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ABSTRACT

JASON MAURICE ANDERSON. Robust condition monitoring for modern power
conversion. (Under the direction of DR. ROBERT W. COX)

The entire US electrical grid contains assets valued at approximately $800 billion,

and many of these assets are nearing the end of their design lifetimes [1]. In addi-

tion, there is a growing dependence upon power electronics in mission-critical assets

(i.e. for drives in power plants and naval ships, wind farms, and within the oil and

natural-gas industries). These assets must be monitored. Diagnostic algorithms have

been developed to use certain key performance indicators (KPIs) to detect incipient

failures in electric machines and drives. This work was designed to be operated in

real-time on operational machines and drives. For example the technique can detect

impending failures in both mechanical and electrical components of a motor as well as

semiconductor switches in power electronic drives. When monitoring power electronic

drives, one is typically interested in the failure of power semiconductors and capac-

itors. To detect incipient faults in IGBTs, for instance, one must be able to track

KPIs such as the on-state voltage and gate charge. This is particularly challenging

in drives where one must measure voltages on the order of one or two volts in the

presence of significant EMI. Sensing techniques have been developed to allow these

signals to be reliably acquired and transmitted to the controller. This dissertation

proposes a conservative approach for condition monitoring that uses communications

and cloud-based analytics for condition monitoring of power conversion assets. Some

of the potential benefits include lifetime extension of assets, improved efficiency and

controllability, and reductions in operating costs.
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CHAPTER 1: INTRODUCTION

Since the introduction of steam power, the world has experienced several industrial

revolutions. By the middle of the twentieth century, the cumulative effect was a large

industrial network designed to extract energy from primary resources, convert it to

electricity, and distribute it throughout society. More recently, the digital revolution

produced technologies that vastly improved communication and computation. Today,

there is a new movement in which these two tectonic shifts are converging. Digital

technologies, namely networked sensors and actuators, are becoming embedded into

our existing industrial infrastructure in a manner that could transform the ways in

which we do business and live our lives. The energy-conversion process, all the way

from primary energy extraction to end use, is a perfect candidate for such digital in-

fusion. At present, energy conversion is highly inefficient, with about 60% of primary

energy lost in the conversion to electricity [2]. The push for greater efficiency has

driven technological innovation, including the proliferation of new digitally-enabled

technologies at point-of-use. Examples include motor drives, switching power sup-

plies, and interfaces for distributed generation sources. In addition to improved effi-

ciency, there are also numerous operational benefits that can result from greater mon-

itoring and control. Through the proper application of intelligent sensors, networked

computing, and advanced analytics, it should become possible to detect impending

failures, diagnose their root causes, and recommend the appropriate course of action

with respect to risk mitigation and operational cost optimization. In the case of

any individual component connected to or within the power system this means that

we must move beyond data collection to advanced, risk-balanced decision-making.
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To date, sufficient data sets typically do not exist to enable the necessary capabili-

ties. This dissertation proposes a framework for obtaining such data, and it focuses

specifically on electric motors and the power-electronic drives used to optimize their

consumption and functionality.

1.1 Problem Overview

Condition-based maintenance (CBM), that is making maintenance decisions based

on the true condition of a component, is a concept that has been discussed for several

decades [3]. Large enterprises such as the United States military, power companies,

and large manufacturers led the way in the early 1980s. Much of this early work

was focused on demonstrating the capability of sensor based fault detection and di-

agnosis, as well as on the development of appropriate online sensors. As sensing

technologies have matured and communications have improved, components and de-

vices have become more intelligent. It is now possible to monitor many key assets

from a centralized location.

Several factors are leading to the push for more intelligent asset management, in-

cluding reduced sensor-deployment cost, increased computing power, and the growth

of advanced analytics [2]. The decline in the cost of sensors has made it possible to

monitor assets in a more economical manner than in the past. The continued ad-

vancement of microprocessors has also made it possible to place digital intelligence

into and near physical assets. The advancements in big data software tools and ana-

lytic techniques provide the means to understand the massive quantities of data that

are generated by intelligent assets.

Making sense of the large amount of data that can be generated by these new

intelligent assets is one of the key components of the “Industrial Internet” concept that

is currently being developed by General Electric (GE) and others [2]. As illustrated

in Fig. 1.1, this idea can be expressed in terms of the flow and interaction of data,

hardware, software, and intelligence. Data is harvested from intelligent devices and



3

Figure 1.1: Applications of GE’s “Industrial Internet” concept. Taken from [2].

networks. The data is stored, analyzed, and visualized using big data and analytics

tools. The information gathered by these intelligent devices and components can be

acted upon by decision makers. This concept has the potential to revolutionize the

way numerous industries are operated [2].

In recent years various large enterprises have started to adopt the notion of net-

worked asset monitoring. EPRI’s Fleetwide Monitoring for Equipment Condition

Assessment program [4] and the Navy’s Integrated Condition Assessment System

(ICAS) [5] are two examples of this approach. EPRI’s vision for Fleetwide Moni-

toring, for instance, is to assist the power industry to evaluate and deploy advanced

monitoring capabilities in a power plant. The scope is broad and focuses on monitor-

ing individual instruments, components, and the complete system of components. To

date, this work has focused heavily on fleetwide process monitoring. In this context,

“fleetwide” refers to deployment across various power stations in a single companies

fleet. Process monitoring, as its name implies, focuses on high-level process measure-

ments such as flow rates, temperatures, and pressures. When a temperature exceeds
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a particular alarm value, for instance, it is likely that a given process is malfunction-

ing. One such example might be the temperature of a particular cooling fluid. Such

process measurements are easy to obtain and are the crucial components of EPRI’s

fleetwide program and the Navy’s ICAS program [6]. Process measurements such

as coolant temperatures tend to change long after individual components begin to

degrade. Instead of using only process variables, it is better to use individual com-

ponent status parameters such as those obtainable from current sensors, vibration

measurements, partial discharge monitoring [6].

Many excellent, early-stage fault detection technologies have been developed for

power system components using status-parameter measurements. For example, motor

current signature analysis (MCSA) is a technique that can be used to find incipient

motor faults. Readings of motor current are recorded and analyzed in the frequency

domain [7], [8]. The approach has been used to find early-stage faults such as those

related to belts, couplers, and alignment. Vibration analysis is also an effective means

for incipient fault detection. When applied to motors, for example, this approach

exploits that fact that every motor has its own characteristic vibration spectrum.

Changes to the individual frequency components of the vibration spectrum can give

an early indication of a fault. Vibration analysis has been used to detect imbalance,

misalignment, looseness [9], and bearing damage [10], [11].

Although many excellent individual technologies exist for monitoring the health of

individual components, many integrated solutions that combine all of the individual

technologies are not available. Major companies often make systems that focus on a

single technology (i.e. partial discharge, MCSA, vibration, etc.). As shown later in

Chapter 4, the reliance on an individual technology can lead to misdiagnoses. In order

to achieve an integrated solution, EPRI and others are pushing for the development

of smart components. A smart component is an augmented version of a standard

component such as a motor or a pump. The smart component is understood to have
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embedded intelligence in the form of sensors, data transmission, and computation.

Such devices should be able to continuously monitor their state of health predict their

remaining useful life. Such components should be able to participate in an ad-hoc

network of other similar components [12]. At present there is very little research on

the integration of various sensing techniques for a single component. It is clearly an

important area, but work is needed before such smart components can be deployed.

EPRI and other organizations recognize that vast data sets are needed in order

to determine how to integrate individual technologies to make reliable risk-informed

prognostic decisions. Examples of this include the diagnostic advisor project for

power plants and a “big data” analytics modernization demonstration project in

both the transmission and distribution programs. EPRI’s diagnostic advisor system

will facilitate the conversion of observed plant data to diagnoses (not just identified

anomalies) [13]. This software will provide an extensible reasoning framework and

database, which over time will be systematically filled with knowledge that is specific

to plant assets. The framework and database will be flexible enough to integrate and

process data from several sources, including observed signatures of actual faults that

are contributed by field users, simulated asset fault signatures from plant simulators

and/or physics-based models, and high-level fault-related status information such

as those obtainable from operator rounds [13]. Other similar projects exist within

EPRI’s transmission [14] and distribution [15] programs. The common theme is that

large data sets are needed in order to make any reliable decisions. At present, the

collection of such data sets and the development of appropriate algorithms is crucial.

1.2 Proposed Idea

The approach proposed in this dissertation recognizes that changes in component

data streams can be archived and this information stored in a database to begin to

be able to develop diagnostic routines and risk-aware decision-making algorithms.

The approach as shown in Fig. 1.2 leverages computing power now available at the
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Figure 1.2: Proposed two step approach for fault detection and diagnosis.

point-of-load and separates fault detection from fault diagnosis. The basic idea is a

two step approach:

• Step 1: Reliably detect faults at an early stage.

• Step 2: Beam the data into the cloud where it can be used to develop powerful

diagnostic and prognostic routines.

During Step 1, features of a healthy system are learned during normal operating

conditions, and these features are used to create a vector space. During operation,

measured features are mapped onto this vector space. If a fault is developing, the

corresponding mapping will change. This approach is based on a modification of a

common facial-recognition algorithm [16], and it essentially detects that the feature

space no longer appears as it should when healthy. Our scheme uses a single quan-

tity known as the Health Indicator to determine that system behavior has changed.

This approach is shown to be far more powerful than more simplistic, deterministic
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rules. Once a change has been observed, the underlying indicators can be captured

and combined with maintenance records and process-variable measurements. The

corresponding data sets can be used immediately for fault detection.

In Step 2, individual fault related-features are transmitted back to a centralized

database from multiple locations. If a faulted condition occurs, an alarm would signal

that investigation is needed. The prognosis could be performed by human experts

and computerized algorithms. The data sets that would be recorded for similar assets

across numerous locations could provide the information necessary to create powerful

and automated expert systems.

The ultimate goal of this research is a suite of automated analytics capable of

detecting faults, diagnosing their causes, and dispatching maintenance in a manner

that optimizes economic impact. At present, such automation is not fully developed

and remains a goal further down the technology road map of most organizations.

This dissertation provides an approach that could be a major stepping stone on those

road maps.

1.3 Primary Contributions

This dissertation’s focus is on robust fault detection for modern power conversion,

and it focuses specifically on power electronics and electric motors. The focus is

specifically on the first step outlined in Sec. 1.2 - namely fault detection. With pow-

erful detection schemes, large databases can be developed, and artificial intelligence

and other tools can be used for diagnostics and prognostics.

In the case of motors, the proposed technique has been used to detect impending

failures in both mechanical and electrical components. This dissertation integrates

information from various techniques, including current-signature analysis and vibra-

tion analysis. As shown, the proposed scheme can detect minute changes store the

data in appropriate databases.

In the case of power electronic drives, one is typically interested in the failure
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of switches and capacitors. To detect incipient faults in IGBTs, for instance, one

must be able to track parameters such as the on-state voltage and the gate charge.

This is particularly challenging in drives where one must measure voltages on the

order of one or two volts in the presence of significant EMI. Sensing techniques have

been developed to allow these signals to be reliably acquired and transmitted to the

controller. The same fault detection algorithm has been used and it has been shown

to be more sensitive than other schemes in the literature.

1.4 Outline

The remaining chapters of this dissertation describe the components of the proposed

model. Chapter 2 discusses the generalized health monitoring algorithm for fault

detection. Chapter 3 describes the implementation condition monitoring algorithm

for electrolytic capacitors and power semiconductors (IGBT and MOSFET). Chapter

4 shows the implementation of the condition monitoring algorithm for fault detection

in electric machines. Chapter 5 presents some conclusions and future work.



CHAPTER 2: GENERALIZED HEALTH MONITORING ALGORITHM

The generalized health monitoring algorithm is described in this chapter. One

of the great difficulties associated with condition monitoring is that the user must

typically possess some degree of expertise in order to distinguish a normal operating

condition from a potential failure mode. This is because monitoring spectral com-

ponents can result from any number of sources, including those related to normal

operating conditions. This in combination with the vast amount of available infor-

mation, make it difficult to determine a set of rules for fault detection a priori. When

using hard-and-fast rules, for instance, the developer is likely to omit certain situa-

tions out of ignorance or fail to implement rules that deal with the dynamic nature

of certain conditions. Without knowing all possible fault conditions and symptoms,

the developer finds himself in a difficult position.

In order to detect fault conditions without a set of rules, an unsupervised approach

has been developed that learns key performance indicators (KPI) that are specific to

the system and monitors for changes that may indicate a potential fault condition.

The fault detection algorithm is given a hybrid spectrum consisting of KPIs extracted

from data that is collected with various sensors. In the language of information theory,

the relevant information is extracted from the feature vector, encoding it efficiently,

and then comparing the encoded result to a database of healthy features encoded in

a similar manner. Any differences indicate that the device may be degrading. The

overall approach is shown in Figure 2.1. This approach is partially patterned after

the facial recognition scheme presented in [16] and described in detail in this chapter.
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Figure 2.1: Block diagram of condition monitoring algorithm.

Figure 2.2: Training set of face images. Taken from [16].

2.1 Background on Facial Recognition Algorithm

The algorithm described in [16], [17] seeks to implement a facial recognition sys-

tem that is efficient, simple, and accurate. The system does not depend on intuitive

knowledge of the structure of the face like the mouth, nose, and eyes. Instead a

linear combination of characteristic features called Eigenfaces are used for classifica-

tion [16], [17]. Eigenfaces seeks to reduce the dimensionality of the training set by

using principal component analysis (PCA) of the face images. PCA leaves only those

features that are critical for facial recognition.
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Figure 2.3: The average of all faces in the training set, Ψ. Taken from [16].

2.1.1 Learning Faces

The system is initialized by first acquiring a set of training images (ΓΓΓ1,ΓΓΓ2,ΓΓΓ3, . . .ΓΓΓM)

as shown in Fig 2.2. Eigenvectors and eigenvalues are computed on the covariance

matrix of the training images and the M highest eigenvectors are kept. Finally, the

known individuals are projected into the face space and their weights are stored. The

images used for training are 8-bit intensity values of a 256 by 256 image. These

images are converted from 256 by 256 images into a single dimension vector of size

65,536 because a two dimensional square matrix is needed to compute eigenvectors.

The mean of the training images or the“average face” is defined as [16], [17]

ΨΨΨ =
1

M

M
∑

n=1

ΓΓΓn. (2.1)

and can be seen in Fig. 2.3. Each training image differs from the mean by ΦΦΦ which

is [16], [17]

ΦΦΦ = ΓΓΓk −ΨΨΨ. (2.2)

The vectors uuuk is the eigenvectors and scalars λk is the eigenvalues of the covariance
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matrix of the face images, ΦΦΦi. The covariance matrix is defined as [16], [17]

C =
1

M

M
∑

n=1

φφφT
nφφφn = AAAAAAT (2.3)

where A = [ΦΦΦ1,ΦΦΦ2,ΦΦΦ3, . . . ,ΦΦΦM ]. The eigenvalues are selected such that

λk =
1

M

M
∑

n=1

(

uuuT
k φn

)2

(2.4)

is maximum, where

uuuT
l uuuk = δlk =















1, if l = k

0, otherwise

. (2.5)

These formulas attempt to capture the source of the variance, which is later used

for classification [16], [17]. The vectors uuuk are referred to as the Eigenfaces, since

they are eigenvectors and appear face-like in appearance as shown in Fig. 2.4. The

major difficultly with this is that this computation will produce a large number of

eigenvectors (N2 by N2). Since M is far less than N2 at most there are M − 1

non zero eigenvectors. A smaller matrix L = AAATAAA will yield a smaller number of

eigenvectors [16], [17]. The eigenfaces are defined as

uuul =
M
∑

k=1

vvvlkφφφk. (2.6)

2.1.2 Recognizing Faces

Images can then be checked to determine if it is a known face or if it is a face at

all. When a new image ΓΓΓ is projected onto the face space using

ωωωk = uuuT
k (ΓΓΓk −ΨΨΨ) . (2.7)

The weights form a vector ΩΩΩT = [ω1, ω2, ω4, . . . , ωM ]. The Euclidean distance mea-

sures the distance between the new image and a class of faces k. This distance is
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Figure 2.4: Eigenfaces that were calculated from the training images. Taken from [16].

defined as

ǫǫǫ2k = ‖ΩΩΩ−ΩΩΩk‖
2. (2.8)

Note that if there are more than one examples of the face, these weights are averaged

among all of the examples. If the distance measure, k is less than an empirically

assigned threshold Θǫ the face is recognized and assigned to class k [16], [17].

The distance function assumes that the new image,ΓΓΓ is a face. To determine the

validity of this assumption, the image is projected onto the face space, and the dif-

ference between the projected image and ΓΓΓ is determined. The image is projected by

computing

ΦΦΦ = ΓΓΓ−ΨΨΨ, (2.9)

and projecting onto

ΦΦΦf =
M ′
∑

i=1

ωωωiuuui. (2.10)



14

The Euclidean distance determines the distance between the face space as [16], [17]

ǫǫǫ2 = ‖ΦΦΦ−ΦΦΦf‖
2. (2.11)

If an image is presented to the algorithm and both ǫǫǫk and ǫǫǫ is greater than Θǫ, then

it is not a face.

2.2 Health Monitoring Algorithm

The following section describes in detail each block of the health monitoring algo-

rithm as shown in Figure 2.1. The unsupervised fault detection algorithm is provided

with a feature vector of KPIs. As in many pattern-recognition problems, this is a

large number. When thinking in a rules-based context, one is likely to consider how

each feature will be useful for the detection of one or more faults. In what is a po-

tentially counterintuitive result, this is not necessarily the case. Generally speaking,

features are not independent and thus classification accuracy does not improve as

one includes more features. In fact, there is actually a diminishing point of returns

that stems from the fact that as more features are included there is a possibility of

over-fitting to the given data, a situation that can lead to errors. What is needed is

an approach that combines features in such a way that it reduces the size of the data

set, and reveals trends that best separate various data sets.

The heart of the fault detection algorithm is the principal component analysis

(PCA) block. This unit provides information about meaningful trends within the

monitored data. Generally speaking, PCA projects high-dimensional data onto a

lower dimensional space, thus performing a transformation that best represents the

information in the overall data set. In a sense, PCA is aggregating the set of KPIs

and providing information about the relevant trends without having to develop a set

of rules a priori. Experience has shown that that PCA leads to a robust detection

mechanism.

PCA is an approach that reduces the dimensionality of the feature vector by pro-
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jecting it onto a lower dimensional space. In general, PCA provides a linear transfor-

mation that best represents the data in a least-squares sense. Consider for a moment

that n feature vectors are recorded. In this context, the feature vectors xxx1, xxx2, ..., xxxn

each consist of n number of KPIs, and each vector might correspond to KPI values

recorded at certain interval of time.

The feature vectors are sought to be represented by a single vector xxx0. More

specifically, assume that that we want to find a vector xxx0 such that the sum of the

squared distances between xxx0 and the various xxxk is as small as possible. The squared-

error criterion function J is defined as

J =

n
∑

k=1

‖xxx0 − xxxk‖
2, (2.12)

and seek the value of xxx0 that minimizes J . Perhaps somewhat intuitively, this problem

is solved if xxx0 is equal to the sample mean mmm given by

m =
1

n

n
∑

k=1

xxxk. (2.13)

This can be verified by expanding the equation for J , i.e.

J =

n
∑

k=1

‖xxx0 − xxxk‖
2 =

n
∑

k=1

‖ (xxx0 −mmm)− (xxxk −mmm) ‖2, (2.14)

Following some manipulation, this reduces to

J =
n
∑

k=1

‖ (xxx0 −mmm) ‖2 +
n
∑

k=1

‖ (xxxk −mmm) ‖2, (2.15)

Since the second term on the right in Eq. (2.15) is independent of xxx0, the overall

expression is minimized by the choice of xxx0 = mmm. The sample mean mmm is a zero

dimensional representation of the data and thus does not tell anything about the

variability in the data set. To capture some of this, each feature vector is projected

onto a line running through the sample mean. If eee is a unit vector in the direction of
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the line, then each vector xxxk can be represented as

xxxk =mmm+ akeee, (2.16)

where ak is a scalar corresponding to the distance of any vector xxxk from the mean

mmm. An optimal set of coefficients ak can be found by once again minimizing the

squared-error criterion function,

J (a1, a2, . . . , an, eee) =
n
∑

k=1

‖ (mmm+ akeee)− xxxk‖
2. (2.17)

Recognizing that ‖eee‖ = 1, partially differentiating with respect to ak and setting the

derivative to zero [18], one can determine that Eq. (2.17) is minimized if

ak = eeeT (xxxk −mmm) . (2.18)

Geometrically, this result can be interpreted to mean that the least-squares solution

can be obtained by projecting the vector xxxk onto a line in the direction eee that passes

through the sample mean.

When performing PCA, the fundamental question regards the selection of the best

direction eee for the line. Without delving too deeply into the mathematics, it can be

shown that the solution involves so-called scatter matrix [18] or sample covariance

matrix, which is

SSS =

n
∑

k=1

(xxxk −mmm) (xxxk −mmm)T . (2.19)

To find the eigenvalues, set the determinant of the following matrix is equal to

zero [19],

|SSS − λI| = 0. (2.20)

The roots of the characteristic equation is the eigenvalues and the eigenvectors that

correspond to those eigenvalues are found by substituting the eigenvalues back into

(2.20) and solving.

