively. 
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The software was capable of handling double-precision floating point as this formula 

required a high level of floating point mathematical accuracy. The future location 

deduced using the described algorithms, was of particular interest since it provided 

information about the condition of the road ahead, in order to realise the appropriate 

control signal. 

6.2.4 Validation 

A set of measurements is shown in Figure 6.9. The solid line represents the height 

data; this was used to train the Neuro-fuzzy network to produce a base relief map of 

the route, a second run was performed at a variable sampling rate i.e. speed dependent 

sampling. These data were used as test data; the predictive algorithm was applied 

where future gradient estimation was computed. The result was compared and 

automatically logged for off-line analysis. 

 

Figure 6.9: Measurement of road elevations 
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Chapter 7 : Simulation and Results 

Simulation was carried out using Simulink; the status window was presented by an 

interface shown in Figure 7.1. The simulation model can be divided into four sub-

systems, and each sub-system contained its own algorithms and mathematical 

functions. The vehicle GPS block essentially was a collection of vehicle running data, 

this was recorded and consolidated to be used and linked to the rest of the sub-

systems. The predictive system shown in Figure 7.2 was the core function of the fuzzy 

predictive model derived in the previous section. This sub-system primarily used a 

Neuro-fuzzy technique to learn and model the route and this was continuously 

updated and replaced by new data as the vehicle moved along. A fuzzy logic derived 

relief map was generated and this was stored and used as a reference for the gradient 

prediction.  
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Figure 7.1: An overview of the simulation model 
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Figure 7.2: Fuzzy predictive system 

 

The gradient block shown in Figure 7.3 was a series of mathematical functions. These 

were employed to convert predictive height into road gradient, taking into account the 

instantaneous vehicle speed and altitude. The engine/vehicle block consisted of real 

engine running data and the dynamic vehicle model previously explained in section 

6.1.1. Each sub-block was associated with variables such as vehicle mass, frontal area, 

drag coefficient where each individual value could be changed if required. Figure 7.4 

shows the connections and the mathematical relationship between parameters. This 

simulation provided an effective platform by adding the complexity of the system 

under control to the test platform. 
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Figure 7.3: Gradient conversion block 

 

 

Figure 7.4: Engine/vehicle model 
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alongside, to monitor and validate the results. Figure 7.5 shows the results from a 

simulation run. 

 

Figure 7.5: Simulation results 

 

Each of these graphs indicates the corresponding results from each block and/or 

combination of blocks in the simulation. There were 754 GPS data points in the set, 

covering 7.8 miles of test track. The whole journey took just under 25 minutes. The 

elevation plot shows the height profile of the test route. The predictive gradient plot 
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was based on the height profile of a training run. The controller obtained this 

predictive information and adjusted the ignition timing according to the loads. Notice 

that the change of engine torque is affected by the level of loads acting on the vehicle, 

i.e. mass, gradient and speed. Consequently, as speed increases, the drag resistance 

increases exponentially. These graphs demonstrate the effectiveness of the system and 

how it responded to different loading conditions and road gradient, derived from the 

fuzzy logic relief map. The ignition timing plot illustrates the optimal value at each 

time step, when the AFR was maintained in order to achieve minimum fuel 

consumption and emissions. 

 

 

Figure 7.6: Magnified plot between 1170 to 1195 seconds 
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The chosen test route included a few successive up and down hill sections, a 

magnified graph in Figure 7.6 depicting one of them. In general, the predictive 

algorithm was able to distinguish the trend of a section except a glitch between 1150 

to 1170 seconds. This is mainly due to the altitude resolution of the GPS receiver. 

Considering that the relief map information is continuously updated and replaced by 

new data as the vehicle moves along, thus this error might be diminished. However, 

the vehicle dynamic and the engine model worked well in response to the changes in 

vehicle speed and predictive gradient. The downhill section from 1172 seconds 

demonstrated the effect of decreasing loads due to both decreasing speed and gradient. 

The reduced loads on the vehicle reflected a reduction in engine torque which was 

shown in the ignition timing plot. 

7.1 Model Validation 

The simulated engine control parameters generated from the Simulink model shown 

in Figure 7.4 were electronically recorded and coordinated for offline Software-in-the-

Loop (SIL) testing. Some key input parameters such as ignition timing, engine speed 

and engine torque used to run the engine at its optimal combustion efficiency were 

used as offline running data for the engine test-rig. The validation run was carried out 

at each operating point where the AFR was monitored throughout. The test was to 

check how well the Simulink model could predict the engine torque required for 

different road conditions and terrains. 
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Figure 7.7: Scatter plot of measured and simulated AFR 

 

Figure 7.7 shows the scatter plot of the AFR from two separate engine test run 

utilising the measured and the Simulink modelled dataset. The diagram demonstrated 

that the simulated values are close to the experimentally-measured values. The 

coefficient of determination, R
2
 is 0.8151, indicating reasonably good correlation 

between the measured and simulated parameters. 
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Chapter 8 : Conclusions 

Intelligent control is a promising field in modern control technology typically 

dedicated to highly complex and uncertain systems. This project has demonstrated 

two different techniques for representing fuzzy algorithms as well as discussing the 

relevance to neuro-fuzzy adaptive modelling through two separate previous studies. 

