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Abstract

The development of smart manufacturing and Industry 4.0 has emphasized the utilization of intelligent
manufacturing tools, techniques, and methods such as Predictive Maintenance (PdM). The predictive main-
tenance function facilitates the early detection of failure and errors in machinery before they reach critical
phases. Proper maintenance keeps the life cycle cost down and guarantees proper operations and good order
internal logistics. This dissertation proposes a predictive maintenance framework enabling organizations to
proactively work against their upcoming maintenance task. Having predicted the failure occurrences with
good accuracy allows companies to significantly save costs by, for example, enforcing a controlled system
shutdown rather than an emergency shutdown. Our proposed framework has been designed based on the
data-driven model, and, therefore, it can be perfectly realized in IoT-enabled smart companies, in which ob-
jects and devices are monitored and controlled using intelligent systems connecting to the Internet. Most of
the existing work in the domain of predictive maintenance has significantly focused on developing various
anomaly detection techniques through simulations. However, in this study, we aim to design an end-to-end
predictive maintenance framework and further evaluate our proposed framework using real-world manu-
facturing data. The obtained results have demonstrated the effectiveness of our proposed framework.

First, we have conducted a Systematic Literature Review (SLR) on existing predictive maintenance
research papers. We classified the algorithms and techniques addressed in these studies according to the
multiple phases of an end-to-end predictive maintenance project. In the second step, considering SLR
results, we propose a plan for designing the PdM framework. The main purpose of this dissertation is
to suggest a general predictive maintenance framework that is highly applicable for different use cases.
Consequently, we design an end-to-end predictive maintenance framework that covers all the phases of a
predictive maintenance project discovered in the SLR section.

The proposed predictive maintenance framework consists of five layers: data acquisition, data prepro-
cessing, predictive analytics, result evaluation, and decision making. Finally, the proposed framework has
been implemented into a prototype and tested in an industrial use case. In order to evaluate our proposed
framework, we implemented a real-life case study related to the maintenance of a pump installed in an
industrial printing machine at NTS Group. In particular, we conducted several experiments to assess the
impact of each block of the proposed framework.

In this case study, multiple supervised and semi-supervised learning techniques were employed. Par-
ticularly, three regressors were utilized: Linear Regression, Generalized Linear Regression, Decision Tree
and three classifiers: Logistic Regression (LR), Decision Tree (DT), Random Forest (RF). For the test
dataset, the classifiers performed quite well and obtained significant accuracy of 95%, 99%, and 98%, re-
spectively, for LR, DT and RF. We have also utilized One-Class Support Vector Machine (OCSVM) as a
semi-supervised learning algorithm which delivered up to 99% for all of our evaluation metrics. Finally, a
technique called Peak Detection is used for failure detection, which is based on recognizing the number of
peaks in the failure period. This technique also has a promising result to send an alarm at the right time.

Besides these Machine Learning (ML) algorithms, the preprocessing steps such as scaling, feature ex-
traction, feature selection, and dimension reduction are analyzed to achieve better accuracy and fewer error
values. In almost all test scenarios, time-domain feature extraction caused less accuracy and higher er-
ror due to the low sampling frequency of the collected data. Principle Component Analysis (PCA) and
Pearson’s Correlation Coefficient (PCC) techniques were analyzed. The investigations revealed that just
using PCA or PCC techniques for dimension reduction and finding important features without considering
data distribution can decrease the accuracy, or there is no point in using them, just wasting computation
resources. Obtained results from multiple tested scenarios indicate the effectiveness of the proposed meth-
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odology in supporting predictive analytics in the age of Industry 4.0.
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Chapter 1

Introduction

Nowadays, the manufacturing industry is moving towards creating smart factories that are equipped with
state-of-art technologies (such as 3D printing, advanced robotics) [1, 2]. The technology that enables
this development is known as the fourth industrial revolution, Industry 4.0. This technology empowers
manufacturers with offering new products and services to customers along with higher quality efficiency,
and reliability [1, 3].

By utilizing smart devices, organizations can closely track their activities and, then, they have the
opportunity to improve their business processes [1, 2, 4] by redesigning them. For example, one of the
most critical business processes in the manufacturing domain is equipment maintenance [5]. Internet of
Things (IoT) extends equipment maintenance business process to a higher level by introducing the notion
of Predictive Maintenance (PdM). Many studies have supported this idea [1, 6, 7], in which the authors have
suggested that ineffective maintenance approaches are one of the main reasons behind the rise of operating
costs of investments. Accordingly, a predictive maintenance technology can reduce the resource waste due
to unnecessary maintenance and eventually ensure that the equipment in a factory is well-maintained and
remains in good condition.

Currently, predictive maintenance technology has focused on the healthy condition of hardware and
software devices in a factory by employing remote tracking systems. Nevertheless, to adopt these advanced
solutions, it is essential to broadly comprehend the trade-off between the advantages that the technology
can bring versus the extra costs that are required during the deployment stage of the technology [1, 2,
4]. Since organizations need to purchase required equipment and instrumentation tools, software licenses,
and acquiring special knowledge, extra costs will be there for enterprises. Therefore, finding a balance
between all the acquiring costs and the competitive edges that predictive maintenance would offer can
be seen as a real challenge that needs to be addressed. Thus, this challenge has raised the necessity for
extra investigation not only in the industry but also in academia [1, 8, 9, 10]. To bridge this gap, research
studies are constantly providing improvement opportunities to the industries in the domain of predictive
maintenance. On the other hand, enterprises are continuously bringing new challenges to the researches.

There is another challenge that needs to be investigated, called the lack of initial data. At the beginning
of predictive maintenance deployment, due to not having actual data regarding the normal and abnormal be-
havior devices, the technology might not provide the business added value in a concise term. Consequently,
companies may distrust any further investment in the technology.

This work aims to propose a comprehensive predictive maintenance framework, considering deploy-
ment simplicity and fast-time-to-value requirements. This framework enables IoT-enabled factories to
establish the best strategy to adopt predictive maintenance technology. This framework is evaluated by
the NTS Group company located in Eindhoven, the Netherlands. NTS Group (in short, NTS) is a general
machine manufacturer for semiconductors, digital printing, human healthcare, and the renewable energy
industry, adopting Industry 4.0. NTS develops machines by integrating the required components for the
desired application, assembling, and finally installing them for their customers. In addition, NTS provides
platforms that can be used by many of its customers.

Moreover, NTS is responsible for maintaining their machines and provide operational services and
supports to solve technical issues associated with their devices. One of the important products of NTS
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is a platform of components to be used in Digital Printers. Since this platform’s cost of production and
maintenance is significantly high, NTS requires a predictive maintenance technology for this product.
Therefore, the proposed predictive maintenance will be evaluated for the NTS digital printing machine.
Due to unexpected expensive shutdown in the production line, one of the essential requirements for NTS
is the accuracy of the proposed predictive maintenance framework. In addition, the growth of sensor data
requires a more solid infrastructure for storing and processing. Therefore, the data management of the
proposed framework in a cost-effective manner is also a crucial factor that has to be considered.

In summary, in this work, we aim to have an overview and perception of the predictive maintenance
concept to develop a predictive maintenance framework based on Industry 4.0 in an accurate manner. To
achieve this goal, we explored the current predictive maintenance frameworks, Industrial Internet of Things
(IIoT) concepts, and the challenges they have faced to develop and implement an intelligence maintenance
framework. Since this framework will be deployed on a digital printing machine in NTS Group company,
we need to investigate the hardware and software architecture of the printing machine and the communica-
tion protocols employed in this machine. The next step is finding a critical component and defining a case
study for applying PdM on it. For this challenge, we discussed with the experts and maintenance groups
in NTS. Our research questions were formed in each step of exploration, and an overview of dissertation
outlines has been provided.

This dissertation addresses our initial methodology to pursue research on developing a comprehensive
predictive maintenance framework. The following section addresses the gap in the current body of know-
ledge and formulates the goal of our work and the research questions. According to the defined research
questions, the work plan for the rest of this research study has been illustrated. In addition, we enumer-
ated a few risks that we may encounter during this project. Chapter 2 presents the background and related
studies that have been done in the domain of Industry 4.0 and predictive maintenance. Moreover, we in-
vestigated the case study’s architecture and data life cycle considering the proposed predictive maintenance
framework at NTS Group.

1.1 Introduction to NTS Group
NTS Group company develops, produces, assembles, and tests complex (opto-) mechatronic systems and
mechanical modules, which helps accelerate its customers’ innovations and contributes to a more sustain-
able, healthy, and future-proof world.

As a first-tier system supplier, NTS provides knowledge on production that enables cost-effective man-
ufacturing. NTS is the support organization for selecting systems and modules in which precise motion
and positioning are essential. NTS has vast knowledge and know-how of modules and systems for hand-
ling, transferring, and positioning machines. NTS focuses on high-tech original equipment manufacturers
involved in markets with high levels of product variety, low volumes, and high complexity, such as life
sciences, the semiconductor, and analytical and digital printing markets.

Industrial Automation at NTS

NTS builds machines by integrating the required components for the desired application and sell them
to their customers. NTS is responsible for maintaining these machines and provide operational supports
to solve technical issues associated with machines. These machines are used in the multi-level automation
architecture. As it is illustrated in Figure 1.1, multi-level industrial automation architecture [11] comprises
four levels:

• Device Level consists of multi-complex devices wired to actuators and sensors. All devices use
Ethernet-based protocols such as EtherCAT and ModbusTCP to communicate with each other at this
level.

• Control Level has programmable logic controllers or other control boards like DSPs that control the
industrial process with the help of devices at the device level. These controllers use PROFINET,
EtherCAT, or any other communication protocols for real-time control over Ethernet. To be more
precise, controller devices have programs with inputs from the Device Level and take a control
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action through program outputs communicated back to the Device Level. Furthermore, they provide
information about the underlying process information to the Manufacturing Execution System (MES)
level by using the OPC-UA protocol.

Figure 1.1: Multi-level automation pyramid of NTS [11]

• MES Level monitors and controls the whole industrial process. It means DSPs in the Control Level,
which control individual tasks of device-level, will communicate with MES systems. This procedure
enables complete control of industrial processing. Communication between the control level and
MES level is based on the OPC-UA protocol. On the other side, communication between the MES
level and Enterprise Resource Planning (ERP) level can be over the Internet.

• ERP Level provides a high-level overview and control over the business.

1.2 Motivation
The Industry 4.0 paradigm empowers companies to offer their products and services to their customers with
higher efficiency, higher quality, and higher reliability. In order to transform a company into an Industry
4.0-compliant company, a combination of technologies need to be adopted. These technologies vary from
IoT technology to data science and cloud computing. Altogether, the integration of these technologies
empowers factories to reach the ultimate objective of digitization.

One of the main aspects of an Industry 4.0-compliant company is to adopt a predictive maintenance
technology. This technology makes use of condition monitoring data that are produced by devices in smart
factories. These data can be utilized to detect anomalies (i.e., the behaviors that are deviated from nor-
mal operating conditions) in manufacturing business processes. Therefore, predictive maintenance can be
employed to detect failures in production processes and manufacturing equipment, products, and services.

In summary, predictive maintenance provides companies with the capability of performing maintenance
tasks in a strict manner by making the right part available at the right place at the right time. Therefore,
predictive maintenance tasks help companies to:

1. Deeply understand their asset performance patterns,

2. Raise alerts when an abnormal behavior has happened,

3. Proactively raise alerts when an abnormal behavior may happen or is about to happen,

4. Prevent costly downtime of devices, and
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5. Eventually, maximize the business added value and production profits.

However, since there is no standard for adopting predictive maintenance, it can be a very complicated
and costly process for early adopters of this technology. Therefore, in this work, we aim at addressing
this challenge by proposing a predictive maintenance framework. Our proposed Industry 4.0-compliant
framework is inspired by the 5C layered architecture [12]. Consequently, the main contribution of this
dissertation is defined as the development of a predictive maintenance framework. A successful predictive
maintenance framework can run a trade-off between improving the system reliability and reducing the total
maintenance cost simultaneously.

NTS Group evaluates the result of this research as they are currently adopting a predictive maintenance
technology considering the price of their printing machine and considerable cost for its maintenance. In
order to apply the proposed framework to the printing machine, firstly, a set of inner components of the
machine need to be chosen. Then, once the eligible components have been identified, a proper IoT infra-
structure design must be selected. The selected IoT platform is applicable for PdM applications and can
be used for other purposes such as system performance optimization, product quality optimization, innov-
ative production, supply chain efficiency, and optimize resource usage. Subsequently, a set of algorithms
and methods supporting predictive maintenance will be taken out. Finally, the last step concerns the ex-
ploitation of IoT-enabled monitoring to ensure that predictive maintenance brings enough business added
value.

There are a few main challenges for designing a system framework considering NTS printing ma-
chine constraints. Firstly, the extraction of relevant information from multiple data sources can be seen
as a challenge that needs to be tackled. Secondly, a reliable and accurate predictive maintenance frame-
work must address fundamental technologies such as big data management and computation as well as
correlation techniques. These fundamental technologies come with an extra price tag that is considered
in the framework. Thirdly, as the computing and storing processes can be done in both on-premise and
cloud devices, multiple potential strategies are to be explored in terms of the system’s scalability and cost-
effectiveness. These strategies can be categorized into the following three groups: (i) Everything in the
cloud (ii) Everything in edge devices (iii) Partially in the edge devices and remaining in the cloud. As for
the first implementation, we need to realize other KPIs of the framework such as accuracy and error values,
firstly we decided to investigate a completely on-premise framework.

Figure 1.2: Framework, technique and strategy term illustration
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Figure 1.2 illustrates what we did precisely in this dissertation. First, we need to design a framework
with the specified number of architecture layers based on our requirements. Each layer includes different
techniques for achieving the purpose of the corresponding layer. Each technique can be deployed on the
cloud or on-premise infrastructure. In this dissertation, an on-premise approach is employed. The important
item that is indicated by orange arrows is strategy. It indicates which group of selected techniques in
different layers can provide the expected quality for the proposed framework.

1.3 Research Questions

Having identified different layers, techniques, and strategies for implementing predictive maintenance, we
formulated the central research question for this work (i.e., Central-RQ) as follows:

Central-RQ. What are the efficient strategies to fortify an industry with predictive maintenance?

To answer this central research question, we aim at developing a predictive maintenance framework,
which can be seen as a guideline to select the best strategies. There are two common research methodolo-
gies for developing such a framework, namely: top-down and bottom-up methods. The top-down approach
begins with identifying the requirements, while the bottom-up approach starts with an existing body of
knowledge.

Since there are some related studies in the development of a predictive maintenance framework in the
literature, such as [8, 9, 13, 14, 15], we can conclude that the bottom-up fits our research. Consequently,
we conduct survey research on the existing predictive maintenance techniques and investigate the require-
ments, challenges, and constraints of that predictive maintenance framework. Therefore, we propose a
comprehensive predictive maintenance framework by integrating the existing body of knowledge in the
predictive maintenance domain. This research methodology leads to the following three sub-research ques-
tions. The first research question (i.e., RQ1) addresses the available techniques in the literature, which is
formulated as follows:

RQ1. What are the available predictive maintenance techniques based on Industry 4.0
paradigm?

To answer this research question, we systematically start with Industry 4.0 by constituting the layers
of this paradigm. A predictive maintenance framework, thus, can be designed in a way that each layer in
Industry 4.0 paradigm is mapped to a separated section in the manufacturing process. Nevertheless, all
the sections within the predictive maintenance framework must be able to communicate with their adjacent
layers. Therefore, the output of each layer is utilized to feed the next layer in the predictive maintenance
framework. In addition, several techniques based on the required application can be employed per layer.

A combination of Industry 4.0 layers and multiple existing predictive maintenance techniques can res-
ult in a complex mapping process. This complex process can even be more complicated by adding an
infrastructure selection dimension (i.e., cloud vs. on-premise) as well as the constraints that each applica-
tion can bring. Therefore, we need to find a systematic approach to reduce this complexity and to provide
transparency. Accordingly, we formulated the second research question (i.e., RQ2) as follows:
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RQ2. How can a comprehensive predictive maintenance framework be developed?

Having developed the predictive maintenance framework, we need to evaluate it against its reliability.
Few quantitative KPIs need to be determined. The following three approaches do the process of KPI
determination:

1. Based on a set of commonly used KPIs in the literature

2. Based on the consultation with domain experts at NTS Group

3. Based on predictive maintenance applications demand.

Depending on the application, accuracy, availability, and requirements, the determined KPIs can have
different impacts. Thus, in order to address this trade-off, we introduce a related KPI. Having defined the
KPIs for the performance of the proposed predictive maintenance framework, the third sub-question (i.e.,
RQ3) is, therefore, formulated as follows:

RQ3. How can the predictive maintenance framework be evaluated against quality criteria such
as accuracy and Root Mean Square Error (RMSE)?

1.4 Contribution
This work contributes to the predictive maintenance research domain by (i) providing an extensive over-
view of existing techniques, (ii) highlighting the current limitations and challenges of the techniques, (iii)
developing a comprehensive predictive maintenance framework based on the Industry 4.0 paradigm, and
(iv) evaluating the proposed framework using a real-world industrial use case. In summary, the main con-
tribution of this dissertation can be categorized into the following two subjects:

Contribution 1. Proposing a comprehensive framework for predictive maintenance based on
Industry 4.0

The following three steps are taken place to achieve the first contribution:

1. Selecting a technique (e.g., model-based or data-driven) to design predictive maintenance framework
and its running applications for a given failure prediction scenario (e.g., pump failure in ink supply),

2. Proposing effective techniques for each layer of the framework.

3. Proposing a heuristic-based Machine Learning (ML) algorithms to solve the NP (non-deterministic
polynomial) hard problem stated in RQ2,

Contribution 2. Evaluating the performance of the proposed technique by defining relevant KPI
such as accuracy, error values
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To achieve the second contribution, the following three steps are considered:

1. Analysing the performance using both theoretical and experimental approaches,

2. Exploring the remaining useful life estimation topic on the target equipment

3. Developing test scenarios for our experimental evaluation, which can be extended for larger experi-
ments.

4. Comparing several scenarios to investigate the effectiveness of each block in the proposed framework

1.5 Dissertation Outline
This section presents the outline of this dissertation.

Chapter 1 – Introduction

Chapter 2 – Background

Chapter 6 – Conclusion and Future work
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RQ1:

What are the available predictive 

maintenance techniques based on industry 

4.0 paradigm?

RQ2:

How can a comprehensive Predictive 

maintenance framework be developed?