Ultimately, it is found that the best one-dimensional projection of the data is
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obtained when data is projected onto a line through the sample mean in a direction

of the eigenvector of the scatter matrix having the largest eigenvalue [18]. This

result can be readily extended from a one-dimensional projection to a d-dimensional

projection. In this case, each vector is written like so

xxxk =mmm+

d′
∑

i=1

ak,ieeei. (2.21)

where d′ ≤ d. In this case, the squared-error criterion function

Jd′ =

n
∑

k=1

‖

(

mmm+

d′
∑

i=1

ak,ieeei

)

− xxxk‖
2, (2.22)

is minimized when the vectors eeei are the d′ eigenvectors of the scatter matrix having

the largest eigenvalues [18]. The eigenvectors of the scatter matrix are orthogonal

and they form a a set of natural basis vector to represent any feature vector xxxk.

Ultimately, the coefficients ai for each vector in Eq. (2.21) are known as its principal

components.

During reconstruction xxxk is mapped onto the training space and an approximation

of xxxk is computed as

x̂xxk =mmm+

d′
∑

i=1

ak,ieeei. (2.23)

Following reconstruction, the algorithm calculates the error between the projection

and the original data xxxk This is done by taking the two norm of the residual vector

rrr, where

rrr = x̂xxk − xxxk. (2.24)

The Health Indicator, denoted as (HIk), represents the error between the measured

features and their expected values or projection onto the healthy features. The Health

Indicator is calculated by finding the distance between the measurements and the

approximation at each time tk. This is defined as

HIk = rrrTrrr = (x̂xxk − xxxk)
T (x̂xxk − xxxk) . (2.25)
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In a very basic sense if the error is small, the system is operating under normal

conditions or is “healthy”. If the error grows, a problem may be developing.



CHAPTER 3: FAULT DETECTION IN POWER ELECTRONIC DRIVES

A method for the online detection of incipient faults in power electronic drives

is presented in this chapter. The early detection of incipient faults is desirable in

mission-critical applications such as shipboard propulsion drives, drives in nuclear

power plants, etc. Techniques for monitoring the health of the two most sensitive

components in power electronic systems, namely electrolytic filtering capacitors and

controllable semiconductor switches (i.e. IGBTs and MOSFETs) are described [20].

The chapter begins with a brief discussion of the primary failure mechanisms for these

components. It then presents a online technique designed to measure capacitor ESR,

which is a key indicator of capacitor health. Section 3.3 uses the health monitoring

algorithm described in Chap. 2 to extract important device features (i.e VCE,ON and

RON) and compare them to healthy values recorded over a range of operating con-

ditions. An experimental implementation in an IGBT-based drive is described and

experimental results are shown. An on-line feature extraction scheme for MOSFETs

is presented in Sec. 3.4. This scheme exploits the nature of carrier-based PWM in

order simplify the measurement process of the key indicator, on-state resistance of

the power MOSFET, RDS,ON .

3.1 Background

Power electronic drives are becoming increasingly common in mission-critical ap-

plications. High-power, medium-voltage examples include propulsion motors aboard

all-electric ships [21], large industrial motors such as those driving recirculation pumps

in nuclear power plants [22], and large multi-megawatt, grid-tied inverters for wind

turbines and photovoltaics [23]. Lower voltage drives are also becoming common in



20

31%
Power Devices

12%
Connectors

20%
Capacitors

8%
PCBs

19%
Gate Drives

4%
Resistors

6%
Inductors

Figure 3.1: Pie chart of the distribution of component failure in a power electronic
drive.

vehicles and aircraft [24]. This increasing dependence on power electronics in mission-

critical applications has created a need for real-time techniques that can detect early

stage faults.

Figure 3.1 shows the results of a survey that shows the distribution of compo-

nent failures in power electronic drives. The two components most prone to failure in

switch-mode drives are electrolytic filtering capacitors and power semiconductors [20].

One approach for on-line monitoring of capacitor health is presented based on mon-

itoring the capacitor ESR, which is a key indicator of capacitor health. Techniques

for monitoring capacitor health have been described in the literature, and are rela-

tively easy to implement in digitally controlled drives [20, 25]. In the case of MOS-

FET and IGBT switches, however, the focus has been to develop fault-detection

schemes that allow one to detect complete device failures such as shorted or open

transistors [26], [27], [28], [29], [30]. In the event that catastrophic failure does not

occur, various schemes allow operation in a degraded mode until service can be per-

formed [27], [28], [31].

Although post-fault detection and fault tolerance will always be a necessary safety

feature in any mission-critical drive, there is good reason to consider incipient fault
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detection and online condition monitoring. Consider, for instance, an IGBT that

slowly wears over its lifetime because of thermal cycling. Ultimately, such a device

will short circuit, which is desirable in a drive with N + 1 components. Eventually,

however, the bond wires burn away, leading to an indeterminate failure state that

may cause an arc flash and subsequent collateral damage to the rest of the circuit or

to nearby humans [32].

The literature includes a number of articles describing the physics of failure in

MOSFETs and IGBTs [33], [34], [35], [36]. Authors have described and verified the

relationships between device health and device parameters (i.e. on-state resistance,

threshold voltage, etc.). Until recently, however, very few works have described the

use of such features for monitoring switch health in real-time in an operational circuit

[37], [26].

A major limiting factor in the development of condition monitoring for switches

has been the difficulty in obtaining the required signals, which are often very small

and thus highly susceptible to corruption from switching noise [30]. Several useful

health-related parameters are most easily accessed during switching when noise can

be particularly problematic. Consider gate charge, for example, which can help to

identify naturally occurring gate-oxide degradation [38], [39]. Figure 3.2 shows the

noise corrupting the gate-current measurements in a 208 V motor drive. Clearly,

switching noise makes it difficult to consistently extract the injected gate charge.

Another issue apparent in Fig. 3.2 is that the signals of interest change rapidly and

thus must be sampled at very high rates and/or carefully conditioned using well-

designed analog circuits. Given the noise issues, such sampling and conditioning

must be performed near the switch. The rest of this section will give background on

the failure mechanisms that are associated with electrolytic bus capacitors and power

semiconductors.
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Figure 3.2: Output of a differential amplifier in a prototype drive measuring the
voltage across a 10 Ω gate resistor during two different turn-on instances. Note that
the gate current has a slightly different shape during the two instances as a result of
switching noise.

3.1.1 Electrolytic Capacitor Failures

Electrolytic bus capacitors are one of the weakest links in motor drives [40]. Degra-

dation occurs for various reasons, including thermal stresses, transients, reverse bias,

and strong vibrations [41]. Thermal stress caused by high ambient temperatures and

self-heating from ripple currents is the leading cause of premature failure. This ther-

mal degradation can be neatly summarized. As a capacitor ages, heat from the envi-

ronment and internal resistance causes the electrolyte to vaporize and escape through

the end seal. This loss of electrolyte causes a corresponding increase in ESR. The

relationship between these two quantities can be expressed empirically as [42]

ESR

ESR0

=

(

V0

V

)2

, (3.1)

where ESR and ESR0 are the corresponding resistance values at time t and time

zero; similarly, V and V0 represent the volume of electrolyte at the same two instants.

As V decreases over time, Eq. 3.1 shows that there is a corresponding increase in
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ESR. This higher resistance ultimately increases the rate of heat generation, which

in turn increases the rate of vaporization. The lower volume of electrolyte then further

increases ESR, which in turn increases heating. Ultimately, this positive feedback

mechanism accelerates capacitor failure [42]. Because of its central role in the failure

process, ESR is a reliable indicator of capacitor health [41, 42].

3.1.2 Power Semiconductor Failures

There are two different categories of failure mechanisms in power transistors. The

first group includes intrinsic mechanisms related to the physics of the actual semicon-

ductors. Some of the most prevalent examples are dielectric breakdown and electromi-

gration [38, 43, 44]. The other group includes factors related to transistor packaging,

such as contact migration, bond-wire lift, and die-solder degradation [45, 46, 47, 48].

3.1.2.1 Example Intrinsic Failure Mechanisms

Dielectric breakdown occurs when a strong electric field creates a current channel

in an insulating medium [49]. During conduction, breakdown can occur between the

gate and the drain/collector terminal or between the gate and the source/emitter

terminal. Two different forms of breakdown are noted in the literature [38]. Catas-

trophic breakdown of the gate oxide typically results from severe thermal or electrical

over-stress (i.e. electrostatic discharge, junction overvoltage, etc.). Time-dependent

dielectric breakdown (TDDB), which occurs more gradually over time, refers to the

natural breakdown of the gate oxide. TDDB is caused by chronic defect accumulation

in the SiO2 insulator during standard operation [39]. At least three defect-generation

mechanisms have been identified [38]. These include impact ionization, hot carrier in-

jection, and so-called trap creation attributed to the redistribution of hydrogen within

the device. Before causing a complete failure, these naturally-occurring phenomena

affect various device parameters [38]. For instance, they can change the gate leakage

current. Similarly, any charges that become trapped in the gate oxide affect impor-
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tant device parameters, such as the threshold voltage VT and the transconductance

gm [38]. Note that breakdown can also occur between the drain and the source or

between the collector and emitter when the device is in a blocking state. Electromi-

gration is another intrinsic failure phenomenon [43]. This mechanism results when

high current densities within the silicon cause adjacent metal connections to migrate.

If any voids form in the interconnects as a result of this process, then the connection

may open circuit or the overall device resistance may increase [43, 50].

3.1.2.2 Example Extrinsic Failure Mechanisms

Various extrinsic failure phenomena have also been observed. Bond-wire lift is one

of the most commonly occurring examples [46]. This phenomenon is a failure in the

bond between the package wire and the silicon die. Thermal expansion mismatch

between the bond solder and the attachment point is the primary cause. Bond-wire

lift leads to higher junction temperatures (Tj), and thus it impacts parameters such

as VCE,ON and on-state resistance [51]. Changes in these parameters can increase

power dissipation, thus cause further increases in Tj . The resulting positive feedback

mechanism ultimately leads to a complete device failure [46]. Die-solder degradation

is another extrinsic issue [47]. Solder attaching the silicon die to the package heat

sink can develop cracks and voids due to dissimilar thermal expansion in the two

materials [48]. The junction-to-case thermal impedance, Ωjc, thus increases, which

leads to a higher Tj . A positive feedback mechanism is thus created once again. As in

the case of bond-wire failures, this mechanism affects parameters such as the on-state

resistance and VCE,ON [46]. A third extrinsic failure mechanism is contact migration.

This phenomenon, which is related to electromigration, occurs when voids between

external metal contacts and silicon cause metal to diffuse into the semiconductor.

Ultimately, this diffused metal can short-circuit internal pn junctions. Before causing

a complete failure, this mechanism impacts parameters such as VCE,ON and on-state

resistance [46].
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Figure 3.3: Block diagram of a typical VSD showing a comprehensive bus capacitor
model. The capacitor current, iC , and ac capacitor voltage, v̂c, are both measured.

3.2 Real-Time Condition Monitoring of Electrolytic Capacitors

The following section describes a method for the condition monitoring of electrolytic

bus capacitors in real time.

3.2.1 Method

An on-line impedance spectroscopy technique was developed to monitor the value

of capacitor ESR in a variable-speed ac drive of the form shown in Fig. 3.3. The

block diagram includes a comprehensive low-frequency capacitor model developed

from first principles [42, 52, 53]. C1 is the rated terminal capacitance, R1 is the

resistance of the electrolyte, C2 is the dielectric capacitance, R2 is the dielectric loss

resistance, and R0 is the resistance of the foil, tabs, and terminals. This model

has been developed specifically for investigation of capacitor performance over the

frequency range relevant for dc bus capacitors (i.e. from dc to tens of kiloHertz)

[42, 52]. The capacitor current iC and the ac component v̂c of the capacitor voltage

are monitored.

Figure 3.4 outlines the proposed online ESR measurement process. Note that

the procedure begins with measurements of ic and v̂c sampled at several kiloHertz.

Figure 3.5 shows example waveforms. The frequency spectra of these quantities are

then computed using the Fast Fourier Transform (FFT). Note that the signals are first
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Figure 3.5: Measured capacitor current, iC , and ac capacitor voltage, v̂c.

modulated with a Hanning window in order to minimize spectral leakage. Figure 3.6

presents the spectra corresponding to the waveforms of Fig. 3.5. ESR is ultimately

computed by extracting the spectral lines closest to twice the ac line frequency (i.e.

120 Hz). In terms of the FFTs defined in Fig. 3.4, ESR is thus

ESR = ℜ

{

V̂C (2fline)

IC(2fline)

}

. (3.2)

Measurements are performed at twice the line frequency because physical argu-

ments justify the existence of appreciable signals at that frequency [54]. Content at
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Figure 3.6: Magnitudes of the FFTs of the measured capacitor current (top) and the
measured ac capacitor voltage (bottom).

twice the line frequency results from imbalances between the voltages applied at the

input of the six-pulse rectifier. Note that measurements could be performed at any

number of other frequencies at which appreciable signal content is expected, such as

6fline [54]. It is desirable, however, to avoid frequency content that depends directly

on motor speed. In terms of the comprehensive capacitor model, Eq. 3.2 yields

ESR = ℜ{Zcap} = R1 +R0 +
R2

(1 + ω2R2

2
C2

2
)
. (3.3)

3.2.2 Experimental Demonstration

The approach shown in Fig. 3.4 was used to determine the ESR of a dc bus capac-

itor in a prototype drive of the form shown in Fig. 3.7. Accelerated age testing was

performed on the prototype using a controlled temperature chamber. The capacitor

ESR was found to increase over time as expected [41, 42, 52]. Table 3.1 shows the

impedance of the dc bus capacitor before and after the accelerated age testing. The

capacitor was aged by holding it at its rated temperature for 30 hours. The change

in the real part of the capacitor impedance is quite noticeable. Note the results were

validated using a BK Precision 889B LCR/ESR Meter.
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Figure 3.7: Partial schematic of the test circuit. A high common-mode amplifier
measures the dc bus voltage vC and a Hall-effect transducer measures iC .

Table 3.1: Measured impedance of dc bus capacitor before and after accelerated aging.

Before Aging After Aging

Measured
Using
Proposed
Method

Measured
Using
LCR/ESR
Meter

Measured
Using
Proposed
Method

Measured
Using
LCR/ESR
Meter

|Z| (Ω) 1.91 1.9 1.82 1.83

∠Z (◦) -87.29 -87.33 -82.83 -82.08

ℜ{Z} (Ω) 0.09 0.089 0.226 0.251

ℑ{Z} (Ω) -1.91 -1.9 -1.8 -1.81
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3.3 Real-Time Switch Condition Monitoring of IGBTs

Real-time switch condition monitoring introduces new requirements into the design

of the overall drive. First, one must obtain high-rate samples of switch terminal

variables such as vCE , iG and iC . Additionally, these signals must be processed and

analyzed over time. This section shows a drive architecture that addresses these

issues, and it presents an algorithm that can be included to track switch health.

Note that the algorithm can be used in any drive capable of measuring the required

quantities.

3.3.1 Drive Architecture and Sensing

Figure 3.8 shows a three-phase full-bridge motor drive that has been constructed

such that it is possible to sample all of the required terminal variables. The key

feature is the advanced gate drive concept from [27]. It is anticipated that fully

developed versions of these devices could sample terminal quantities locally at a very

high rate, and then transmit appropriately down-sampled versions over a fiber-optic

link to a digital signal processor (DSP) performing overall control. The raw signals

that are measured include the phase current (iC), the collector-to-emitter on-state

voltage (vCE,on), the gate-to-emitter voltage (vGE), gate charge indicator (Qi), case

temperature (TC), and ambient temperature (TA).

From a health monitoring perspective, it is critical to sample raw signals such

as vCE,ON and iC fast enough to be able to extract features such as VJ and RON .

Sampling rate is one issue that must be addressed regardless of the actual circuit

architecture. In general, sampling must be performed at a rate above the switching

frequency. This may limit application in lower power drives with switching frequencies

in excess of 10 kHz. In high power, medium voltage (MV) drives, which are more

likely to require condition monitoring, power-dissipation limits tend to cap switching

frequencies at values on the order of 1kHz [55].
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At these switching frequencies, it likely that device variables could be sampled

fast enough to extract the relevant features. The raw signals are measured using a

DT9816. DT9816 is a low-cost 16-bit simultaneous sampling USB data acquisition

board which is used to sample 6 analog signals at 50 kHz each [56].

3.3.1.1 Sensing Circuits for Switch Condition Monitoring

Measurement circuits and sensors are used to measure the raw signals that are

used to extract the relevant features. The phase current, iC , is easily measured using

the LTS 6-NP which is a Hall-effect transducer. The collector-to-emitter voltage, on

the other hand, is difficult to measure directly because the required amplifier would

be exposed to common-mode swings on the order of several hundred volts and the

subsequent analog-to-digital converter would have difficulty measuring the very low

on-state voltage with adequate resolution. To overcome these issues, vCE is measured

in the on-state using the desaturation detection circuit included in gate drives to

detect if an IGBT is no longer in the saturation region of operation.

The onstate collector-to-emitter voltage, VCE,ON is measured using the circuit

shown in Fig. 3.9. The measured voltage, vX , which is referred to the high volt-
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Figure 3.9: Circuit used for the measurement of on-state collector-to-emitter voltage,
VCE,ON in experimental drive.

age side of the drive, is connected to a simple operational amplifier subtracter circuit.

When the IGBT is conducting, vX has the form

vX = VD + vCE(ic), (3.4)

where VD is the forward voltage drop across the diode in the desaturation circuit.

Since the voltage at the output of the differential amplifier in Fig. 3.9 is referenced to

the high voltage bus, the circuit shown in Fig. 3.11 is used to transmit its output to

the data-acquisition system. Similar isolation would be required in an FPGA-based

design, but its exact location in the signal path would depend upon the specifics of

the design.

The optical transmission circuit from [27] maintains appropriate isolation when

measuring VCE,ON . The main component of the optical transmission circuit is the

HCNR201 which is a high-linearity wide-bandwidth analog optocoupler consisting of

a high-performance AlGaAs Light Emitting Diode, LED that illuminates two closely

matched photodiodes, PD1 and PD2. The input photodiode, PD1, can be used to

monitor, and therefore stabilize, the light output of the LED. The non-linearity and

drift characteristics normally associated with LED can be virtually eliminated. The

output photodiode, PD2, produces a photocurrent that is linearly related to the light

output of the LED. This allows for a highly stable linear gain characteristic of the
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overall optical transmission circuit [57].

The operation of the basic circuit may not be immediately obvious just from looking

at Fig 3.11, particularly the input part of the circuit. Stated briefly, the operational

amplifier A1 adjusts the LED current, and therefore the current in PD1, IPD1, to

maintain its + input terminal at 0 V. Since the + input of A1 is at 0 V, the current

through R1, and therefore IPD1 is [57]

IPD1 =
vi

R1

. (3.5)

Note that IPD1 depends only on the input voltage and the value of R1 and is inde-

pendent of the light output of the LED.

There is a very linear relationship between the input optical power and the output

current of a photodiode. Therefore, by stabilizing and linearizing IPD1, the light

output of the LED is also stabilized and linearized. Since light from the LED also

falls on both of the photodiodes, IPD2 is stabilized as well. The physical package

construction determines the relative amounts of light that fall on the two photodiodes

and, therefore, the ratio of the photodiode currents. This results in very stable

operation over time and temperature. The photodiode current ratio is expressed as

a constant, K, where [57]

K =
IPD2

IPD1

. (3.6)
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The operational amplifier, A2 and resistor R2 form a trans-resistance amplifier that

converts IPD2 back into a voltage, vo, which is [57]

vo = IPD2R2. (3.7)

Combining Eq. (3.5)-(3.7)yields a transfer function relating the output voltage to

the input voltage,

vo = K

(

R2

R1

)

vi. (3.8)

Therefore the relationship between vi and vo is constant, linear, and independent of

the light output characteristics of the LED. The optical transmission circuit’s gain

can be adjusted by simply changing the ratio of R2 to R1. The parameter K can be

thought of as the gain of the optocoupler and for this HCNR201 it is approximately

1 [57].

Figure 3.11 shows the unity gain optical transmission circuit that was designed to

measure VCE,ON . Each of the measurement circuits that are referenced to the dc bus

of the motor drive requires an optical transmission circuit to transmit the signal back

to be acquired using the data acquisition board.

Figure 3.12 shows the circuit used to directly extract the gate charge parameter

QG. Note that a high-bandwidth differential amplifier measures the voltage across

the gate resistor to obtain iG. The subsequent signal is amplified and passed to an

operational transconductance amplifier (OPA660) configured as a nano-second pulse

integrator. The output voltage of the pulse integrator is the time integral of its input

voltage which is calculated as

VO =
gm

C

∫ T

0

VBEdt. (3.9)

whereVO is the output voltage, VBE is the base-to-emitter voltage, gm is the transcon-

ductance of the diamond transistor, T is the integration time, and C is the integration

capacitance. A sample-and-hold (AD781) triggered by the data-acquisition system
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acquires the output voltage of this circuit.

Figure 3.13 shows the output of the integrator as well as the trigger signal and the

corresponding sample-and-hold output. Note that the integrator output rises during

the device turn on, i.e. while vGE is rising. Once iG has fallen to zero and vGE has

become steady, the integrator capacitor begins to slowly discharge through the output

resistance of the OPA660. Note that a sample is acquired during this discharge in

order to avoid the switching noise at device turn-on. Figure 3.14, which shows the

integrator output signal during four different device turn-ons, provides the rationale.