Pure fuzzy implementations which store the relational information and set definitions 

at discrete points have been used within the control community, whereas the neuro-

fuzzy system has demonstrated its adaptability; the system automatically adjusted the 

parameters of the basic fuzzy logic system very efficiently and identified the unknown 

process mapping from input to output data. The latter technique has gained in 

popularity due to its strong links with neural networks. 

 

Experimental results suggested neuro-fuzzy paradigm can be applied to control a 

small internal combustion engine. The establishment of an improved neuro-fuzzy 

paradigm for adaptive, fast and accurate control of small internal combustion engines 

is promising drawing from experience gained in intelligent engine control and 

modelling. The neuro-fuzzy algorithm that governs the control process is designed to 

automatically optimise the engine control parameters for each operating zone, to 

achieve performance in accordance with user-defined specifications. The best 

parameters for the neuro-fuzzy engine controller can be determined by using this 

ANFIS methodology together with the engine operating parameters. A test rig has 

been used to validate the tracking ability and insensitivity to engine conditions/load 

changes experimentally. The optimal fuzzy control strategy should be inexpensive to 

set up and computationally efficient. These combined or hybrid topological 

techniques are likely to be highly beneficial in future engine control research. 
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The successful and promising outcomes of the control and modelling work have led to 

the exploration of engine/vehicle control using GPS data. The simulated model 

demonstrated that intelligent systems can be used for predictive control of a vehicle. 

The technique represented a convenient and robust method of achieving road 

prediction, to form a fuzzy system that „looks ahead‟ leading to improved fuel 

consumption and a consequent reduction in exhaust emissions. A new algorithm was 

demonstrated, which integrates live GPS data with the existing fuzzy logic derived 

relief map; matching software was developed and successfully implemented. This 

Neuro-fuzzy paradigm utilised simple map matching criteria, determining the gradient 

ahead based on current GPS position, and subsequently influenced the control of an 

engine. The GPS data observations were combined with fuzzy logic derived position 

to provide vehicle height information every two seconds. 

 

Experimental results demonstrated the feasibility and advantages of this predictive 

fuzzy control on the trajectory tracking of a vehicle. Over 900 vehicle positions were 

generated and computed on each 7.8 mile test run using the newly devised algorithms. 

A similar number of test data were collected and compared to the height information 

generated by the predictive algorithm. The results showed that a good agreement was 

achieved between the predictive and the actual position data. The correlation 

coefficient of the elevation estimated by the Nero-fuzzy technique is 0.996, indicating 

good correlation.  

 

The technique developed in road height estimation performs well and has been 

simulated using Simulink. This was combined with the technique of HIL in the 

development and test of a complex real-time system. The results showed how each 

system responded and a predictive height algorithm was used throughout the 

simulation. The work also demonstrated the potential effectiveness of the system for 

use in developing a simplistic vehicle control system for reduced fuel consumption 

and emissions. Due to the fact that the method is tested and used on known and 

repeated routes, the system is intended for and ideal on buses or fleet vehicles. 
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Chapter 9 : Further Work 

There is considerable potential for further research in a number of areas that this work 

has encompassed. The system can be further improved with new, low-cost GPS 

receiver technology and integration with in-vehicle sensors as well as with the engine 

operating parameters. An inclinometer or accelerometer can be found in many current 

vehicles; this essential fitment not only provides active safety in vehicles, i.e. the 

stability control, the braking system and automatic gearbox, but could also improve 

the accuracy of the height predictive algorithm. An inclinometer prototype has been 

constructed and tested after the project. The standalone device was interfaced with the 

laptop via a USB link, enabling live road gradient and GPS data to be acquired. 

Preliminary tests showed the new setup capable of recording the inclination, 

potentially to be used to improve the accuracy and stability of the model. 

 

Furthermore, the integration of the real-time testing environment for Simulink models 

can be achieved by connecting the host computer, a target computer, and the engine 

hardware under test enables access and interactively controls the engine hardware. It 

allows for validation of the models by comparing the performance and data obtained 

from an actual vehicle/engine test rig with similar configuration as the simulation. 

Tuning the Fuzzy parameter within the Simulink models helps to obtain high-fidelity 

representation of the physical plant of the vehicle. The development time can be 

significantly reduced as the result and any design changes can be directly and quickly 

implemented. Such approach provides a cost-effective solution by identifying and 

resolving problem in the laboratory instead of in the field. 

 

In addition, the availability of more engine data will allow for the expansion of the 

engine model to include engine cold-start performance and subsequently lower the 

exhaust emissions, a new proposed fuzzy control loop illustrated in Figure 9.1 can be 

incorporated with the devised algorithm. This can be done via the use of low-cost 
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temperature sensor together with an additional fuzzy set associated with a set of rule-

base membership functions.  