RQ3:

How the Predictive maintenance 

framework be evaluated against quality 

criteria such as accuracy and error values?

Chapter 3 – Systematic Literature 

Review

Chapter 4 – Proposed Predictive 

Maintenance Framework

Chapter 5 – Case Study 

Implementation 

Figure 1.3: A proposed dissertation outline

As illustrated in Figure 1.3, the dissertation is structured as follows:

• Chapter 1 introduces our work in more detail.
• Chapter 2 represents background information and case study which is a printing machine in NTS
• Chapter 3 answers the first research question (i.e., RQ1) by introducing the existing developments in

predictive maintenance technology, including and additionally covers the carried out related work.
• Chapter 4 addresses the second research question (i.e., RQ2) by proposing a methodology to intro-

duce a predictive maintenance framework and its resulted framework, respectively.
• Chapter 5 seeks to find a response to the final research question (i.e., RQ3) by introducing a set of

KPIs regarding the accuracy and error value of the proposed framework and discussing the result of
applying the proposed framework on the case study of NTS Group.

• Finally, Chapter 6 concludes the dissertation and suggests some research directions for future works.
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Chapter 2

Background

This chapter aims to deliver a brief overview of Industry 4.0 and predictive maintenance technology by
defining the terminologies, framework, strategies, and concepts relevant to the work.

2.1 Industry 4.0

Nowadays, industrial production is facing a new revolution, namely Industry 4.0, which integrates Inter-
net technologies into the industrial manufacturing process, maintenance management, and maintenance
strategies.

Industry 4.0 brings flexibility, adaptability to the system, in comparison to the traditional manufacturing
production, by employing a selected set of base concepts, described as follows [6]:

• Industrial Internet of Things (IIoT): The IIoT uses the Internet of Things (IoT) technologies in an
industrial environment to enhance the processes’ performance, safety, reliability, and efficiency. To
this end, IIoT collects the sensor data to turn them into actionable information by cost-effectively
employing big data analytic tools.

• Cyber-Physical Systems (CPS): CPS refers to a computational and physical system for controlling
and monitoring the processes with feedback loops. The CPS architecture consists of five levels,
including: (i) Smart connection, (ii) Data-to-information Conversion, (iii) Cyber, (iv) Cognition and
(v) Configuration [6].

• Cloud Manufacturing [16]: Cloud manufacturing consists of cloud computing, the IoT, service-
oriented technologies, and high-performance computing [17], which transforms manufacturing re-
sources and capabilities into manufacturing services.

• Machine Learning (ML): ML is a technique of artificial intelligence that enables computers to learn
by detecting the data patterns and adjusting the program accordingly, without explicit programming.
The proper implementation of ML into manufacturing processes such as maintenance, scheduling,
and quality control, has assured to improve traditional approaches to support the decision making
and predictiveness [18, 19].

• Condition-Based Maintenance (CBM) CBM is a type of predictive maintenance strategy that uses
sensors to evaluate equipment condition over time while it is in operation and suggests maintenance
decisions based on the collected data [20]. CBM aims to recommend maintenance only when the
data shows a decrease in performance or a failure is predicted, rather than having maintenance at
specified intervals [21, 22]. The three main steps of CBM are data acquisition, data processing, and
maintenance decision making.

• Cloud Computing: Cloud computing plays an essential role in the continuous development of In-
dustry 4.0 by enabling the storage and access to the data over the Internet. Also, it brings multiple
advantages to the manufacturing enterprises such as avoid upfront ICT infrastructure costs, focus on
core business rather than spending money and time on computer infrastructure, higher applications’
speed, improved manageability, less maintenance, and rapid adjustment of ICT resources [23].

A Comprehensive IoT-Enabled Predictive Maintenance Framework 9



CHAPTER 2. BACKGROUND

2.2 Maintenance Methods

As defined by European Standards’ EN 15341 [24], maintenance includes administrative, technical, and
managerial tasks during the life cycle of an item intended to keep it in or bring it back to a condition in
which it can perform the required function. A maintenance action consists of activities including mon-
itoring, condition analysis, routine maintenance, overhaul, repair, and rebuilding [25]. In recent years,
there have been more interests in advanced maintenance strategies, which can be classified into three main
categories as Corrective Maintenance (CM), Preventive Maintenance (PM), and Predictive Maintenance
(PdM).

2.2.1 Corrective Maintenance

CM strategy considers performing the repair when a failure or breakdown happens to the equipment. There-
fore, the asset can continue to operate until the parts start to malfunction as such that the system is no longer
operational. In this method, the costs of repair and downtime are considered to be less than the required
costs for a maintenance program [24]. Important to note that downtime typically not only relates to the one
system that fails but to an entire production line that this machine is working inside it. An assessment of
the pros and cons of CM is presented in Table 2.1.

Table 2.1: Pros and Cons of Corrective Maintenance

Corrective Maintenance
Pros Cons

• Without planning: there is no scheduling
for component maintenance or replacement

• Completely broken component: the
equipment is utilized till the part cannot be
used anymore and totally worn out

• Unhappy customer: unexpected failure
cause increasing downtime of the
production line and with the dissatisfaction
of customer it can lead to financial loss

• Profit loss: unexpected downtime causes
loss of planned production

• No valuable lesson from failure events:
when facing unplanned downtime, so it
needs to be fixed immediately, so there is
no opportunity to find the root cause and
plan to avoid the same failure

2.2.2 Preventive Maintenance

PM strategy is used when the failure of an asset is assumed to be costlier than the prevention. It is an
approach that employs knowledge of the machine regarding how the components break down. Time-based
and risk-based methods are used to schedule inspections and maintenance of the asset to increase the
components’ life-cycle. Time intervals are estimated from historical data breakdown or supplier recom-
mendations. An assessment of the pros and cons of PM is given in Table 2.2.
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Table 2.2: Pros and Cons of Preventive Maintenance

Preventive Maintenance
Pros Cons

• Decreased downtime: while replacement
parts are exchanged earlier than failure,
there is no unscheduled downtime

• Well-organized maintenance planning:
replacement parts and maintenance service
specialists are exist

• Enhance machines’ lifetime expectation:
through exchanging parts earlier than they
are broken; the overall function is not at
risk

• Costs of expectable maintenance

• Capital loss: parts are often exchanged
earlier than they are entirely worn down

• Enhanced the costs of maintenance
planning

• Maintenance scheduling: executing checks
based on time intervals does not constantly
take into account the machine’s operational
time

• Risk associated with unexpected
adjustment in equipment working
condition/equipment depreciation

2.2.3 Predictive Maintenance

PdM strategy is employed when the equipment breakdown has a critical consequence related to Health,
Safety, and Environment (HSE) or operations. In other words, while PM has the goal to minimize down-
time, PdM aims to maximize uptime.

Table 2.3: Pros and Cons of Predictive Maintenance

Predictive Maintenance
Pros Cons

• Maximum uptime: protect the component
completely from failure, with knowledge of
the health condition of the asset

• Flexible maintenance planning: according
to the need of the system and spare parts,
maintenance technicians can be scheduled

• Minimize the cost: reduce the expense of
downtime and avoid the unnecessary cost
of replacing parts

• Components optimum utilization: machine
parts are used until shortly before they are
no longer operational

• Enhance machines’ lifetime expectation:
utilizing exchanging parts earlier than they
are broken; the overall function is not at
risk

• Costs of maintenance: high investment and
working expenses

• temporary costs: requirements-based cares
provide less repair cost probability

• Costs of predicting false positives: need to
equipped the production line for
unnecessary shutdown

• Enhanced requirement for flexibility:
require to adjust to real-time maintenance
services and solution

In general, we can mention that the condition of the equipment is evaluated and compared to a healthy
operating state. Maintenance is carried out when defined indicators warn that the equipment is deterior-
ating and the breakdown probability increases. PdM is realized with the utilization of several condition
monitoring techniques. There exist a wide variety of offline/online monitoring techniques related to the
application. Other than visual inspections, the most used condition monitoring techniques are vibration
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monitoring, process parameter monitoring, oil-debris monitoring, and acoustic emission monitoring.
Considering the growth of the availability of data and computing powers will allow operators to evolve

beyond condition monitoring to anticipate problems before they happen, making PdM an attractive and life-
changing item in manufacturing systems [26]. We can define PdM as the utilization of a Remaining Useful
Lifetime (RUL) [27] model to evaluate the state of the machine and predict the RUL of the components.
In this work, we are concerned with PdM as defined here. An evaluation of the pros and cons of PdM is
shown in Table 2.3.

2.3 Industrial Internet of Things and Smart Maintenance
The industry-relevant items (e.g., material, sensors, machines, products, supply chain, and customers)
can be connected by taking benefit from the Internet of things (IoT) and Cyber-Physical System (CPS),
which means these necessary items are going to exchange information and control actions with each other
individually and autonomously [28].

Industry and academia demand a complete structure of these technology applications to show manufac-
turing development with different performance levels. First, we need to determine what we have currently
in the manufacturing system compared to the smart factories [29]. A brief comparison between current
and Industry 4.0 factories is shown in Table 2.4. To bridge the gap between current manufacturing systems

Table 2.4: Comparison of today’s factory and an Industry 4.0 factory [12]

Data source Today’s factory Industry 4.0
Attributes Technology Attributes Technology

Component Sensor Precision Smart sensors &
fault detection

Self-aware
Self-predict

Degradation
monitoring &

Machine Controller Producibility &
performance

Condition-based
monitoring &
diagnostics

Self-aware
Self-predict
Self-compare

RUL prediction Up
time with predictive
health monitoring

Production
system

Networked
system

Productivity &
OEE

Lean operations:
work and waste
reduction

Self-configure
Self-maintain
Self-organize

Worry-free
productivity

and Industry 4.0, IoT needs to be combined with data science and modeling capabilities. This combination
helps to reach the ultimate objective of digitization, which is supporting decision making to act on the
physical systems [1] optimally.

Now, we need to look at how maintenance fits into Industry 4.0. One of the main challenges of Industry
4.0 is the lack of an international standard for implementation. Ref. [30] describes a standard Reference
Architecture Model for Industry 4.0 called "RAMI 4.0", which can help with this problem. According to
"Platform Industry 4.0", the following challenges are creating sub-models for individual processes, creating
a common language, and specific recommendations for implementation. RAMI 4.0 reference architecture
is illustrated in Figure 2.1. The model breaks down complex processes into understandable modules,
ensuring that all participants involved in Industry 4.0 discussions understand each other. RAMI 4.0 maps
all the players of the connected industry employing three axes of definition:

• "Layers: functional, business, information, communication, integration, asset."
• "Life Cycle value stream: development, production, maintenance usage."
• "Hierarchies levels: product, field device, control device, station, work centers, enterprise, connected

world" [30]

Conducting this dissertation within the RAMI4.0 reference architecture, we can mention that we are con-
cerned with raising a field device in the maintenance instance from the asset layer to the digital layers.
Considering essential standards relevant for Industry 4.0, several models are identified employing five to
nine-layer models [31].
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Figure 2.1: RAMI 4.O reference architecture for Industry 4.0 [30]

A 5-level CPS structure is proposed in [12], namely, the 5C architecture, which provides a roadmap
for developing and deploying a CPS for industrial applications. A CPS contributes in two main functional
components: (a) the state-of-art connectivity that ensures real-time data acquisition from the physical asset
and information assessment from cyberspace; and (b) intelligent data storage, management, and analytics
capability that constructs cyberspace. However, such a requirement is very abstract and not specific enough
for implementation purposes in general. In contrast, the 5C architecture presented in Figure 2.2 clearly
defines- through a sequential workflow manner- how to construct a CPS from the initial data acquisition to
analytics to the final value creation.

Figure 2.2: 5C architecture and its related applications and techniques [12]

Since for developing PdM, base on RAMI 4.0 [30], first, we need to choose the equipment to develop
PdM for that; the first layer can be a physical assessment and choosing the critical component. The next
step is to analyze the system, the failure condition of the corresponding component, and the sensors related
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to that equipment. Taking into account these steps from RAMI 4.0 [30] and ’5C’ architecture [12], for
developing a smart factory, we need to develop that process based on seven layers to provide us more
transparency and reduce complexity:

1. Physical layer: A physical item (asset/machine/system) must be chosen to apply the PdM applica-
tion.

2. Data acquisition layer: Each item, e.g., a machine, can generate data about itself, so we must
choose between various types of sensors relevant to maintenance applications (data can be collected
from different equipment).

3. Connection layer: The data can be transferred into specific cyberspace (cloud and edge devices).

4. Conversion layer: The collected data are of high volume, and variety needs preprocessing to reduce
and clean the resources needed for computation.

5. Computation layer: Signal analytics utilizing software and algorithms such as ML.

6. Cognition layer: Creation of maintenance decision support with specific diagnostics and prediction
of machine health.

7. Configuration layer: Movement from cyber to physical space where intelligence is transformed
into action looped back to the application, e.g., adjust a parameter on a machine on the factory floor
from the cloud.

This 7-layer architecture, considering the NTS printing machine, can utilize to develop an end-to-end
PdM architecture in the case study. In Section 1.1, we will look at on NTS printing machine and control
management system.

2.3.1 Predictive Maintenance Models Classifications

It is illogical for potential industry users to assess each specific model separately. Therefore, a classific-
ation system is required to evaluate similar model variants based on their advantages and disadvantages.
Strategies for diagnostics and prognostics can be divided into four main modeling groups, which are:
Knowledge-based, Model-based, Signal-based, Data-driven, Hybrid based [32, 33].

Knowledge-based

These evaluate the similarity between an observed situation and historical data of previously defined fail-
ures and determine the life expectancy from previous events. Knowledge-based includes two categories as
following: a) Expert systems, b) Fuzzy systems [33].

• Expert: A software program is an expert system that resembles the performance of human experts in
a particular domain. It consists of a knowledge-based including aggregated experience from subject
experts and a rule base for applying that knowledge to specific problems known to the software
system. Rules are formulated as exact IF-THEN statements; these primarily rely on heuristic facts
obtained by one or more experts during multiple years of experience [33].

• Fuzzy: Logic models are most effective when one or more of the input variables are continuous, a
mathematical model is not available or not implementable, and data contains high noise levels [34].
The multiple uses of fuzzy systems for control state that it can be an appropriate method for predict-
ing RUL. They can also provide results within complete or inaccurate data, as is commonly found
in practice. Nevertheless, they can explain their reasoning and, by defining fewer rules, are simpler
to adapt than expert systems. Unfortunately, they too rely on the availability of a suitable expert to
specify the rules underlying system behavior and develop the fuzzy sets representing each variable’s
characteristics [33].
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The knowledge-based system needs to be updated and maintained as more knowledge is obtained or config-
urations change. This continuously changing system can be problematic. However, these problems can be
partly reduced by integrating with fuzzy logic. The knowledge-based needs to be updated and maintained
as more knowledge is obtained or configurations change. For example, in [35] they used an expert system
with fuzzy logic and neural networks to predict the remaining useful life of gearboxes.

Model-based

A model-based prognostic approach is based on mathematical models of system behavior obtained from
physical laws or probability distribution. For example, conventional model-based prognostics include
mathematical methods based on Wiener and Gamma processes [36], hidden Markov models [37], Kal-
man filter [38], and particle filter [39]. Physical models evaluate an output for the remaining useful life of
a component by solving a deterministic equation or set of equations gained from big empirical data. Some
of this data will have been converted into common scientific and engineering knowledge, while other data
must be acquired through specific laboratory or field experimentation [40]. One of the disadvantages of
model-based prognostics is that an in-depth understanding of the underlying physical processes that lead
to system failures is required. Another disadvantage is that it is assumed that underlying processes follow
certain probability distributions, such as gamma or normal distributions [41].

Signal-based Models

In contrast, using explicit input-output models for fault diagnosis, the Signal-based methods utilize meas-
ured signals. The faults in the process can be found in the measured signals, whose features are extracted,
and a diagnostic decision is then made based on the symptom analysis and historical knowledge of the
symptoms of the health of the system.

Signal-based fault diagnosis methods can offer an extensive application in real-time monitoring and
diagnosis. There are two ways to extract the feature signals for pattern/symptom investigation: A) The
first one is the time-domain such as mean, trends, standard deviation, phases, slope, and magnitudes (e.g.,
peak and root mean square, B) The second one is the frequency-domain like a spectrum. By knowing that,
we can categorize signal-based fault diagnosis methods into three approaches: time-domain signal-based,
frequency-domain signal-based, and time-frequency signal-based [42].

• Time-Domain Signal-Based Methods: This approach is based on the time wave-form itself. Tra-
ditional time-domain analysis computes characteristic features from time wave-form signals as de-
scriptive statistics such as mean, peak, peak-to-peak interval, standard deviation, crest factor, high
order statistics: root mean square, skewness, kurtosis. The mentioned features are named time-
domain features. Time synchronous average is one of the popular time-domain analysis approaches.
TSA utilizes the ensemble average of the raw signal over several evolutions in an attempt to eliminate
or decrease noise and effects from other bases to improve the signal components of interest [42].

• Frequency-Domain Signal-Based Methods: This method recognizes changes or faults by applying
spectrum analysis tools like discrete Fourier transformation. Here, motor current signature analysis
can be introduced as a reliable method to diagnose motor faults. MCSA applies the stator current
spectral analysis to detect the rotor faults belonging to the broken rotor bars and mechanical bal-
ance. Thus, the MCSA approach became more attractive to researchers [43, 44] because it does not
need motor access. The recent development of current-based spectrum signature analysis for fault
diagnosis is presented in [45, 46].

• Time-Frequency Signal-Based Methods: In some situations, the computed signals are usually tran-
sient and dynamic under the required time section (e.g., machines under load torque oscillations,
varying load, unbalanced supply voltages, or an unloaded condition). For the mentioned condi-
tions, analysis of the stationary quantities is not easy to monitor or detect faults by time-domain or
a frequency-domain method. Therefore, appropriate time-frequency decomposition means are desir-
able for real-time monitoring and fault diagnosis because of the time-varying frequency spectrum of
the transient signals. Extracting feature information in nonstationary signals made this method an
effective means for fault diagnosis and monitoring [47]. There are multiple time-frequency analysis
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approaches for diagnosing the machinery fault, which can be named as short-time Fourier transform,
wavelet transforms, Hilbert–Huang transform, and Wigner–Ville distribution [42].