Note that each signal is clearly impacted differently by the common-mode switching

noise. Once this has dissipated, however, each output is quite consistent. The output

at the point labeled ’Sample’ is taken as the feature QG. Further discussion follows

in Sec. 3.3.3.4, which shows that the output at the sampling point varies significantly

as the gate oxide exhibits signs of degradation.

The next useful feature that must be measured is is VGE. Figure 3.15 shows the

circuit measuring the gate-to-emitter voltage, which is simply a differential amplifier.

A simple voltage divider was used to reduce the size of gate voltage so that the output

of the operational amplifier would be in a range so that a circuit similar to the one in

Fig. 3.11 is able to transmit the output back to the data-acquisition system. Samples

are averaged over each conduction interval to compute VGE,ON for that interval.

A solid-state sensor measures the ambient temperature, and a thermocouple mea-

sures the case temperature of the transistor as shown in Fig. 3.16. These measure-

ments are also averaged over an interval of 1 second.

3.3.1.2 Feature Extraction

Once the raw signals have been collected by the data acquisition board, the relevant

features must be extracted from them. The features that are extracted include IC,rms,

VJ , RON , and Qi. Several key features are obtained by processing the measurements

of iC and vCE. Section 3.3.1.1 shows the approach for measuring VCE. Although the
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Figure 3.17: Measurement of phase current IC and vCE for the low side IGBT under
test. When vCE is negative, the anti-parallel diode is conducting.

literature suggests that VCE can be directly applied in fault detection, this is only

true under carefully controlled conditions that do not necessarily apply in the field.

In general, the circuit model as shown in in Fig 3.17b for a conducting IGBT is a

diode in series with a power MOSFET, meaning that

VCE,ON = VJ + iCRON , (3.10)

where RON is the resistance of the MOSFET channel and VJ represents the combi-

nation of the voltage drops across the pn junction and the drift regions shown in in

Fig 3.17a [54].

Given that most incipient faults have only a small impact on VCE,ON , this result

suggests that it may difficult to distinguish between changes in iC and true fault

conditions. This problem is further compounded by the fact that both VJ and RON

are affected by temperature [54]. Feature extraction is particularly problematic in

variable-speed ac drives in which the current and VCE,ON are subject to continuous

variation as seen in Fig. 3.18. Figure 3.18 illustrates the effect of Eq. 3.10 in an

operational drive. Note that VCE,ON essentially follows the current when the IGBT

is conducting. To isolate the effect of the current, the two parameters are estimated
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separately in Eq. 3.10 using a least squares approach.

Samples of the current ic and the voltage vCE during conduction as shown in

Fig. 3.18 are taken for 1 second and a linear fit on the data is performed. Figure 3.19

the data collected with the measurement circuits showing VCE and IC for 4 cycles

of the current. Figure 3.19 shows one second of relevant measured points and the

best-fit line corresponding to the data shown in Fig. 3.19. The estimated y-intercept

(VJ) and the slope (RON) are ultimately extracted as features. The value RON for

this particular second of data is 170.6 mΩ and VJ is 1.053 V.

These parameters and the corresponding rms current are extracted. The root mean

square of the phase current is calcualted over the each individual period of a 60 Hz

sinusoid and is defined as

IC,rms =

√

√

√

√

1

N

N
∑

1

‖ic‖2, (3.11)

where N is the number of points in a 60 Hz period which for a sampling frequency

of 50 kHz is 833. The mean of the rms current is then computed over one second

intervals. Ultimately, estimates of TC , TA, QG, IC , VJ , and RON over a one second

interval are used to assemble a feature vector at time tk. Threshold voltage and

possibly other features could be included in the future.

3.3.2 Health-Monitoring Algorithm for Power Switches

Figure 3.20 shows a health-monitoring algorithm for power switches. This algo-

rithm is designed to distinguish between the effects of true faults and other naturally

occurring phenomena such as changes in temperature and operating conditions. Vari-

ous algorithms can be used. In general, multiple samples of the input data are needed

to calculate any feature. As a result, indicators are extracted at a rate well below

the sampling frequency and in this case at a interval of one second. As shown in

Fig.3.20, various feature estimates are ultimately combined with measurements of

the case temperature and passed to the remainder of the algorithm.
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based on principal-components analysis (PCA). The eeei are based on healthy condi-
tions. New input signals and parameters can be added as needed.
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Feature vectors computed at the time tk are grouped into a column vector xxxk. In our

current implementation in the IGBT based drive, this vector includes the following

features, each measured once per line cycle:

• Voltage drops across the pn junction and drift regions, VJ

• On-state resistance of the MOSFET channel, RON

• Injected gate charge at turn-on, QG

• Root-mean-squared value of the collector current, IC

• Average on-state gate-to-emitter voltage, VGE,ON

• Ambient temperature, TA

• Case temperature, TC

Assuming that other parameters will be added, the general assumption is made that

xxxk has a length d. The basic approach of the principal-component-based algorithm is

to compare each measurement xxxk to an expectation. This expected vector is computed

by projecting xxxk onto a vector space created using healthy features. These healthy

values are learned during a training phase in which the drive is new and presumably in

good condition. During training, the healthy vectors are decomposed into a small set

of characteristic vectors that best describes the distribution of the healthy parameters.

During operation, each measured vector is projected onto this space.

The training space includes features recorded over a range of expected operating

conditions. In all, there are M such vectors and they are denoted as Γ1,Γ2,Γ3, ,ΓM .

These training vectors are subject to a PCA in which one seeks a set of orthonormal

vectors eeei that best describe the distribution of the data. The j-th training vector

can thus be expressed as

ΓΓΓj =mmm+

d′
∑

i=1

aj,ieeei, (3.12)

where mmm is the sample mean, i.e.

mmm =
1

M

M
∑

j=1

ΓΓΓj. (3.13)
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Note that the distribution of the data is best described using d′ ≤ d orthonormal

vectors [18, 16]. During the training phase, one calculates these vectors by minimizing

the squared-error criterion function

J =
M
∑

j=1

∥

∥

∥

∥

∥

(

mmm+
d′
∑

i=1

aj,ieeei

)

−ΓΓΓj

∥

∥

∥

∥

∥

2

. (3.14)

[18] and [16] show that the eeei correspond to the eigenvectors of the sample covariance

matrix which is

SSS =

M
∑

j=1

(ΓΓΓj −mmm) (ΓΓΓj −mmm)T . (3.15)

The actual eeei are the eigenvectors corresponding to the d′ largest eigenvalues of

SSS [18, 16]. Ultimately, this process yields a compact basis that efficiently encodes the

relevant features of a healthy switch over a range of expected operating conditions.

During normal operation of the drive, the prognostic algorithm in Fig. 3.20 projects

the features measured at time tk onto the space spanned by the eeei. This projection

is performed by the block labeled PCA, which computes the coefficients

ak,i = eeeTi (xxxk −mmm) . (3.16)

The next block uses these coefficients to reconstruct an approximation of xxxk. The

resulting estimate is thus denoted as

x̂̂x̂xk =mmm+
d′
∑

i=1

ak,ieeei. (3.17)

Following reconstruction, the algorithm calculates the two-norm of the residual

vector rrr = x̂̂x̂xk−xxxk. This quantity represents the error between the measured features

and their projection onto the healthy features. If the error is small, the switch is

healthy; if the error grows, a problem may be developing. The final block monitors

for such variations.
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3.3.3 Incipient Fault Detection in IGBTs

The condition monitoring algorithm described in Section 3.3.2 has been tested using

an IGBT-based drive of the form shown in Fig. 3.8. The switching frequency is set

to approximately 1 kHz in order to mimic operation in a medium voltage drive. This

section begins with a description of the methods used to degrade the IGBTs and also

shows testing results.

3.3.3.3 IGBT Degradation Methods

Several methods have been presented in the literature to degrade or artificially

age power semiconductors [35, 34]. Electrical and thermal stress are the two most

common mechanisms by which power semiconductors are degraded.

Several accelerated thermal ageing schemes have been shown in the literature [34,

45, 58, 59]. Chronic temperature overstress and thermal cycling are the most prevalent

thermal stress methods. Thermal overstress subjects the transistor to high temper-

atures for extended periods of time and can be artificially created by switching the

transistor without proper heat sinking. The transistor is operated in extreme tem-

peratures well beyond the safe operating area of the device. The transistor is aged

by placing it into a Class-A amplifier and the case temperature is monitored with a

temperature sensor. A controller is used to keep the temperature of the case at a

constant value for an extended period of time.

Figure 3.21 shows a schematic of the testing setup that is used to age the IGBTs

that are to be used in the motor drive for fault detection. The gate signal in this

circuit is a 1 kHz square waveform with a 50% duty ratio, D and a 15 V amplitude.

The collector current, IC , is set using the load resistor, RLoad, such that current

flowing through the IGBT creates the desired power dissipation in the device. The

power dissipated by the IGBT is defined as

Pdiss = VCE,onICD + Psw, (3.18)
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Figure 3.21: Circuit used to perform accelerated aging of the IGBT.

where VCE,on is the on-state collector-to-emitter voltage and Pswis the power loss due

to switching which is minimal due to the low switching frequency.

The thermal circuit in Fig. 3.22 models the thermal conduction of the IGBT in the

degradation circuit. Note that without the power dissipated in the IGBT, Pdiss due

to thermal conduction is

Pdiss =
Tj − Tc

θjc
, (3.19)

where Tj is the junction temperature, Tc is the case temperature, and θjc is the

junction-to-case thermal impedance in ◦C/W specified by the manufacturer.

Tj,set is the desired junction temperature during the first degradation test and it is

set to 125% of the maximum operational junction temperature defined by the manu-
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Figure 3.22: Thermal equivalent circuit for IGBT when placed in thermal degradation
circuit.

facturer. For the IRGP20B60PDPbF the maximum operational junction temperature

is 150◦C so therefore Tj,set is 187.5
◦C. Since the junction temperature is not easy to

measure the case temperature, Tc,set is actually set to desired value using Eq.(3.18)

and Eq.(3.18) and is defined as

Tc,set = Tj,set − Pdissθjc. (3.20)

During degradation a microcontoller, the Arduino, controls the case temperature at

Tc,set and also monitors IC to insure the IGBT does not latch up. If the IGBT latches

up during degradation VDD is disconnected using the relay which is also controlled

by the Arduino and the junction temperature is allowed to fall. The degradation

is restarted again after the junction temperature has been reduced but with Tj,set

reduced by 10◦C. The failure mechanisms that can be caused by a thermal over-

stress include die-attach failures [59], gate latch-up [58], and time-dependent dielectric

breakdown.

Thermal cycling is also a prevalent accelerated aging methodology. This method

subjects power transistors to rapid changes in temperature differences causing ther-

mal expansion and contraction. This method employs the same circuit as shown in

Fig. 3.21 but the device is operated only in the safe operating area. The temperature
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of the transistor is cycled using the degradation circuit in the following steps:

• Hold case temperature at 50◦C for 5 minutes.

• Increase case temperature to 80◦C for 5 minutes.

• Increase case temperature to 110◦C for 10 minutes.

• Increase case temperature to 140◦C for 20 minutes.

• Decrease case temperature to 110◦C for 10 minutes.

• Decrease case temperature to 80◦C for 5 minutes.

• Decrease case temperature to 50◦C for 5 minutes.

The failure mode associated with thermal cycling is the failure of the transistor to

switch as a result of the increased resistance of the device. As a result of the increased

resistance, the drain current dropped and the transistor fails to switch. Die solder

degradation and wire lift are associated with thermal cycling.

An electrical failure was developed by using a method to mimic the degradation of

the gate dielectric. Figure 3.23 shows the test setup for the gate dielectric wearout

detection. When a gate dielectric breakdown occurs a substantial leakage current is

seen during the on and off state of an IGBT. This condition is created artificially by

adding in parallel a resistor Rleak between the gate and emitter during operation. A

47k Ω, 4.7k Ω, 470 Ω, and 47 Ω resistor was placed between the gate and emitter to

simulate and increase in the a leakage gate current. An increase in the gate leakage

current which occurs after gate dielectric wear out can be seen as increase in the gate

charge indicator described in Sec. 3.3.1.1.

3.3.3.4 Experimental Results

To illustrate the effectiveness of the proposed algorithm, two different early stage

faults were introduced into a single IGBT switch. First, the monitored switch was

removed and subjected to an accelerated aging test to produce an early stage die-

attach fault.
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Figure 3.24: VCE,ON versus temperature for the IGBT, both before and after aging.

Figure 3.24 shows results recorded during the aging process. Note the positive

temperature coefficient; this is expected for IGBTs [59]. Additionally, note that the

component has a lower average on-state vCE at all temperatures once it has degraded.

This result was also obtained in [59]. It is believed that the drop occurs because

the degraded die attach increases θjc and thus creates a higher internal temperature

at any given TC . Since the pn junction has a negative temperature coefficient of

resistance [60], an increase in the temperature of this junction lowers average on-

state vCE .

Figure 3.25 shows results obtained using the proposed condition-monitoring algo-

rithm once the degraded part was returned to the drive. Note that the part was
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Figure 3.25: The reconstruction error recorded by the health-monitoring algorithm
before and after the die-attach fault was induced. Note that there are a number of
samples recorded at each loading condition and that the higher error at each load
step corresponds to the degraded transistor.

tested in both the healthy and degraded state, and that the load on the machine

was varied in order to simulate changes in operating conditions. The figure shows

the reconstruction errors in both the healthy and degraded conditions, using data ex-

tracted at 20% load steps. Note that the degraded part caused a significantly higher

reconstruction error at each load step and that changes in the loading condition had

minimal impact. Note that drive operation appeared normal despite the fact that the

device was nearing failure.

As another example, the effect of a breakdown in the gate oxide was simulated,

which results in an increased leakage current [38]. As in [26], this fault was simulated

by placing resistance between the gate and the emitter of the monitored switch.

Different resistor values were used to demonstrate the ability to detect early stage

faults. Figure 3.26 shows the reconstruction error versus time for both healthy and

faulted operation. The gate charge indicator changes with an increase in leakage

current from hundreds of microamps to tens of milliamps. Note that time series are

shown for the healthy part in 10% increments from no load to full load. To simulate
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Figure 3.26: The reconstruction error recorded by the health-monitoring algorithm in
10% load steps for a healthy part. Note that they are all reasonably similar. The high
errors beginning at ≈400s and ≈900s correspond to increased gate leakage current,
i.e. ∼ 3.2 mA and ∼ 32 mA, respectively, at 100% load.

a faulted part, a 4.7k Ω resistor was added at t ≈ 400s and then 470 Ω at t ≈ 900s

with the drive running at full load. Note that the corresponding leakage currents are

small (∼ 3.2 mA and ∼ 32 mA, respectively), and that both conditions correspond

to scenarios in which the drive maintains complete functionality despite the presence

of the soon-to-fail switch.

3.4 Method for Incipient Fault Detection in Power MOSFETs

The on-line monitoring approach shown in Fig. 3.8 can also be applied to MOS-

FETs. Figure 3.27 shows the schematic of the MOSFET-based drive constructed for

testing purposes. Note that this system uses the same control board and motor as

the IGBT-based drive.

3.4.1 Feature Extraction

Although various health indicators also exist for MOSFETs, the use of RDS,ON is

focused on here. Onstate resistance can be measured on-line in motor drives using

naturally occurring ripple waveforms generated by the action of carrier-based PWM.
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Figure 3.27: Partial schematic of the experimental FET-based drive. The drain-to-
source voltage, vDS, is measured for each transistor and the motor phase currents iU ,
iV , and iW are also measured.
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Figure 3.28: Notional example of the voltages vU , vV , and vW during a single switch-
ing period. Also shown is the fictitious triangular carrier signal and the reference
waveform for phase U. The voltages are defined in Fig. 3.27. The switching time
instants, T1 and T2, are also shown for each of the phases.

The exact details depend upon the manner in which the drive is controlled.

Consider the motor drive shown in Fig. 3.27, and assume that it is driven using

a digitally-implemented carrier-based PWM scheme. Specific instances of carrier-

based PWM include space-vector modulation and regular sampling [61]. Typically,

these schemes are implemented using capture-compare modules in microcontrollers.

The most common technique is to use timers to align the switching instants with

a fictitious carrier waveform as shown in Fig. 3.28. As a result, each phase voltage

pulses once per switching period. The exact timing of switching depends upon the

specifics of the microcontroller, but switching is often selected to be symmetrically
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aligned with the peaks of the carrier as shown in Fig. 3.28 [61]. The measurement

approach described below does not depend on this symmetry, however. Symmetric

regular sampling is used only for illustrative purposes, and other techniques could be

considered.

The proposed measurement approach is based on the current ripple generated by

the phase voltages shown in Fig. 3.28. These voltage waveforms can be written as the

superposition of a fundamental frequency component and a ripple term. Using the

simplified induction machine equivalent circuit in Fig. 3.27, note that all of the voltage

ripple for a given phase appears across the inductance L. The resulting current is

thus of the form [54]

iripple =
1

L

t
∫

0

vripple (τ) dτ. (3.21)

The term vripple can be written for any one of the three phases. For phase U, for

instance, it is

vU,ripple = vUn
− vUn,1

(3.22)

where vUn
is the voltage across phase U with respect to the motor neutral and vUn,1

is the corresponding fundamental component of vUn
. In terms of the phase voltages

shown in Fig. 3.28 [54],

vUn
=

2

3
vU −

1

3
(vV + vW ). (3.23)

A careful analysis of Eqs. (3.21)-(3.23) shows that the pulses in vV and vW affect the

ripple current flowing in phase U. If one measures the voltage across Q4 during an

appropriate interval aligned with one of the pulses on the other two phase legs, then

one can easily estimate the on-state resistance of Q4 using the equation

RDS,4,ON =
∆vU

∆iU
, (3.24)

where ∆iU is the ripple current during the measurement interval and ∆vU is the

corresponding voltage ripple.
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Figure 3.29: The nature of iU , vU , vV , and vW (from top to bottom) in the experi-
mental drive.

Figure 3.29 presents an experimental example showing how the ripple current

changes as the MOSFETs change state. RDS,4,ON would be measured when vV is

low. The on-state resistance of the other FETs would be measured during similar

intervals. Timing is critical to the successful implementation of the measurement pro-

cess described above. Figure 3.28, for instance, shows times during which Q4, Q5, and

Q6 are each conducting. Note that Q4 is on for the longest time, and that its ripple

current should exhibit 5 distinct states based on the action of the other phase legs.

By comparison, the ripple current flowing through Q5 only exhibits one distinct state.

In this case, one can trigger high-speed sampling of the voltage and current for Q4

using the same interrupts that control the switching of Q5. Thus, one can exploit the

nature of the PWM waveforms to obtain the best possible measurements of ∆i and

∆v. Measurements should be performed over a sufficiently long interval during which

the current is approximately linear. The timing shown in Fig. 3.28, for instance, is

ideal for the measurement of RDS,4,ON because the pulses on the two other phases

are of a sufficient length and do not overlap. One can predetermine the appropriate

measurement times by considering the nature of the symmetric, center-aligned PWM
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signals shown in Fig. 3.28. For any one phase, the switching time instants T1 and T2

can be computed in real time using the geometrical relationships [61].

T1 =
1

4
TSW · (1 + v∗(ts)) (3.25)

T2 =
1

2
TSW +

1

4
TSW · (1− v∗(ts)) (3.26)

where v∗(ts) is the most recent sample of the reference waveform for the given phase.

When using regular sampling, these references are of the form

v∗u(ts) = M sin (ωmts) (3.27)

v∗v(ts) = M sin

(

ωmts −
2π

3

)

(3.28)

v∗w(ts) = M sin

(

ωmts +
2π

3

)

(3.29)

where M is the modulation depth and ωm is the angular frequency of the modulating

signal. The pulse widths for each phase are thus computed by taking the difference

∆T = T2 − T1 =
1

2
TSW −

1

2
TSW · v∗(ts). (3.30)

These times are independent of ωm and can thus be rewritten by substituting ωmts = θ

into (3.27)-(3.29) to yield

∆Tu =
1

2
TSW −

1

2
TSW ·M sin (θ) (3.31)

∆Tv =
1

2
TSW −

1

2
TSW ·M sin

(

θ −
2π

3

)

(3.32)

∆Tw =
1

2
TSW −

1

2
TSW ·M sin

(

θ +
2π

3

)

. (3.33)

Equations (3.31)-(3.33) can be plotted to determine appropriate measurement times.

Figure 3.28 corresponds to M = 1 and θ = −2π
3
. One can perform analysis to

determine if the current will be approximately linear during the chosen measurement

period. The measurement timing can be easily coordinated with switching.
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Figure 3.30: Measured vU(t) and vU(t). The measurement window is indicated.