 

Figure 9.1: Engine/vehicle control with cold-start enrichment 

 

 

 

Figure 9.2: Cold-start fuzzy input set – engine temperature 

 

 

 

 

Figure 9.3: Cold-start fuzzy output set – FPW correction 

Data acquisition 
Interpretation of 
sensor signals 
by parameters 

Fuzzy/ANFIS 

Fuzzification 
Inference 
Defuzzification 

Engine/vehicle 
management 
system 

Engine temperature 

Command 

Variables 

Measured variables 

GPS signal 

Cold-start 
enrichment 

Parameters 

FPW 

correction 

Engine temperature (°C) 

FPW correction (ms) 



Further Work 

 

 

 

 

90 

 

 

Rule 1: If the engine temperature is very low then the FPW enrichment is high 

Rule 2: If the engine temperature is low then the FPW enrichment is medium 

Rule 3: If the engine temperature is normal then the FPW enrichment is low 

Rule 4: If the engine temperature is high then the FPW enrichment is low 

 

Figure 9.4: The fuzzy rule base – cold-start 

 

The engine temperature fuzzy set shown in Figure 9.2 will be used in the fuzzy 

controller. It consisted of three simple trapezoidal membership functions for classes 

Very Low, Low, Normal and High. The optimisation of the rule-base shown in Figure 

9.4 enables experimental adjustment of the limits of the membership classes and an 

experimental refinement will form a part of the calibration process. The output fuzzy 

set in this case could be a series of FPW singletons, illustrated in Figure 9.3, which 

combines with the developed FCS to facilitate air/fuel mixture enrichment when the 

engine temperature is below its optimum level. 

 

Similarly, other running parameters such as vehicle load can be included in the model. 

This may be accomplished by the use of load sensor attached directly to the 

suspension parts. This arrangement can be found in most commercial vehicles and 

vehicles fitted with air-suspension level-control system. Such a system can be easily 

incorporated to the developed FCS by adding an additional fuzzy set, say, Vehicle 

Load. The system will need to be optimised with the rule-base and output fuzzy set. 

This essentially sets the operating point of the engine, and in conjunction with the 

ignition timing angle, determines the output power and the resulting level of 

emissions. 

 

In general, the addition of these sensors and rule-base will certainly improve the 

accuracy of the model, the HIL testing offers the facility to change and record all 

these activities in real-time and make fine-tuning possible in the simulation. The 

prospect and experience will not only give rise to the use of intelligent techniques in 

improving engine and vehicle efficiency but also to demonstrate the combination of 

GPS, level and inclination sensors can further improve vehicle safety by providing the 
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driver with an optimal speed recommendation in the form of a visual driving aid 

embedded in the instrumentation cluster for instance. Future work will be focused on 

system integration that can be cost effectively developed. 
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Appendix A: Published Papers 

A number of papers were published during the course of this research project. Twelve 

papers were produced in conjunction with other researchers. 

 

Three papers by the author are included in this Appendix as examples of the published 

work [42-44]. 
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part of the calibration process. The final set of rules contained in the rule-base is shown in Figure 6. 
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Table 2: Fuzzy rule-base 
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zy controller deduces the height at a set distance ahead 

and subsequently calculates the gradient 
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Appendix B: Matlab Program Code 

The work described in this thesis involved the creation of approximately 1,000 lines 

of code written in the Matlab programming language. Two section of code are 

included in this Appendix as examples. The first is the program „timercap8.m‟. This is 

a software implementation of the GPS data capturing and processing algorithms and 

the Fuzzy Predictive algorithm described in Section 6.2.2 of the thesis. A series of 

associated custom-written functions was devised in order to capture and validate the 

raw GPS data. The operation of these routines was explained in Section 6.2; the 

program-code for the road gradient estimation routines „manipulate3.m‟form the 

second section of code included in this Appendix. The core part of the operation was 

to translate the three-dimensional vehicle position data to Neuro-fuzzy derived relief 

map. This was used demonstrated in the engine/vehicle simulation described in 

Section 7. 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% File: timercap8.m 

% Data acquisition/processing, Predictive Fuzzy inference functions 

% Software: Matlab/Simulink version 7 or higher 

% 

% Input: data capturing parameters   Output: Vehicle tracking data 

% 

% Executable: timercap8.m 

% Associated functions: 

% Timercap8.m 

% summary2.m 

% readpacket4.m 

% display2.m 

% data_reg2.m 

% analysis2.m 

% deg2dec.m 

% Decimal2Degrees.m 

% Rounding.m 

% report.m 

% rt.m 

% 

% S.H.Lee 

% Revision: 8.0 

% Date: 11/8/2007 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

gpson=false; 

fixed=false; 

port='com10'; 

gps=serial(port); 

set(gps,'BaudRate',38400); 

  

while (gpson==false) 

    disp('Switch on the GPS receiver and press anykey to continue'); 

    pause; 

    gpson=true; 

end 

fopen(gps); 

  

t = timer('StartDelay', 1,'Period', 2,'TasksToExecute', inf,... 