Data-driven

This approach can be considered a kind of signal-based model, although more data mining techniques
are employed in the data-driven model. The growth of industrial data gives us the chance to conduct main-
tenance projects for the development and deployment of the data-driven PdM, which employs advanced
computational techniques to provide helpful information regarding the condition of equipment acquired
from the growth of operational data [48]. The data-driven PdM system consists of two main steps: first, a
learning process (i.e., model training) is needed based on historical raw sensor signals; second, the trained
model is applied to predict targets and make decisions. In addition, each phase consists of the following
three sub-steps [6]:

1. Data acquisition and preprocessing, which can be single sensory or multi-sensory,

2. Feature engineering, which contains feature extraction, concatenation, and selection,

3. Model training and predicting, in which a well-trained model will be generated with the optimal
parameters.

The model can predict the real-time data flow. Nevertheless, the data-driven strategy has been widely used
for industrial manufacturing employing ML [49] and Deep Learning (DL) algorithms [50].

Hybrid-based

Different strategies have different strengths that allow them to recognize specific fault modes and not oth-
ers. As a result, some researchers have combined various strategies to detect more fault modes with better
accuracy. In most cases, fuzzy logic was integrated with a data-driven method in the hybrid system [51].

In summary, as model-based and data-driven are the newest techniques compared to knowledge-based,
we are trying to employ one of these trend techniques. Although, due to the complexity of developing a
mathematical model of the system, the model-based technique is out of our scope, and our main focus will
be on the data-driven method.

2.3.2 Machine Learning
From the perspective of maintenance, a system can be seen as a self-maintained/self-aware machine when
it can self-assess its health conditions. In order to avoid possible faults, the machine also should apply
similar information from other peers for smart maintenance decisions [52]. Intelligent analytics can be
applied to each machine for achieving intelligence. The ability to measure the machine’s health conditions
and deliver the assessment outcome considers as self-aware for a mechanical system. Employing the data
mining technologies, the evaluations can be achieved in order to investigate the collected data from the
particular machine and its ambient conditions [24].

ML and DL algorithms are applied in data-driven PdM for industrial manufacturing to diagnose the
fault [6, 49, 50]. Classical ML algorithms, as shown in Figure 2.3 section (a), (e.g., Support Vector Machine
(SVM), Random Forest (RF), Logistic Regression (LR), Decision Tree (DT)) usually need to gather a huge
quantity of data from the health conditions and several failure status situations for model training. Then,
the feature engineering is derived from the time, frequency, and time-frequency domain [53, 42], and the
machine’s health is achieved by applying the extracted features. Nevertheless, DL, as depicted in Figure 2.3
section (b) (i.e., various neural network models), avoids the mentioned complex feature engineering and
can be known by applying an end-to-end learning method, which is accomplished by means of adding
deep layers between the prediction outcomes and the raw data. Therefore, the deep models can be seen
as a ”black box,” which delivers the input estimation result, considering this as the important difference
between ML and DL. For all of these thoughts, both ML and DL have been extensively applied in the
PdM’s application.

16 A Comprehensive IoT-Enabled Predictive Maintenance Framework



CHAPTER 2. BACKGROUND

Figure 2.3: Flow of machine learning (a) and deep learning (b), reconstructed from [6]

For ML algorithms, sufficient data harvesting and feature engineering help improve algorithm perform-
ance. For DL algorithms, the deeper network architecture and the higher dimensional feature vectors have
a significant impact on optimizing the task metric [6].

2.3.3 Predictive Maintenance Framework
Related projects that attempt to create a framework for predictive maintenance are outlined in the follow-
ing. The IMS Watchdog Agent™ tool kit [54, 55] is a toolbox of algorithms to assess and predict the
performance of a machine by using modeling and forecasting indicators without considering the decision
making, and it is not involved the association with enterprise systems or MES. Henceforth, the response to
foreseen failures includes human communication and manual synchronization between the enterprise sys-
tems and the Watchdog Agent™ instances, considering that the Watchdog Agent™ is a monolithic solution
and does not propose a variable interface to the shop floor. One of the predictive maintenance applications
which were designed for industrial processes is SIMAP [56], based primarily on neural networks to model
and forecast the indicators. Moreover, SIMAP comprises functionality for scheduling the actions of main-
tenance. Nevertheless, SIMAP has only been applied in a small setting for a wind turbine until now. The
scalability of the decision making module to larger setups is doubtful, and still, it is not involved in the as-
sociation with enterprise systems or MES. Such integration was recognized in the PROTEUS project [13],
a generic platform for e-maintenance, i.e., it incorporated current maintenance management applications
to permit a comprehensive workflow. Since PROTEUS was intended to support maintenance operations
itself, the goal of PROTEUS is different from that of our framework.

A manufacturing big data ecosystem was proposed in [57] in order to present the problems of big data
ingestion, management, and analytics for fault detection in PdM at IoT-based intelligent factories. The
presented method applied a real manufacturing big data ingestion procedure on the whole framework. The
approach achieved many things on the Apache Spark platform, such as effective data management, guar-
anteed data security, and real-time data analytics through the deployment of a data lake, NoSQL database,
encryption protocol. In addition, the MapReduce-based DPCA approach was explained for the fault de-
tection model in this reference. The report confirmed that the presented big data ecosystem could alarm
the system in a real-time fashion several days before an actual event. MapReduce Principal Component
Analysis (PCA) model was presented in [57] to recognize and diagnose the fault. PCA model works only
with unlabeled data without benefits from any data labeling functionality.

A system framework presented in [8] based on Industry 4.0 concepts, which consists of the fault ana-
lysis and treatment process for predictive maintenance in machine centers. The framework comprises
different modules: sensor selection and data acquisition module, data preprocessing module, data mining
module, the decision support module, and maintenance implementation module. Therefore, it displays a
whole framework without discussing the communication layers between different modules of this frame-
work. In addition, the cloud or on-premise infrastructure was not investigated. In [14], investigated a
systematic framework that took advantage of using the cyber-physical systems. The framework is a five-
level architecture for operating CPS in the manufacturing process. The process from acquiring data un-
til generating meaningful information and the decision making process for the end-user are covered in
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this architecture. The 5C architecture applies new calculating and communication methods such as cloud
computing to offer connectivity between machines. Moreover, an adaptive clustering method has been
presented to achieve the necessities of this architecture with more innovative analytical methods, which
can automatically recognize new working regimes.

The base concepts, materials, and methods for developing an Industry 4.0 architecture were presented
in [9]. The main focus of this research is on predictive maintenance, whereas relying on low-cost principles
in order to be reasonable by Small Manufacturing Enterprises. A cost-effective, easy-to-develop cyber-
physical system architecture was presented as the result of this investigation. This PdM system supplies
data in the cloud where the Recursive Partitioning and Regression Tree model technique performs to predict
the rejection of machined parts based on a quality threshold.

PdM framework taking into account the Big data challenges was investigated in [58]. It is shown that
the traffic load over a network can be diminished significantly by applying cloud computing and cloud
storage facilities. A mobile agent-based approach for predictive maintenance in cloud manufacturing is
also presented in this report. The mobile agent-based approach is an emerging technique that allows a
new paradigm for predictive maintenance as remote services instead of traditional centralized methods and
offers distributed maintenance services within the manufacturing enterprises. Furthermore, a mobile agent
can arrange different services (e.g., signal processing algorithms) to adjust variable operations and tasks
in a dynamic manufacturing situation. Mobile agents allocate signal processing algorithms (e.g., feature
extraction) to the cloud nodes instead of transmitting raw sensing measurements to the central server, and
especially in Big Data Era, they can decrease the traffic load over the network. The described mobile
agent-based approach codes the feature extraction algorithms in the mobile agents, direct them to the cloud
nodes for locally processing raw data, and transports the extracted features to the central server. Such a
new approach could greatly decrease data transmission and, consequently, advance system efficiency.

A maintenance platform has been developed in [15] by applying lambda architecture [59] and taking
into account the data-driven model. The computing process and data storage in edge and cloud nodes are
positioned in this platform. Updating the learning model is the approach that the architect can advance the
accuracy. Lambda architecture is a suitable example while consider evolving a framework that aids from
edge-cloud were calculating.
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Chapter 3

Systematic Literature Review

This chapter aims at addressing the first research question of this study. This question enquires available
predictive maintenance techniques based on Industry 4.0 paradigm. To answer the first research ques-
tion, we aim to survey the existing PdM frameworks and their available techniques using the Systematic
Literature Review (SLR) methodology to identify, classify, and analyze a set of studies.

SLR is a famous method that is broadly used to recognize, analyze, interpret and assess the existing
body of knowledge in a specific research interest [60, 61]. Reviewing the existing literature based on
a predefined review protocol is the main advantage of the SLR methodology, which produces impartial,
precise, and robust review results. This predefined protocol is also employed to confirm the reproducibility
of the obtained results. For the implementation of SLR, we follow the Kitchenham guideline [60].

The rest of this chapter is categorized into three sections. First, Section 3.1 presents the review protocol
that was employed as a basis for conducting our survey. Section 3.2 discusses the steps and intermediate
results that lead to the selection of the final set of studies. Subsequently, Section 3.3 reports the obtained
results.

3.1 Review Protocol

In this section, we present the review protocol that was employed to conduct our study. This protocol
specifies the research questions as well as the sources, search strings, and the criteria that were employed
in order to select relevant primary studies. First, a broad search was conducted to find a set of papers
proposing frameworks and their techniques for PdM. Subsequently, we extracted and synthesized data
from this set according to data extraction fields.

The first step in an SLR is to construct the research questions. We formulated three research questions to
acquire knowledge about the existing PdM frameworks and their techniques within research communities.

• SLR-Q1. What are the available PdM frameworks?
• SLR-Q2. Which PdM frameworks are in the context of Industry 4.0?

The next step in SLR is to define a search strategy that first identifies the initial set of primary studies.
To this end, we define the Search Sources as shown in Table 3.1. These sources were chosen since they
reasonably cover most of the scientific publications (e.g., journal papers, conference proceedings, and
workshop papers) in the field of computer science. As also suggested by [61], these databases guarantee to
provide the confidence level for coverage of all the required primary studies. After identifying the research
questions and having a relevant literature database, we employ selection criteria to include or exclude a
primary study. These criteria aim to narrow down the obtained results by excluding the studies that were
not relevant to the proposed research questions. As suggested in [60, 61], the selection criteria consists of a
set of quality criteria and a set of exclusion criteria. For qualitative evaluation, we consider the following
points into account: Firstly, whether the authors propose a framework, secondly, if the work uses a data-
driven approach, and lastly, whether the scope of the work is towards an industrial application. Therefore,
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Table 3.1: Utilized Electronic Databases

Index Database Institution
1 ACM Digital Library [62] Association for Computing Machinery (ACM)
2 IEEE Xplore [63] Institute of Electrical and Electronics Engineers (IEEE)
3 ScienceDirect [64] Elsevier
4 MDPI [65] Molecular Diversity Preservation International
5 SpringerLink [66] Springer

we apply the following questions to select papers that meet the quality requirements:

• QC1. Is there a framework proposal?
• QC2. Is the framework based on a data-driven methodology?
• QC3. Does the scope of the paper cover an industrial application?

Furthermore, it is necessary to remove all studies that are not relevant to the scope of this dissertation. The
following exclusion criteria apply in this process of removal:

• E1. Works not related to PdM.
• E2. Works not related to ML.
• E3. Works that do not present frameworks.
• E4. Works dated before the year 2010.

3.2 Review Conduction
This section presents the steps and intermediate results that lead to select the final set of studies. To begin
this selection procedure, we formulate specific search strings, which used for each database, as described
below:

• ST1: Abstract: ("predictive maintenance" AND "framework") AND Keyword: ("predictive main-
tenance") AND All Metadata: ("machine learning")

• ST2: Abstract: ("predictive maintenance" AND "Industry 4.0") AND Keywords: ("predictive main-
tenance") AND All Metadata: ("machine learning" AND "framework")

It should be noted that the survey was executed on January 29, 2021. A total of 144 studies were taken
from the five scientific databases after applying the time consideration criterion (E4). Taking into account
the rest of the selection criteria (ECs and QCs), we then read the important parts of the papers, such as
abstract, introduction, and figure analysis, to select the final candidates. This amounted to a total of 27
papers. Figure 3.1 shows the number of papers obtained in each of the databases selected in the initial
search stage and the final search stage.

3.2.1 Publication Distribution Along the Years
Figure 3.2 shows the number of articles published between 2010 and 2020 (using the extraction criteria of
this paper). This search confirms that PdM is a new maintenance technique since before 2017, the number
of published papers is 4. On the other hand, after 2017, a growing interest in this research area was noted.
This fact is probably associated with the increase in the size of data that industrial equipment and the recent
advances in ML algorithms are generated.

3.2.2 Citation Analysis
The number of citations is important for an article since it determines how many times other studies have
cited an article. However, as the release date of most papers being 2020, maybe this approach is not as
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Figure 3.1: Initially found papers vs. final selected papers per each database

Figure 3.2: Number of papers per year

helpful as expected. Therefore, to perform a citation analysis, the Web of Science platform was selected to
determine the number of citations of the selected papers in this review. The citation analysis reveals that
in the top 11 cited articles, the work published by B. Bagheri et al. [14], which relies on Cyber-physical
systems architecture for self-aware machines in Industry 4.0 environment, received the maximum number
of citations (citations=254). Moreover, an article published by Zhe. Li et at. [24] received much attention
from the scientific community. This paper presented a framework for formulating a systematic approach
and obtaining knowledge based on Industry 4.0 concepts for predictive maintenance. The citation analysis
also revealed that the average number of citations of all the research papers is 20.88.

3.3 Review Results

So far, this chapter has focused on the review protocol used to conduct SLR and the reason behind the 27
studies being selected for further evaluation. In this section, we analyze the contributions of these studies,
and in each subsection, each defined research question in Section 3.1 is answered.

This research question contributes to the scientific community by identifying the available PdM frame-
works. To this end, we suggest investigating the Building Blocks (BBs) of each proposed framework and
classify them by identifying the commonly used BBs and their relevant techniques. By analyzing the se-
lected 27 papers, we found the most commonly used BBs. The frequency of repetition of these blocks is
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listed in Table 3.2.

Table 3.2: The frequency of frameworks’s building blocks

BB repetition(%)
Data acquisition 48
Data preprocessing 11
Data processing 15
Feature engineering 37
Predictive analytics 15
Decision making 22

After an analysis of the research papers between 2010 and 2021, using the extraction criteria, Table 3.3
was built. It contains an overview of the most recent papers for PdM, where each line is related to a paper.
The first column, "Reference," contains the paper reference. The second column, the publication year of
papers. The third column shows the citation of the papers. The fourth column, "Database," represents
the scientific digital library that each paper is chosen from it. The fifth column, "Search String," shows
that with the help of which search string each paper is found. The sixth column, "Equipment," shows
the used equipment for maintenance prediction. The seventh column, "Sensor Data," shows the data type
used in the ML learning algorithm, which can be Single-sensory (Single) or Multi-sensor (Multi). Finally,
the eighth column, "Preprocessing," shows which techniques are employed for preprocessing the data set
for feeding the predictive algorithm. These techniques are grouped into four categories. The first group,
Data Cleaning, addresses the process of removing or modifying corrupted data that are received from
the sensors. The second group, Dimension Reduction, addresses the transformation process of data from
a high-dimensional space into a low-dimensional space without losing any meaningful properties of the
original data. The third group, Data Enrichment & Correlation, addresses the enrichment process in order
to fill the missing information from the original data; this process can be done using the additional data
or by finding the correlation among the existing data. Finally, the fourth group, Feature Engineering,
addresses the process of extracting special features from raw data, which these features can subsequently
be used for predictive analytics. Table 3.4 summarizes these four preprocessing groups.
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Table 3.4: Preprocessing column descriptions

Key Description

C Data Cleaning
D Dimension Reduction
E Data Enrichment & Correlation
F Feature Engineering

The last column of Table 3.3, Predictive Analytics, shows which data mining method is utilized for a
prediction process that can be traditional ML or DL. With the review accomplish, it can be verified that
PdM is being used for the most diverse equipment of the most varied areas.

Table 3.3 shows that each PdM application uses specific equipment. The equipment includes tur-
bines, motors, compressors, pumps, fans, milling machines, among others. Another interesting aspect that
emerges from observing Table 3.3 is that there is a preference for multi-sensory data collection in order to
detect anomalies in the machines. Through the mentioned aspects of the most recent papers for predictive
maintenance (Table 3.3), it is possible to answer research questions SLR-Q1 and SLR-Q2 (described in
Section 3.1). To elaborate, the modular design for a PdM framework, considering the industrial application
(of the use cases mentioned in papers) and for the most used data-driven approach, there is no preference
for equipment to perform PdM strategies. Finally, the main characteristics of the most used techniques and
how they are employed in the PdM applications are presented.
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Chapter 4

Proposed Predictive Maintenance
Framework

Traditional manufacturing automation can be considered model-based manufacturing. Experts obtain ex-
perience by making physical observations such as noise recognition and visual inspection from manufac-
turing systems. Together with these experiences, human intelligence will derive physical models using the-
oretical, experimental, and numerical methods [75]. Although outstanding achievements have been made
and applied in various applications, such as simulation and performance evaluation, these model-based
methods have limited accuracy and range due to plenty of simplifications and assumptions. Moreover,
considering that the human experts are not assured impartial towards all obtained experiences, we can see
that there is no enough accuracy in driving the physical models as well. On the other hand, modern manu-
facturing is data-driven, in the sense that data generated through manufacturing activities are fully utilized
to enhance manufacturing quality positively and thus enrich flexibility and autonomy of the system [75].

This study aims to formulate a systematic approach and obtain knowledge for fault detection, interpret-
ation, and prediction based on Industry 4.0 concepts. Therefore, a system framework is designed in the
following sections that include the entire fault analysis and treatment process for predictive maintenance in
industrial equipment based on data mining and Industry 4.0 concepts.

4.1 Design Principle

Designing and developing an intelligent system to enable the health status of machines is one of the big
challenges for the Industry 4.0 paradigm. PdM has been introduced as a key subject for Industry 4.0, where
its application allows for a reduced unscheduled downtime and a consequent improvement in productivity
and a reduced production cost [71]. The utilization of vendor-specific solutions for predictive maintenance
purposes and the diversity of technologies in brownfield for condition monitoring of industrial equipment
reduces the flexibility and interoperability required by Industry 4.0. Considering Industry 4.0 key technolo-
gies such as big data, cyber-physical systems, IoT, and cloud computing, a framework to provide a general
overview for the end-to-end data life cycle is needed. Therefore, we conduct our framework design based
on Industry 4.0 concept and two reference architecture (5C and RAMI 4.0) that was discussed in Chapter 2.
Horizontal and vertical integration over the whole value network helps with designing a robust and scal-
able framework. The system design method allows the developer to select the technologies compatible
with their corporate guidelines/specific implementation challenges.