3.4.2 Experimental Demonstration

The proposed measurement scheme has been demonstrated using a prototype drive

of the form shown in Fig. 3.27. The microcontroller generates center-aligned PWM

waveforms. Figure 3.30 shows the drain-to-source voltage across Q4 and the phase U

current. ∆iU and ∆vU are measured over the indicated window. As described above,

the measurement is relatively straightforward to implement because the appropriate

sampling window can be predetermined. Measurements are performed once every 100

periods of the modulating waveform. When applying the proposed approach with the

waveforms shown in Fig. 3.30, the value of RDS,ON was found to be 40.2 mΩ. For the

given conditions (i.e. ambient temperature and current), the manufacturer datasheet

predicts a value of 44 mΩ [62]. Estimates ofRDS,ON over a range of temperatures could

be used to create the vector space needed for the condition-monitoring algorithm. The

key implementation details are the same as for the IGBTs, with the need to perform

a training step at the outset. To test the detection mechanism, the drive was placed
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Figure 3.31: Measured vU(t) and vU(t) at 45

◦C (left) and at 105◦C (right).

into a temperature controlled chamber. A thermocouple was connected to the case

of MOSFET Q4 to record the temperature during testing. RDS,ON was calculated

while the drive was heated from a case temperature of 45◦ C to 105◦ C as seen in

Fig. 3.31. The value of RDS,ON was computed using the method described above and

it was found to vary from 46.2 mΩ at a case temperature of 45◦C to 71.6 mΩ at a

case temperature of 105◦C. Note that a full-scale diagnostic indicator would require

one to determine if RDS,ON has changed because of actual faults or simply because

of other natural phenomena such as changes in ambient temperature.



CHAPTER 4: FAULT DETECTION IN ELECTRIC MOTORS

A method for the on-line detection of faults in electric motors is presented in

this chapter that could be a major stepping stone on the path to fully automated

condition-based maintenance (CBM). The first step in this scheme is the fault-detection

algorithm that was discussed in Chap. 2 that efficiently encodes a large set of KPIs

(i.e. vibration values, spectral quantities, etc.) using PCA and does not require a

priori rules. This algorithm can adapt to changes in motor operating conditions, thus

significantly reducing the likelihood of false positives and missed faults. The system

currently takes a conservative approach to fault detection, as it alerts operators of

potential fault conditions and then allows them to investigate the underlying KPI val-

ues. The algorithm can be implemented in real-time, and lends itself to applications

with drives as well.

The chapter begins with some background on the need for motor fault detection and

some of the methods used currently. A description of the fault detection algorithm as

it relates to the detection of motor faults is shown and a description of the machinery

fault simulator used during testing. In Sec. 4.4 a number of test cases are considered

that demonstrate the effectiveness of this approach.

4.1 Background

The failure of critical induction motors in power plants and other industrial facilities

costs millions of dollars in reduced output, emergency maintenance costs, and lost

revenue. In the power industry and elsewhere the response has been to develop

extensive preventative maintenance programs based on regularly scheduled outages.

Such programs are expensive. In the nuclear industry, for instance, maintenance
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budgets can account for as much as 40% of total production costs [63]. Industries

are now actively pursuing condition-based maintenance (CBM) programs intended to

predict failures before they happen. Such efforts could potentially reduce the length

of forced outages. At present, these shutdowns can lead to financial losses in excess

of $1 million dollars per day [63]. The huge costs associated with forced shutdowns

has increased the desire to develop robust fault detection mechanisms.

Reliable motor fault detection has also become increasingly important on-board

naval ships. In OPNAV Instruction 4790.16A, the Chief of Naval Operations (CNO)

spells out the Navy’s policy on CBM [64]. The CNO makes clear that the proper

application of CBM strategies is essential to plans to reduce operating and support

costs and manpower requirements. CBM tools such as the Integrated Condition As-

sessment System (ICAS) use aboard naval ships now monitor various critical Hull,

Mechanical, and Electrical (HM&E) systems [65]. ICAS can provide users with fault

predictions based on automated algorithms, but much of the performance monitor-

ing capability relies on off-line analysis performed by on-shore experts. The data-

transmission capability is also used for integration with other fleet-wide systems [66].

Electric motors are increasingly important components aboard ships and are thus a

key target for CBM. This is particularly true in the case of ships using electric motors

for propulsion.

The remainder of this section will focus on the failure mechanisms that are asso-

ciated electric motors and a literature review of the methods for the detection and

diagnosis of these faults is presented.

4.1.1 Failure Mechanisms of Electric Motors

The most common electric motor faults include stator faults resulting in the opening

or shorting of one or more of a stator phase winding, abnormal connection of stator

windings, broken rotor bar or cracked rotor end-rings, static and/or dynamic air-gap

irregularities, bent shaft which could cause serious damage to stator core and windings
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due to rubbing between the rotor and stator, shorted rotor field winding, and faults in

the bearing and gearbox [3]. The most prevalent fault mechanisms and thus the most

important for monitoring are bearing failures, stator or armature insulation faults,

broken rotor bar and end ring faults, and eccentricity faults [3]. The remainder of

this section will focus on these key failure mechanisms.

The majority of electrical motor bearings are ball or rolling element and 40% - 50%

of all motor failures are bearing related. A bearing consists of two rings one inner

and one outer and a set of balls or rolling elements placed in raceways between these

rings [67]. Fatigue bearing failures may take place under normal operating conditions

with balanced load and good alignment which lead to increased vibration, increased

noise levels, and flaking or spalling of bearings. Other than the normal internal op-

erating stresses bearings can also be damaged by external causes. External causes

include contamination and corrosion caused by pitting and sanding action of hard and

abrasive minute articles or the corrosive action of water, acid, etc., improper lubrica-

tion which includes both over and under lubrication causing heating and abrasion, and

the improper installation of a bearing either by improperly forcing the bearing onto

the shaft or in the housing due to misalignment causing indentations to be formed

in the raceways [10]. The ball bearing related defects can be categorized as outer

bearing race defect, inner bearing race defect, ball defect, and train defect. For more

information about at which vibration frequencies these defects can be detected refer

to Appendix D [10]. Sometimes though bearing faults might manifest themselves as

rotor asymmetry faults [67] which are usually categorized with eccentricity-related

faults.

Stator or armature faults are usually related to insulation failures and make up

30% - 40% of all reported induction motor failures. These faults are more generally

known as phase-to-ground or phase-to-phase faults. These faults are believed to start

as undetected turn-to-turn faults that finally grow and culminate into major ones [68].
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The primary reasons for armature or stator insulation failures are high stator core or

winding temperatures; slack core lamination, slot wedges, and joints; loose bracing

for end winding; contamination due to oil, moisture, and dirt; short circuit or starting

stresses; electrical discharges; and leakage in cooling systems [69].

Rotor bar and end-ring breakage failures account for 5% - 10% of total induc-

tion motor failures [67], [70]. These failures can be caused by thermal stresses due

to thermal overload and unbalance, hot spots, or excessive losses, sparking (mainly

fabricated rotors); magnetic stresses caused by electromagnetic forces, unbalanced

magnetic pull, electromagnetic noise, and vibration; residual stresses due to manu-

facturing problems; dynamic stresses arising from shaft torques, centrifugal forces,

and cyclic stresses; environmental stresses caused by for example contamination and

abrasion of rotor material due to chemicals or moisture; and mechanical stresses due

to loose laminations, fatigued parts, bearing failure, etc.

Machine eccentricity is the condition of unequal air gap that exists between the

stator and rotor [3]. A large eccentricity can cause the stator and rotor to rub together

which can result in damage to both. The two types of eccentricity are static air-gap

eccentricity and the dynamic air gap eccentricity. A static air-gap eccentricity is when

the position of the minimal radial air-gap length is fixed in space. Static eccentricity

may be due to the ovality of the stator core or by the incorrect positioning of the

rotor or stator during commissioning. A dynamic eccentricity is when the center of

the rotor is not at the center of the rotation and the position of minimum air-gap

rotates with the rotor. This misalignment may be due to several factors such as a

bent rotor shaft, bearing wear or misalignment, and mechanical resonance at critical

speed[10].

Figure 4.1 shows the distribution of failures by type of failure in electric motors

according to a study done by [71]. The failure rates of the components with a “*” by

their percentage could be reduced by three-quarters by taking appropriate measures
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to predict and prevent that failure [71].

51%*
Bearings

16%*
External Device

(Enviroment,
Voltage, Load, etc.)

5%
Rotor Bars/Rings

2%
Shaft or Coupling

16%*
Stator Windings

10%*
Unknown

Figure 4.1: Failure distribution of electric motor components. Adapted from [71].

4.1.2 Methods for Motor Fault Detection

In this section the different methods for fault detection in electric motors is dis-

cussed. The section begins with a look at rules based approach for fault detection

and then takes a look at the different artificial intelligence schemes that are used for

fault detection and diagnosis.

4.1.2.1 Rules Based Technique

Motor health can be assessed by extracting certain key performance indicators

(KPIs) from various sensors(i.e. current transducers, vibration sensors, etc.). For

example, a common approach is to monitor machine vibrations. The methods cur-

rently used determine thresholds for each individual parameter and then monitors

the parameters to detect if the threshold has been crossed. Trending is used to track

fault parameters over a period of time and attempts to detect sudden changes in an

individual parameter which could be an indication that failure has occurred. These

methods provide the basis for various industry standards, including those in IEC

34-14 [72], ISO 10 816-1 [73], and NEMA MG-1 [74]. Simple rules-based procedures
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for fault detection are currently used within ICAS [5] and are nominally preferred

because of their theoretical simplicity and computational tractability.

There are potential problems with the simple threshold, trending or rules-based

systems described above. Consider an example bearing condition-monitoring scheme

based on the ISO 10 816 Standard [73]. In this standard, machine vibration is ac-

quired and band-pass filtered over a range of 10 Hz to 1 kHz and then integrated

to determine the velocity over that frequency range. Acceptable limits on the abso-

lute magnitude of machine vibration are provided by the standard. It also suggests

that one monitor for relative changes above the machine’s baseline vibration level.

Research and operational experience demonstrate, however, that unhealthy bearings

may exceed thresholds at certain loading levels, but not all [75].

Furthermore, research has shown that the speed of a machine can have a direct

impact on vibration, meaning that variable-speed drives can potentially mask immi-

nent bearing failures [75]. When using simple rules, it is reasonable that there will be

certain such conditions that are not detected, as it is difficult to quantify all possible

fault conditions a priori. The key issue with these fault detection methods is the

sensitivity of the measured fault parameters to machine specific details such as size,

power, construction type and loading. In order to develop a reliable fault detection/-

classification algorithm, an extensive set of “healthy” and “faulty” reference data is

generally required. The final accuracy of the fault detection algorithm is clearly lim-

ited by the size, breadth and quality of the reference data which was used to develop

it.
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Figure 4.2: Machine vibration versus load for a bearing, where a 0% load corresponds

to 1800rpm and 100% load corresponds to 1745 rpm. The ISO 10 816 acceptable

vibration limit is shown at 2.3 mm/s. Adapted [75].

4.1.2.2 Artificial Intelligence Techniques

Both research and practical experience have demonstrated that the use of hard-

and-fast rules can be misleading. To overcome the limitations of simple rules-based

techniques, more advanced artificial intelligence techniques have been developed using

techniques such as artificial neural networks, fuzzy logic and expert systems. These

techniques have been developed and demonstrated using a variety of sources such

vibration data [76], [77], [78], motor current spectral components [79], and detailed

motor models [80], [81].

Artificial neural networks have been used for fault detection and diagnosis of electric

motors [82]. A neural network is able to formalize the knowledge base of the diagnostic

system when inputs and outputs are chosen suitably. The neural network is trained

using data gathered from healthy motors and from simulation in of faulted motor

and diagnostics are run to determine its condition [83]. For example a neural network

based fault diagnosis system utilizing the stator current spectrum is described in [79].
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This system uses rules-based frequency filters of the current spectrum to classify its

frequency components into four categories with a decreasing level of importance. A

neural network based on these rules is trained for all possible operating conditions of

the machine which is used to classify the incoming data [10]. If a measured spectral

signature falls outside the trained clusters that signature is marked as a potential

fault. The system only sends an alarm when a fault signatures has been observed

over a period of time to prevent false diagnosis. This type of scheme has been used

to diagnose bearing and unbalanced rotor faults of induction motors [79].

Fault detection using fuzzy logic involves making decisions based on classifying

signals into a series of bands. A more accurate determination of motor health is

possible based on combining these fuzzy values than by just setting thresholds [84].

For example one technique described in [85] monitors signal harmonics from the power

spectral density of the current and employs a hybrid fuzzy min-max neural network

and classification and regression tree to classify fault conditions. The big issue with

this type of scheme is that it is trained to certain failures and are not able to detect all

possible faults. Another example of the use of fuzzy-logic-based systems is presented

in [86]. In this case a fuzzy logic system is used to classify broken-bar-related faults by

categorizing the two sideband components around the fundamental of the induction

motor line current by using a set of nine rules [86].

Expert systems are an attempt to emulate the human thought through knowledge

representation and inference mechanisms. Within a bound domain of knowledge

expert systems are capable of decision making on a quality level comparable to human

experts [87]. Some research work has been dedicated to applying expert systems to

machine fault diagnosis. The development of an expert system knowledge base for

on-line diagnosis for induction machine rotor electrical faults was presented in[88].

All of these methods are focused on the diagnosis of faults in specific components,

and none of them fuse all of the data now available when monitoring motor driven
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loads. Several recognize that the successful use of such schemes requires operator

involvement [77], [78]. In the case of motors and their driven loads, it is clear that

the intelligent application of enabling technologies for CBM is still an open question.

4.2 Algorithm Development for Electric Motors

This dissertation proposes a scheme intended to lead to more advanced levels of

automation by first leveraging the power of collecting data in a centralized location.

Figure 4.3 shows the proposed health-monitoring scheme for monitoring of electric

motors. Inputs include various raw sensor signals. Specifically, the inputs are the

phase currents, the phase voltages, and acceleration signals from sensors mounted on

the bearings. The first step is to extract relevant key-performance indicators (KPIs)

or features. Examples include the root-mean-squared (rms) value of the velocity

measured by individual vibration sensors and the amplitudes of appropriate signals

obtained via spectral analysis. The feature-extraction block thus contains various

processing steps such as Fast Fourier Transforms (FFTs) and rms calculations. Note

that raw signals provided to the feature-extraction block must be sampled at a high

rate. The processed features are output at a much lower rate, as multiple data samples

are typically required for processing. In this implementation, raw data is collected

at 6 kHz and features are calculated at 5 Hz. 186 KPI values are calculated and 149

are used for fault detection. Appendix D has a detailed description on how many of

these KPI values are extracted.
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Figure 4.3: Generalized condition-monitoring algorithm for an operational motor

based on principal-components analysis. The ei are based on healthy conditions.

New input signals and parameters can be added as needed.

The heart of the fault-detection algorithm is the principal-component analysis

(PCA) block. This unit provides information about meaningful trends within the

monitored data. In order to provide such information, the features measured at each

time step are first grouped into a column vector xxxk. The length of this vector is equiv-

alent to the number of features; for generality, the vector is said to have a length d.

The basic approach of the principal-component-based algorithms to compare each

measurement xxxk to an expectation. This expected vector is computed by project-

ing xxxk onto a vector space created using “healthy” features. These healthy values are

learned during a training phase in which the motor is assumed to be fault-free. During

training, the healthy vectors are decomposed into a small set of characteristic vectors

that best describe the distribution of the healthy parameters. During operation, each

measured vector is projected onto this space.

The training space includes feature vectors recorded under normal operating condi-

tions. In all, there areM such feature vectors and they are denoted as Γ1,Γ2,Γ3, ,ΓM .

These training vectors are subject to a principal-component analysis in which one

seeks a set of orthonormal vectors eeei that best describe the distribution of the data.

The j − th training vector can thus be expressed as

ΓΓΓj =mmm+
d′
∑

i=1

aj,ieeei, (4.1)
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where mmm is the sample mean, i.e.

mmm =
1

M

M
∑

j=1

ΓΓΓj. (4.2)

Note that the distribution of the data is best described using d′ ≤ d orthonormal

vectors [18, 16]. During the training phase, one calculates these vectors by minimizing

the squared-error criterion function

J =
M
∑

j=1

∥

∥

∥

∥

∥

(

mmm+
d′
∑

i=1

aj,ieeei

)

−ΓΓΓj

∥

∥

∥

∥

∥

2

. (4.3)

[18] and [16] show that the eeei correspond to the eigenvectors of the sample covariance

matrix which is

SSS =

M
∑

j=1

(ΓΓΓj −mmm) (ΓΓΓj −mmm)T . (4.4)

The actual eeei are the eigenvectors corresponding to the d′ largest eigenvalues of

SSS [18, 16]. Ultimately, this process yields a compact basis that efficiently encodes

the relevant features of a healthy motor during normal operating conditions. Further

details on the PCA algorithm are included in various references, including [18] and

[16].

When the motor is operational and the algorithm is applied to monitor its health,

the first step is to project the features measured at time tk onto the space spanned

by the eeei. This projection is performed by the block labeled PCA, which computes

the coefficients

ak,i = eeeTi (xxxk −mmm) . (4.5)

The next block uses these coefficients to reconstruct an approximation of xxxk. The

resulting estimate is thus denoted as

x̂̂x̂xk =mmm+

d′
∑

i=1

ak,ieeei. (4.6)

Following reconstruction, the algorithm calculates the two-norm of the residual
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vector rrr = x̂̂x̂xk − xxxk. This quantity, which we term the health indicator (HI), is

computed at each time tk. HI is thus

HIk = rrrTrrr = (x̂̂x̂xk − xxxk)
T (x̂̂x̂xk − xxxk). (4.7)

This quantity represents the error between the measured features xxxk and their ex-

pected value for a healthy motor. In a very basic sense if the error is small, the motor

is operating under normal conditions; if the error grows, a problem may be developing.

The final block, labeled “Trending Analysis,” monitors for such variations.

At first, this highly mathematical derivation of the principal components seems

relatively unintuitive. For this reason, lets step back to place PCA in the context of

the problem at hand. Consider that each vector xxxk is a set of 149 KPIs recorded at

intervals of 0.2 seconds. In general, we do not know if a machine has a fault, and thus

we do not know what is indicated by xxxk. One could develop a set of rules that would

monitor each of these 149 values. In a rules-based context, one is likely to assume that

as long as each feature is useful in its own right as some sort of fault indicator that it

is best to jointly monitor all such fault indicators simultaneously. In what is perhaps

a counterintuitive result, this is not necessarily the case. Generally speaking, features

are not independent and thus classification accuracy does not necessarily improve as

one monitors more features. In fact, there can actually be a diminishing point of

returns stemming from the fact that as more features are included, it becomes all

the more difficult to develop a meaningful set of rules that encompasses all possible

trends in the data [18]. The proposed algorithm combines features in such a way

that it reduces the size of the feature set and reveals trends that best separate the

features. This is demonstrated in Sec. 4.4.

One additional note is needed about the effect of loading on the proposed Health

Indicator. As the load on the motor changes, this can certainly affect quantities such

as vibrations [75]. In order to account for such changes, the “Trending Analysis”
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block also monitors the motor load by monitoring both the real power and the speed.

If there is a change in motor load, the “Trending Analysis” block will detect this and

re-learn the eeei. Specific details are presented in Sec. 4.4.

4.3 Experimental Setup

The fault-detection algorithm has been tested in the laboratory using a Machinery

Fault Simulator from SpectraQuest. This unit, which consists of a 1

2
hp three-phase

induction motor, can be configured to drive various different mechanical loads, in-

cluding pumps, fans, compressors, and constant-torque loads. Figure 4.4 shows the

setup with an adjustable brake connected to the shaft via a belt. Note that various

different mechanical and electrical faults can be introduced by replacing various com-

ponents throughout the system. For instance, the normal bearings can be replaced

by bearings with faults in their inner or outer races, or the motor can be replaced

with a similar motor having a broken rotor bar.

The setup includes thirteen different sensors, and each is sampled via a data-

acquisition system at 6kHz. The list of monitored sensors includes the rotational

speed; the three phase currents; the three line-to-line voltages; and the axial, verti-

cal and horizontal acceleration on both of the two bearing blocks. Code on-board

the computer calculates 186 different features from this data set, 149 of which are

included in the actual feature vector xxxk. The features can be broken up into three

categories.The first are load-dependent KPIs (i.e. currents, speed, etc.), which are

not included in the feature vector but are useful for. The quantities included in

the feature vector are standard vibration-related measurements (i.e. rms velocity,

amplitudes at multiples of the electrical and mechanical frequencies, etc.) and the

amplitudes of specific bearing, eccentricity, and rotor-bar related frequencies in the

vibration and current spectra as described in [10]. Load-dependent data has not been

included in the feature vector since it is expected to change and could easily cause

one to classify load changes as faults. Such features are used, however, in computing
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Figure 4.4: Photograph of the Machinery Fault Simulator in the laboratory. Note
that the six vibration sensors are placed on the two bearing blocks. The adjustable
brake provides a constant-torque load, and the pump can be replaced with other loads
(i.e. pump, compressor, etc.).
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other features and in understanding the loading condition of the motor. Appendix D

list each of the 186 KPIs and also shows how many of them are calculated.

It is important to note that real-time computation of the features and health indi-

cators has been tested and successfully demonstrated in a laboratory at Converteam

Naval Systems. For development purposes, however, data is recorded and all analysis

performed off-line. There is no reason, however, why any of the computation could

not be performed in real-time using market-available computational assets.

4.4 Experimental Results

Several experiments indicative of potential operating conditions have been consid-

ered. This section describes the results of those tests.