          'ExecutionMode','fixedRate'); 

%t.StartFcn = {'my_callback_fcn', 'My start message',}; 

t.StopFcn = 'disp(''End of data capturing''); summary2; fclose(gps); 

delete(gps);'; 

%t.StopFcn = { @my_callback_fcn, 'My stop message'}; 

t.TimerFcn = 'disp(''Timer fire!''); readpacket4; make_train; 

display2'; 

  

%Global variables% 

t_data=[]; 

trainfile = 't_track.mat'; 

raw_gps=[]; 

log_count=0; 

lat='0'; 

long='0'; 

alt='0'; 

  

figure; 



 

 

 

 

 

138 

 

subplot(2,2,1); 

axis off; 

title('GPS Data', 'fontweight', 'bold'); 

text(0, .85, ['Initialising.........']); 

  

load t_track 

start(t); 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% File: summary2.m 

% Data acquisition/processing, Predictive Fuzzy inference functions 

% Software: Matlab/Simulink version 7 or higher 

% 

% Input: subroutine of timercap8.m   Output: url, Neuro-fuzzy 

training % file 

% 

% Executable: via timercap8.m 

% Associated functions: 

% Timercap8.m 

% summary2.m 

% readpacket4.m 

% display2.m 

% data_reg2.m 

% analysis2.m 

% deg2dec.m 

% Decimal2Degrees.m 

% Rounding.m 

% report.m 

% rt.m 

% 

% S.H.Lee 

% Revision: 2.0 

% Date: 28/8/2007 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

if log_count>0 

     

[distance, seconds] = analysis2(track); 

% Covert to hours 

time = seconds / 3600; 

if (time > 0) 

   average_speed = distance / time; 

end 

     

figure; 

axis off; 

title('Summary', 'fontweight', 'bold'); 

% Distance 

text(0, .95, ['Track length: ' num2str(distance) ' miles']); 

% Time 

    if (time <= 0) 

        etime = 'Data not available.'; 

    else 

        etime = [num2str(time) ' hours.']; 

    end 

text(0, .85, ['Elapsed time: ' etime]); 
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% Average speed 

    if (time <= 0) 

        aspeed = 'Data not available.'; 

    else 

        aspeed = [ num2str(average_speed) ' miles/hour.']; 

    end 

  

text(0, .75, ['Average speed: ' aspeed]); 

  

    % Start and end points 

    [deg min2 sec dir] = 

Decimal2Degrees(track.waypoint(1).latitude_dec, 'latitude'); 

    point = sprintf('%d\\circ %d" %4.2f'' %s', deg, min2, sec, dir); 

    text(0, .55, ['Start:']); 

    text(.1, .45, point); 

    [deg min2 sec dir] = 

Decimal2Degrees(track.waypoint(1).longitude_dec, 'longitude'); 

    point = sprintf('%d\\circ %d" %4.2f'' %s', deg, min2, sec, dir); 

    text(.1, .35, point); 

  

    %n = length([track.waypoint(1).latitude])-1; 

    n = length(track.waypoint); 

    [deg min2 sec dir] = 

Decimal2Degrees(track.waypoint(n).latitude_dec, 'latitude'); 

    point = sprintf('%d\\circ %d" %4.2f'' %s', deg, min2, sec, dir); 

    text(0, .25, ['End:']); 

    text(.1, .15, point); 

    [deg min2 sec dir] = 

Decimal2Degrees(track.waypoint(n).longitude_dec, 'longitude'); 

    point = sprintf('%d\\circ %d" %4.2f'' %s', deg, min2, sec, dir); 

    text(.1, .05, point); 

  

  

end 

  

save(trainfile, 't_track') 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% File: readpacket4.m 

% Data acquisition/processing, Predictive Fuzzy inference functions 

% Software: Matlab/Simulink version 7 or higher 

% 

% Input: GPS strings   Output: raw GPS location data 

% 

% Executable: via timercap8.m 

% Associated functions: 

% Timercap8.m 

% summary2.m 

% readpacket4.m 

% display2.m 

% data_reg2.m 

% analysis2.m 

% deg2dec.m 

% Decimal2Degrees.m 

% Rounding.m 

% report.m 

% rt.m 

% 

% S.H.Lee 

% Revision: 4.0 

% Date: 28/8/2007 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

tic 

fixed=false;         % assume no gps fix signal 

speed_flag=false;      

while (fixed==false) || (speed_flag==false) 

    output = fscanf(gps); 

    comm=strread(output,'%s', 'delimiter', ','); 

 switch comm{1} 

   case '$GPGGA' 

      if length(comm)==15 

       GGA = textscan(output, '%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s', 

'delimiter', ','); 

         if str2num(comm{7})==1 % change to 1 when it is running 

             fixed=true; 

             %data_reg2; 

             disp('Position fixed'); 

             status='Position fixed'; 

         end 

      end  

      %break; 

   case '$GPRMC' 

      if length(comm)==12 

       RMC = textscan(output, '%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s', 

'delimiter', ','); 

         if comm{3}=='A' % change to 'A' when it is running 

             % knot to mph 

             

ground_speed=num2str(str2num(cell2mat(RMC{1,8}))*1.150779); 

             course=cell2mat(RMC{1,9}); 

             speed_flag=true;         

         end 

       end 

      %disp('Output is $GPRMC') 
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   case '$GPGSV' 

      %disp('Output is $GPGSV') 

   %otherwise 

   %   disp('Unknown output.') 