Based on the literature reviewed in Chapter 3, the most commonly used techniques and concepts are
considered in designing the framework. In the majority of the papers, only a part of the techniques are
focused, and they lack providing an end-to-end architecture for PdM. Therefore, we aim to cover all the
aspects, concepts, and techniques to achieve a scalable and robust end-to-end framework. The proposed
framework is designed based on a data-driven approach since we consider the data life cycle in the factory
from the shop floor to the management floor.
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In the design process based on the data-driven methodology, multiple steps are considered, such as
data collection, design of an efficient and suitable dataset, and employing the most promising algorithms
in the field of machine learning. Finally, maintenance strategies can be implemented based on the result of
machine learning. Each step is considered as a building block that, with the combination of these building
blocks, we can apply a data analysis process on industrial systems. Some of the most popular techniques
found in review papers in predictive maintenance for industrial machines were included in the proposed
method.

4.2 Framework Overview
Monitoring systems in industrial machines may require data mining methods for fault diagnosis and pro-
gnosis according to different monitoring purposes or components. Therefore, a systematic framework
based on data mining to achieve fault diagnosis and prognosis for industrial machines is imperative. Fig-
ure 4.1 shows that a system framework is formulated for predictive maintenance based on Industry 4.0
concepts. This framework can monitor plant-floor assets, link the production and maintenance operations
systems, obtain data, collect feedback from a local/remote customer site, integrate it into upper-level en-
terprise applications, discover hidden information about impending failures, and generate maintenance
knowledge. It can also monitor the state of manufacturing processes and predict the condition of the equip-
ment.
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Figure 4.1: End-to-end predictive maintenance framework

The system can make a maintenance decision to prevent failures occurrence effectively to ensure equip-
ment, personal safety and reduce the economic loss caused by failures. In addition, it can use fault
diagnosis, performance assessment of the degrading level, and fault prognosis models to achieve near-
zero-breakdown performance and improve the company’s productivity. The framework includes five main
building blocks: Data Acquisition, Data Preprocessing, Predictive Analytics, Result Evaluation and
Decision Making Blocks. All these building blocks have clear ordinal relations and specific functions in
the system.

The framework is based on many key techniques of Industry 4.0 concepts, such as CPS, IoT, Big data,
machine learning, and cloud computing. In the following sections, each layer with the most used techniques
is described.
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4.3 Data Acquisition Block
To construct the PdM system for an industrial machine, first, a data acquisition module is developed with
three sub-blocks, as shown in Figure 4.2.

Data Acquisition

Sampling Schema

Source of Data

Single Sensory

Multi-Sensory

Data transfer

Data Storage

Wired Hybrid

Time-synchronization
Data aggregation

Wireless

Data Fusion

Data Visualization

Local Cloud Hybrid

Fix Adaptive Hybrid

Figure 4.2: Data acquisition block

This block is utilized to gather, store, and forward the collected data. Data acquisition is one of the
essential steps in the PdM process as it can affect the quality of data and the performance of PdM. The
desired design for the data acquisition block is dependent on the type of engineered systems and their
operating conditions. There are four decision variables for an optimal design of data acquisition, and these
are as follows:

• Sampling schema
• Data transfer (wired, wireless, hybrid)
• Source of data (single-sensory, multi-sensory)
• Data storage (cloud, local, or hybrid)

In this building block, we also consider the visualization functionality called data visualization. Since we
are looking for abnormalities, we can always get hints from raw data visualization. The sampling frequency
method can be different. It depends on the signal types and their variation in time (in an industrial applic-
ation, we are working with time series data). For example, when changing the signal is not observable,
using a simple fixed sampling frequency with a longer interval is preferred.

Similarly, in the case of a signal with abrupt changes, a higher sampling frequency is better. Therefore,
an adaptive sampling method can be utilized to optimize bandwidth usage. In addition, a combination of
fixed and adaptive sampling can also be an optimized solution.

Since the use case is of an industrial environment, the location and accessibility of the corresponded
equipment are important for collecting sensory data. This equipment can be wired-, wireless- and a hybrid.
Furthermore, accessibility, sensor expenses, accuracy, and sufficient data transmission speed are parameters
included in deciding the type of data transferring method to have.

Data acquisition can be single-sensory or multi-sensory. In many PdM scenarios, it is needed to in-
vestigate the impact of several sensor data on system failure and not just a single sensor data. With the
help of company experts, it can be decided which parameters may impact more on the system breakdown.
Moreover, for investigating the most important parameters, some mathematical techniques can be applied
to find the correlation between parameters; this helps with understanding the healthy and unhealthy condi-
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tions of the system. A significant concern in the multi-sensory method is how to align all the data coming
from different sensors. For instance, pressure-, temperature- and vibration data should be collected approx-
imately simultaneously to analyze the effect of these parameters on the machine’s health condition. Hence,
data aggregation and data fusion techniques should be applied to make a robust and consistent dataset (spe-
cifically when we are using dynamic sampling frequency). Nevertheless, data collection methods are not
defined in this framework since they depend on the available ICT infrastructure at the company or user
preferences.

4.3.1 Data Storage Block
Data storage block involves storing the data in storage mediums after collecting the data from sensors.
There are different storage methods (e.g., cloud or local) that depend on the user’s preference and infra-
structure availability. The data can be stored in a database locally or in the cloud and then transmitted to the
control and monitoring center through a wired or wireless network. An industrial IoT application harvests
a high volume of time series data. Therefore the architecture of the storage module should be designed in
terms of capacity, accessibility, and cost. For handling big data, we can consider distributed architecture
(e.g., edge and cloud) and also popular file/data format for storing a dataset.

4.4 Data Preprocessing Block
The data preprocessing step can effectively clean the raw data, reduce the data dimension, and store it
back in the warehouse for knowledge discovery. Therefore, massive data can be converted into features or
statistical values as input variables of the data mining process [92]. Raw data measured from sensors can
be processed to generate more convenient features that represent the health states of a system.
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Figure 4.3: Data preprocessing block

As presented in Figure 4.3, the data preprocessing step can be divided into four detailed steps:

• Data cleaning
• Data enrichment and correlation
• Feature engineering
• Dimension reduction

For a given situation, each step can be selectively applied while data preprocessing.
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4.4.1 Data Cleaning
Data cleaning is the procedure of detecting and correcting corrupt or inaccurate records from the database
by smoothing noisy data, identifying or removing outliers (points with behavior quite different from the
others), and resolving inconsistencies [92]. The handling of noisy or corrupted data includes identifying
features beyond the expected standard (called outlier) or other unplanned behaviors. The root causes are
diverse, such as measurement variations of equipment or human interference, among others. The solution
can simply remove the value if the sample is recognized as an irregularity or resolving it by utilizing
binning, clustering, or other methods. Outlier elimination is the simplest solution to enhance the quality of
ML training. Although, before removing such a value, it should be carefully studied that if these outliers
are happening because of a new measurement approach or it is just noise [80]. An outlier may represent an
opportunity for a discovery, which might research new directions not noticed before. Data inconsistency
correction is also a part of the cleaning task. Inconsistency is the presence of incompatible values in the
same attribute, which in many cases may be caused by the combination of multiple databases.

An example will be if each database uses various scales to measure power. One table could utilize watt
and the other kilowatt. A combination of the values would be inconsistent. The inconsistency correction
can be done manually, automatically, or even considering other types of normalization (see Data enrichment
and correlation in the following section).

4.4.2 Data Enrichment and Correlation
This preprocessing step consists of two main steps: filling missing values and normalization. Filling miss-
ing value deals with the vacancy of data, which happens if one or more features do not exist. The problem
can be resolved by eliminating the attribute or eliminating the entire sample if this may create a problem
with other sample attributes. There exist other solutions with more complicated techniques, such as assign-
ing the mean, a moving average, or even the minimum or maximum values to those missing values [80].
Raw data needs to be scaled to avoid particular variables dominating the predictive method. Autoscaling
standardizes the variables in a way that ensures each variable is given equal weight before the application
of the detection method [57]. For instance, it will avoid an excessive difference between the maximum and
minimum values (e.g., 0.001 and 10000). It is important for many algorithms such as the neural networks
and K-Nearest Neighbourhood (KNN) algorithms. Here, we always execute a min-max normalization [84].

4.4.3 Feature Engineering
Manufacturing sensors monitor production processes that are usually happened periodically and distin-
guished by a particular span. The feature engineering module is designed to transform and process the raw
sensor data to extract the signal’s main feature. A feature engineering component preprocesses incoming
raw data into values with more significant meaning for predictive analytics, for example, the current aver-
age value instead of simple amplitude. This block consists of two main modules: Feature generation and
Feature selection.

Feature Extraction

Generally, the features can be extracted from three domains: (i) time domain, (ii) frequency domain, and
(iii) time-frequency domain.

Time domain data processing relates to feature extraction of the time series data, for instance, the
peak, mean, and Root Mean Square (RMS) value [94]. For example, Song et al. [95] discovered a linear
relationship between the AR parameter and the surface roughness and distinguished the vibration time
series using the autoregressive moving average model. Campatelli and Scippa [96] predicted the cutting
force coefficients by analyzing the time-domain behavior of the cutting force signal. Ertekin et al. [97]
measured the RMS of the AEDC signal, which was detected as the most sensitive feature for wearing of
the tool. The average RMS feature of the current signal also adds to the estimation of tool wear [97].

Frequency domain data processing can extract more inherent features from cyclic data series, mainly
when data carries background noise which is hard to recognize in the time-domain. For example, in [98],
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Altintas et al. analyzed the cutting force and chatter stability during the dynamic cutting process using
Nyquist law in the frequency-domain. The investigation of tool vibrations employing fast Fourier trans-
form was proved an effective means for the prediction of surface roughness [99]. By analyzing the motor
current in the frequency-domain, the sensorless automated condition monitoring was achieved for predict-
ive maintenance of machine tool [100]. In the FFT method, the complete frequency spectrum is presented
with the average frequency composition. Almost, the sensory data is dynamically varying over time.

Therefore, time-frequency domain data processing gives a more reasonable outcome by partitioning
the time series data into short time intervals for frequency analysis [101]. Specifically, wavelet analysis
and short-time Fourier transform are the two prevalent techniques to analyze cutting force [102], vibration,
current, and sound signal. In Figure 4.4, a demonstration of common statistical features is presented.

Figure 4.4: Summary of statistical features in time-domain and frequency-domain according to [103, 104]

Feature Selection

Feature selection is choosing and eliminating given features without changing them. The task of feature
selection, which is known to be NPhard [105, 106], entails the search for an optimal subset of features
in such a way that this chosen subset can best represent the original data set. In addition to removing
irrelevant and redundant features, the resultant feature subset, with a fewer number of features, will lead to
reduced computational cost and simpler models. In feature selection techniques, it is intended to remove
features with missing values, low variance, and highly correlated features. In paper [86], the work applies
wrapper and filter techniques, and in paper [71], the H2O gradient boosting machine [107] calculates the
importance of each feature. Feature importance refers to techniques that assign a score to input features
based on how useful they are at predicting a target variable. These techniques can be possible to apply in
case of the availability of the labeled data.

Wrapper methods wrap the feature selection process in the classifier itself. The computation involved
for the filter methods is relatively straightforward and less intensive compared to the wrapper methods.
Filter methods are robust against overfitting when compared with the wrapper methods [86].

4.4.4 Dimension Reduction
We generally do not want to deliver a large number of features directly into a machine learning algorithm
as they are expensive to store, causing slow-down computations, large samples are required to avoid over-
fitting, and in algorithms like K-nearest neighbors, distances in high dimensions are distorted. Extracted
condition indicators exhibit a variety of correlations between one another. It might cause inefficient classi-
fication of health states since many classifiers require independent features to obtain a satisfactory accuracy.
Overcoming this drawback, there are two general approaches which are linear and non-linear methods. The
most popular linear methods are PCA, LDA (Linear Discriminant Analysis), and SVD (Singular Value De-
composition). The non-linear ones are isometric mapping (isomap) and locally-linear embedding. The
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most used technique in literature such as [57, 76, 108] is PCA. Based on the reviewed literature in the pre-
vious chapter, the most suggested method to reduce dataset dimensions is to use the PCA technique. PCA
is utilized to reduce the feature vector’s dimension space and find the correlation between the features. The
central idea of PCA is to reduce the dimension of interrelated features while preserving the variance in the
data by projecting the feature vectors onto a new set of variables called principal components [84].

4.5 Predictive Analytics Block
Predictive analytics block is the heart of this framework. With this block, the aim is to predict the correct
label (healthy/unhealthy) for new incoming sensor data in the real-time prediction phase. In this step,
first, the preprocessed dataset from the previous building block is split into a training dataset and test
dataset. In machine learning, the training dataset is utilized for training the model to learn healthy and
unhealthy patterns, while the testing dataset is used to validate the model and tune its parameters like the
anomaly threshold. Although, there are some challenges we deal with in this step for identifying healthy
and unhealthy data.

Despite the ease of collecting data from experiments from industrial machines, it is not feasible to run
industrial equipment for years just to collect wearing data. The only allowable and available data from
such industry machines for some experimental study is the data recorded during regular operation. It is
also impossible to simulate the machine failure mode as it might cause permanent damages and most likely
violate the machine’s guarantee. These are real scenarios that can happen everywhere, and it needs to be
deal with constraints and restrictions.

Figure 4.5: Predictive analytics block

Therefore, in the proposed framework, the Predictive Analytics Block as presented in Figure 4.5 is di-
vided into three main sections: (i) supervised learning, (ii) semi-supervised learning, and (iii) unsupervised
learning.

In machine learning, a contrast has traditionally been made between two major tasks: supervised and
unsupervised learning [109]. In supervised learning, the algorithm is presented with a set of data points
consisting of a given input x and an output value y. Then, the goal is to construct a classifier or regressor that
can estimate the output value for previously unseen inputs. Output values in unsupervised learning are not
provided. Alternatively, these algorithms reveal an existing underlying structure from the inputs. A well-
known example of unsupervised learning, unsupervised clustering, works based on the structure retrieval to
map the given inputs (such as vectors of real numbers) to a set of groups such that similar inputs are mapped
to the same theme [110]. The semi-supervised learning method is a branch of machine learning that aims
to combine these two tasks. Typically, semi-supervised learning algorithms try to enhance performance
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in one of these two tasks by employing information generally correlated with the other. For example, in
classification situations, some extra data may be used to facilitate the process. For clustering approaches,
the learning procedure might benefit from the knowledge that specific data points belong to the same class.

Semi-supervised classification approaches are mainly related to scenarios where labeled data is rare.
In those cases, it may not be easy to construct a reliable supervised classifier. This situation occurs in
application domains where labeled data is expensive or difficult to obtain, like computer-aided diagnosis,
expensive industrial equipment, and drug discovery. If adequate unlabelled data is available and under
specific data distribution assumptions, the unlabelled data can help construct a more reliable classifier. In
practice, semi-supervised learning approaches have also been implemented to scenarios with no notable
shortage of labeled data. If the unlabelled data provide further information relevant to prediction, they
can potentially be used to achieve enhanced classification performance [110]. Therefore, our proposed
PdM considers these three learning approaches and based on the availability of labeled data, any of these
methods can be chosen.

When there is historical data and records about the health condition of the system and failure events,
the machine learning model is trained with labeled healthy and faulty data. There are plenty of algorithms
to train our model, and this also can be categorized into groups: classifier and regressor. Regression and
classification are categorized as supervised machine learning. Both are utilizing the same concept known
datasets (referred to as training datasets) to make predictions. Basically, classification aims to predict a
label, and regression is about predicting a quantity. One looks for predicting health conditions with a
classifier, and with a regressor, one looks for the Remaining Useful Life (RUL) of equipment.

In both supervised and unsupervised techniques for model building, several popular ML algorithms are
used.

Table 4.1: Machine learning used in reviewed literature

Machine Learning algorithm used in PdM (%)
Support Vector Machine (SVM) 24.3
Random Forest (RF) 18.9
K-Nearest Neighbour (KNN) 16.2
Decision Tree (DT) 13.1
Artificial Neural Network (ANN) 10.8
Gradient Boosted Tree (GBT) 8.1
K-mean Clustring, CNN, LR, Gaussian Naive Bayes 5.4
LM, RPART, AE, RNN, Peak detection 2.7

Table 4.1 reveals a preference for some ML learning methods based on the literature reviewed in
Chapter 3. For example, the most employed ML algorithm is SVM, RF, KNN, followed by neural network
based methods (i.e., ANN - Artificial ANN). Other ML algorithms are used for a specific use-case; for
example, in [67] due to lack of labeled value, an auto-encoder algorithm is employed. Furthermore, in [82]
peak detection technique is used for unsupervised machine learning. In the next subsections, we describe
the main characteristics of the most used ML methods and how they are employed in PdM applications.

4.5.1 Common Supervised Learning Algorithm

Support Vector Machines

SVM is a broadly used and known ML method for performing classification and regression tasks because
of its high accuracy [111]. SVM is a set of supervised learning approaches that perform regression analysis
and pattern recognition. Initially, SVMs were non-probabilistic binary classifiers. However, now they
are also employed in multi-class problems. Here, SVM creates n-dimension hyperplanes that divide data
ideally into n groups/classes. One of the main characteristics of SVM is the high precision in the separation
of different classes of data, being able to determine the best point for separating classes of data [112].
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Random Forests

RF is an ensemble learning algorithm composed of multiple Decision Tree classifiers, and the category of
its output is determined jointly by these individual trees [113]. The RF is provided with many significant
advantages. For instance, it can handle high dimensional data without feature selection; trees are independ-
ent of each other during the training process, and the implementation is relatively simple. In addition, the
training speed is usually fast, and at the same time, the generalization ability is strong enough.

4.5.2 Common Unsupervised Learning Algorithm
K-means

The k-means model is a common clustering algorithm that employs an unsupervised approach to determine
a set of clusters [114]. The primary purpose is to discover the k partitions (or clusters) of the dataset so
that “close” samples to each other are correlated with the same cluster, and “far” samples from each other
are correlated with different clusters [115]. The k-means algorithm is easy to implement. In addition,
it presents good performance and handles large data sets (as long as the number of clusters k is small).
Moreover, it can change the centers of the clusters by retraining when new samples are available. Another
essential feature of the k-means algorithm is that it tends to minimize inter-class variance and increases the
extra class distance [116].