4.4.1 Introducing faults in an off-line pump/motor setup

Many ship systems use off-line motors to drive centrifugal turbo machines such

as pumps and fans. Examples include Auxiliary Sea Water (ASW) pumps, lube-oil

(LO) pumps, and generator cooling fans. To simulate these common systems, the

motor was coupled to a centrifugal pump as shown in Fig. 4.5. The pump drives fluid

throughout a small distribution system that includes a large reservoir and several

throttling valves.

As an initial test condition, several different faults were inserted into the system.

The faults included the following:

• Bearing with inner-race damage (BPFI)

• Bearing with outer-race damage (BPFO)

• Bearing with a ball-spin fault (BSF)

• Bearing with a combination of the above faults (COMB)

• An unbalanced mechanical load

• An eccentric rotor disk

• A cocked rotor disk

• A faulted pump (with rubbing)
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Figure 4.5: Photograph of the Machinery Fault Simulator with the pump coupled to
the shaft. A fluid system with a large reservoir and throttling valves is connected.
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• A centrally bent shaft

• Motor with a broken rotor bar

• Motor with an unbalanced rotor

• Motor with a faulted machine bearing

• Motor with a bowed armature

• Motor with highly eccentric air gap

Figures 4.6 shows the results of various tests. Note that each plot shows the Health

Indicator value as a function of time for both normal and faulted conditions. Note

that the indicator value generally increases by a relatively large amount for each of

these relatively early-stage fault conditions.

To imagine a practical implementation of the proposed scheme, consider the fol-

lowing. During normal operation at a fixed load, the algorithm initially learns an

appropriate set of vectors eeei. In reality, these vectors are learned once the motor has

reached a steady-state operating condition, which is defined using the motors thermal

time constant. In general, we know that the load on the motor will change slightly

as the machine heats up. The time scale for such changes can be quantified using

the motors thermal time constant [89]. In general, however, most machines operate

for much longer than a single thermal time constant and are thus in a quasi-thermal

steady state over most of their operating lifetime. It thus makes sense to train the

algorithm once the load is steady. Once a fault develops, various KPI values will

change, and the HI value will change as well. Note that the HI value indicates only

the existence of a fault, and not its exact cause. Thus, HI is not used for diagnosis. In

this case, later diagnosis can be performed via a specific analysis of individual KPIs.

This step can be performed automatically or manually. In practice, it has been found

to be extremely helpful to manually observe the data. One could imagine that such a

process could be performed at a remote location if the KPIs were routinely uploaded

to the cloud. An example of such analysis is considered below.
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Figure 4.6: HI value versus time for various faults as well as for a setup with no faults
(normal).
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4.4.2 Effects of loading in the off-line pump/motor setup

In many systems, pumps run at one or two different operating speeds. An example

is the lube-oil pump in a DDG-51 naval destroyer. Different speeds are achieved by

changing the number of poles. At any given pole setting, however, the motor speed

does not change significantly even if torque does. This is, in fact, a fundamental

property of off-line induction motors [89]. In a pump application, one reason for a

slight speed change is a change in valve settings. In typical flow regimes, the motor

torque τL tends to be related to flow rate Q according to a power-law relationship of

the form [90]

τL = β1Q
2, (4.8)

where β1 is an empirical constant. As the valve is throttled, the flow rate drops and

so, too, does the required torque. As a result, the motor speed increases closer to

synchronous. Given the operational characteristics of off-line induction motors, speed

is thus one indicator of load.

To simulate a load change, the valve in the fluid system was throttled from fully

open, to 50% closed, to 75% closed. During the process, thespeed of the motor

increased from 3448.2 RPM (fully open), to 3462.6 RPM (50% closed), to 3466.2

RPM (75% closed). Figure 4.7 shows the value of the Health Indicator for each of

the various valve settings with a healthy system as well as the Health Indicator value

for various faulty conditions in a system with a fully open valve.

The behavior or the Health Indicator in the various throttling scenarios may at

first appear to be troubling, particularly at 50% throttling. A closer observation,

however, actually serves to demonstrate the power of the algorithm. Given that the

Health Indicator value is approximately the same in both the normal, throttled tests

and in the case with a faulty outer race (BPFO), it is meaningful to investigate the

underlying KPIs. Figure 4.8 shows the velocity recorded by the x-axis, y-axis, and



78

0 20 40 60 80 100
0

5

10

15

20

t (sec)

H
ea

lth
 In

di
ca

to
r 

(u
ni

tle
ss

)

 

 

Fully Open
50% Closed
75% Closed
BPFI
BPFO
COMB

Figure 4.7: HI value versus time for several different valve settings with no faults,
and for several different bearing faults with a fully open valve.

z-axis accelerometers, respectively, in each of the following three cases:

• Healthy bearing, fully open valve (labeled as Normal)

• Healthy bearing, 50% throttled valve (labeled as Throttle 50%)

• Bearing with early-stage outer race defect, fully open valve (labeled as BPFO)

Several immediate observations arise. First, it is clear that all each sensor observed

very high velocity vibrations for about the first 1200 seconds in the case of the 50%

throttled valve. This is completely consistent with the higher Health Indicator value

observed over the same time frame. Additionally, it is clear that the velocity changes

with both load and fault conditions. When faulted, the velocity is higher on two axes

(x and z), and when the valve is simply throttled, it is higher on all three axes. Note

that the speed dependence noted in [75] is clearly evident.

These results are somewhat interesting, and they highlight the power of the Health

Indicator to aggregate the underlying data into a meaningful value. Note that once

the initial large variations die out on the x and z axes in the throttled case, the

overall Health Indicator drops closer to normal and below the faulted case. Even if

the change in valve setting were to cause an alarm in this case, corresponding flow
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Figure 4.8: X-axis, Y-axis, and Z-axis velocity versus time for three of the cases
extracted from Fig. 4.7.
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measurements would indicate that there had been a change in motor load and thus

would provide warning that some change in vibration might be expected. This data

set could be stored on shore for later development of a more robust expert system.

Note that the Health Indicator value clearly increases as the motor load changes.

Even though the Health Indicator value is clearly lower in those cases than it is when

faults are in place, it is easy to see the potential difficulty in distinguishing load

changes from early-stage faults.

The algorithm is able to be retrained if it is known that the load has changed. In

this case, the change in speed is a clear indicator that the load setting has changed and

that a re-training is needed. Such a retraining is relatively easy to perform on-the-fly

and has been tested in real-time.

At first, it may seem as though on-the-fly re-training is inappropriate. Recall, how-

ever, that vibrations and other fault indicators are dependent on loading conditions

[75]. Since heavily load-dependent quantities (i.e. current amplitude, speed, etc.)

have been removed from the feature vector, the corresponding changes in the Health

Indicator resulting from load changes are clearly the result of changes in various fault

indicator values (i.e. vibrations). It is thus to be expected that individual KPI val-

ues also change with loading. Therefore, even a rules-based monitoring scheme would

need to account for such activities if it were to be appropriately robust. The proposed

method uses a single, succinct indicator to track such changes and is thus potentially

better in this regard. The benefits over a rules-based analysis of all KPI values are

considered more carefully in Sec 4.4.3.

4.4.3 Detection of an actual fault

An early-stage fault very similar to what is expected in the field was accidently

developed during the course of laboratory tests. At one point, one of the “healthy”

bearings became stuck on the shaft, and a laboratory assistant had to use reasonable

force to remove it. In the process, the bearing fell to the floor. No visible damage
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Figure 4.9: Health Indicator value versus time for the normal bearing before and after
it was damaged in the laboratory.

was detected, and the bearing seemed completely normal. During subsequent testing,

however, the Health Indicator jumped as shown in Fig. 4.9.

A detailed analysis of the KPI values recorded before and after this fault provides

strong support for the use of the proposed algorithm over a rules-based approach.

Consider, for instance, Fig. 4.10 which shows the value of the velocity signal recorded

from the y-axis accelerometer on the bearing housing. A small change has clearly

occurred. An investigation of several other fault indicators, however, shows how

difficult the fault-detection process can be and how powerful our scheme is at isolating

changes.

Figures 4.11 shows two examples, namely the amplitude of the ball-defect sig-

nal recorded by the y-axis accelerometer and the amplitude of the inner-race signal

recorded by the x-axis accelerometer, respectively. In the case of the former, there

is a clear change in mean; in the case of the latter, all of the data appears to be

about the same. A change in steady-state speed was also observed before and after

the maintenance was performed, and this is likely due to increased rolling friction.

The flow rate, however, was unchanged.
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Figure 4.10: Velocity versus time for the normal bearing before and after it was
damaged in the laboratory.

This example demonstrates the potential benefits of the proposed fault-detection

algorithm over more traditional rules-based approaches. For instance, it is unlikely

that a sufficient set of automated rules would have noticed the subtle changes in the

various fault indicators. For instance, it is clear that the variance of several indicators

has changed, but such metrics are unlikely to be recorded in a rules-based system.

The Health Indicator, however, clearly shows that there has been some sort of a

change away from the previously believed normal conditions. This Health Indicator

could easily alert a human operator of the need to perform a more detailed inves-

tigation of the individual KPIs which would indeed show changes to the naked eye.

This approach is thus conservative, as it simply gives the operator the sense that

there has been a change and that he must investigate. It does not attempt to make

any particularly determinations, and thus potentially reduces the opportunity for a

missed fault or an improper diagnosis. In this case, an operator would likely note that

the bearing had changed and would consider the new condition to be normal. The

algorithm would be re-trained, and the operator would flag the occurrence, noting

that it is possible that further changes would be detected in the future.
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Figure 4.11: Amplitude of the ball-defect signal recorded by the vertical accelerometer
and the inner-race signal recorded by the horizontal accelerometer before and after
the normal bearing was damaged.



CHAPTER 5: CONCLUSION

5.1 Summary

This dissertation proposes an approach for robust condition monitoring for power

conversion assets that robustly detects faults locally allowing for remote fault diagno-

sis. The condition monitoring algorithm was developed based on a concept from facial

recognition. The algorithm is used for fault detection in two key power conversion as-

sets: power electronic drives, specifically IGBTs, and electric motors. Online methods

for early stage fault detection will become essential as systems become more heav-

ily dependent on power electronics. The condition monitoring algorithm for power

switches is able to distinguish between true faults and changes in operating conditions

and does not require the development of rules to set thresholds for fault detection.

This dissertation also develops several methods for the online measurement of key

health indicators in several key power electronic drive components: IGBTs, MOS-

FETs, and dc bus capacitors. This dissertation has also demonstrated the potential

of a robust, automated condition monitoring algorithm for electric motors and their

driven loads. This method is clearly sensitive to very small changes in load behavior

and that those changes can be correlated with the underlying KPI data, as well as

maintenance records and other process-variable measurements.

5.2 Future Work

The approach for condition monitoring proposed in this dissertation has several

opportunities for future work. Ongoing work focuses on the inclusion of additional

features and the completion of more testing for both the motor and switch condition

monitoring. These tests include building a larger training set of normal motor and
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drive features. There is particular interest in testing with variations in load and

looking into the effects of changes in ambient temperature.

5.2.1 Future Work for Fault Detection in Power Electronics

One potential improvement for fault detection in power semiconductors is using the

advanced gate-drive concept that has been described in several works [27], [91], [92], [93].

Figure 5.1 shows a three-phase, full-bridge inverter capable of sampling the required

terminal variables. FPGA-based gate drives have been used to acquire switch termi-

nal variables at rates as high as 100 MHZ with emphasis on their use in optimizing

turn-on and turn-off performance [91], [92]. The signals measured by such devices

can also be used to extract meaningful health-related features, such as threshold volt-

age, on-state voltage and on-state resistance. Feature extraction could be performed

locally at the gate-drive unit, and features could be transmitted back to a central

controller over fiber-optic cables for better noise immunity at a much lower data rate.
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Figure 5.1: A potential smart drive architecture including FPGA-based gate drives.

These devices are labeled here as advanced gate drivers (AGDs). The AGDs provide

the controller with appropriate measurements. These connections would be fiber

optic [71].
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The advanced gate-drive concept provides a feasible approach for monitoring key in-

dicators. In this dissertation these signals were obtained without the use of high-speed

FPGAs. It would not be difficult to implement the condition monitoring algorithm

using an FPGA-based gate drive, so the off-line processing should not be viewed as a

limitation of the approach. The algorithm could be implemented by either the con-

troller of the inverter or at each individual gate drive. It was used here simply for ease

of demonstration. It should be noted that the limited resolution of the high-speed

data converters on the FPGA would likely require some level of analog preprocessing

regardless of the format of the implementation.

One major advantage to using the advanced gate-drive concept that it would allow

additional features that are not currently being monitored to be such as the threshold

voltage, VT . VT is the gate voltage at which the IGBT turns on and collector current

begins to flow. IGBTs have a negative temperature coefficient for the VT which leads

to a drop in VT as the temperature increases [59]. This is due to the fact that an

increase in temperature leads to a decrease in the band-gap of the silicon, which

in turn reduces VT . Therefore it is easier to turn-on the IGBT at higher ambient

temperatures. A reduction in VT with an increase in temperatures is seen in both

new and aged IGBTs. From experiments in [59], it was observed that aged parts have

a higher threshold voltage than the new parts across all temperatures.

5.2.2 Future Work for Fault Detection in Electric Motors

Future testing to improve the fault detection scheme proposed in this dissertation

is to collect more data across a wide range of operating conditions. This can be done

in the laboratory by using the adjustable magnetic brake attached the machinery

fault simulator. A larger training set could be recorded to create a better and more

extensive feature set. Additional work can also look at adding additional features into

the feature set. Some additional measurements include RTDs and thermocouples

on the motor and bearing housings for measuring temperatures and adding more
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accelerometers mounted onto the motor for additional vibration measurements.

In a more practical implementation of the condition monitoring algorithm the fea-

tures could be recorded across many similar assets and sent to a centralized database.

By doing this sufficient data can be obtained to help develop expert systems with pow-

erful inference engines. Human operators could also observe the data at a centralized

location for diagnosis as well. This requires significant data collection for the develop-

ment of such system, but since the proposed scheme would be easy to integrate into

existing processes, the results would likely be worth the additional marginal effort.
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APPENDIX A: MATLAB CODE

A.1 Health Monitoring Algorithm Code

KPI Classifier Code

%’filename ’ is used as generic filename in this example of

%the KPI classifier

data = filename(:,:);

[Ureduced ,psi ,lambda] = defineEigenSpace2(data ’);

[E_filename , E2_filename] = KPI2E(data28 , Ureduced , psi , lambda);

Function Used to Calculate Error from KPIs

function[E,E2] = KPI2E(data , Ureduced , psi , lambda)

omegaMatrix = eigenParams2(data ’,0,Ureduced ,psi ,lambda);

data_hat = bsxfun(@plus ,omegaMatrix*Ureduced ’,psi ’);

e = data -data_hat;

E = zeros(size(e,1) ,1);

E2 = zeros(size(e,1) ,1);

for ii = 1:size(e,1)

vec = e(ii ,:);

E(ii) = norm(vec);

E2(ii) = norm(vec)/norm(data(ii ,:));

end

end
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Function Loads or Calculates Eigenspace Basis Vectors, Ureduced, and the Mean

Vector

% This fuction loads or calculates the eigenspace basis

% vectors , Ureduced , and also the mean vector, psi. Psi

% must be subtracted from evt transients before being

% projected into the eigenspace defined by Ureduced.

%

% If no inputs are given the function will lookfor and

% load Ureduced and psi from a EIGEN_SPACE.mat file in

% the current directory.

%

% [Ureduced ,psi ,lambda] = defineEigenSpace();

%

% If inputs are given , Ureduced and psi will be

% calculated and then saved to EIGEN_SPACE.mat in the

% current directory. This will write over any existing

% EIGEN_SPACE_2.mat file.

%

%* USE ’eigenParams.m’ for projecting evts into eigenspace.*

%

% function [Ureduced ,psi ,lambda] = defineEigenSpace2(gammaMatrix)

%

% Inputs:

% gammaMarrix , a the complete set of test sample features

% in a DxM matrix. Where D is the dimensions of the

% feature vectors , and M is the number of sample vectors.

%

% D = number of pts in vector

% M = number of training Vectors

% Ufull , Dx(D or M) matrix of eigenvectors , min(D,M)

% lambda, (D or M)x1 vector of corresponding eigenvalues , min(D,M)

% psi , a Dx1 image mean vector

%

% Nt = number of test vectors

% K = reduced dimensions from D (K<D)

% PhiMatrix , DxM zero -mean traing vectors

% Ureduced , DxK matrix of eigenvectors

% omegaMatrix is MxK matrix, K reduced dimensions ,

% projected training vectors => the features for

% each training vector

function [Ureduced ,psi ,lambda] = defineEigenSpace2(gammaMatrix)

if ~exist(’gammaMatrix’,’var’)

disp(’Loaded current EIGEN_SPACE_2.mat’)

load(’EIGEN_SPACE_2.mat’); % this loads Ureduced and psi

return

end

% Setting Full Space
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[Ufull , lambda , psi] = computeFullEigenSpace(gammaMatrix);

PhiMatrix = bsxfun(@minus ,gammaMatrix ,psi); % zero mean image ց

→vectors

[omegaMatrix , Ureduced] = reduceEigenSpace(Ufull ,lambda ,PhiMatrix);

%%% note: omegaMatrix = PhiMatrix1 ’* Ureduced;

% Saving

save(’EIGEN_SPACE_2.mat’,’Ureduced’,’psi’,’lambda ’);

disp(’Saved new EIGEN_SPACE_2.mat’)

end

function [Ufull , lambda, psi] = computeFullEigenSpace(gammaMatrix)

% Computes the Eigenspace vectors/values, and the mean

% input vector for a set of M training vectors with D

% dimensions.

%

% [Ufull , lambda, psi] = computeFullEigenSpace(gammaMatrix)

%

% Input ,

% gammaMarrix , a the complete set of test images in a

% DxM matrix.

% Where D is the dimensions of the image vectors , and

% M is the number of image vectors.

%

% Output,

% Ufull , a DxM matrix of eigenvectors of the full eigenspace ( ||ց

→Ufull(:,i)|| = 1 ).

% lambda, a Mx1 vector of eigenvalues (in descending order).

% psi , a Dx1 image mean vector.

[D,M]=size(gammaMatrix);

% average the image vectors (2nd dim)

psi = (1/M)*sum(gammaMatrix ,2);

% zero mean image vectors

PhiMatrix = bsxfun(@minus ,gammaMatrix ,psi);

if D>M

C = (1/M)*PhiMatrix ’*PhiMatrix; % if D>M

else

C = (1/M)*PhiMatrix*PhiMatrix ’; % do it this way for M>D

end

[vec ,d]=eig(C);

[lambda,index] = sort(diag(d),’descend’);

% sorting eigenvectors to correspond with sorted eigenvalues

U= vec(:,index);

% if eigenvalue is <= 0 set corresponding eignevector to zero(ց

→numerical instability)

U(:,lambda <=0)=0;

if D>M
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%if D>M also makes ||Ufull(:,i)|| = 1

Ufull = bsxfun(@times ,((1./(M*lambda)).^0.5) ’,PhiMatrix*U);

else

% do it this way for M>D

Ufull = U;

end

end

function [omegaMatrix , Ureduced] = reduceEigenSpace(Ufull ,lambda ,ց

→PhiMatrix)

% Reduces the Eigenspace dimensions from M to K (K<M<D);

% eigenvectors are D dimensions.

%

% [omegaMatrix , Ureduced] = reduceEigenSpace(Ufull ,lambda, PhiMatrixց

→)

% Input ,

% Ufull , DxM matrix of eigenvectors for the full eigenspace.

% lambda, Mx1 vector of corresponding eigenvalues.

% PhiMatrix , DxM zero -mean traing vectors , M vectors of D dimensionց

→.

%

% Output,

% omegaMatrix , MxK matrix of reduced eigenspace training

% vectors (K coordinates for each training vector M).

% Ureduced , DxK matrix of eigenvectors associated with

% the K dimensional eigenspace.

[D,M] = size(Ufull);

avgVal = (1./M).*sum(lambda);

Ureduced = Ufull(:,lambda >avgVal)

% must have at least 2 dimensions.

if size(Ureduced ,2) <2

Ureduced = Ufull (: ,1:2);

end

% projecting each training vector into reduced eigenspace.

omegaMatrix = PhiMatrix ’*Ureduced;

end
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Function Projects Measurements Into Eigenspace Defined by Ureduced and the

Mean Vector

% This function projects measurements into an eigenspace

% defined by Ureduced and the mean vector psi. Psi is

% subtracted from evt transients to make them zero -mean

% before being projected into Ureduced.

%

%* USE ’defineEigenSpace.m’ to define Ureduced and psi *

%

% If Ureduced and psi not inputted , will load them from

% EIGENSPACE.mat

%

% function omegaMatrix = eigenParams(evtlist ,white ,Ureduced ,psi ,ց

→lambda)

%

% white = 1/0, 1 if you want the eigenvector to undergo

% a whitening transform , this makes each of the

% cordinates to have similar values. Otherwise the

% omegaMatrix would be heavily weighted to the first

% few eigenvectors. If white is not given will be set

% to 0.