     

 end 

  

end 

data_reg2; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% File: display2.m 

% Data acquisition/processing, Predictive Fuzzy inference functions 

% Software: Matlab/Simulink version 7 or higher 

% 

% Input: GPS variables   Output: url GPS location data/plots 

% 

% Executable: via timercap8.m 

% Associated functions: 

% Timercap8.m 

% summary2.m 

% readpacket4.m 

% display2.m 

% data_reg2.m 

% analysis2.m 

% deg2dec.m 

% Decimal2Degrees.m 

% Rounding.m 

% report.m 

% rt.m 

% 

% S.H.Lee 

% Revision: 2.0 

% Date: 28/8/2007 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

clf; 

subplot(2,2,1); 

axis off; 

title('GPS Data', 'fontweight', 'bold'); 

text(0, .95, ['GPS status: ' status]); 

text(0, .85, ['Computer time: ' t_now ' ']); 

  

if (fixed==true) 

text(0, .75, ['UTC Time: ' time_vec]); 

text(0, .65, ['Latitude: ' lat ' ']); 

text(0, .55, ['Longitude: ' long ' ']); 

text(0, .45, ['Altitude: ' alt ' ']); 

text(0, .35, ['Speed: ' ground_speed ' mph']); 

text(0, .25, ['Course: ' course ' deg']); 

text(0, .15, ['Elapsed time: '  ' hours']); 

text(0, .05, ['Distance travelled: '  ' miles']); 

 

for counter=1:length(track.waypoint) 

    latitude(1,counter)=track.waypoint(1,counter).latitude_dec; 

    longitude(1,counter)=track.waypoint(1,counter).longitude_dec; 

    altitude(1,counter)=str2num(track.waypoint(1,counter).altitude); 

    speed(1,counter)=str2num(track.waypoint(1,counter).speed); 
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end 

% Display the bird's eye view 

subplot(2,2,2); 

plot(longitude, latitude); 

title('Overhead (north up)', 'fontweight', 'bold'); 

xlabel('Longitude'); 

ylabel('Latitude'); 

     

% Display the elevation profile 

subplot(2,2,4); 

 

plot(altitude); 

title('Elevation Profile (feet)', 'fontweight', 'bold'); 

xlabel('Waypoint number'); 

ylabel('Feet'); 

    

% Display the 3D data 

subplot(2,2,3); 

plot3(longitude, latitude, altitude); 

axis tight; 

xlabel('Longitude'); 

ylabel('Latitude'); 

zlabel('Feet'); 

 

end 

t1(log_count)=toc; 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% File: data_reg.m 

% Data acquisition/processing, Predictive Fuzzy inference functions 

% Software: Matlab/Simulink version 7 or higher 

% 

% Input: GPS variables   Output: track data 

% 

% Executable: via timercap8.m 

% Associated functions: 

% Timercap8.m 

% summary2.m 

% readpacket4.m 

% display2.m 

% data_reg2.m 

% analysis2.m 

% deg2dec.m 

% Decimal2Degrees.m 

% Rounding.m 

% report.m 

% rt.m 

% 

% S.H.Lee 

% Revision: 2.0 

% Date: 28/8/2007 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

log_count=log_count+1; 

sattime=cell2mat(GGA{1,2}); 

[hh,mm,ss] = strread(sattime,'%2c %2c %6c', 1); 

time_vec=[hh,':',mm, ':',ss]; 
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lat=cell2mat(GGA{1,3}); 

lat_dir=cell2mat(GGA{1,4}); 

long=cell2mat(GGA{1,5}); 

long_dir=cell2mat(GGA{1,6}); 

% Altitude, metre to feet 

alt=num2str(str2num(cell2mat(GGA{1,10}))*3.281); 

t_now=datestr(now); 

t_data=[t_data; time_vec ' ' t_now]; 

track.waypoint(log_count).pctime=t_now; 

track.waypoint(log_count).pc_serial_date=now; 

track.waypoint(log_count).ulc_time=time_vec; 

track.waypoint(log_count).latitude=lat; 

track.waypoint(log_count).latitude_dec = deg2dec(lat, lat_dir); 

track.waypoint(log_count).longitude=long; 

track.waypoint(log_count).longitude_dec = deg2dec(long, long_dir); 

track.waypoint(log_count).altitude=alt; 

track.waypoint(log_count).speed=ground_speed; 

track.waypoint(log_count).course=course; 

disp(time_vec) 

disp(t_now) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% File: analysis2.m 

% Data acquisition/processing, Predictive Fuzzy inference functions 

% Software: Matlab/Simulink version 7 or higher 

% 

% Input: track data   Output: Spherical distance, time 

% 

% Executable: via timercap8.m 

% Associated functions: 

% Timercap8.m 

% summary2.m 

% readpacket4.m 

% display2.m 

% data_reg2.m 

% analysis2.m 

% deg2dec.m 

% Decimal2Degrees.m 

% Rounding.m 

% report.m 

% rt.m 

% 

% S.H.Lee 

% Revision: 2.0 

% Date: 9/6/2007 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [ distance, seconds ] = analysis2(track) 

distance = 0; 

time = 0; 

for i=1:length(track.waypoint)-1 

    distance = distance + SphericalDistance(track.waypoint(i), 

track.waypoint(i+1)); 

end 

% Time stamp stored as seconds, simply subtract end from beginning to 

% get duration.  

seconds = etime(datevec(track.waypoint(i+1).pc_serial_date), 

datevec(track.waypoint(1).pc_serial_date)); 
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% Covert to hours 

%time = seconds / 3600; 

  

function d = SphericalDistance(point1, point2) 

% SPHERICALDISTANCE Compute the distance between two points on the 

Earth's  

% surface Earth's radius: 