Artificial Neural Networks

Artificial Neural Networks (ANNs) are intelligent computational techniques inspired by the biological
neurons [117]. An ANN is composed of several processing units (nodes or neurons) with a relatively
simple operation. Communication channels usually connect these units with an associated weight; they
only operate their local data indicated through their connections. The intelligent behavior of ANNs comes
from the interactions between the processing units of the network. ANNs are one of the most common
and applied ML algorithms, and they have been proposed in many industrial applications, including soft
sensing [118] and predictive control [119]. Firstly, their main advantages are that no expert knowledge to
make decisions is needed since they are based only on the historical data (as the k-means model). Secondly,
even if the data is inconsistent, they do not suffer degradation (i.e., ANNs are robust). Thirdly, building an
accurate ANN for a particular application can be implemented in real-time without changing its architecture
with every update. However, some disadvantages of ANNs are that, firstly, networks can reach conclusions
that deny the rules and theories established by the applications. Secondly, training an ANN can be time-
consuming. Lastly, they are the “black box” method (it is impossible to know why the ANN model has
reached an output prediction), and a vast data set is needed for an ANN to learn correctly.

After training the model by train dataset, it is time to validate the trained model with the test dataset in
the model validation module.

4.5.3 Model Validation
While training a model, we need to know whether it works and can trust its predictions. Could the model
hardly memorize the data it is fed with, and therefore unable to make good predictions about coming
samples or samples that it has not seen before? in this block, we want to find a solution for this challenge
after training the model.

Methods for evaluating a model’s performance are divided into two categories: namely holdout and
Cross-validation. Both methods use a test set (i.e., data not seen by the model) to evaluate the model
performance. It is not recommended to use the data we used to build the model to evaluate it because our
model will simply remember the whole training set and consistently predict the correct label for any point
of the training set known as overfitting.

The purpose of the evaluation is to test a model on different data than what it was trained on it. This
provides an unbiased estimation of learning performance. In this approach, the dataset is randomly divided
(for time-series data, it is not randomly) into three subsets: Training set which is a subset of the data-
set used to build predictive models, Validation set that is a subset of the dataset utilized to evaluate the
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performance of the trained model. It gives a test platform for tuning a model’s parameters and selecting
the optimized performing model. All modeling algorithms do not need a validation set. The last one is
Test set, or unseen data, which is a subset of the dataset used to evaluate the possible future performance
of a model. If a model fits the training set much better than it fits the test set, overfitting is probably the
cause. The approach is helpful because of its simplicity, flexibility, and speed. Nevertheless, this technique
is often related to high variability since differences in the training and test dataset can lead to meaningful
differences in accuracy estimation.

Cross-validation is a technique that comprises partitioning the original dataset into a training set that
is utilized for training the model and an independent set that is used to evaluate the analysis. The most
common cross-validation technique is k-fold cross-validation, where the original dataset is partitioned
into k equal size subsamples, called folds. The k is a user-specified number, usually with 5 or 10 as its
preferred value. This is repeated k times, such that each time, one of the k subsets is used as the test
set/validation set, and the other k-1 subsets are put together to form a training set. The error estimation is
averaged over all k trials to get the total effectiveness of our model.

For example, when performing five-fold cross-validation, the data is first partitioned into five parts of
(almost) equal size. Then, a series of models are trained. The first model is trained by utilizing the first fold
as the test dataset, and the remaining folds are utilized as the training dataset. The procedure is repeated
for each of these five divisions of data, and the accuracy estimation is averaged over all five cases to get the
total effectiveness of our model. In this procedure, every data gets to be in a test dataset just once and k-1
times gets to be in a training dataset. This significantly decreases bias, as we are using most of the data for
fitting. It also notably reduces variance, as most of the data is being utilized in the test set. Changing the
training and test sets also add to the effectiveness of this method.

Since the most used technique in literature is Cross-Validation (CV), and considering the advantages
of this method, we used this technique in our PdM framework. This approach can be computationally
expensive, nevertheless it is the right approach if the number of samples is small [84].

4.6 Result Evaluation Block
Model evaluation metrics are required to quantify model performance. The choice of evaluation met-
rics depends on a given machine learning task (such as classification, regression, ranking, clustering, topic
modeling, among others). The performance of the ML model should be evaluated in terms of predictive

Figure 4.6: Result evaluation block

accuracy and model interpretability. Predictive accuracy of the proposed approach was performed accord-
ing to the following measures: Accuracy, Recall, Precision, F1-score. These metrics are calculated by
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Eqs. 4.1–4.4, respectively. True Positives (TP) indicate the number of times the classifier correctly pre-
dicts the normal stage of operation of the equipment. False Positives (FP) corresponds to the number of
times the faulty signal was misclassified as normal. A True Negative (TN) is an outcome where the model
correctly predicts the unhealthy condition of the asset. False Negative (FN) informs how many times the
model incorrectly predicts the unhealthy condition for the equipment. The accuracy is the percentage of
correct predictions, not taking into consideration the difference between the normal stage of operation and
the faulty stages. Metrics such as precision can be used to evaluate the performance of the approach. A
system with many false alarms leads to a discredited system. Hence, the system also needs a good recall to
make it more reliable, avoiding permanent damages to the pump [72]. The formulas are as follows [120]:

Accuracy =
T P+T N

T P+T N +FP+FN
(4.1)

Recall =
T P

T P+FN
(4.2)

Precision =
T P

T P+FP
(4.3)

F1−Score =
2×Precision×Recall

Precision+Recall
(4.4)

Where TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False Negatives.
In further steps, when a company in a situation to choose the best model for deploying in the production

line, the essential question is how to achieve the most accurate model. For answering this question, first, we
should discuss another aspect of manufacturing. We need to look for the business challenge a company is
trying to solve using the model. For example, if a model’s accuracy is 99%, it does not mean this model is
the most accurate model for our business challenge. The other metrics introduced earlier, such as precision,
recall, and F1-score may be more useful in our business case. For example, if we do not have a correct
measurement of false positives, the result shows the system is in bad condition, which is not; it will cause
sending an alarm to shut down the production line. Depends on the cost of shutting down and restarting the
production line, this false positive causes financial loss for a company. For tackling this issue, precision is
an effective indicator. If we look back at the precision formula and analyze how it is calculated based on
the confusion matrix as presented in Figure 4.7, finally we have this formula for precision as follows:

Figure 4.7: Confusion matrix with considering precision calculation

Precision =
T P

T P+FP
=

T P
TotalPredictedPositive

(4.5)

Precision shows how precise a model. It means how many predicted positive are actual positive. Therefore,
we can conclude that precision is a good measure to determine when the costs of FP are high.

Another business challenge is FN. Imagine the model predicts a normal/healthy condition for the ma-
chine, which is not valid. The consequence of this predicted negative can be very destructive for sensitive
and expensive industrial equipment. For solving this issue, we need to utilize another metric which is re-
call. If again look at the confusion matrix as depicted in Table 4.8, we can rewrite the recall formula as
follows:
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Figure 4.8: Confusion matrix with considering recall calculation

Recall =
T P

T P+FN
=

T P
TotalActualPositive

(4.6)

Recall measures the number of TP among the actual positive. Therefore, if there is a high cost due to FN,
recall is the relevant and practical metrics to select the best model.

Most business challenges involve detecting more TN, and accuracy performs quite well to indicate
TNs. However, FP and FN commonly have business costs; therefore, F1-score might be a better metric to
employ if we need to find a trade-off between recall and precision. In addition, F1-score is a more useful
metric in the situation of a large number of actual negatives). Therefore, in industrial cases, we can not risk
and evaluate our models just by one of these metrics, such as accuracy. Therefore, we should consider the
company’s business challenges when utilizing these evaluation metrics to choose the best mode.

Moreover, there are some other evaluation metrics such as Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE) [121]. These are used to calculate the distance between the input vector X (which
is the label of data) and the predicted vector Y. RMSE and MAE are defined as below equations. Let
X = (x1,x2, ...,xn) and Y = (y1,y2, ...,yn).

RMSE(X ,Y ) =

√
∑

n
1(xi− yi)

2

n
(4.7)

MAE(X ,Y ) =
∑

n
1 | xi− yi |

n
(4.8)

For example in PdM result analysis n is the number of samples for testing. X is the real RUL of the
equipment, and Y is the predicted RUL of the equipment. The smaller the RMSE and MAE are, the more
accurate the prediction results are and represent the better performance of the model.

So far, we have introduced the evaluation metrics for supervised learning. There are, however, different
evaluation metrics that we can apply for unsupervised machine learning, such as the Silhouette coefficient,
Calisnki-Harabasz coefficient, Dunn index, Xie-Beni score, and Hartigan index [122]. Since most unsuper-
vised learning methods want to identify different clusters among data (e.g., KNN), applying these metrics
aims to investigate if the model can find diverse clusters. For example, Silhouette Score measures how
close each point in one cluster is to points in the neighboring clusters, thus helping in figuring out clusters
that are compact and well-spaced out. In addition, for specific unsupervised approaches such as the peak
detection method, the experts’ decision should evaluate the model’s performance. Finally, these metrics
have been used to evaluate the performance of unsupervised learning techniques in predictive maintenance
work.

4.6.1 Model Deployment
Deployment is the approach by which it is possible to integrate a trained machine learning model into a
production environment to make practical business decisions based on actual data. In the machine learning
life cycle, this phase can be one of the most challenging parts. Primarily, an enterprise’s IT systems are not
compatible with conventional model-building languages. Thus, for reaching a fully integrated framework,
we need to force programmers and data scientists to rewrite some parts of their work.

For the purpose of start using a model for practical decision making, coordination between software
developers, IT teams, data scientists, and business experts is needed to guarantee that the model works
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reliably in the company’s production environment. This reveals a major difficulty due to a discrepancy
between the programming language used for a machine learning model and the languages the production
system can understand. Rewriting the model’s code needs quite a long time and can change the timeline
and schedule in terms of business. In order to gain the most value out of machine learning models, it is
essential to deploy them integrated into production so that an organization can start applying them to make
practical decisions.

In order to enhance the accuracy of the machine learnings’ results, feedbacks of models need to be
regularly updated. Therefore, we can design another module called Model Improvement. This module
can collect feedback after the deployment is done to improve the fault prediction model. The feedback
is gathered from the facility management team (the users) to report false alerts or undetected failures.
This feedback is collected and stored via a maintenance and management system. After the feedback is
collected, a procedure for error evaluation is carried out where the model’s errors are inspected. Following
this, the model is then updated using new training data, and its parameters are tuned to reduce the error
ratio. The improvement of the model is not a systematic approach; the procedure of updating the model
using the collected feedback should be done via a proper schedule and by a machine learning specialist. In
order to give the facility management team a quicker response, an anomaly threshold can be designed as
an external parameter where the user can directly change the setting without a need for a total update to the
model. If the anomaly score (which is an indicator of the model’s accuracy) exceeds a defined threshold, it
can send an alert to the maintenance management system that the model needs to be updated.

4.7 Decision Making Block
The primary purpose of this module is to visualize the result of machine learning and provide an optimized
strategy according to the achieved result. Generally, a diagram of Key Performance Indicator (KPI), also

Figure 4.9: Decision making block

called a spider chart, can be used for presenting the situation of equipment and also some visualization tools
such as Grafana [123] and Power BI [124]. The equipment conditions can be defined in several levels, such
as green, yellow, and red. Green indicates a healthy condition, yellow as a need for inspection, and red for
a critical situation. In the framework, the KPI may be formed according to the outputs of the ML result.
The diagram will enable operators or managers to evaluate the performance visually, and subsequently,
an optimized maintenance schedule can be provided according to the evaluation result. The Maintenance
strategy module can do maintenance planning and scheduling optimization with the help of integrating the
results into the equipment’s control system.
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In this module, maintenance will be implemented after the decision makers choose the strategy for
maintenance. It can be considered as the purpose of the CPS. The physical world is transferred into the vir-
tual one for communication, computation, analysis, and decision making via the previous modules. In this
module, reaction to the physical world according to the results of those modules and to further implement
maintenance to achieve a particular purpose is followed, for example, in the process of minimizing the
cost of maintenance, realizing the zero-defect manufacturing, or reducing breakdown. Moreover, this mod-
ule may also include error correction, compensation, and feedback control, which is based on the results
from the Predictive analytics module to continue to run the equipment and process in a normal condition.
Different techniques can be used to correct and compensate for the errors.

The next chapter presents the investigation of the proposed PdM framework on a printer machine at the
NTS group as a use case.
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Case Study Implementation

In this chapter, a use case implementation of the proposed PdM framework is presented. The selected use
case is an Ink Delivery System installed in a printing machine. This ISU has several components such as
valves, pumps, heater. The higher probability of pump failure compared to other components in the ISU is
an opportunity for executing PdM on it. The pump-related data was collected by NTS'IoT software. The
layers of the framework are implemented as described in previous chapters. Then, different comparisons
are made to analyze the impact of each of these layers on the predictive maintenance results.

An important aspect of the implementation is that the Spark code-blocks are designed to be generic.
With few modifications, we can use these code blocks for different data analytics applications. In our
case study, applying predictive maintenance on the printing machine allows us to manage different data
analysis challenges in Apache Spark, such as collecting data, feature engineering, dimensionality reduction,
regression analysis, and binary classification. In this work, two predictive analytics tasks were handled:

• Predict the RUL of the equipment.
• Predict failure events (faulty values) of the equipment.

The experimental results are obtained on an Intel Core i7 machine with 32 GB of main memory running
Windows 10 with Spark (and MLlib) 3.1.1 [125] and MySQL Workbench 8.0.25 [126]. The primary tool
that was used for the implementation of the predictive maintenance framework is Apache Spark (version
3.1) [125]. Apache Spark (in Python is also known as PySpark) is an open-source distributed platform for
fast data processing.

The rest of this chapter is organized as follows. First, in Section 5.1, the use case is introduced that is a
pump installed in the NTS printing machine. As discussed in Chapter 4, the framework is composed of (a)
data acquisition,(b) data preprocessing, (c) predictive analytics, (d) result evaluation e) Decision making.
In the following sections, each block implementation is presented. Accordingly, Section 5.2 to Section 5.6
present the implementation for our use case per each layer of the proposed framework.

5.1 NTS Use Case Description

As discussed earlier, the proposed predictive maintenance framework is implemented on one of the ma-
chines of NTS Group, called the digital printing machine, in this work. Figure 5.1 depicts the architecture
of the printing machine, in which multiple levels such as communication and control levels are identified.
First, sensor data are transmitted to the Digital Signal Processing(DSP) boards then, data packets are sent to
the PC for further monitoring and analysis. In addition, NTS has a plan to initialize cloud communication
for conducting advanced data analysis such as PdM.
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Figure 5.1: Architecture of digital printing machine of NTS Group

5.1.1 NTS Printing Machine Communication

DSP control board is utilizing a processor from Texas Instruments, a T.I. TMS320F280049C and provide a
closed control loop for ink supply control. Considering DSP to the PC, different equipment from different
vendors should work together under the same and efficient communication protocol. Therefore, at this
level, NTS decided to utilize OPC UA [127] and its delivering raw signal data from DSP to the PC as
presented in Figure. 5.2. The Figure shows all the collected sensory data, and in soft real-time, it shows
the condition of the printing machine. At the red box of Figure 5.2 a list of all parameters collected from
DSP is demonstrated, and at the blue box is a schematic of the control system.

Figure 5.2: DSP to PC communication and monitoring the printing machine
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5.1.2 Selected Component for Predictive Maintenance

NTS printing machine, as a target for applying predictive maintenance, has many different components.
As depicted in Figure 5.3, with feeding temperature-controlled ink (right side) into supply tanks and a
controlling system (left side), it can do the printing. The red box in Figure 5.3 shows four ink supply units
of the printing machine.

Figure 5.3: Test setup with ink supplies

In Figure 5.4, list of components that are installed in the ink supply unit of the printing machine are
shown, such as valves, pumps, pressure sensors, and PCB board. Now we need to investigate the essential
component of the ink supply unit. After consulting with NTS, some critical parts of this control system
were proposed by them as follows: Monitor pumps & sensors:

• Track pump setpoint against other parameters
• Monitor degasser pump & filter performance
• Track changes to machine fingerprints
• Valves: low failure rate, but with 8x6x7=336 valves, this may still be relevant

Develop broad statistical model:

• Link with other data for machine service
• Predict print head performance
• Anticipate maintenance on pumps, filters, and other

Optimize production with print head cleaning
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Figure 5.4: Printbar/Ink supply

Since we have relevant information for condition-based monitoring of the pump, monitoring pumps are
selected among these potentially predictive maintenance application scenarios.
As discussed earlier, Ink Supply Unit (ISU) is the most important part of the printing machine and can be
considered the system’s heart. As shown in Figure 5.5, two pumps are installed in ISU (red boxes), supply
pump and return pump. These two pumps are working together to provide a predefined ink level in the ink
tank.

Figure 5.5: Ink supply unit prototype

The supply and return pumps are P14 and P15 in the Figure, respectively, shown with blue arrows.
The pumps are connected to the supply tank and return tank, respectively, adjust the Ink level and required
pressure in both tanks. Figure 5.6 shows the control system of ISU that controls the printing process.
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Figure 5.6: Schematic diagram of ink supply control Unit

Pump Characteristics

The pump is a kind of diaphragm liquid pump. A filter is utilized in the NTS printing machine beside
the pump to protect it from ink contamination. As it is shown in Figure 5.7, this pump uses Eccentric
rod force to move the diaphragm for inhaling and exhaling the fluid. Diaphragm liquid pumps are based

Figure 5.7: Diaphragm liquid pump [128]

on reciprocating displacement pump technology. An elastic diaphragm (4) is moved up and down by the
eccentric (5) and the connecting rod (6). During the downstroke, the diaphragm sucks in the medium
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through the inlet valve (2). During the upstroke, it forces the medium out of the pump head through the
exhaust valve (1)."The diaphragm hermetically seals off the working chamber (3) from the pump drive
(7)" [128].

Pump Failure Mode

Even though there are many different types of pumps, most of them share common failure modes; in other
words, a phenomenon that occurs leads to inefficiency, failure of a mechanical component, or damage to
the entire pump. Every failure mode is an unwanted occurrence that may not directly impact the function
of the pump. However, in the longer term, the occurrence of the failure modes without proper action may
lead to malfunction, such as leakage [129, 130].

Failure modes can be either hydraulic failures or mechanical failures. Examples of problems of hy-
draulic failures are cavitation, pressure pulsations, radial thrust, and suction and discharge recirculation
[129]. Some mechanical failures are bearing failure, seal failure, inadequate lubrication, excessive vibra-
tions, and fatigue [131]. One of the common problems for this kind of pump is the wearing and bearing
problem that the symptom changes in speed and vibration signals. For example, because of misbehavior
of the pump, the rod place is changed, and it shows some anomaly in vibration or speed of the motor. This
kind of pump is designed for continuous operation. KNF pumps are designed for continuous operation.
Quick start and stop cycles may adversely affect the service life of the brushed motors [128].