%

% D = number of pts in vector

% M = number of training Vectors

% Ufull ,Dx(D or M) matrix of eigenvectors , min(D,M)

% lambda ,(D or M)x1 vector of corresponding eigenvalues , min(D,M)

% psi , a Dx1 image mean vector

%

% Nt = number of test vectors

% K = reduced dimensions from D (K<D)

% PhiMatrix , DxM zero -mean traing vectors

% Ureduced , DxK matrix of eigenvectors

% omegaMatrix is MxK matrix, K reduced dimensions ,

% projected training vectors => the features

%for each training vector

function omegaMatrix = eigenParams2(gammaMatrix ,white ,Ureduced ,psi ,ց

→lambda)

if ~exist(’Ureduced’,’var’)

load(’EIGEN_SPACE_2.mat’);

% this loads Ureduced , psi , and lambda

end

if ~exist(’white’,’var’)

white = 0;

end

% zero mean image vectors

PhiMatrix = bsxfun(@minus ,gammaMatrix ,psi);

omegaMatrix = PhiMatrix ’*Ureduced;
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if white == 1

unweight_lambda = lambda (1:size(omegaMatrix ,2)).^ -0.5;

omegaMatrix = bsxfun(@times ,omegaMatrix ,unweight_lambda ’);

end

end
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A.2 Drive KPI Extraction

Drive KPI Extraction Function Call

data = [];

x = load(’temp1.raw’);

for n = 1:20

K = (5000*n -5000) +1:5000*n;

y = KPIConv(x,K);

data = [data; y];

end

save out.kpi data -ascii -tabs -double;
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Drive KPI Extraction Function

function [y] = KPIConv(x,K)

%Scale raw data

w1 = -2.4*(x(K,1) -2.5);

w2 = medfilt1(x(K,2) ,3);

w3 = medfilt1(x(K,3) ,3);

w4 = medfilt1(x(K,4) ,5);

w5 = medfilt1(x(K,5)*100 ,3);

w6 = medfilt1((x(K,6) -.5)*100 ,3);

%Edge Detector

x1 = medfilt1(x(K,3) ,5);

dx1 = filter ([1 -1],1,x1);

dx2 = zeros(1,length(dx1));

dx2(dx1 < -.6) = -1;

dx2(dx1 > .6) = 1;

dx3 = filter ([1 -1], 1, dx2);

locs = find(dx3 ~= 0);

locs = locs (1:2: end);

slopes = dx3(locs);

start_ind = find(slopes == 1);

end_ind = start_ind+1;

OUTPUT = [];

for m = 1: length(start_ind) -1

N = locs(start_ind(m))+2:locs(end_ind(m)) -2;

Ic = w1(N);

VCEon = w2(N);

R = find(VCEon > 0.8 & Ic > 0.4);

Ic2 = Ic(R);

VCEon2 = VCEon(R);

OUTPUT(end+1:end+length(R) ,[1 2]) = [Ic2(:) VCEon2 (:)];

end

OUTPUT2 = sortrows(OUTPUT ,1);

M = 1:size(OUTPUT2 ,1);

px = OUTPUT2(M,1);

py = OUTPUT2(M,2);

P = polyfit(px ,py ,1);

Irms = sqrt(filtfilt(1/833*ones(833 ,1), 1, w1.^2));

y1 = mean(Irms(1:length(K) -1500)); %Irms

y2 = P(:,1); %Ron

y3 = P(:,2); %Vd

y4 = mean(w4); %Qi

y5 = mean(w5); %TC

y6 = mean(w6); %TA
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y = [y1,y2,y3,y4,y5,y6];

end
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A.3 Motor KPI Extraction

Motor KPI Main Code

function [KPI] = KPIpro2(rawdata ,f_sample)

%Setting up the output KPI matrix

%KPI data is given for every 0.2sec of operation

numsamples = length(rawdata(:,1)); %determining the number of ց

→samples taken during testing

KPIsampling = f_sample/5; %defines number of samples during a 0.2 ց

→sec period

vectorref = 1: KPIsampling:numsamples;

time = 0:0.2: numsamples/f_sample; % creates a time vector for plots ց

→of KPI vs time

KPI = zeros(length(vectorref) ,187);%preallocating the KPI matrix ց

→length and writes zeros to all positions

KPI (: ,187) = time;

%%

%Scaling the raw data from Labjack

scaled = zeros(length(rawdata) ,13);

%initializes scaled matrix length and 13 columns , writes zeros to ց

→all positions

%scale raw line voltage data

scaled (:,1) = ((rawdata(:,1) *(100000/110)*(1/2.5)));

%phase A voltage with Labjack ouputing in voltage

%scaled (:,1) = (100000*2.5/4096*( rawdata(:,1) -2047)/110/2.5);

%phase A voltage

scaled (:,2) = ((rawdata(:,3) *(100000/110)*(1/2.5)));

%phase B voltage with Labjack ouputing in voltage

%scaled (:,2) = (100000*2.5/4096*( rawdata(:,3) -2047)/110/2.5);

%phase B voltage

scaled (:,3) = ((rawdata(:,5) *(100000/110)*(1/2.5)));

%phase C voltage with Labjack ouputing in voltage

%scaled (:,3) = (100000*2.5/4096*( rawdata(:,5) -2047)/110/2.5);

%phase C voltage scale raw current data

scaled (:,4) = (1000*(rawdata(:,2))/110);

%phase A current with Labjack ouputing in voltage

%scaled (:,4) = (1000*1.25/4096*( rawdata(:,2) -2047)/110);

%phase A current

scaled (:,5) = (1000*(rawdata(:,4))/110);

%phase B current with Labjack ouputing in voltage

%scaled (:,5) = (1000*1.25/4096*( rawdata(:,4) -2047)/110);

%phase B current

scaled (:,6) = (1000*(rawdata(:,6))/110);

%phase C current with Labjack ouputing in voltage

%scaled (:,6) = (1000*1.25/4096*( rawdata(:,6) -2047)/110);

%phase C current

%scale raw mechanical speed data

scaled (:,7) = (rawdata(:,7));

%scaling not needed if using labjack and use -v -c in code saving ց

→data
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%scale raw accelerometer data

scaled (:,8) = rawdata(:,8) *(9.80665/0.1);

%converts the block 1-x accelerometer data from V to m/s^2 based onց

→ use of 100mv/g accelerometers

scaled (:,9) = rawdata(:,9) *(9.80665/0.1);

%converts the block 1-y accelerometer data from V to m/s^2 based onց

→ use of 100mv/g accelerometers

scaled (: ,10) = rawdata(: ,10)*(9.80665/0.1);

%converts the block 1-z accelerometer data from V to m/s^2 based onց

→ use of 100mv/g accelerometers

scaled (: ,11) = rawdata(: ,11)*(9.80665/0.1);

%converts the block 2-x accelerometer data from V to m/s^2 based onց

→ use of 100mv/g accelerometers

scaled (: ,12) = rawdata(: ,12)*(9.80665/0.1);

%converts the block 2-y accelerometer data from V to m/s^2 based onց

→ use of 100mv/g accelerometers

scaled (: ,13) = rawdata(: ,13)*(9.80665/0.1);

%converts the block 2-z accelerometer data from V to m/s^2 based onց

→ use of 100mv/g accelerometers

%%

%Electrical frequency is determined

%filter current before finding zero crossing locations

Num = get(FIRfilter3 ,’Numerator’);

%gets filter data from FIR filter design

filtcurrent = filtfilt (Num ,1, scaled (:,5));

%filters the noise out off the current signal

%determine electrical frequency by zero crossing

zercrs = crossing(filtcurrent);

% finds and returns index of locations of zero crossings

%frequency calculation

frqcal = zeros (1,length(zercrs));

for d = 1: length (frqcal)

if d == 1

frqcal (d) = 0;

else

deltazercrs = zercrs(d) - zercrs (d-1);

%determine number of samples between zero crossings

if deltazercrs == 1

frqcal(d) = 0;

else

frqcal(d)= (1/( deltazercrs/f_sample))/2;

%first converts samples to sec , then period length in ց

→sec to frequency

end

end

end

%create a frequency vector the length of the scaled vectors

frequency = zeros (length(scaled (:,4)) ,1);

%sets up the size of the vector and writes zeros to all locations

for m = 1: length (frqcal)
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if m == 1

frequency (m:zercrs(m)) = 0;

else

frequency(zercrs(m-1)+1:zercrs(m))=frqcal(m);

%writes the calculated frequency to frequency vector indexց

→ matching zercrossing index

end

end

%RMS voltage calculation

%phase A voltage

KPI(:,4) = KPIrms2( scaled (:,1),vectorref ,f_sample );

%phase B voltage

KPI(:,5) = KPIrms2( scaled (:,2),vectorref ,f_sample );

%phase C voltage

KPI(:,6) = KPIrms2( scaled (:,3),vectorref ,f_sample );

%%

%RMS current calculation

%phase A current

KPI(:,1) = KPIrms2( scaled (:,4),vectorref ,f_sample );

%phase B current

KPI(:,2) = KPIrms2( scaled (:,5),vectorref ,f_sample );

%phase C current

KPI(:,3) = KPIrms2( scaled (:,6),vectorref ,f_sample );

KPI(: ,34) = KPItscaling( frequency ,vectorref);

% run speed mag in rpm

KPI(: ,41) = run_speed(scaled (:,7),f_sample);

%slip frequency

slip = slipratio( KPI(: ,34),KPI(: ,41),vectorref );

KPI(: ,108) = slip;

rotorbar = rotorbarsidebands( slip , vectorref );

bearingvibfreq = bearingfreqs( KPI(: ,41), vectorref );

bearingcurfreq = bearingcurrent(KPI(: ,34),bearingvibfreq , ց

→vectorref);

%%

%Find the magnitude of current at the 1st, 3rd , 5th, 7th , 9th , 11thց

→, 13th Harmonics

%phase A current harmonics

rmsharmonA = scaled (:,4)/sqrt(2);

[RMSharmonmagA ,RMSharmonmagAb ,RMSharmonmagAc] = harmagloc3(ց

→rmsharmonA ,f_sample ,vectorref ,KPI(: ,34),rotorbar , bearingcurfreq);

KPI(: ,9:15) = RMSharmonmagA;% current harmonics

KPI(: ,109:114) = RMSharmonmagAb;% Broken rotorbars

KPI(: ,157:166) = RMSharmonmagAc;

%phase B current harmonics

rmsharmonB = scaled (:,5)/sqrt(2);

[RMSharmonmagB ,RMSharmonmagBb ,RMSharmonmagBc] = harmagloc3(ց

→rmsharmonB ,f_sample ,vectorref ,KPI(: ,34),rotorbar , bearingcurfreq);

KPI(: ,18:24) = RMSharmonmagB;

KPI(: ,115:120) = RMSharmonmagBb;

KPI(: ,167:176) = RMSharmonmagBc;

%phase C current harmonics

rmsharmonC = scaled (:,6)/sqrt(2);
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[RMSharmonmagC ,RMSharmonmagCb ,RMSharmonmagCc] = harmagloc3(ց

→rmsharmonC ,f_sample ,vectorref ,KPI(: ,34),rotorbar , bearingcurfreq);

KPI(: ,27:33) = RMSharmonmagC;

KPI(: ,121:126) = RMSharmonmagCb;

KPI(: ,177:186) = RMSharmonmagCc;

%%

%IEEE total harmonic distortion Phase A

IEEETHDA = zeros (length(vectorref) ,1);

for ha = 1:length(vectorref)

IEEETHDA(ha) =(sqrt((KPI(ha ,1)^2) -(KPI(ha ,9)^2)))/KPI(ha ,9);

end

KPI(:,7) = real(IEEETHDA)*100;

%IEEE total harmonic distortion Phase B

IEEETHDB = zeros (length(vectorref) ,1);

for hb = 1:length(vectorref)

IEEETHDB(hb) =(sqrt((KPI(hb ,2)^2) -(KPI(hb ,18)^2)))/KPI(hb ,18);

end

KPI(: ,16) = real(IEEETHDB)*100;

%IEEE total harmonic distortion Phase C

IEEETHDC = zeros (length(vectorref) ,1);

for hc = 1:length(vectorref)

IEEETHDC(hc) =(sqrt((KPI(hc ,3)^2) -(KPI(hc ,27)^2)))/KPI(hc ,27);

end

KPI(: ,25) = real(IEEETHDC)*100;

%%

% IEC Thd Phase A

IECTHDA = zeros (length(vectorref) ,1);

for ga = 1:length(vectorref)

IECTHDA(ga) =(sqrt((KPI(ga ,1)^2) -(KPI(ga ,9)^2)))/(sqrt(KPI(gaց

→,1)^2));

end

KPI(:,8) = real(IECTHDA)*100;

% IEC Thd Phase B

IECTHDB = zeros (length(vectorref) ,1);

for gb = 1:length(vectorref)

IECTHDB(gb) =(sqrt((KPI(gb ,2)^2) -(KPI(gb ,18)^2)))/(sqrt(KPI(gbց

→,2)^2));

end

KPI(: ,17) = real(IECTHDB)*100;

% IEC Thd Phase C

IECTHDC = zeros (length(vectorref) ,1);

for gc = 1:length(vectorref)

IECTHDC(gc) =(sqrt((KPI(gc ,3)^2) -(KPI(gc ,27)^2)))/(sqrt(KPI(gcց

→,3)^2));

end

KPI(: ,26) = real(IECTHDC)*100;

%velocity
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%integral of acceleration

KPI(: ,35) = velrms( scaled (:,8),vectorref ,f_sample );

KPI(: ,36) = velrms( scaled (:,9),vectorref ,f_sample );

KPI(: ,37) = velrms( scaled (: ,10),vectorref ,f_sample );

KPI(: ,38) = velrms( scaled (: ,11),vectorref ,f_sample );

KPI(: ,39) = velrms( scaled (: ,12),vectorref ,f_sample );

KPI(: ,40) = velrms(scaled (: ,13),vectorref ,f_sample );

%rms band lf ,mf ,hf

%lf band 10 to 200 hz

%mf band 200 to 2000 hz

%hf band 2000+ hz

KPI(: ,42:44) = bands( scaled (:,8),f_sample ,vectorref );

KPI(: ,53:55) = bands( scaled (:,9),f_sample ,vectorref );

KPI(: ,64:66) = bands( scaled (: ,10),f_sample ,vectorref );

KPI(: ,75:77) = bands( scaled (: ,11),f_sample ,vectorref );

KPI(: ,86:88) = bands( scaled (: ,12),f_sample ,vectorref );

KPI(: ,97:99) = bands( scaled (: ,13),f_sample ,vectorref );

%%

%vibration 0.5,1,2,3,4 rotational freq for bearing block 1 x axis

[ vibmag1x ,vibelec1x , bearingvib1x] = Vibharmmech2(scaled (:,8),ց

→f_sample ,vectorref ,KPI(: ,41),KPI(: ,34),bearingvibfreq);

KPI(: ,45:49) = vibmag1x;

KPI(: ,50:52) = vibelec1x;

KPI(: ,127:131) = bearingvib1x;

%vibration 0.5,1,2,3,4 rotational freq for bearing block 1 y axis

[ vibmag1y ,vibelec1y , bearingvib1y] = Vibharmmech2(scaled (:,9),ց

→f_sample ,vectorref ,KPI(: ,41),KPI(: ,34),bearingvibfreq);

KPI(: ,56:60) = vibmag1y;

KPI(: ,61:63) = vibelec1y;

KPI(: ,132:136) = bearingvib1y;

%vibration 0.5,1,2,3,4 rotational freq for bearing block 1 z axis

[ vibmag1z ,vibelec1z , bearingvib1z] = Vibharmmech2(scaled (: ,10),ց

→f_sample ,vectorref ,KPI(: ,41),KPI(: ,34),bearingvibfreq);

KPI(: ,67:71) = vibmag1z;

KPI(: ,72:74) = vibelec1z;

KPI(: ,137:141) = bearingvib1z;

%vibration 0.5,1,2,3,4 rotational freq for bearing block 2 x axis

[ vibmag2x ,vibelec2x , bearingvib2x] = Vibharmmech2(scaled (: ,11),ց

→f_sample ,vectorref ,KPI(: ,41),KPI(: ,34),bearingvibfreq);

KPI(: ,78:82) = vibmag2x;

KPI(: ,83:85) = vibelec2x;

KPI(: ,142:146) = bearingvib2x;

%vibration 0.5,1,2,3,4 rotational freq for bearing block 2 y axis

[ vibmag2y ,vibelec2y ,bearingvib2y] = Vibharmmech2(scaled (: ,12),ց

→f_sample ,vectorref ,KPI(: ,41),KPI(: ,34),bearingvibfreq);

KPI(: ,89:93) = vibmag2y;

KPI(: ,94:96) = vibelec2y;

KPI(: ,147:151) = bearingvib2y;
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%vibration 0.5,1,2,3,4 rotational freq for bearing block 2 z axis

[ vibmag2z ,vibelec2z ,bearingvib2z] = Vibharmmech2(scaled (: ,13),ց

→f_sample ,vectorref ,KPI(: ,41),KPI(: ,34),bearingvibfreq);

KPI(: ,100:104) = vibmag2z;

KPI(: ,105:107) = vibelec2z;

KPI(: ,152:156) = bearingvib2z;

end

KPI Scaling Calculator

function [KPIscaled] = KPItscaling(signal ,vectorref)

KPIscaled = zeros(length(vectorref) ,1);

for p = 1: length(vectorref)

if p == 1

KPIscaled (p,1) = 0;

else

KPIscaled (p,1) = median(signal(vectorref(p-1):vectorref(pց

→) -1));

end

end

end
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Zero Crossing Caclulation

function [ind ,t0,s0,t0close ,s0close] = crossing(S,t,level ,imeth)

% CROSSING find the crossings of a given level of a signal

% ind = CROSSING(S) returns an index vector ind , the signal

% S crosses zero at ind or at between ind and ind+1

% [ind ,t0] = CROSSING(S,t) additionally returns a time

% vector t0 of the zero crossings of the signal S. The crossing

% times are linearly interpolated between the given times t

% [ind ,t0] = CROSSING(S,t,level) returns the crossings of the

% given level instead of the zero crossings

% [ind ,t0] = CROSSING(S,t,level ,par) allows additional parameters

% par = {’none ’|’linear ’}.

% With interpolation turned off (par = ’none ’) this function always

% returns the value left of the zero (the data point thats nearest

% to the zero AND smaller than the zero crossing).

% [ind ,t0 ,s0] = ... also returns the data vector corresponding to

% the t0 values.

% [ind ,t0 ,s0 ,t0close ,s0close] additionally returns the data points

% closest to a zero crossing in the arrays t0close and s0close.

error(nargchk(1,4,nargin));

% check the time vector input for consistency

if nargin < 2 || isempty(t)

% if no time vector is given , use the index vector as time

t = 1: length(S);

elseif length(t) ~= length(S)

% if S and t are not of the same length, throw an error

error(’t and S must be of identical length!’);

end

% check the level input

if nargin < 3

% set standard value 0, if level is not given

level = 0;

end

% check interpolation method input

if nargin < 4

imeth = ’linear ’;

end

% make row vectors

t = t(:) ’;

S = S(:) ’;

% always search for zeros. So if we want the crossing of

% any other threshold value "level", we subtract it from

% the values and search for zeros.