%   3437.74677 statue miles 

%   6378 kilometers 

%   3963 normal miles 

  

% Convert to radians. 

deg2rad = (180/pi);  

lat1 = point1.latitude_dec / deg2rad;  

long1 = point1.longitude_dec / deg2rad; 

lat2 = point2.latitude_dec / deg2rad; 

long2 = point2.longitude_dec / deg2rad; 

  

% Compute distance in miles 

r = 3963; 

d = acos( sin(lat1) * sin(lat2) + ... 

          cos(lat1)*cos(lat2)*cos(long2-long1) ) * r; 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% File: deg2dec.m 

% Data acquisition/processing, Predictive Fuzzy inference functions 

% Software: Matlab/Simulink version 7 or higher 

% 

% Input: position data, heading   Output: position (degree) 

% 

% Executable: via timercap8.m 

% Associated functions: 

% Timercap8.m 

% summary2.m 

% readpacket4.m 

% display2.m 

% data_reg2.m 

% analysis2.m 

% deg2dec.m 

% Decimal2Degrees.m 

% Rounding.m 

% report.m 

% rt.m 

% 

% S.H.Lee 

% Revision: 1.0 

% Date: 8/6/2007 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function x = deg2dec(position, dir) 

% DEGREES2DECIMAL Convert degrees, minutes, seconds to a decimal 

degree  

% position=3723.2475; 

% dir='N'; 

pos=str2num(position)/100; 

deg=floor(pos); 

min=(pos-deg)*100; 
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x=deg+(min/60); 

  

if (strcmp(dir, 'S')) || (strcmp(dir, 'W')) 

    x=x*-1; 

end 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% File: Decimal2Degrees.m 

% Data acquisition/processing, Predictive Fuzzy inference functions 

% Software: Matlab/Simulink version 7 or higher 

% 

% Input: position (degree)   Output: position (deg, min, sec) 

% 

% Executable: via timercap8.m 

% Associated functions: 

% Timercap8.m 

% summary2.m 

% readpacket4.m 

% display2.m 

% data_reg2.m 

% analysis2.m 

% deg2dec.m 

% Decimal2Degrees.m 

% Rounding.m 

% report.m 

% rt.m 

% 

% S.H.Lee 

% Revision: 1.0 

% Date: 8/6/2007 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [deg, min2, sec, dir] = Decimal2Degrees(x, type) 

% DECIMAL2DEGREES Convert a decimal degree to degrees, minutes, 

seconds 

  

deg = floor(x); 

min2 = 60 * (x - floor(x)); 

sec = 60 * (min2 - floor(min2)); 

min2 = floor(min2); 

  

if (deg > 0) 

    if (strcmp(type, 'latitude')) 

        dir = 'N'; 

    elseif (strcmp(type, 'longitude')) 

        dir = 'W'; 

    end 

else 

    if (strcmp(type, 'latitude')) 

        dir = 'S'; 

    elseif (strcmp(type, 'longitude')) 

        dir = 'E'; 

    end 

end 

  

deg = abs(deg); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% File: Rounding.m 

% Data acquisition/processing, Predictive Fuzzy inference functions 

% Software: Matlab/Simulink version 7 or higher 

% 

% Input: altitude, precision   Output: rounded altitude 

% 

% Executable: via timercap8.m 

% Associated functions: 

% Timercap8.m 

% summary2.m 

% readpacket4.m 

% display2.m 

% data_reg2.m 

% analysis2.m 

% deg2dec.m 

% Decimal2Degrees.m 

% Rounding.m 

% report.m 

% rt.m 

% 

% S.H.Lee 

% Revision: 1.0 

% Date: 29/8/2007 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function h = rounding(height, precision) 

% rounding off to the nearest precision 

  

h1=height/precision; 

h2=floor(h1); 

h3=h1-h2; 

if h3>=0.5 

    h2=h2+1; 

end 

h=h2*precision; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% File: report.m 

% Data acquisition/processing, Predictive Fuzzy inference functions 

% Software: Matlab/Simulink version 7 or higher 

% 

% Input: track data   Output: data/plot to url 

% 

% Executable: via timercap8.m 

% Associated functions: 

% Timercap8.m 

% summary2.m 

% readpacket4.m 

% display2.m 

% data_reg2.m 

% analysis2.m 

% deg2dec.m 

% Decimal2Degrees.m 

% Rounding.m 

% report.m 

% rt.m 

% 

% S.H.Lee 

% Revision: 1.0 

% Date: 29/8/2007 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

figure; 

latitude=[]; 

longitude=[]; 

altitude=[]; 

speed=[]; 

  

for counter=1:length(track.waypoint) 

    latitude(1,counter)=track.waypoint(1,counter).latitude_dec; 

    longitude(1,counter)=track.waypoint(1,counter).longitude_dec; 

    altitude(1,counter)=str2num(track.waypoint(1,counter).altitude); 

    speed(1,counter)=str2num(track.waypoint(1,counter).speed); 

end 

  

%Display speed vs waypoints 

subplot(2,2,1); 

plot(speed); 

title('Speed Profile (MPH)', 'fontweight', 'bold'); 

xlabel('Waypoint number'); 

ylabel('MPH'); 

  

  