In NTS printing machine, there are some root causes for pumps’ failure, such as:

• Eccentric: If any displacement occurs for the Eccentric Rod, it causes extra vibration to the pump.
Therefore, it can be detected by spectrum analysis from captured data of accelerometer (tachometer)
and make FFT or WT.

• Power consumption increased due to particle contamination of the diaphragm. Since contamination
causes the diaphragm to get heavier, the Eccentric rod needs more power for the movement of the
diaphragm/filter.

• Wearing of the diaphragm is one of failure too that cause diaphragm will become less effective
Overtime (less ink flow per up/down movement).

• Voltage or current fluctuation.
• Impulse operation: this pump is designed for continuous operation, and impulse operation can affect

the pump’s life cycle.

We need to investigate the failure root cause of the equipment in our use case pump, to understand
better which techniques can help interpret the PdM result. For example, we can employ a knowledge-
based technique to evaluate unsupervised learning model performance. In addition, by identifying the
different failure root cause, we can categorize data in different failure classes, which helps to have advanced
prediction results.

5.1.3 NTS Engineering Tools
So far, the printing machine structure was analyzed to find a good candidate for applying predictive main-
tenance. The pump installed in the printing machine is selected for this aim. Furthermore, NTS developed
its software tools for controlling and monitoring the printing machine. The following necessary tools from
NTS are introduced that will help in the PdM application.

The printing process is monitored and visualized in real-time by a software tool called NTS Machine
Dev Studio that is running on Windows. It is one of the new industrial products of NTS. In the operating
room, there is a soft real-time view of all the parameters that need to be controlled in order to print the
product in the desired quality. textitNTS machine dev studio enhances industry productivity by visualizing,
controlling various machines, sensors, and controllers in a factory. As illustrated in Figure 1.1, the NTS
machine dev studio locates in the control level. This tool is a flexible graphical user interface with these
capabilities such as performance analysis, calibration, diagnostics, system testing, and software testing.

To be more precise, the NTS machine dev studio interacts with the other Control Level devices within
the factory vertically down with 100 Mbit/s Ethernet Fieldbus. This graphical user interface has many
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features: live visual updating, tracing/charting, dashboard, record and playtesting, parameter management,
logging, and error view. This software is run on PC windows. One of its goals is to understand the
controlling process better and detect any failures by providing live graphs. As shown in Figure 5.9, the

Figure 5.8: NTS graphical user interface

ISU is connected to the PC, and the live sensor data are being collected and monitored. There are many

Figure 5.9: Monitoring ink supply unit

parameters related to the controlling process of this unit. Figure 5.10 shows these parameters for each head
supply unit in red box.

A Comprehensive IoT-Enabled Predictive Maintenance Framework 45



CHAPTER 5. CASE STUDY IMPLEMENTATION

Figure 5.10: NTS software for ink supply unit monitoring

5.1.4 Use Case Development Tools

Based on the hardware/software assessment that we have done so far, we can employ the required tools
according to each phase of framework development and implementation. Since the ISU testbed is ready
and all the connections and sensors are tested, in the device and control level (as illustrated in Figure 1.1),
there is no need for extra HW/SW. The first layer of the framework is the data acquisition, and already
data are being transferred from the control level (the DSP board) to a PC with OPC/UA communication
protocol. Furthermore, the logs of data are being stored in a soft real-time manner on the PC.

The amount of data being received in one hour from one DSP is 14400 Kbyte (and in the future, there
will be 50 DSPs, the data size will be 720 Mbyte/h). Therefore we need to process and analyze data with
sufficient speed to avoid the cost of storing useless data for a longer time. Hence, local database capacity
also should be calculated in terms of system scalability and reliability. For information, the size of a packet
of data from each DSP to the PC in each pooling is 1448 Byte/s.

Networking Tools

For analyzing the communication network in the NTS printing machine, Wireshark [132] tool is employed.
With this tool, we can check the bandwidth utilization and latency of the packet delivery to have a better
understanding of the flexibility of the size of the data packets and sampling frequency that we can have
for our predictive maintenance framework (e.g., if we need data with higher sampling frequency and the
system can provide it).

Data Processing Tools

By employing the NTS machine dev studio, monitoring and detecting failure on the system based on a
fault threshold mechanism is possible. Although for the data-driven model, we can use this software for
collecting data in the first place. For providing a suitable dataset, we need a data log recorder. Therefore,
NTS developed another tool called NTS IoT to capture and store data using the MQTT protocol for com-
munication. Now, this communication setup is between a PC and a server that is in NTS. As depicted in
Figure 5.11, the IoT application is receiving data from the server.
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Figure 5.11: IoT platform for PC-Cloud communication

After collecting data, the processing steps should be done. For processing data, there are some popular
open-source tools like Apache Spark [125]. The Apache Spark [125] is a fast and general cluster com-
puting system for big data, and it has a unified analytics engine for large scale data processing. Spark
and its unique resilient distributed dataset were developed to overcome the limitations of the MapReduce
cluster computing paradigm, which forces a particularly linear dataflow structure on the distributed pro-
gram. Spark runs data science workloads that are up to 100×faster in memory or 10×faster on disk than
Hadoop. It has convenient APIs for operating on large datasets and provides high-level libraries, includ-
ing support for SQL queries, streaming data, machine learning, and graph processing [57]. MapReduce
is a programming model and an incorporated implementation for processing big data sets with a parallel
algorithm on a single machine with multicore CPUs and a cluster [41].

Modeling Tools

For the machine learning part, Apache Spark MLlib is needed, python, panda package. In addition, the
implementation requires the python 2.7 runtime environment and the following python packages: NumPy
1.10.4, scikit-learn 0.17, and pandas 0.17.1.

Data Storage and Visualization Tools

In this case study, we employed MySQL Workbench 8.0.25 [126] database along with Grafana [123] that
can be used for results storage and demonstration. Grafana has a powerful processing engine for time series
data.
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Cloud Provider

For providing cloud infrastructure, now NTS is working with MongoDB [133], which is a general purpose,
document-based distribution database built for the cloud era. According to computing power and storage
size, we can decide which cloud services we want to utilize.

5.2 Data Acquisition Implementation

In this step, based on the proposed PdM framework, there are five sub-modules inside the data acquisition
block, namely Sampling Schema, Data Transfer, Source of Data, Data Storage, Data Visualization. In the
following steps, each module is implemented.

5.2.1 Sampling Schema

First, the sampling schema of the system was investigated. After working with the IoT application of the
printer machine at NTS, it shows that the sampling frequency is 0.033 Hz (one sample per 30 seconds). It
means that the data from the control system is collected every 30 seconds. The collected data is delivered
to an MQTT broker that is connected to a local server at NTS.

The sampling frequency is expected to be constant for collecting all kinds of sensory data (i.e., temper-
ature, pressure, speed); however, there was a dynamic frequency algorithm for some of the sensors in the
NTS software. For example, the sampling rate changed for the tachometer sensor would reach 10 Hz, and
at the same time, pressure and temperature were constant at 0.033Hz.

This sampling frequency behavior (combination of fixed and dynamic style) in multi-sensory meth-
ods is problematic for creating a suitable dataset for machine learning applications. In the multi-sensory
method, data from multiple sensors should be collected approximately at the same time to be feasible for
use in Machine Learning algorithms. One solution is to align the data using techniques such as Interpola-
tion [134]. Interpolation is a mathematical method that fits a function to the data and uses this function to
extrapolate the missing points. The most straightforward type of Interpolation is linear Interpolation, which
fills in the mean of data points on either side of a missing data point in place of the missing data [134].

In our case, the problem is solved by changing threshold variables in the dynamic frequency algorithm
and fixing the sampling frequency to a constant. Currently, the values are receiving from the NTS IoT
applications in good order and simultaneously.

5.2.2 Data Transfer

An OPC UA [135] binary as a data encoding and UA TCP as a transport protocol is utilized for data trans-
ferring from DSP to monitoring/controlling NTS tool (namely NTS Machine Dev Studio). Figure 5.12
shows examples of read/write OPC UA messages recorded and displayed with the Wireshark tool. These
messages are structured into a header and a message body. The message header contains network in-
formation that is interesting for packet filtering, while the message body contains the parameters, which
is highlighted in dark blue, shows the binary payload of the selected OPC UA read and write message
requests. In the NTS printing machine, the NTS machine dev studio as an OPC UA client [135] requests
data from DSP as an OPC UA server every 250 ms. The volume of data is approximately 1Kbyte in each
transfer. Therefore, the communication rate is 4Kbyte/s. After analyzing the network and capturing the
data packet with running several tests in normal conditions of the NTS printing machine (sending/receiv-
ing simulated data), the average delay measured by Wireshark is 16.66 ms. This delay is acceptable from
the monitoring tool’s perspective; since this graphical user interface is employed, it can provide sufficient
condition monitoring information for the operator and maintenance engineers.

Another connection is happening between a server at NTS (storing data that are coming from DSP) and
NTS IoT software. NTS IoT tool collects data every 30 seconds, which is mentioned earlier in 5.2.1.

The data transfer method for the printer machine is all wired, and it is using enough bandwidth. There-
fore, for this sub-module, everything is suitable to continue with it.
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Figure 5.12: Network sniffing results

5.2.3 Source of Data
The next step is to choose between a single-sensory or multi-sensory approach, ensuring that the relev-
ant sensory data is collected. Before selecting the approach, we should investigate the equipment, and
whether the relevant data for corresponding equipment exist, then we can decide between single-sensory
and multi-sensory approaches. As earlier mentioned, after consulting with NTS and tracking some equip-
ment failures, the decision was made to work with pumps installed in the printer machine’s Head Supply
Unit (HSU). According to Table 3.3, other similar tasks have been done with the multi-sensory method.
Therefore, it is decided to follow the multi-sensory approach. The sensitivity of the parameters on the
condition of the pump is analyzed. There are several parameters, such as the pressure of pipes connected to
the pumps, the temperature of the liquid inside the pipes, and the pumps’ speed. Hence, there are possib-
ilities to work with single sensory and multi-sensory methods. For this implementation, the multi-sensory
method has been chosen.

5.2.4 Data Storage
So far, the decision for selecting the sensor data with high probability related to the pump’s failure has
been made. In addition, the collecting data is happening with a fixed interval for all types of data. The Data
Storage module is investigated to find a proper and easily manageable data architecture in this step. For
this purpose, we need to look for the data lifecycle in the proposed PdM framework.

With the help of an MQTT broker, the NTS IoT application sends data to a server that is located at
NTS. The raw data can be stored in JSON or txt format. The raw data has many irrelevant data points.
Therefore, the first step was filtering raw data to capture relevant data points. Filtering unnecessary data
helps avoid extra data processing in the following steps and helps manage the data storage better. After
filtering raw data, it is stored in CSV format to be suitable for further processing steps.

For storing the data, different methods are available, such as local storage, cloud storage, or a com-
bination of both. In storage strategy, two factors should be considered: scalability and price. Local data
storage is cheaper, although storage management will get more complex when the machine works for sev-
eral months. In addition, with the growth of data, the company would need to buy extra hardware. On the
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other hand, the cloud storage approach can help scalability challenges and has greater remote accessibility.
For example, if a machine is installed on a customer site, they can send the data to the cloud, and supplier
companies can utilize the data to analyze the machine’s performance.

There is a concept in big data called data lake. Database and data warehouses can only store data that
has been structured. On the other hand, a data lake does not respect data like a data warehouse and a
database. Instead, it stores all types of data: structured, semi-structured, or unstructured. In our case, for
the implementation of the PdM framework, different data types are involved.

Data Lake

In NTS, MongoDB [133] is configured for storing raw data. In sending raw data (before any filtering),
MongoDB is helpful as it is suitable for storing unstructured data. As MongoDB is a NoSQL database,
it has a more reasonable price in comparison to SQL database. Generally, NoSQL databases are cheaper
than SQL ones because, at the same storage level, SQL has more processing overhead than NoSQL data-
bases. Although price-wise, MongoDB is a better choice, it does not help store and manage structured and
processed data as it is a NoSQL database.

Since the preprocessed data (kind of semi-structured data) will be generated during the PdM imple-
mentation, we need another type of storage. Moreover, after processing the data and generating some
results, we need data storage for structured data such as SQL databases. There are two main approaches
for storing raw data, preprocessed data and processed data:

• storing data in parquet file format

– Local storage of parquet files in a shared drive
– Cloud storage of parquet files (e.g., Azure blob storage)

• storing data in a database

– SQL database (e.g., SQL Server or MySQL)
– NoSQL database (e.g., MongoDB)

For each type of data, we can choose between the above items. In the case of raw data, the NoSQL
database from MongoDB is a reasonable choice. For preprocessed data, local/cloud storage of parquet files
is a speedy and scalable approach. Considering processed data, storing data in a SQL database such as
an SQL server is more convenient to analyze the results, and anyone from different engineering fields can
work with these structured data types.

It should be mentioned that the most reasonable approach between the above items is storing prepro-
cessed and processed data in Parquet format in the cloud. Apache Parquet [136] is designed to bring effi-
cient columnar storage of data compared to row-based files like CSV. Apache Parquet is created from the
ground up with complex nested data structures in mind. Apache Parquet is built to support very efficient
compression and encoding schemes [137]. Parquet files are an excellent choice for storing and reading
large data files from disk or cloud storage. Using Parquet files with Apache Spark provides an impressive
speed improvement compared to employing CSV files with Pandas [panda] when reading the content of
large files [136].

As shown in Figure 5.13, raw data is collected with NTS IoT software in a local drive, in a JSON
format, and then for storing processed data, parquet format is utilized. Storing in parquet format has its
constraints. Companies need data scientists to work with this data format. Using SQL database can help
engineers from different fields work and analyze this type of file. On the other hand, utilizing an SQL
database is costly, and the software license should be purchased. Furthermore, considering adding more
sensory data and analysis techniques, there is no exact estimation for the size of the data that the machine
will generate in the future. Cloud services can provide required software licenses and also elastic databases.
Therefore, the last approach that seems more reasonable is deploying SQL server in Azure and use one of
the subscription methods that Azure is suggesting (e.g., pay as you go). In this condition, one does not
need a monthly payment for SQL license, and also, if more storage space is needed, it is straightforward in
the cloud to change the storage capacity.
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At first, an entirely local implementation of the PdM framework is done to realize better the advantages
and disadvantages of on-premise implementation of the PdM framework. For this, we can use a combina-
tion of SQL database and parquet format files locally.

Since for PdM, a high volume of data needed, one of the primary purposes of this work is to investigate
software tools to provide scalability for the PdM procedure. One of the most popular processing engines is
Apache Spark [125]. For the implementation of the proposed framework PdM, Apache Spark version 3.1.1
is employed. Apache Spark is a data processing engine to efficiently processes a massive amount of data.
If the number of datasets increased, we could use resilient distributed datasets objects of Spark [138].

The raw data currently can be stored in any local drive in both txt and JSON format. The data represents
the condition of the HSU of the printer machine. Since the PdM application is implemented for the first
time for this machine at NTS, there is not enough data (which should be collected for several months). In
this work, the whole end-to-end framework is implemented with a small dataset. As shown in Figure 5.13,
the data life cycle starts with sending data from HSU to a local server and then gathered by the NTS IoT
application for sending to the Jupyter notebook [139]. After analyzing the data in the Jupyter notebook,
the results are sent to the MySQL database. For visualization of the result, Grafana is used. If we use the
cloud connection, the data can be sent to the cloud via the MQTT broker.

Figure 5.13: Data life cycle in the proposed PdM framework

Splitting Dataset

After filtering raw data and capturing the relevant parameters (to pump condition), we need to divide
the dataset into train and test datasets. As this dataset is of time-series format, the data sequence in this
splitting process should be considered. Therefore, the splitting is done based on the order of timestamps.
It is important to dedicate a suitable portion of the original dataset for training and testing/validation. The
dataset should be split considering the existence of both healthy and unhealthy data in the training and test
dataset. In our case study, before collecting data, failure scenarios need to be designed for the pump in the
printer machine.

Failure Scenarios’ Mechanism for Collecting Data

Since for the supervised machine learning application, healthy data (that collected in a normal operational
period of the equipment) and erroneous data (that collected in the failure period of the equipment) are
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needed, different failure scenarios were designed with the help of NTS experts. There are two main scen-
arios: a) leaking and b) obstruction, which impact pump operational behavior. For the failure scenario,
after starting the machine for several hours, just healthy data were collected, and then in specific moments,
we started to induce failure in the pump operation. Thus, a suitable dataset has been made by gathering
both healthy and faulty data and recording the moments of failures. It should be mentioned that in this case
study, we utilized the data harvested from the obstruction failure scenario. In Figure 5.14, the dataset is
depicted, and some healthy and unhealthy samples are pointed by green and red boxes, respectively. Now,

Figure 5.14: Dataset with healthy and unhealthy condition samples. Red boxes represent failure while
green box highlights healthy condition

the data is split into train and test datasets. We tried to have enough faulty and healthy data in both train
and test datasets based on the failure moments.

After importing the datasets as Spark dataframes, the NULL observations should be removed (i.e., data
observations with no values) to have a more clean dataset.

5.2.5 Data Visualization
In this module, we are looking for any signs or anomalies that can help in selecting the proper parameters
related to the failure. Several visualization techniques exist to detect abnormalities in the data. As shown
in Figure 5.15, train and test datasets present some features that changing over time. Apache Spark does
not have a data visualization module. Therefore, to visualize the data, we require changing the Spark
dataframes to Pandas dataframe.

Data Type Casting

Machine Learning algorithms usually rely on mathematical operations which require their inputs to be of a
numeric type, for example, binary or integer values. Therefore, for both train and test datasets, typecasting
of the data to the required types has been done (i.e., timestamp, integer, double types.)

Labeling Methods

The other important step in this time-series dataset is the labeling. We add RUL labels to both train and test
datasets in this step. Remaining Useful Life estimates the number of time units (e.g., hours/days/weeks/-
months), during which the machine can run in good condition before it fails completely.

The RUL can be estimated by observation of actual failure event (i.e., pump failure) and counting the
number of cycles of each pump in descending order to estimate the number of cycles/days each pump can
run before a failure occur. For this purpose, we need the average operational life of the pump working in
the printing machine. Since the machine is new, we do not have any estimation of the pump’s RUL. For
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Figure 5.15: Splitting dataset to train (a) and test (b) datasets

now, we just implemented the RUL labeling with a dataset that we have. If there are more reliable data for
the pump’s RUL in the future, these code blocks can be utilized.