S = S - level;
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% first look for exact zeros

ind0 = find( S == 0 );

% then look for zero crossings between data points

S1 = S(1:end -1) .* S(2:end);

ind1 = find( S1 < 0 );

% bring exact zeros and "in- between" zeros together

ind = sort([ind0 ind1]);

% and pick the associated time values

t0 = t(ind);

s0 = S(ind);

if strcmp(imeth ,’linear ’)

% linear interpolation of crossing

for ii=1:length(t0)

if abs(S(ind(ii))) > eps(S(ind(ii)))

% interpolate only when data point is not already zero

NUM = (t(ind(ii)+1) - t(ind(ii)));

DEN = (S(ind(ii)+1) - S(ind(ii)));

DELTA = NUM / DEN;

t0(ii) = t0(ii) - S(ind(ii)) * DELTA;

% Set the value to zero instead of calculating the perfect number

s0(ii) = 0;

end

end

end
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Current RMS Calculation

function [rms_signal] = KPIrms2(signal ,vectorref ,f_sample)

rms_signal = zeros(length(vectorref) ,1);

start_ind = f_sample*3 * ones(1,length(vectorref));

temp = find(vectorref < f_sample*3);

start_ind(temp) = vectorref(temp) - 1;

for xx = 1:length(vectorref)

if xx == 1

rms_signal(xx) = 0;

else

rms_signal (xx ,1) = sqrt(sum(signal(vectorref(1,xx)-ց

→start_ind(xx):vectorref(1,xx) -1).^2)/start_ind(xx));

end

end

end

Velocity RMS Calculation

function [KPI] = velrms(acceldata ,vectorref ,f_sample)

Num = get(Highpass1 ,’Numerator’);

filtaccel = filtfilt (Num ,1,acceldata);

temp1 = fft(filtaccel);

temp1 (1) = 0;

integ1 = 1/6000*cumtrapz(real(ifft(temp1)));

KPI = KPIrms2( integ1 ,vectorref ,f_sample );

end
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Velocity RMS Bands Calculation

function [band_rms] = bands(signal ,f_sample ,vectorref)

lfband_rms = zeros(length(vectorref) ,1);

mfband_rms = zeros(length(vectorref) ,1);

hfband_rms = zeros(length(vectorref) ,1);

band_rms = zeros(length(vectorref) ,3);

start_ind = f_sample*3 * ones(1,length(vectorref));

temp = find(vectorref < f_sample*3);

start_ind(temp) = vectorref(temp) - 1;

for xx = 1:length(vectorref)

if xx == 1

lfband_rms(xx) = 0;

mfband_rms(xx) = 0;

hfband_rms(xx) = 0;

else

y = signal(vectorref(1,xx)-start_ind(xx):vectorref(1,xx) -1)ց

→;

N = length (y);

NumUniquePts = ceil((N+1)/2);

freq = (0:NumUniquePts -2)*f_sample/(N-1);

accelfft = fft(y);

accelmag = abs (accelfft);

ind_vec = find(freq >10 & freq <200);

lfband = (accelmag(ind_vec));

lfband_rms (xx) = sqrt(sum((abs(lfband)/(N)).^2));

ind_vec2 = find(freq >200 & freq <2000);

mfband = (accelmag(ind_vec2));

mfband_rms (xx) = sqrt(sum((abs(mfband)/(N)).^2));

ind_vec3 = find(freq >2000);

hfband = (accelmag(ind_vec3));

hfband_rms (xx) = sqrt(sum((abs(hfband)/(N)).^2));

end

band_rms(xx ,1)= lfband_rms (xx);

band_rms(xx ,2)= mfband_rms (xx);

band_rms(xx ,3)= hfband_rms (xx);

end

end
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Run Speed Calculation Function

function [speedmag] = run_speed(speeddata , f_sample)

signal = speeddata;

vectorref = 1: f_sample/5:length(signal);

speed = zeros (length(vectorref) ,1);

run = zeros (length(vectorref) ,1);

speedmag = zeros (length(vectorref) ,1);

start_ind = f_sample*3 * ones(1,length(vectorref));

temp = find(vectorref < f_sample*3);

start_ind(temp) = vectorref(temp) - 1;

for xx = 1:length(vectorref)

if xx == 1

speed (xx) = 0;

else

run (xx) = mean(signal(vectorref(1,xx)-start_ind(xx):ց

→vectorref(xx) -1));

speed (xx) = run (xx)/(15*(0.0097*10^-6) *99200*.9668);

end

speedmag (xx) = speed (xx);%*60; % speed magnitude in RPM

%speed needs to be in Hz for vibration calculations

end

end

Slip Ratio Calculation

function [slipr] = slipratio(elecfreq ,mechfreq ,vectorref)

slipr = zeros(length(vectorref) ,1);

for yy = 1:length(vectorref)

if yy == 1

slipr(yy ,:) = 0;

else

slipr(yy) = (elecfreq(yy) - mechfreq(yy))/elecfreq(yy);

end

end

end
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Vibration Mechanical Harmonics Calculation

function [vibharmonmag ,vibharelec ,vibharbearing] = Vibharmmech2(ց

→signal ,f_sample ,vectorref ,KPI ,elecfq,bearingvibfq)

N=2^16;

f=[0:1:N/2 -1]*(f_sample/N);

max_Y = zeros (1,5);

max_YY = zeros (1,5);

max_YX = zeros (1,3);

vibharmonmag = zeros(length(vectorref) ,5);

vibharbearing = zeros(length(vectorref) ,5);

vibharelec = zeros(length(vectorref) ,3);

h = [1 ,0.5 ,2 ,3 ,4];

hh = [1 ,2 ,6];

start_ind = f_sample*3 * ones(1,length(vectorref));

temp = find(vectorref < f_sample*3);

start_ind(temp) = vectorref(temp) - 1;

for s = 1: length(vectorref)

if s == 1

for r=1:1:5

max_Y(r) = 0;

max_YY(r) = 0;

end

for rr =1:1:3

max_YX(rr) = 0;

end

else if KPI(s) == 0

for r=1:1:5

max_Y(r) = 0;

max_YY(r) = 0;

end

for rr=1:1:3

max_Y(rr) = 0;

end

else

y = (signal(vectorref(1,s)-start_ind(s):vectorref(1,s) -1));

har=4/length(y)*fft(y.*hann(length(y)),N);

harmag = abs(har);

for r=1:1:5

ind_vec = find(f>h(r)*KPI(s) -0.5 & f<h(r)*KPI(s)+0.5);

[~, ind] = max(harmag(ind_vec));

ind = ind_vec(ind);

max_Y(r) = harmag(ind);

end

for rr=1:1:5

ind_vec = find(f>bearingvibfq(s,rr) -1 & f<bearingvibfq(ց

→s,rr)+1);

[~, ind] = max(harmag(ind_vec));

ind = ind_vec(ind);

max_YY(rr) = harmag(ind);
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end

for rf =1:1:3

ind_vec = find(f>hh(rf)*elecfq(s) -0.5 & f<hh(rf)*elecfqց

→(s)+0.5);

[~, ind] = max(harmag(ind_vec));

ind = ind_vec(ind);

max_YX(rf) = harmag(ind);

end

end

end

vibharmonmag(s,:) = max_Y;

vibharbearing(s,:) = max_YY;

vibharelec(s,:) = max_YX;

end

end

Rotor Bar Sidebands Calculation

function [rotorfreq] = rotorbarsidebands(slip ,vectorref)

rotorfreq = zeros(length(vectorref) ,6);

for xx = 1:length(vectorref)

rotorfreq(xx ,1) = (1 - 2*3* slip(xx));

rotorfreq(xx ,2) = (1 - 2*2* slip(xx));

rotorfreq(xx ,3) = (1 - 2*1* slip(xx));

rotorfreq(xx ,4) = (1 + 2*1* slip(xx));

rotorfreq(xx ,5) = (1 + 2*2* slip(xx));

rotorfreq(xx ,6) = (1 + 2*3* slip(xx));

end

for yy = 1:length(vectorref)

for rr =1:1:6

if rotorfreq(yy,rr) <0

rotorfreq(yy ,rr) = abs(rotorfreq(yy ,rr)) ;

end

end

end

end
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Bearing Current Calculation

function [fbng] = bearingcurrent(elecfrq ,bearingfreq ,vectorref)

fbng = zeros(length(vectorref) ,10);

fbnga = zeros(length(vectorref) ,5);

fbngb = zeros(length(vectorref) ,5);

for xx = 1:length(vectorref)

for yy = 1:1:5

fbnga(xx,yy) = abs(elecfrq(xx) - 1* bearingfreq(xx ,yy));

fbngb(xx,yy) = abs(elecfrq(xx) + 1* bearingfreq(xx ,yy));

end

fbng(xx ,1:5) = fbnga(xx ,:);

fbng(xx ,6:10) = fbngb(xx ,:);

end

end

Bearing Frequency Calculation

function [bearingfreq] = bearingfreqs(Mechspeed ,vectorref)

bearingfreq = zeros(length(vectorref) ,5);

for xx = 1:length(vectorref)

bearingfreq(xx ,1) = (0.0332*60*Mechspeed(xx));

%Ball spin bearing fault

bearingfreq(xx ,2) = (0.0063*60*Mechspeed(xx));

% Fundamental Train fault

bearingfreq(xx ,3) = (0.0825*60*Mechspeed(xx));

%Inner ring defect fault

bearingfreq(xx ,4) = (0.0508*60*Mechspeed(xx));

%Outer ring defect fault

bearingfreq(xx ,5) = (0.0663*60*Mechspeed(xx));

%Ball defect fault

end

for yy = 1:length(vectorref)

for rr =1:1:5

if bearingfreq(yy ,rr) <0

bearingfreq(yy,rr) = abs(bearingfreq(yy ,rr)) ;

end

end

end

end
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Harmonic Magnitude Locator

function [harmonmag3 ,harmonmag3b ,harmonmag3c] = harmagloc3(signal,ց

→f_sample ,vectorref ,KPI ,rotorbar ,bearing)

%Harmonic magnitude locator

max_Y = zeros (1,7);

max_YY = zeros (1,6);

max_YX = zeros (1 ,10);

harmonmag3 = zeros(length(vectorref) ,7);

harmonmag3b = zeros(length(vectorref) ,6);%broken rotor bars

harmonmag3c = zeros(length(vectorref) ,10);%bearing faults

start_ind = f_sample*3 * ones(1,length(vectorref));

temp = find(vectorref < f_sample*3);

start_ind(temp) = vectorref(temp) - 1;

for s = 1: length(vectorref)

if s == 1

for r=1:2:13

max_Y((r+1)/2) = 0;

end

for rr =1:1:6

max_YY(rr) = 0;

end

for ss =1:1:10

max_YX(ss) = 0;

end

else if KPI(s) <= 1

for r=1:2:13

max_Y((r+1)/2) = 0;

end

for rr=1:1:6

max_YY(rr) = 0;

end

for ss=1:1:10

max_YX(ss) = 0;

end

else

y = (signal(vectorref(1,s)-start_ind(s):vectorref(1,s) -1));

N=2^16;

f=[0:1:N/2 -1]*(f_sample/N);

har=4/length(y)*fft(y.*hann(length(y)),N);

harmag = abs(har);

for r=1:2:13

ind_vec = find(f>r*KPI(s) -1 & f<r*KPI(s)+1);

[~, ind] = max(harmag(ind_vec));

ind = ind_vec(ind);

max_Y((r+1)/2) = harmag(ind);

end

for rr =1:1:6

ind_vec2 = find(f>rotorbar(s,rr)*KPI(s,1) -2 & f<ց
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→rotorbar(s,rr)*KPI(s,1)+2);

[~, ind2] = max(harmag(ind_vec2));

ind2 = ind_vec2(ind2);

max_YY(rr) = harmag(ind2);

end

for ss =1:1:10

ind_vec3 = find(f>bearing(s,ss) -2 & f<bearing(s,ss)+2);

[~, ind3] = max(harmag(ind_vec3));

ind3 = ind_vec3(ind3);

max_YX(ss) = harmag(ind3);

end

end

end

harmonmag3(s,:) = max_Y;

harmonmag3b(s,:) = max_YY;

harmonmag3c(s,:) = max_YX;

end

end
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FIR Filter

function Hd = FIRfilter3

%FIRFILTER3 Returns a discrete -time filter object.

% Equiripple Lowpass filter designed using the FIRPM function.

% All frequency values are in Hz.

Fs = 6000; % Sampling Frequency

Fpass = 70; % Passband Frequency

Fstop = 400; % Stopband Frequency

Dpass = 0.057501127785; % Passband Ripple

Dstop = 0.01; % Stopband Attenuation

dens = 20; % Density Factor

% Calculate the order from the parameters using FIRPMORD.

[N, Fo, Ao, W] = firpmord([Fpass , Fstop]/(Fs/2), [1 0], [Dpass , ց

→Dstop]);

% Calculate the coefficients using the FIRPM function.

b = firpm(N, Fo, Ao, W, {dens});

Hd = dfilt.dffir(b);
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High Pass Filter

function Hd = Highpass1

%HIGHPASS1 Returns a discrete -time filter object.

% Equiripple Highpass filter designed using the FIRPM function.

% All frequency values are in Hz.

Fs = 6000; % Sampling Frequency

Fstop = 3; % Stopband Frequency

Fpass = 55; % Passband Frequency

Dstop = 1e-007; % Stopband Attenuation

Dpass = 0.057501127785; % Passband Ripple

dens = 20; % Density Factor

% Calculate the order from the parameters using FIRPMORD.

[N, Fo, Ao, W] = firpmord([Fstop , Fpass]/(Fs/2), [0 1], [Dstop , ց

→Dpass]);

% Calculate the coefficients using the FIRPM function.

b = firpm(N, Fo, Ao, W, {dens});

Hd = dfilt.dffir(b);
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APPENDIX B: MOTOR DRIVE DESIGN

This appendix will cover the design of the custom motor drive that is used for the

testing in Chapter 3.

B.1 Component Selection

Transistor Selection

The IGBT must be sized so that its voltage rating is higher than the dc bus voltage.

A rule of thumb is to choose the IGBT to be rated at twice the dc bus voltage or

higher. As for current the IGBT should be rated to carry at least twice the rated

current but in reality it is normally sized for much more than this.

Gate Drive Selection

Figure B.1 shows IR2112 gate driver connected to a totem pole set of IGBTs. The

gate driver was chosen based on the IGBT collector to emitter voltage rating.

IR
21

12

CB DB

RG

RG
HO

LO

VB

VS

VCC

COM

VDD

HIN

LIN

VSS

SD

Q1

Q2

VDC

VOUT

VCC

Figure B.1: Detailed schematic of a single phase of the custom motor drive.

Bootstrap Capacitor Sizing

The first step to sizing the bootstrap capacitor is to establish the minimum voltage

drop (∆VBS) to guarantee that the high side IGBT is on. The minimum voltage drop
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Table B.1: Motor Fault Detection KPIs
Quantity Value Notes

VCC 15 V Voltage supply of gate driver
VF 1.4 V Bootstrap Diode Datasheet (BYG20J)

VCE,ON,max 3.7 V IGBT Datasheet (IRGP20B60PDPbF)
VGE,min 5 V IGBT Datasheet (IRGP20B60PDPbF)

is [94]

∆VBS ≤ VCC − VF − VGE,min − VCE,on, (B.1)

as long as

VGE,min > VBS,UV− (B.2)

where VCC is the gate driver IC supply voltage, VF is the bootstrap diode forward

voltage drop, VGE,min is the minimum gate to emitter voltage to maintain conduction,

VCE,on is the collector to emitter voltage of the low side IGBT, and VBS,UV− is the

high-side supply undervoltage negative going threshold. For the custom designed

motor drive the values used are shown in Table B.1. The value of ∆VBS for the

custom motor drive is 4.9 V. The following are the influencing factors contributing

to a decrease in VBS [94]

• IGBT turn on required gate charge (QG)

• Charge required by the internal level shifters (QLS)

• IGBT gate-emitter leakage current (ILK,GE)

• Floating section quiescent current (IQ,BS)

• Floating section leakage current (ILK)

• Bootstrap diode leakage current (ILK,DIODE)

• Desaturation diode bias current when on (IDS−)

• Bootstrap capacitor leakage current (ILK,CAP )

• High side on time (TH,ON)

For the custom designed motor drive the values used are shown in Table B.2. The
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Table B.2: Motor Fault Detection KPIs
Quantity Value Notes

QG 68 nC IGBT Datasheet (IRGP20B60PDPbF)
QLS 20 nC IGBT Datasheet (IRGP20B60PDPbF)

ILK,GE 5 µA IGBT Datasheet (IRGP20B60PDPbF)
IQ,BS 25 µA Gate Driver Datasheet (IR2112)
ILK 50 µA Gate Driver Datasheet (IR2112)
IDS− 150 µA Gate Driver Datasheet (IR2112)

ILK,DIODE 1 µA Bootstrap Diode Datasheet (BYG20J), with trr < 100 ns
ILK,CAP 0 using a non electrolytic capacitor
TH,ON 1 ms

total gate charge QTOT is calculated as [94]

QTOT = QG+QLS+(ILK,GE+IQ,BS+ILK+ILK,DIODE+ILK,CAP+IDS−)TH,ON . (B.3)

The total gate charge for the custom motor drive is 319 nC. Therefore, the minimum

size of the bootstrap capacitor CB is

CB >
QTOT

∆VBS

. (B.4)

For the custom motor drive the booststrap capacitor must be greater than 65 nF.

Bootstrap Diode Sizing

The bootstrap diode must have a blocking voltage greater than the dc bus voltage

and a fast recovery time (trr ¡ 100 ns) to minimize the amount of charge fed back

from the bootstrap capacitor to VCC supply.

Gate Resistor Sizing

Gate resistance may be chosen either to fix the switching-time or the output voltage

slope. For the matters of the calculation included hereafter, the switching time tSW

is defined as the time spent to reach the end of the plateau voltage (a total Qgc +

Qge has been provided to the IGBT gate). To obtain the desired switching time the

gate resistance can be sized starting from Qgc + Qge, VCC , and the desired Vge [94].
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The average current, Iavg is found to be [94]

Iavg =
(Qgc +Qge)

tSW
, (B.5)

and the turn-on gate resistor, RG,on, is

RG,on =
VCC + Vge

Iavg − RDRp

then (B.6)

where RDRp is the drivers equivalent on-resistance.

Figure B.2 shows a complete schematic of a single phase of the three phase inverter

that is used in the custom motor drive. Note that ther should be no earth ground

reference on the high voltage side.
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Figure B.2: Detailed schematic of a single phase of the custom desinged inverter.
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B.2 Motor Drive PCB Layouts

This section of the appendix shows the layout of the PCB for the inverter and

rectifier portions of the custom motor drive.

Figure B.3: Silk screen layer for inverter.

Figure B.4: Silk screen layer for rectifier.
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Figure B.5: Top copper layer for inverter.

Figure B.6: Bottom copper layer for inverter.
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Figure B.7: Top copper layer for rectifier.

Figure B.8: Bottom copper layer for rectifier.
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B.3 Motor Drive PWM Code

;*********************************************************

;

; Filename: acim_vhz.s

;

;*********************************************************

; Notes:

; ======

; The A/D is enabled to sample VR1pots on the dsPICDEM-MC1

; demo board. VR1 is used to vary the V/Hz ratio of the

; modulation.

;*********************************************************

;---------------------------------------------------------

.equ __30F6010A, 1

.include "p30f6010a.inc"

.global __reset

;---------------------------------------------------------

;Configuration bits:

;---------------------------------------------------------

;Turn off clock switching and

;fail-safe clock monitoring and

;use the XT osc and 4x PLL as

;system clock

config __FOSC, CSW_FSCM_OFF & XT_PLL4

;Turn off Watchdog Timer

config __FWDT, WDT_OFF

;Set Brown-out Reset voltage and

;and set Power-up Timer to 16msecs

config __FBORPOR, PBOR_ON & BORV27 & PWRT_16 & MCLR_EN

;Set Code Protection Off for the

;General Segment

config __FGS, CODE_PROT_OFF
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;---------------------------------------------------------

;Uninitialized variables in Near data memory

;(Lower 8Kb of RAM)

;---------------------------------------------------------

.section .nbss, "b"

;This variable is added to the 16-bit sine wave table

;pointer at each PWM period. A value of 246 will provide

;60 Hz modulation frequency with 16 KHz PWM.

Frequency: .space 2

;This variable is used to set the modulation amplitude

;and scales the value retrieved from the sine wave table.

;Valid values range from 0 to 32767.

Amplitude: .space 2

;This variable is the pointer to the sinewave table.

;It is incremented by the value of the Frequency variable

;at each PWM interrupt.

Phase: .space 2

;---------------------------------------------------------

;Constants stored in Program space

;---------------------------------------------------------

.section .sine_table, "x"

.align 256

;This is a 64 entry sinewave table covering 360 degrees

;of the sine function. These values were calculated

;using Microsoft Excel and pasted into this program.

SineTable:

.hword 0,3212,6393,9512,12539,15446,18204,20787,23170,25329

.hword 27245,28898,30273,31356,32137,32609,32767,32609

.hword 32137,31356,30273,28898, 27245,25329,23170,20787

.hword 18204,15446,12539,9512,6393,3212,0,-3212,-6393,-9512

.hword -12539,-15446,-18204,-20787,-23170,-25329,-27245,

.hword -28898,-30273, -31356,-32137,-32609,-32767,-32609

.hword -32137,-31356,-30273,-28898,-27245,-25329,-23170,

.hword -20787,-18204,-15446,-12539,-9512,-6393,-3212

;---------------------------------------------------------

; Constants for this application

;---------------------------------------------------------
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;This constant is used to scale the sine lookup value to the

;the valid range of PWM duty cycles. This is based on the

;value written to PTPER. We will PTPER = 230 for this

;application, which allows duty cycles between 0 and 460.

;The sine table data is signed, so we will multiply the table

;data by 230, then add a constant offset to scale the lookup

;data to positive values.

.equ PWM_Scaling, 3686 ;3680 Points for 50% duty ratio of 1kHz PWM

;The pointer to the sign wave table is 16 bits. Adding

;0x5555 to the pointer will provide a 120 degree offset

;and 0xAAAA will give a 240 degree offset. These offsets

;are used to get the lookup values for phase 2 and phase

;3 of the PWM outputs.