% Display the bird's eye view 

subplot(2,2,2); 

plot(longitude, latitude); 

title('Overhead (north up)', 'fontweight', 'bold'); 

xlabel('Longitude'); 

ylabel('Latitude'); 

     

% Display the elevation profile 

subplot(2,2,4); 

plot(altitude); 

title('Elevation Profile (feet)', 'fontweight', 'bold'); 
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xlabel('Waypoint number'); 

ylabel('Feet'); 

    

% Display the 3D data 

subplot(2,2,3); 

plot3(longitude, latitude, altitude); 

axis tight; 

xlabel('Longitude'); 

ylabel('Latitude'); 

zlabel('Feet'); 

  

  

[distance, seconds] = analysis2(track); 

% Covert to hours 

time = seconds / 3600; 

if (time > 0) 

   average_speed = distance / time; 

end 

     

figure; 

axis off; 

title('Summary', 'fontweight', 'bold'); 

% Distance 

text(0, .95, ['Track length: ' num2str(distance) ' miles']); 

% Time 

    if (time <= 0) 

        etime = 'Data not available.'; 

    else 

        etime = [num2str(time) ' hours.']; 

    end 

text(0, .85, ['Elapsed time: ' etime]); 

  

% Average speed 

    if (time <= 0) 

        aspeed = 'Data not available.'; 

    else 

        aspeed = [ num2str(average_speed) ' miles/hour.']; 

    end 

  

text(0, .75, ['Average speed: ' aspeed]); 

  

    % Start and end points 

    [deg min2 sec dir] = 

Decimal2Degrees(track.waypoint(1).latitude_dec, 'latitude'); 

    point = sprintf('%d\\circ %d" %4.2f'' %s', deg, min2, sec, dir); 

    text(0, .55, ['Start:']); 

    text(.1, .45, point); 

    [deg min2 sec dir] = 

Decimal2Degrees(track.waypoint(1).longitude_dec, 'longitude'); 

    point = sprintf('%d\\circ %d" %4.2f'' %s', deg, min2, sec, dir); 

    text(.1, .35, point); 

  

    %n = length([track.waypoint(1).latitude])-1; 

    n = length(track.waypoint); 

    [deg min2 sec dir] = 

Decimal2Degrees(track.waypoint(n).latitude_dec, 'latitude'); 

    point = sprintf('%d\\circ %d" %4.2f'' %s', deg, min2, sec, dir); 

    text(0, .25, ['End:']); 
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    text(.1, .15, point); 

    [deg min2 sec dir] = 

Decimal2Degrees(track.waypoint(n).longitude_dec, 'longitude'); 

    point = sprintf('%d\\circ %d" %4.2f'' %s', deg, min2, sec, dir); 

    text(.1, .05, point); 

  

figure; 

plot(longitude, latitude, 'r+'); 

title('Overhead (north up)', 'fontweight', 'bold'); 

xlabel('Longitude'); 

ylabel('Latitude'); 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% File: rt.m 

% Data acquisition/processing, Predictive Fuzzy inference functions 

% Software: Matlab/Simulink version 7 or higher 

% 

% Input: track data   Output: speed and altitude with precision 

% 

% Executable: via timercap8.m 

% Associated functions: 

% Timercap8.m 

% summary2.m 

% readpacket4.m 

% display2.m 

% data_reg2.m 

% analysis2.m 

% deg2dec.m 

% Decimal2Degrees.m 

% Rounding.m 

% report.m 

% rt.m 

% 

% S.H.Lee 

% Revision: 1.0 

% Date: 23/8/2007 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% rounding off routine applied to speed, altitude 

% precision:  speed=5mph, altitude=25ft 

for counter=1:length(track.waypoint) 

    

speed_rounded(1,counter)=rounding(str2num(track.waypoint(1,counter).s

peed),5); 

    

altitude_rounded(1,counter)=rounding(str2num(track.waypoint(1,counter

).altitude),25); 

end 

figure; 

plot(speed_rounded); 

title('Speed Profile (feet)', 'fontweight', 'bold'); 

xlabel('Waypoint number'); 

ylabel('MPH'); 

  

figure; 

plot(altitude_rounded); 

title('Elevation Profile (feet)', 'fontweight', 'bold'); 



 

 

 

 

 

150 

 

xlabel('Waypoint number'); 

ylabel('Feet'); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% File: manipulate3.m 

% Data acquisition/processing, Predictive Fuzzy inference functions 

% Software: Matlab/Simulink version 7 or higher 

% 

% Input: track data   Output: variables, fuzzy relief map 

% 

% Executable: [var1, var2, var3,…..var n] = manipulate3(track); 

% 

% S.H.Lee 

% Revision: 3.0 

% Date: 20/2/2008 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function[tfile, fismat1, time_fuzzy, fuzzy_altitude, time_predictive, 

pred_fuzzy_altitude, time, altitude, gps_time, gps_altitude, 

gps_TimeInSec, course]=manipulate3(track) 

 

[tfile]=MakeTrainSA(track, 10); 

predictive_dis=10; 

  