The RUL labeling method is used in the regression analysis. After calculating RUL values, a new
column called RUL is added to the Spark dataframe.

Another labeling method is windows labeling. We intentionally made failures for the machine at spe-
cific times. Then a table called "Event Table" is made, which consists of start time and end time of failure
events. With the help of this table, the train and test datasets are labeled. Hence, by checking the event
table and "Timestamp" column of the dataset, one can label the data as unhealthy if they are in the range of
failure events.

5.3 Data Preprocessing Implementation
During the data acquisition block implementation, relevant data was harvested with JSON format and stored
locally. After applying a filtering process, relevant data were extracted. Filtered data is stored locally in
CSV format. In the Data Preprocessing block, several steps are considered for preparing the dataset to
deliver it to the ML algorithms. These steps are explained in the following sections.

5.3.1 Data Cleaning

The visualization section shows that some data features have no or very low variance over time. As this
class of features is useless in building predictive data models, it is logical to remove those features to
reduce data dimensionality. First, we need to define the maximum unaccepted variance threshold. Then it
is enough to compute each feature variance and delete the feature if its variance is less than or equal to the
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given threshold. In this work, due to the small dataset, if we apply this cleaning method, we lose valuable
information. Therefore, we skipped from this step.

Removing Outliers

The key point to getting machine learning to work efficiently is to ensure that the data is utilized for
training, which is as clean as possible and has any biases removed from it. Otherwise, machine learning
faces outliers that impact the results in the wrong way. There are several statistical methods to identify and
remove outliers [140] such as:

• Standard Deviation
• Median Absolute Deviation
• Interquartile Deviation
• Z-Score

Due to the lack of data and working with industrial applications (any outlier can be a sign of machine
misbehavior), any data elimination can cause deterioration in our case study’s result. Hence, we keep all
the data.

Removing Noise

In reality, there is always noise. Whenever a value is measured, some error will be presented by its capture,
transmission, or other reasons. The measured values can be introduced as:

Measured_value = True_value+noise

It is required to extract the true value but also the noise. Several algorithms like signal processing and
filtering algorithms help remove noise from a signal and getting as close to the truth as possible. To
achieve this goal, a moving average algorithm to the data is applied. The Spark dataframe is partitioned
utilizing a window module, and the corresponded rolling average feature of each numerical data feature
in that dataframe is calculated. Therefore, the irregular data is removed. In Figures 5.16 and 5.17, the
features before and after applying noise reduction are represented.

As expected, and it can be seen in Figures 5.16 and 5.17, the results are smoother graphs that can help
in optimizing the results of machine learning algorithms.

Filling Missing Value

The real data mostly has a lot of missing values. Some reasons can cause missing values, for example, data
corruption or failure to record data. Since many machine learning algorithms can not deal with missing
values, the treatment of missing data is critical during the preprocessing phase of the dataset. There are
several ways to handle missing values in the dataset, such as:

• Deleting rows with missing values
• Impute missing values for continuous variable
• Impute missing values for categorical variable
• Other Imputation Methods
• Using algorithms that support missing values
• Prediction of missing values

Missing values can be treated by eliminating the rows or columns that contain null values. If columns have
more than half of the rows as null, then the entire column can be dropped. The rows which have one or
more column values as null can also be dropped. For creating a robust and reliable model, we need to train a
model without any null value. Although, employing this technique in some cases, for example, the portion
of missing values, is unreasonable compared to the whole dataset. It results in the poor performance of
machine learning due to a loss of information.
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Figure 5.16: Noise reduction for train dataset. Red graphs shows signal before noise reduction and greens
are showing it after noise reduction

Another approach is to impute missing values with mean/median. In this technique, columns in the
dataset with continuous numeric values can be substituted with the median, mean, or mode of remaining
values in the column. Employing this method helps to avoid the loss of data in comparison with the earlier
method.

The next method is the Imputation method for categorical columns. When the type of missing values
is categorial, for instance, string or numerical, then the missing values can be substituted with the most
frequent category. This method also helps the problem of data loss that results from the deletion of rows or
columns.

Other imputation methods [141] may be more suitable to assign missing values, depending on the data
type. In the case of the time-series dataset, there is a popular method called Interpolation. The Interpolation
of the variable can be done before and after a timestamp for a missing value.

Another popular method is the prediction of missing values. In the earlier approaches, for handling
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Figure 5.17: Noise reduction for test dataset. Red graphs shows signal before noise reduction and greens
are showing it after noise reduction

missing values, we do not benefit from the association of the variable containing the missing value and
other variables. Utilizing the features which do not contain nulls can be used to predict missing values.
The regression or classification algorithms can be employed for the forecasting of missing values [142].

Every dataset contains missing values that need to be treated effectively to build a robust model. Sev-
eral popular methods to handle missing values have been presented. There are no strict rules to employ a
particular way, depending on how and what the data is about various methods on different features. There-
fore, we can conclude that knowing the dataset is important, giving insight into how to preprocess the data
and treat missing values.

To tackle missing values, removing null values by dropping the rows with null values was implemented.
After applying this method to the corresponding dataset, the number of rows before and after removing null
values were equal. Thus, in this dataset, there were no null values to be removed.
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5.3.2 Feature Engineering

By applying a moving average algorithm to the Removing Noise Section 5.3.1, mean values are generated
for each signal and stored in separate columns as new extracted features (time-domain features). In many
scenarios, raw data values do not have meaningful information for the application of machine learning.
Hence, time- or frequency-domain data are needed to be extracted. Furthermore, all these extracted values
and raw values need to be scaled to avoid any data bias.

Normalizing Data

One of the steps in data preprocessing is feature normalization. The goal of normalization is to re-scale
each feature to be in the [0,1] domain. Hence, feature normalization unifies the scale of all data features,
which helps ML algorithms to generate accurate models. For example, applying the normalization function
can generate normalized features out of a set of numerical data features. Since there are raw data and
extracted features in the dataset, normalization was performed for both raw data and generated features.
The following Figures 5.18 and 5.19 show train and test data features after normalizing them in [0,1]
domain. The rolling average features were normalized.

Standardization

For feature scaling, we can use normalization or standardization techniques. In this procedure, features
are re-scaled such that each feature value is centered around the mean with a unit standard deviation. In
predictive modeling, normalized features, standardized features, or a collection of both sets can be used to
achieve better performance. Therefore, in this step, a list of numerical features is standardized in the Spark
dataframe. The following Figures 5.20 and 5.21 show standardized data features generated for the train
dataset. The rolling average features were standardized (i.e., low-noise data features).

5.3.3 Dimension Reduction

In previous steps, many new features out of existing ones were generated. However, it is possible to
generate more features in terms of the time- or frequency-domain. In this case study, it was decided to
continue with the number of features that have been extracted so far and not to generate more.

Until now, the data dimensionality has significantly expanded. In order to go further into predictive
data modeling, the data dimensionality needs to be reduced. Reducing data dimensions enables us to
visualize the data more efficiently, test different parametric settings of machine learning algorithms to
optimize the predictive solutions, and make much use of memory and storage utilities. Now, the question
is what features can be removed and lead to a dimension reduction without losing useful information.
Considering useful information in machine learning, we need to keep as much as diversity of the data.
There are several methods for dimension reduction, such as Heatmaps, t-SNE plots, multi-dimensional
scaling. One of the most popular ones is PCA. Each Principle Component (PC) is a specific combination
of input variables. Since linear models such as linear regression need as many independent features, PCA
can provide this quality. All the PCs are independent of each other. Now, the PCs can be computed, and
based on the diversity threshold that is needed, it is possible to keep the PCs and discard the rest of them.
This threshold can be calculated based on feature variances. After calculating the variance for each PC,
they are represented in a cumulative variance graph.

As PCA is a widespread technique among reviewed literature in Chapter 3 related to predictive main-
tenance application, we also decided to utilize this technique as a dimension reduction approach. After
applying the PCA algorithm to the Spark dataframe, the required number of PC features was obtained. The
following Figures 5.22 and 5.23 describe the accumulated data variance obtained by the first four PCs in
the train and test datasets. As presented in Figures 5.22 and 5.23, utilizing the PCA algorithm helped to
reduce nearly all data variance in the first 4 PC features. It means that efficiently reducing data dimen-
sionality from 17 features to 4 features without losing variance. Visualization of PC features presented in
Figures 5.24 and 5.25. As Figures 5.24 and 5.25 show that the generated PCs have different scales,
re-scaling those features using normalization and standardization procedures should be done.
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Figure 5.18: Normalization on rolling average features of train dataset. Red graphs show the signals before
normalization and greens show them after normalization

Feature Selection

Many features were generated, even in the Dimension Reduction section, PCs were produced. The most
effective step for training a machine learning algorithm is delivering relevant features to it. For example,
the aim is to find the features that have more impact on the machine’s failure. Hence, we should conduct
a feature importance algorithm in this step to find the most relevant features corresponding to the target
output. We can use a combination of PCA and other techniques to get better results.

When there is a dataset with many features, we can benefit from data importance techniques. It is
tempting to think that a large number of features will help a model make better predictions but, that is
incorrect. Trying to train a model on a set of features with no or very little correlation gives inaccurate
results. When dealing with multi-dimensional datasets, it is important to filter out non-correlated features.
Instead, it is better to use fewer highly correlated features to train a model.

Datasets with more features or higher dimensions are a recent problem. These days, data collection
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Figure 5.19: Normalization on rolling average features of test dataset. Red graphs show the signals before
normalization and greens show them after normalization

and storage have never been easier. Usually, many datasets have features with similar information. It acts
as noise in the system and increases complexity. Some features also have very little variance. If the output
has a lot of variances, then a feature with low variance will not improve a model.

By employing feature selection methods for machine learning, we can benefit from: a) Reducing the
chance of overfitting. b) Enhancing the algorithm running speed by reducing the I/O, CPU, and RAM load.
It needs the production system to create and utilize the model by reducing the number of actions needed to
read and preprocess data and perform data analytics techniques. c) Increasing the model’s interpretability
by revealing the most informative items that drive the model’s results.

To realize the importance of each feature in a dataset, a technique known as PCC [143] was used in this
work. This technique compares which features correlate with the output (the labeled column (RUL and
ClassLable)) in the considered dataset). The PCA and PCC are generally used for linear variable selection.
PCC has been widely utilized for variable selection due to its simplicity and as it helps to identify the

A Comprehensive IoT-Enabled Predictive Maintenance Framework 59



CHAPTER 5. CASE STUDY IMPLEMENTATION

Figure 5.20: Standardization on rolling average features of train dataset. Red graphs show the signals
before standardization and greens show them after standardization

degree of correlation between independent and target variables. However, there is a big difference between
PCA and PCC that PCA has been used for recognizing variables that have high variances affecting the
target variable [143]. Therefore, it is assumed that combining these two techniques will help improve the
machine learning results.

Pearson’s Correlation Coefficient helps to find out the relationship between two quantities. It estimates
the strength of correlation between two variables. The Pearson’s Correlation Coefficient value can be
between -1 to +1. 1 indicates that they are highly correlated, and 0 indicates no correlation. -1 indicates
that there is a negative association. It has an inverse proportion.

It should be considered that if there is a large dataset and the result shows a small coefficient, i.e.,
0.3, then it is not necessarily a bad result. The dataset might have a large statistically notable association.
Likewise, note that correlation may not mean causation. Just because two variables are associated, it does
not mean that one directly caused the other.

To obtain the proper subset of data features, the PCC technique is employed. As PCC measures the
correlation between target variables and independent variables, first, we identify target variables. There
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Figure 5.21: Standardization on rolling average features of test dataset. Red graphs show the signals before
standardization and greens show them after standardization

are two different target variables, one of them is RUL (the pump’s Remaining Useful Life), and the other
one is ClassLabel (healthy and unhealthy labeling values). RUL is employed for regression analysis and
Classlabel for binary classifiers.

Two vectors were built after obtaining the best-correlated features to the output variable (RUL/ClassLa-
bel). One of these vectors will be used as the train data vector in all regression algorithms (that its feature
correlated with RUL) and another vector for classifiers (that its feature correlated to ClassLabel).

By completing this step, the second building block that is data preprocessing, is finished. Now the data
is ready for feeding to the next BB that is the Predictive Analytics block.
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Figure 5.22: Data variance obtained by the first four PCs in train dataset

Figure 5.23: Data variance obtained by the first 4 PCs in test dataset

Figure 5.24: PCs visualization of train dataset

Figure 5.25: PCs visualization of test dataset
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5.4 Predictive Analytics Implementation
Several machine learning algorithms are employed in this block to predict the pump’s performance (if the
pump is working properly or if it needs maintenance). This block consists of three main machine learning
models: a) Supervised Learning, b) Unsupervised Learning c) Semi-supervised Learning. Moreover, sev-
eral techniques will be discussed for the validation of these algorithms. In this work, it was considered to
implement supervised and semi-supervised learning.

After obtaining the positive and negative correlated features to the target variable (RUL/ClassLabel)
from the previous building block, two training vectors to feed MLs were built. One of these vectors will be
used as the training vector in all regressor algorithms (related to RUL) and another one used for classifier
(related to ClassLabel) algorithms.

5.4.1 Supervised Learning
Supervised learning algorithms are trained by utilizing labeled data. In addition, independent feature data
is given to the model along with the target value. In the following steps, we will discuss building models
and validate them.

Model Building

In the model building module of supervised learning, there are two categories, which are regressor and
classifier. Based on the popularity of the machine learning algorithm, we decided to implement several
regressor algorithms such as linear regression, general linear regression, and decision tree. For classifier,
these algorithms are chosen: logistic regression, decision tree, and random forest.

Regressors

To start with regressors, some parameters need to be initialized for each of the algorithms. In the LR
algorithm, there are some parameters that one can set, such as the maximum iterations of LR, Lambda, and
elastic net [144]. The next step is to fit the LR model to the train data vector. The regression model is built
by feeding the train data vector to the LR instance. It should be mentioned that the training vector consists
of selected features (by PCC) and the target variable (which is the RUL values). The third step is to build
a test data vector compatible with the training vector. Therefore, the same train vector as a test vector was
used. After executing the mentioned steps and delivering the test vector to the trained model, the prediction
result can be achieved.

Since we have built the first regression model and applied it to the test dataset, now the model can
be evaluated. Apache Spark has helpful functions that calculate evaluation metrics of regression models.
To employ them, it is needed to initialize an evaluation object with the predicted label and the labels
we defined for the considered test dataset. Now, by initializing this evaluation instance, some evaluation
metrics can be calculated. These metrics are employed to evaluate the regressors’ model performance: R
Squared (R2), MSE, RMSE, and MAE. In addition, it is aimed to compare and analyze these results in the
next building block, which is the result evaluation block. Another regression model known as Generalized
Linear Regression (GLR) was built by following the same steps as done for Linear Regression.

A significant aspect of training a machine learning model is to evaluate whether the model is overfitting
or underfitting the data. Overfitting commonly occurs when a model tries to fit all the data points, capturing
noises in the process, leading to inaccurate model development. Underfitting is a scenario where a data
model cannot capture the relationship between the input and output variables accurately, generating a high
error rate on both the training set and unseen data. There is a parameter called Lambda that can be used
for regulating the model accuracy. By choosing the Lambda (also called the regularization rate) value, the
purpose is to discover the correct balance between training-data fit and simplicity: If the chosen lambda
value is too high, our model will be simple, but we run the risk of under-fitting our data. As a result,
the model will not learn enough about the training data to make valuable predictions. For implementing
Generalized Linear Regression (GLR), different Lambda Values were utilized to investigate the impact of
Lambda for better accuracy and a minor error in the next building block.
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The last regression model in this section is the algorithm. Here, two parameters of the decision tree,
namely, the max number of bins (that enables more feature partitioning) and max depth (which is the length
of the longest path from the root to a leaf), are set. There is no theoretical calculation of the best depth and
bins of a decision tree. Therefore, several depths and bins were chosen to apply a trial and error procedure.
Consequently, based on the evaluation metrics, it is possible to reach the optimal ones. For evaluating the
Decision Tree model, R-Squared, MSE, RMSE, and MAE metrics are calculated; this is presented in the
next block.

Classifiers

In this part, the goal is to classify the pump’s performance into two classes: normal class (which is as-
signed with 0) and faulty class (which is assigned with 1). To achieve this goal, three binary classification
models were built, namely: Logistic Regression, Decision Tree, and Random Forest.

Cross Validation

In the context of classification algorithms, Cross-Validation (CV) is a technique to avoid model overfitting.
In order to apply cross-validation in Apache Spark, firstly, it is needed to build a parameter grid object.
Parameter grids enable a given classifier to try out different parameter settings and optimize the accuracy
for each combination—a parameter grid loops over a list of regression and elastic search parameters of
logistic regression. The purpose of grid-search is to find the optimal hyperparameters of a model, resulting
in the most accurate predictions. An illustration of cross-validation technique presented in Figure 5.26.

Figure 5.26: Illustration of cross validation

One of the popular techniques in the ML models consists of randomly picking samples out of the available
data and split them into train and test datasets. In the case of time series also, cross-validation can be very
helpful. However, randomly selecting time series samples and assigning them to the test set or the training
dataset does not seem logical. Ignoring the sequence of data causes facing the problem of forecasting
values in the past by using values from the future. In simple words, the aim is to avoid future-looking while
training train the model. There is a temporal dependency between observations which must be preserved
during testing.

Cross-validating of a time-series model can be done by employing a rolling base cross-validation tech-
nique. First, a small subset of data is selected for training; the second step is predicting this to the next
data points, finally measuring the accuracy for the predicted data points. The same predicted data are then
added as part of the next training set, and subsequent data points are predicted.

Here, Figure 5.27 is an image of this technique: In k-fold cross-validation, first, the dataset is split into
several folds, then the model is trained on all folds except one, then testing the model remaining folds.
These steps need to be repeated until the model is tested on each of the folds, and the final metrics will be
the average of scores obtained in every fold. This prevents overfitting and evaluates model performance in
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Figure 5.27: K-fold cross validation for time series data

a more robust way than a simple train-test split.
Therefore, for evaluating the performance of the models, first, the CrossValidator function from PyS-

park is used for k=3 folds.
The number of folds is generally defined by the number of instances included in the dataset. For

example, in 10-fold cross-validation with only ten instances, there would only be one instance in the testing
set. This instance does not correctly represent the variation of the underlying distribution. For selecting k,
we must ensure that the training set and testing set are drawn from the same distribution. Finding the right
value for k is not an exact science because it is hard to estimate how well the fold represents the overall
dataset. However, if the dataset size increases dramatically, like if we have over 200,000 instances, it can
be seen that 20-fold cross-validation would lead to folds of 20,000 instances; this should be sufficient to
test the model reliably.