.equ Offset_120, 0x5555

;---------------------------------------------------------

;Code Section in Program Memory

;---------------------------------------------------------

.text ;Start of Code section

__reset:

MOV #__SP_init, W15 ;Initalize the Stack Pointer

MOV #__SPLIM_init, W0 ;Initialize the Stack Pointer Limit Register

MOV W0, SPLIM

NOP ;Add NOP to follow SPLIM initialization

CALL _wreg_init ;Call _wreg_init subroutine

;Optionally use RCALL instead of CALL

call Setup ; Call the routine to setup I/O and PWM

;---------------------------------------------------------

; Variable initialization

;---------------------------------------------------------

clr Frequency

clr Amplitude

;---------------------------------------------------------
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; Main loop code

; The PWM interrupt flag is polled in the main loop

;---------------------------------------------------------

Loop:

btss IFS2,#PWMIF ;poll the PWM interrupt flag

bra CheckADC ;if it is set, continue

call Modulation ;call the sinewave modulation routine

bclr IFS2, #PWMIF ;Clear the PWM interrupt flag

CheckADC:

btss IFS0,#ADIF

bra Loop

call ReadADC

bra Loop

;---------------------------------------------------------

; ADC processing subroutine

;---------------------------------------------------------

ReadADC:

push.d W0

push.d W4

mov #983,W0 ;983*4 = 3932, 3932 for 60 Hz

;modulation frequency at 1Khz PWM frequency.

mov ADCBUF1,W1 ;and W1.

sl W0,#2,W4 ;Trying to fix this code to allow

mov W4,Frequency ;60Hz fixed frequency modulation frequency.

sl W1,#5,W4 ;Left shift AN7 and AN12 values to get

sl W0,#5,W5 ;1.15 fractional data.

mpy W4*W5,A ;multiply frequency by V/Hz gain to get

sac A,W0 ;mod. amplitude. Store result in W0

mov #32000,W1

cp W1,W0 ;dead-time induced distortion in PWM

bra GE,NoLimit ;modulation.

mov W1,W0

NoLimit:
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mov W0,Amplitude

pop.d W4

pop.d W0

return

;---------------------------------------------------------

; PWM sine wave modulation subroutine

;---------------------------------------------------------

Modulation:

push.d W0 ;Save off working registers

push.d W2

push.d W4

push.d W6

push.d W8

push.d W10

;The next three instructions initialize the TBLPAG

;and pointer register for access to the sinewave

;data in program memory using table reads.

mov #tblpage(SineTable),W0

mov W0,TBLPAG

mov #tbloffset(SineTable),W0

; The next block of instructions loads various constants

; and variables used in the sinewave modulation routine.

mov Phase,W1 ;Load the sinewave table pointer

mov #Offset_120,W4 ;This is the value for a 120 degree offset

mov Amplitude,W6 ;Load the Amplitude scaling factor

mov #PWM_Scaling,W7 ;Load the PWM scaling value

mov Frequency,W8 ;Load the Frequency constant that will

;be added to the table pointer at each

;interrupt.

;This is the pointer adjustment code. The Frequency

;value is added to the sine pointer to move through

;the sine table. Then, offsetsare added to this pointer

;to get the phase 2 and phase 2 pointers.Note: If

;different phase offsets are desired, other constant

;values can be used here. Add 0x4000 to get a 90

;degree offset, 0x8000 will provide a 180 degree offset.

;Here, 0x5555 has been loaded to W4 to provide 120 degrees.
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add W8,W1,W1 ;Add the Frequency value to the sine pointer

add W1,W4,W2 ;Add 120 degree offset value for phase 2

add W2,W4,W3 ;Add another 120 degree offset for phase 3

; The sine table has 64 entries, so the pointers are right shifted

; to get a 6-bit pointer value.

lsr W1,#10,W9 ;Shift the phase 1 pointer right to get the upper 6 bits

sl W9,#1,W9 ;Left shift by one to convert to byte address

lsr W2,#10,W10 ;Shift the phase 2 pointer right to get the upper 6 bits

sl W10,#1,W10 ;Left shift by one to convert to byte address

lsr W3,#10,W11 ;Shift the phase 3 pointer right to get the upper 6 bits

sl W11,#1,W11 ;Left shift by one to convert to byte address

;Now, the pointer for each phase is added to the base table pointer

;to get the absolute table address for the lookup value. The lookup

;value is then scaled for the correct amplitude and for the range

;of valid duty cycles. The next block of instructions calculates

;the duty cycle for phase 1. The phase 2 and phase 3 code is the same.

add W0,W9,W9 ;Form the table address for phase 1

tblrdl [W9],W5 ;Read the lookup value for phase 1

mpy W5*W6,A ;Multiply by the amplitude scaling

sac A,W5 ;Store the scaled result

mpy W5*W7,A ;Multiply by the PWM scaling factor

sac A,W8 ;Store the scaled result

add W7,W8,W8 ;Add the PWM scaling factor to produce 50% offset

mov W8,PDC1 ;Write the PWM duty cycle

;The next block of code calculates the duty cycle for phase 2.

add W0,W10,W10 ;Form the table address for phase 2

tblrdl [W10],W5 ;Read the lookup value for phase 2

mpy W5*W6,A ;Multiply by the amplitude scaling

sac A,W5 ;Store the scaled result

mpy W5*W7,A ;Multiply by the PWM scaling factor

sac A,W8 ;Store the scaled result

add W7,W8,W8 ;Add the PWM scaling factor to produce 50% offset

mov W8,PDC2 ;Write the PWM duty cycle

;The next block of code calculates the duty cycle for phase 3.

add W0,W11,W11 ;Form the table address for phase 3

tblrdl [W11],W5 ;Read the lookup value for phase 3
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mpy W5*W6,A ;Multiply by the amplitude scaling

sac A,W5 ;Store the scaled result

mpy W5*W7,A ;Multiply by the PWM scaling factor

sac A,W8 ;Store the scaled result

add W7,W8,W8 ;Add the PWM scaling factor to produce 50% offset

mov W8,PDC3 ;Write the PWM duty cycle

;Now, save off the adjusted sinewave table pointer so it

;can be used during the next iteration of this code.

mov W1,Phase

; restore working registers

pop.d W10

pop.d W8

pop.d W6

pop.d W4

pop.d W2

pop.d W0

; return from the subroutine

return

;---------------------------------------------------------

; PWM and ADC setup code

;---------------------------------------------------------

Setup:

;The first thing we need to do before enabling the PWM is to

;configure the I/O. The control board has a driver IC that

;buffers the PWM control lines. The active low output enable

;for this buffer is on port RD11.

clr PORTD

clr PORTE

mov #0xF7FF,W0 ;Make RD11 an output to drive PWM buffer

mov W0,TRISD ;output enable.

mov #0xFDFF,W0

mov W0,TRISE ;Make RE9 an output for power module reset

;Now, ensure the power module is reset by

;driving the reset line for a few usec.

bset PORTE,#9

repeat #39
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nop

bclr PORTE,#9

;Setup the ADC

mov #0x0404,W0 ;scan inputs

mov W0,ADCON2 ;2 sample/converts per interrupt

mov #0x0003,W0

mov W0,ADCON3 ;Tad is 2*Tcy

clr ADCHS

clr ADPCFG ;all A/D pins Analog mode

clr ADCSSL

bset ADCSSL,#7 ;enable scan of AN7

bset ADCSSL,#12 ;enable scan of AN12

mov #0x8066,W0 ;enable A/D, PWM trigger, auto sample

mov W0,ADCON1

bclr IFS0,#ADIF ;clear A/D interrupt flag

;Now, setup the PWM registers

mov #0x0077,W0 ;complementary mode, #1, #2, and #3

mov W0,PWMCON1 ;pairs are enabled

mov #0x000F,W0 ;2usec deadtime at 7.38 MIPS

mov W0,DTCON1

mov #PWM_Scaling, W0;set period for 16KHz PWM at 7.38 MIPS

mov W0,PTPER

mov #0x0001,W0

mov W0,SEVTCMP ;setup the special event trigger for the ADC

mov #0x0F00,W0 ;set the special event postscaler to 1:16

mov W0,PWMCON2

mov #0x8002,W0 ;PWM timebase enabled, center aligned mode

mov W0,PTCON

return ;return from the Setup routine

;---------------------------------------------------------

;Subroutine: Initialization of W registers to 0x0000

;---------------------------------------------------------

_wreg_init:

CLR W0

MOV W0,W14

REPEAT #12

MOV W0,[++W14]

CLR W14

RETURN
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;--------End of All Code Sections --------------------

.end ;End of program code in this file
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APPENDIX C: SPECTRAQUEST MFS SPECIFICATIONS

Table C.1: Mechanical Specifications
Shaft Diameter 5/8” and 1”; Turned, Ground, & Polished (TGP) steel
Bearing Two sealed rolling element in aluminum horizontally

split bracket housing for easy changes, tapped for trans-
ducer mount. Bearing mounts can be mounted in five
different position for variable rotor span.

Rotor Base 18” long, completely movable using jack bolts for easy
horizontal misalignment and standard shims for vertical
misalignment. Pinned for easy realignment.

Rotors Two 6” aluminum with 36 threaded holes at 10 degree
intervals for introducing unbalance.

Belt Mechanism Two double groove “V” belt with one set screw mount-
ing and one bush/key mounting. Positive displacement
lever with turnbuckle plus adjustable gearbox platform.

Gearbox Accessible three-way straight cut bevel gearbox with
1.5:1 ratio (20 gear input).

Brake Manually adjustable magnetic brake 0.5 - 10 lb-in.
Reciprocating Mechanism Adjustable spring engagement timing and two stroke

settings.
Centrifugal Pump 1/2 hp, 27 PSI at 0 GPM, 25 GPM at 0 PSI with water

at 4000 RPM.
Reciprocating Compressor 1/2 hp, 2.6 CFM, 120 PSI belt driven with 5 gallon air

tank.
Instrumentation Connec-
tors

16 BNC connector plate under the rotor base linked to
BNC connector panel mounted on the edge for the base
plate for direct connection to data collectors.

Safety Cover Lockable clear, impact resistant hinged plastic cover
with motor interlock switch to shut down motor when
cover is raised.

Foundation 1/2” die cast aluminum base, base stiffener and eight
rubber isolators.
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Table C.2: Electrial Specifications
Motor 3 Phase, .5 hp motor, pre-wired self-aligning

mounting system for easy installation/removal.
Drive 1/2 hp variable frequency AC drive with multi-

featured front panel programmable controller.
RPM range 0 to 6000 RPM (short duration) variable speed.
Current Measurement Power leads accessible for current measurements.
Tachometer Built-in tachometer with LCD display and one

pulse per revolution analog TTL output for DAQ
purposes.

Voltage 115/230 VAC, Single phase, 60/50 Hz

Table C.3: Physical Specifications
Weight Approximately 130 lb
Dimensions L = 39”(100cm), W = 25”(63cm) , H = 21”(53cm)
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APPENDIX D: MOTOR KEY PERFORMANCE INDICATORS

This appendix will look at how some of the KPIs that are used for motor fault de-

tection are calculated and also provides a listing of all 186 KPIs that were calculated.

D.1 Motor KPI Calculations

The KPI for velocity was calculated by taking the FFT of the acceleration. The

dc value of the FFT is then set to zero. This is done because the low frequency

or dc content of the signal cause an effect which throws out the conversion process

and the integration cannot account for this dc content. This error builds up as the

signal is integrated and gives this growing or decreasing error effect. The IFFT is

then performed on the signal after the removal of the DC component. Finally, the

velocity, ν, is found by doing the cumulative trapezoidal numerical integration of the

acceleration, a, and is defined as

ν =
1

FS

(

N
∑

i=1

a(i)−
a(1) + a(N)

2

)

(D.1)

where FS is the sampling frequency.

KPIs of the rms bands were also calculated. Since the KPI data is output at 5 Hz,

the FFT was performed over a 0.2 s window of the accelerometer data. The three

bands are then pulled out and assigned as variables. The frequency bands are defined

as:

• Low frequency band from 10 to 200 Hz

• Middle frequency band from 200 to 2000 Hz

• High frequency band greater than 2000 Hz

With the three bands selected from the FFT acceleration data, a rms calculation is

performed in the frequency domain to determine each of the three bands. This can
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be seen from Parseval’s relation [95]

N−1
∑

n=0

|x[n]|2 =
1

N

N−1
∑

f=0

|X [f ]|2. (D.2)

The rms was derived from this to be [95]

sqrt
1

N

∑

n

x2 (t) = sqrt
1

N2

∑

n

|X (f) |2 = sqrt
∑

n

∣

∣

∣

∣

X (f)

N

∣

∣

∣

∣

2

. (D.3)

Broken rotor bars can be detected by performing a spectrum analysis of the motor

current. The harmonic frequencies relating to broken rotor bars, fbr, can be predicted

at by [83]

fbr = (1± 2ks) f, (D.4)

where s is the slip ratio, f is the fundamental frequency of the electrical current, and

k = 1, 2, 3. . . .

There are four categories of defects in a ball bearing such as seen in Fig. D.1 that

specific KPIs were calculated to detect: outer raceway defect, inner raceway defect,

ball defect, train defect. The faults can be detected at vibration frequencies in Hertz

(Hz), fv, specified by:

• Outer Raceway [96]

fv =

(

N

2

)

fr

(

1− 2
Db

Dc

cosβ

)

(D.5)

• Inner Raceway [96]

fv =

(

N

2

)

fr

(

1 + 2
Db

Dc

cos β

)

(D.6)

• Ball Defect [96]

fv =

(

Dc

Db

)

fr

(

1−
D2

b

D2
c

cos2 β

)

(D.7)

• Cage Defect [10]

fv =

(

fr

2

)(

1−
Db

Dc

cos β

)

(D.8)
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Figure D.1: Geometry of a rolling-element bearing. Adapted from [96].

where N is the number of balls, Db is the ball diameter, Dc is the pitch or cage

diameter, and β is the contact angle of the ball with the races

Rotating eccentricities can occur due to bearing faults, which can lead to variations

in the machine inductances. This produces frequencies in the stator current that can

be used to detect bearing faults. These vibration frequencies reflected in the current

spectrum can be calculated as [10]

fbng = |f1 ± kfv| (D.9)

where f1 the electrical supply frequency, fv is the vibration frequency in Hz, and k =

1, 2, 3. . . .

D.2 Motor KPI Listing

This remainder of this appendix contains a listing of KPIs used for motor fault

detection.
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Table D.1: Motor Fault Detection KPIs
# KPI Description # KPI Description
1 CurrentA.RMSCalc.Amps 34 Run.Speed.Frequency
2 CurrentB.RMSCalc.Amps 35 AccMeter 1.VelRMS.Calc
3 CurrentC.RMSCalc.Amps 36 AccMeter 2.VelRMS.Calc
4 Voltage ab.RMSCalc.Volts 37 AccMeter 3.VelRMS.Calc
5 Voltage bc.RMSCalc.Volts 38 AccMeter 4.VelRMS.Calc
6 Voltage ca.RMSCalc.Volts 39 AccMeter 5.VelRMS.Calc
7 THD.CurrentA.IEEE 40 AccMeter 6.VelRMS.Calc
8 THD.CurrentA.IEC 41 Run.Speed.Magnitude
9 CurharidA.OneE.Mag 42 RMS Band1.LF.RMS
10 CurharidA.ThreeE.Mag 43 RMS Band1.MF.RMS
11 CurharidA.FiveE.Mag 44 RMS Band1.HF.RMS
12 CurharidA.SevenE.Mag 45 Vibtonid.OneR1.Mag
13 CurharidA.NineE.Mag 46 Vibtonid.HalfR1.Mag
14 CurharidA.ElevenE.Mag 47 Vibtonid.TwoR1.Mag
15 CurharidA.ThirteenE.Mag 48 Vibtonid.ThreeR1.Mag
16 THD.CurrentB.IEEE 49 Vibtonid.FourR1.Mag
17 THD.CurrentB.IEC 49 Vibtonid.FourR1.Mag
18 CurharidB.OneE.Mag 50 Vibtonid.OneE1.Mag
19 CurharidB.ThreeE.Mag 51 Vibtonid.TwoE1.Mag
20 CurharidB.FiveE.Mag 52 Vibtonid.SixE1.Mag
21 CurharidB.SevenE.Mag 53 RMS Band2.LF.RMS
22 CurharidB.NineE.Mag 54 RMS Band2.MF.RMS
23 CurharidB.ElevenE.Mag 55 RMS Band2.HF.RMS
24 CurharidB.ThirteenE.Mag 56 Vibtonid.OneR2.Mag
25 THD.CurrentC.IEEE 57 Vibtonid.HalfR2.Mag
26 THD.CurrentC.IEC 58 Vibtonid.TwoR2.Mag
27 CurharidC.OneE.Mag 59 Vibtonid.ThreeR2.Mag
28 CurharidC.ThreeE.Mag 60 Vibtonid.FourR2.Mag
29 CurharidC.FiveE.Mag 61 Vibtonid.OneE2.Mag
30 CurharidC.SevenE.Mag 62 Vibtonid.TwoE2.Mag
31 CurharidC.NineE.Mag 63 Vibtonid.SixE2.Mag
32 CurharidC.ElevenE.Mag 64 RMS Band3.LF.RMS
33 CurharidC.ThirteenE.Mag 65 RMS Band3.MF.RMS
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Table D.2: Motor Fault Detection KPIs cont.
# KPI Description # KPI Description
66 RMS Band3.HF.RMS 100 Vibtonid.OneR6.Mag
67 Vibtonid.OneR3.Mag 101 Vibtonid.HalfR6.Mag
68 Vibtonid.HalfR3.Mag 102 Vibtonid.TwoR6.Mag
69 Vibtonid.TwoR3.Mag 103 Vibtonid.ThreeR6.Mag
70 Vibtonid.ThreeR3.Mag 104 Vibtonid.FourR6.Mag
71 Vibtonid.FourR3.Mag 105 Vibtonid.OneE6.Mag
72 Vibtonid.OneE3.Mag 106 Vibtonid.TwoE6.Mag
73 Vibtonid.TwoE3.Mag 107 Vibtonid.SixE6.Mag
74 Vibtonid.SixE3.Mag 108 Slip
75 RMS Band4.LF.RMS 109 Broken rotor bars.A -3*s
76 RMS Band4.MF.RMS 110 Broken rotor bars.A -2*s
77 RMS Band4.HF.RMS 111 Broken rotor bars.A -1*s
78 Vibtonid.OneR4.Mag 112 Broken rotor bars.A +1*s
79 Vibtonid.HalfR4.Mag 113 Broken rotor bars.A +2*s
80 Vibtonid.TwoR4.Mag 114 Broken rotor bars.A +3*s
81 Vibtonid.ThreeR4.Mag 115 Broken rotor bars.B -3*s
82 Vibtonid.FourR4.Mag 116 Broken rotor bars.B -2*s
83 Vibtonid.OneE4.Mag 117 Broken rotor bars.B -1*s
84 Vibtonid.TwoE4.Mag 118 Broken rotor bars.B +1*s
85 Vibtonid.SixE4.Mag 119 Broken rotor bars.B +2*s
86 RMS Band5.LF.RMS 120 Broken rotor bars.B +3*s
87 RMS Band5.MF.RMS 121 Broken rotor bars.C -3*s
88 RMS Band5.HF.RMS 122 Broken rotor bars.C -2*s
89 Vibtonid.OneR5.Mag 123 Broken rotor bars.C -1*s
90 Vibtonid.HalfR5.Mag 124 Broken rotor bars.C +1*s
91 Vibtonid.TwoR5.Mag 125 Broken rotor bars.C +2*s
92 Vibtonid.ThreeR5.Mag 126 Broken rotor bars.C +3*s
93 Vibtonid.FourR5.Mag 127 bearing.vib.Ball spin.1
94 Vibtonid.OneE5.Mag 128 bearing.vib.Fund Train.1
95 Vibtonid.TwoE5.Mag 129 bearing.vib.Inner ring.1
96 Vibtonid.SixE5.Mag 130 bearing.vib.Outer ring.1
97 RMS Band6.LF.RMS 131 bearing.vib.Ball defect.1
98 RMS Band6.MF.RMS 132 bearing.vib.Ball spin.2
99 RMS Band6.HF.RMS 133 bearing.vib.Fund Train.2
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Table D.3: Motor Fault Detection KPIs cont.
# KPI Description # KPI Description
134 bearing.vib.Inner ring.2 161 Cur.bearing.-Ball defect.A
135 bearing.vib.Outer ring.2 162 Cur.bearing.+Ball spin.A
136 bearing.vib.Ball defect.2 163 Cur.bearing.+Fund Train.A
137 bearing.vib.Ball spin.3 164 Cur.bearing.+Inner ring.A
138 bearing.vib.Fund Train.3 165 Cur.bearing.+Outer ring.A
139 bearing.vib.Inner ring.3 166 Cur.bearing.+Ball defect.A
140 bearing.vib.Outer ring.3 167 Cur.bearing.-Ball spin.B
141 bearing.vib.Ball defect.3 168 Cur.bearing.-Fund Train.B
142 bearing.vib.Ball spin.4 169 Cur.bearing.-Inner ring.B
143 bearing.vib.Fund Train.4 170 Cur.bearing.-Outer ring.B
144 bearing.vib.Inner ring.4 171 Cur.bearing.-Ball defect.B
145 bearing.vib.Outer ring.4 172 Cur.bearing.+Ball spin.B
146 bearing.vib.Ball defect.4 173 Cur.bearing.+Fund Train.B
147 bearing.vib.Ball spin.5 174 Cur.bearing.+Inner ring.B
148 bearing.vib.Fund Train.5 175 Cur.bearing.+Outer ring.B
149 bearing.vib.Inner ring.5 176 Cur.bearing.+Ball defect.B
150 bearing.vib.Outer ring.5 177 Cur.bearing.-Ball spin.C
151 bearing.vib.Ball defect.5 178 Cur.bearing.-Fund Train.C
152 bearing.vib.Ball spin.6 179 Cur.bearing.-Inner ring.C
153 bearing.vib.Fund Train.6 180 Cur.bearing.-Outer ring.C
154 bearing.vib.Inner ring.6 181 Cur.bearing.-Ball defect.C
155 bearing.vib.Outer ring.6 182 Cur.bearing.+Ball spin.C
156 bearing.vib.Ball defect.6 183 Cur.bearing.+Fund Train.C
157 Cur.bearing.-Ball spin.A 184 Cur.bearing.+Inner ring.C
158 Cur.bearing.-Fund Train.A 185 Cur.bearing.+Outer ring.C
159 Cur.bearing.-Inner ring.A 186 Cur.bearing.+Ball defect.C
160 Cur.bearing.-Outer ring.A