%tfile=track; 

for i=1:length(tfile.waypoint) 

    trnfile(i,1)=tfile.waypoint(i).latitude_dec; 

    trnfile(i,2)=tfile.waypoint(i).longitude_dec; 

    trnfile(i,3)=rounding(str2num(tfile.waypoint(i).altitude), 25); 

end 

  

numMFs=[5 5]; % num of MF, input output 

inmfType=str2mat('gbellmf','gbellmf'); 

outmfType=str2mat('constant'); 

fismat=genfis1(trnfile,numMFs,inmfType,outmfType); % generate fis 

fismat.input(1).name='latitude (deg)'; 

fismat.input(2).name='longitude (deg)'; 

fismat.output(1).name='height (ft)'; 

  

trnOpt=[400 0 0.01 0.9 1.1]; 

dispOpt=[0 0 0 0]; 

[fismat1,error1,stepsize]=anfis(trnfile, fismat, trnOpt, dispOpt); 

  

figure; gensurf(fismat1); 

figure; plotfis(fismat1); 

title 'Relief map'; 

figure; subplot(2,1,1); plotmf(fismat1,'input',1); 

subplot(2,1,2); plotmf(fismat1,'input',2); 

  

figure; 

subplot(2,2,1); plotmf(fismat1,'input',1); 

subplot(2,2,2); plotmf(fismat1,'input',2); 

subplot(2,2,3); gensurf(fismat1); 

subplot(2,2,4); plot(error1); 

  

lat_range=fismat1.input(1,1).range; 

long_range=fismat1.input(1,2).range; 

pred_fuzzy_altitude=[]; 
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time_predictive=[]; 

fuzzy_altitude=[]; 

time_fuzzy=[]; 

gps_altitude=[]; 

gps_time=[]; 

TimeInSec_fuzzy=[]; 

gps_TimeInSec=[]; 

TimeInSec_predictive=[]; 

timer=0; 

  

for counter=1:length(track.waypoint) 

    latitude(1,counter)=track.waypoint(1,counter).latitude_dec; 

    longitude(1,counter)=track.waypoint(1,counter).longitude_dec; 

    altitude(1,counter)=str2num(track.waypoint(1,counter).altitude); 

    speed(1,counter)=str2num(track.waypoint(1,counter).speed); 

    time(1,counter)=track.waypoint(1,counter).pc_serial_date; 

    course(1,counter)=str2num(track.waypoint(1,counter).course); 

    gps_TimeInSec = [gps_TimeInSec timer]; 

     

    p=track.waypoint(1,counter).latitude_dec; 

    q=track.waypoint(1,counter).longitude_dec; 

    if (p>=lat_range(1,1)) && (p<=lat_range(1,2)) && 

(q>=long_range(1,1)) && (q<=long_range(1,2)) 

        %fuzzy_altitude(1,counter)= rounding(evalfis([p q], fismat1), 

25); 

        fuzzy_altitude = [fuzzy_altitude evalfis([p q], fismat1)]; 

        time_fuzzy = [time_fuzzy time(1,counter)]; 

        TimeInSec_fuzzy = [TimeInSec_fuzzy timer]; 

        %plot(counter,fuzzy_altitude(1,counter),'r+'); 

        gps_altitude = [gps_altitude altitude(1, counter)]; 

        gps_time = [gps_time time(1, counter)]; 

    end 

  

    if (speed(1,counter)>0) 

    [p(1,counter), q(1,counter)]=coordinate_geo1(latitude(1,counter), 

longitude(1,counter), course(1,counter), predictive_dis); 

    if (p(1,counter)>=lat_range(1,1)) && 

(p(1,counter)<=lat_range(1,2)) && (q(1,counter)>=long_range(1,1)) && 

(q(1,counter)<=long_range(1,2)) 

        %fuzzy_altitude(1,counter)= rounding(evalfis([p q], fismat1), 

25); 

        pred_fuzzy_altitude=[pred_fuzzy_altitude 

evalfis([p(1,counter) q(1,counter)], fismat1)]; 

        time_predictive=[time_predictive datenum([0 0 0 0 0 

(predictive_dis/(speed(1,counter)*0.27778))])+ time(1,counter)]; 

        TimeInSec_predictive = [TimeInSec_predictive timer]; 

        %plot(time_predictive(1,counter), 

pred_fuzzy_altitude(1,counter),'g*'); 

    end 

    end 

timer=timer+2; 

end 

figure; 

grid on; 

hold on; 

plot(time_fuzzy, fuzzy_altitude, 'r+'); 

plot(time_predictive, pred_fuzzy_altitude, 'g*'); 

plot(time,altitude,'-'); 
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title('Elevation Profile (feet)', 'fontweight', 'bold'); 

xlabel('on-board clock time (s)'); 

ylabel('Elevation (ft)'); 

legend('Relief map model','Fuzzy predictive model','Road profile'); 

hold off; 

  

figure; 

grid on; 

hold on; 

plot(TimeInSec_fuzzy, fuzzy_altitude, 'r+'); 

plot(TimeInSec_predictive, pred_fuzzy_altitude, 'g*'); 

plot(gps_TimeInSec, altitude,'-'); 

title('Elevation Profile (feet)', 'fontweight', 'bold'); 

xlabel('on-board clock time (s)'); 

ylabel('Elevation (ft)'); 

legend('Relief map model','Fuzzy predictive model','Road profile'); 

hold off; 

 

 

 

 

 