In short, we can say the number of folds depends on the data size. In addition, because we are using
time series data, cross-validation cannot benefit from the shuffling of the data, such that the folds do not
contain inherent bias. Hence, we have to go for a lower number of folds to avoid bias.

Additionally, we should also consider the computational costs for the different values. High K means
more folds, thus higher computational time and vice versa. Subsequently, one needs to find an optimal
spot between those by doing a hyper tuning analysis. Furthermore, if the dataset size is small, using k-fold
cross-validation would not make sense.

Based on our observation and knowing that the corresponding dataset is small, we decided to use about
30% of the dataset for testing, and consequently, we used 3-fold cross-validation. After choosing k, which
is equal to 3, we created a CrossValidator object and passed the model, parameter grid, and evaluation
instances to it. For all three classifiers, we run 3-fold cross-validation to find the optimum result. The
evaluation metrics, in this case, are accuracy, macro/micro recall, macro/micro precision, and F1-score,
which will be discussed in the next building block.

For implementing the two other classifiers, which are Decision Tree and Random Forest, the same
steps of Linear Regression are followed. These algorithms’ performance was analyzed along with all the
classifiers and regressors in the next building block.

5.4.2 Unsupervised Learning
This section has two modules: model building and model validation modules. For unsupervised learning
in industrial cases when there is no labeled data, Auto Encoder (AE) as an unsupervised learning algorithm
is a good choice. Moreover, another technique called Peak detection seems applicable in our case study.

Peak Detection

In this method, a signal is chosen with the most relevant parameters to specific equipment failure. In our
case study, after discussion with NTS, we realized the pump’s speed and pressure could show more mean-
ingful information related to the pump’s failure. Therefore, the data received from the pump’s tachometer
is collected and fed to the peak detection algorithm. Peaks and valleys are detected. The second step is
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to count the number of peaks or valleys in a time window. Depending on the sampling frequency, the
window size should be chosen. Currently, the sampling frequency is low (0.033 Hz), so the window size
should be bigger than 1 minute. After applying this window size and counting the number of peaks during
the window size, the result shows some changes in the number of peaks before failure happens. If, for
example, we have an assumption that when the system is in its normal operation condition, the number of
peaks should be equal to N in the window size of M minutes. Then by implementing an algorithm based
on the number of peaks, we can catch anomalies in the machine.

In this work, Peak detection is implemented by connecting MySQL [126] database and Grafana [123]
software. Grafana provides features to detect changes in time series data. When writing queries in Grafana,
we caught the moments that the number of peaks exceeded 200 in 3 minutes (that was one of the failure
symptoms). Figure 5.28 shows a database with more than 500,000 samples used for the peak detection
method. It should be mentioned that because this dataset is collected (customer side, which from 5 ISUs
for five months)at some random time, we can not use it for other machine learning algorithms such as
classifiers employed in this work. This dataset just has been used for peak detection.

Figure 5.28: A big dataset collected for several days

In this step, we used knowledge-based methods to validate the model as we discussed with the NTS
expert about the pump’s characteristics and constraints. By tracking the pump’s speed closely from normal
operational time to the moment of failure, a fluctuation is observed in the speed signal. On approaching the
failure moments, the period of the fluctuation increases, and in the end, it leads to the failure of the pump.
Based on its datasheet, this type of pump is designed for continuous operation and impulse operation has
a harmful effect on the pump’s useful life, we can count the number of peaks in a specific period to catch
earlier pump failure symptoms.

5.4.3 Semi-Supervised Learning

For the semi-supervised method, there are two modules: Model Building and Model Validation. First,
we try to implement a semi-supervised model and then evaluate it with some evaluation metrics. A semi-
supervised method is employed that is known as the One-Class Classifier (OCC). It is a domain of machine
learning that presents techniques for anomaly and outlier detection. The OCC can be helpful for imbalanced
classification datasets where there are none or very few examples of the minority class. It is also effective
for datasets where there is no coherent structure to separate the classes that could be learned by, for example,
a supervised algorithm. OCC is fit on a training dataset that only has examples from the normal class.
Once the model is trained, it is used to classify new examples as either normal or not-normal, i.e., outliers
or anomalies.

Since Apache Spark MLlib does not support this type of classifier, we employed another library. The
scikit-learn library [145] supports common one-class classification algorithms aimed for outlier or anomaly
detection, such as Isolation Forest, One-Class SVM, Local Outlier Factor, and Elliptic Envelope.

In this work, One-Class SVM has been utilized. The important characteristic of one-class SVM that
makes it attractive for our application is that it categorizes new data as similar or different from the training
set. Based on this assumption, if feeding it with a totally healthy class dataset (as the training dataset), it
will categorize the test dataset according to whether they are similar to train data. It assigns 1 for similar
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data and -1 for the dissimilar of the dataset. If it labeled the data as 1, it means the machine condition is
healthy, and if it labeled it as -1, it means the system is in unhealthy condition.

As we do not have enough labeled data from the failure events, we need a labeled dataset in a way that
is useful in one-class SVM (the labeled values are used to model evaluation, not for training the model).
First, we considered an operational period of the machine that we are sure there are no failure events there
(or minority of classes are unhealthy and the majority are healthy). Then, we labeled that whole period as
healthy (i.e., labeled as 0). Therefore, if we feed the machine learning algorithm with this almost healthy
dataset, it will consider it a healthy behavior. If any other event happens for the machine except this defined
healthy behavior, it will consider it an anomaly. We intentionally made a failure for the machine to test
this method at specific times. Then we created a table called "Event Table," which consists of start time
and end time of failure events. With the help of this table, we labeled the test dataset. Hence, by checking
the event table and "Timestamp" column of the dataset, it can label the data as unhealthy if they are in the
period of the event. We used these label values for validating the performance of the one-class classifier.

It should be mentioned that the training dataset, as illustrated earlier in Figure 5.15, consists of failure
events too, but SVM considered those values as outliers, and it will discard them as a minority class.
Consequently, One-Class SVM recognizes the majority class and determines it as a positive class (in our
case, normal behavior).

5.5 Result Evaluation Block Implementation
So far, the machine learning models were implemented. Now in this block, we can analyze and compare
the results of different models. The result evaluation block consists of several modules. First, we evaluate
the results with dedicated evaluation metrics, and then we choose the models that should be deployed for
the production line. Finally, we try to improve the models’ results.

In this step, we want to examine the results obtained based on the proposed PdM framework. For this
aim, we designed several different scenarios to investigate the impact of each block of the framework.
Six different scenarios were defined for supervised and semi-supervised learning. Table 5.1 shows these
designed scenarios. For example, in scenario 1, we see the result when we consider that all of the blocks
and techniques are implemented, such as scaling data, extracting time-domain feature, dimension reduction
with PCA, and feature selection with Pearson Correlation Coefficient. In another scenario, for example,
scenario 3, the PCA is discarded to see the influence of PCA in the final prediction results.

Table 5.1: Comparison scenarios based on PdM blocks

Scenario Train-Test(%) Scaled raw data Time Feature Number of features PCA PCC
1 70-30 YES YES 10 YES YES
2 70-30 YES NO 10 YES YES
3 70-30 NO YES 10 NO YES
4 70-30 YES NO 4 NO YES
5 70-30 YES NO 4 NO NO
6 70-30 YES NO 3 YES NO

In the following sections, first, the regressor results are presented and then the classifiers. After that,
we will continue with peak detection results, and finally, one-class SVM result will be discussed in this
section. Note that based on the defined scenarios, we will see the result in the following sections.

5.5.1 Supervised and Semi-Supervised Model Evaluation Metrics
For supervised, semi-supervised, and unsupervised methods, there are different evaluation metrics. Since
in the supervised methods, regressors are utilized for calculating the remaining useful life of the equipment
(for example, the operational time of the machine will finish after 400 cycles), evaluation metrics are needed
to estimate how close predictions are to the outcomes. The mean squared error (MSE) estimates the average
of the squares of the errors, which indicates the difference between the estimator and the estimated. The

A Comprehensive IoT-Enabled Predictive Maintenance Framework 67



CHAPTER 5. CASE STUDY IMPLEMENTATION

mean absolute error (MAE) is a quantity adopted to estimate how close predictions are to the target values.
By applying metrics such as R2, MSE, RMSE, and MAE, we are trying to find the closest value to the
actual value and find a best-trained model.

Other metrics such as F1-Score, recall, precision, accuracy are employed to evaluate models trained
by classifiers. For example, these metrics show how many predicted labels are correct and how many
are faulty. In this concept, we used a confusion matrix that is commonly employed for summarizing the
performance of a classification algorithm.

The range of the metric that is acceptable should be decided beforehand based on our application.
In general, the RMSE values between 0.2 and 0.5 show that the model can relatively predict the data
accurately. In addition, an Adjusted R-squared of more than 0.75 is an outstanding value for showing
accuracy. In some cases, an Adjusted R-squared of 0.4 or more is acceptable as well. MSE measures the
sum of squared distances between our target variable and predicted values. Although these values seem
acceptable, considering the company’s industrial environment and cost of failure, we need higher accuracy
numbers. For example, using a confusion matrix that delivers TN, TP, FN, and FP values and assigning
weight to each of these values can better estimate the performance of the ML models. For example, FP
for a production line can be more costly than True Negative in some cases. Therefore, the thresholds of
the evaluation metrics should be decided based on the production line and company requirements. In this
work, we did not implement the threshold investigation.

Regressor Results Evaluation

In this dissertation, we implement several regressors to predict the remaining useful life of the pump. By
utilizing the proposed PdM framework based on defined scenarios, Figure 5.29 shows the obtained results.

Figure 5.29: Comparing scenarios results for regressors implementation based on RMSE and MAE

The important thing about the regressors’ results is the high error values. Due to the type of data that
we are using for detecting the remaining useful life of the equipment, it can not give us a correct estimation.
For RUL estimation, the collected data should be related to the age of the system. In this project’s scope,
having this data was not feasible as observing the aging of the machine requires a longer timespan. Thus,
the dataset we are using can not deliver meaningful information about RUL to the ML algorithms. For
regressor algorithms, we did not expect to obtain a good result. Nevertheless, the purpose is to implement
and compare the impact of each technique on the final result. We make a comparison based on the employed
techniques.
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In scenario 5, as can be seen in Figure 5.29, almost for all three regressors, the RMSE and MAE values
are less compared to other scenarios; however, scenario 1 has the worst result among the existing scenarios.
Moreover, it is evident that among these regressors, the Decision Tree has the best result in almost all of
them except scenario 6. Comparing scenarios 1 and 2 shows that the DT algorithm works very well when
we do not extract the time-domain feature. The expectation that extracting time-domain features is helpful
is not correct here, as we have a small dataset, and this approach can remove essential data.

From scenario 1 to scenario 3, there is a dramatic decrease for LR and GLR. Also, there is a slight
decrease for DT, which means that employing PCA increases error for scenario 1. Moreover, discarding
PCA in scenario 3 improves the obtained results. Even scenario 4 to 5 shows a noticeable decrease which
is the result of discarding PCC.

These different scenarios show that using raw data and extracted features in combination with PCA
and PCC should carefully be selected to have better results. Generally, PCA is suitable for recognizing
the influence of high variance input variables on the target variables. However, comparing scenarios 5
and 6 shows an increase in error values by employing the PCA technique since our dataset has very low
variances.

Classifiers Results Evaluation

We implement three classifiers to predict the condition of the pump (healthy or unhealthy) based on a
multi-sensory dataset. Following the steps of the proposed framework, Figure 5.30 depicts the obtained
results.

Figure 5.30: Comparing multiple scenarios for classifiers based on accuracy, precision, recall, and F1-score

We notice that the logistic regression model has the lowest performance in all the scenarios since this
model requires independent variables and a large sample size to perform well. Furthermore, we can observe
that scenario 2 has the best result for all the models due to employing PCA and PCC. Additionally, we can
notice the impact of the extracted time-domain feature by comparing scenario 1 and scenario 2. Eliminating
this feature significantly improves the outcome since we are losing valuable data by extracting the time-
domain feature. It is due to the fact that our sampling frequency, i.e., 0.033HZ, is relatively low. Therefore,
we do not have enough data to extract time-domain features. Comparing scenarios 2 and 4 shows that
discarding the PCA results in lower performance in the logistic regression model. Likewise, comparing
scenarios 4 and 6 shows a decrease in results that happened because of removing PCC.

Overall, we can conclude that the extraction of the time-domain feature has a negative impact on the
performance of all the classifier models. Additionally, PCA improves the logistic regression model by
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injecting more features. Finally, for all the scenarios, the combination of PCC and PCA techniques delivers
the best results.

One-class SVM Results Evaluation

In this study, we implement one type of unary classification called one-class SVM, which Figure 5.31
represents the achieved results for the six scenarios. Comparing scenarios 1 and 2 shows that discarding the

Figure 5.31: Comparing multiple scenarios for one-class support vector machine based on accuracy, preci-
sion, recall, and F1-score

time-feature extraction improves the outcome. Additionally, not using the scaled raw data along with time-
feature extraction heightens the performance, as shown in scenario 3. Furthermore, considering scenarios
4 and 5, we can realize the critical role of the PCC. As removing it in scenario 5, decreases the accuracy,
recall, and F1-score significantly. According to the obtained results, scenario 5 has the lowest performance,
which does not utilize PCC and PCA. By enabling the PCA in scenario 6, we can observe a noticeable
improvement that highlights PCA’s impact.

Peak Detection Results

Based on the peak detection approach explained in Section 5.4.2, we analyzed our dataset, stored in
MySQL, to detect changes in the number of peaks in the defined time window. To this end, we employed
the Grafana processing engine for detecting the anomaly in the number of peaks. Additionally, it allows
efficient monitoring in real-time, as well as creating dashboards for data visualization. We collected the
speed of the pump for several days as displayed in Figure 5.32.

By zooming in, as in Figure 5.33, we can notice some fluctuations in the speed signal indicating an
impulse operation behavior of the pump. The duration of these fluctuations varies, which can cause failure
in case of an extended period, e.g., 30 minutes.

To detect this kind of anomaly, we defined an alert query in Grafana, which counts the number of peaks
over a 3-minute time frame. As depicted in Figure 5.34, when the number of peaks exceeds 200 values, an
email alert is sent.

70 A Comprehensive IoT-Enabled Predictive Maintenance Framework



CHAPTER 5. CASE STUDY IMPLEMENTATION

5.5.2 Model Deployment

As described in Section 5.5, we have used several models: regressor, classifiers, one-class SVM, and
peak detection in 6 scenarios. In this step, we should decide the most reliable one for the deployment
in production. To this end, for regressor models, we consider the error value metrics, i.e., RMSE, MAE.
Moreover, classifier and one-class SVM is evaluated based on accuracy, precision, recall, and F1-score
metrics. Finally, since peak detection is a knowledge-based evaluation, the final decision is up to the
experts.

According to the analysis presented in Section 5.5, scenario 5 for the regressor models, scenario 2 for
the classifiers, and scenario 3 for one-class SVM have the most reliable results. Next, we optimized the
employed model in the corresponding scenario to achieve better performance. Consequently, as shown
in Figure 5.35, we optimized the GLR regressor for scenario 5 by increasing the Lambda. As a result,
we observe a noticeable improvement in RMSE and MAE values for Lambda in the range of 0 to 100.
However, increasing the Lambda by more than 100 results in saturated error values.

Figure 5.35: GLR regressor optimization with change of lambda

Furthermore, as presented in Figure 5.36, the DT regressor is optimized for scenario 5 by changing
the depth and bin of the tree. Increasing the depth and bin to a specific limit obtained by try and error
can improve the error values. While growing after that limit can harm the performance. Additionally, to
optimize the one-class SVM for scenario 3, we decrease the nu parameter from 0.6 to 0.01. As depicted in
Figure 5.37, nu value reduction has a significant impact on all the measured metrics. To further visualize
the significant improvement in the accuracy, Figure 5.38 shows the impact of the optimization on one-class

Figure 5.32: Big sample of data that collected for several days
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Figure 5.33: Moments represent several fluctuations in pump speed

Figure 5.34: Setting alert for capturing fluctuation behavior in the pump’s speed

Figure 5.36: Decision tree optimization with change of depth and bins of the tree

SVM. Figure 5.38 shows the test dataset. Comparing the results before and after optimization, respectively
shown in Figures 5.39 and 5.40, we realize remarkable precise predicted results.

72 A Comprehensive IoT-Enabled Predictive Maintenance Framework



CHAPTER 5. CASE STUDY IMPLEMENTATION

Figure 5.37: Optimization for one-class SVM with applying different nu values

Figure 5.38: Test dataset

Overall, according to the above comparisons, regressor models, even after optimization, are not ready
to be deployed in production. On the other hand, classifiers show promising results except for logistic
regression. Moreover, one-class SVM performs adequately. Finally, peak detection evaluation is highly
dependent on expert decisions. Worth noting, the deployment of the model is out of the scope of this work.
However, the chosen model can be deployed either on the cloud or locally.

5.5.3 Model Improvement
According to the final stage in the result evaluation layer of our framework, we should improve the deployed
model. To this end, the experts are required to define a threshold for accuracy and error levels. If the model
evaluation results are below the threshold values, a message is sent to the upper layer, i.e., decision making,
and the maintenance team is notified by an alarm.
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Figure 5.39: One-class SVM prediction before optimization (nu=0.45)

Figure 5.40: One-class SVM prediction after optimization (nu=0.01)

5.6 Decision Making Implementation
To implement the last layer, we use the obtained results from the result evaluation layer to make certain
decisions and act accordingly. The Decision Making layer consists of two modules, namely Setting Alarm
System and Maintenance Strategy.

5.6.1 Setting Alarm System
For our alarm system implementation, we set up a notification channel between Grafana and an SMTP
server, i.e., Gmail, to warn when a deviation happens. In our case, we configured Gmail as the SMTP
server. After establishing the connection to the SMTP server and setting the threshold on the Grafana,
as shown in Figure 5.41, we can receive alert emails in case a change happens in the predicted results.
Figure 5.42 displays a sample alert email that can be sent to multiple emails at the same time.

Alternatively, we can use Power Bi [124] for visualization and alarm systems instead of Grafana, which
is available either on the cloud or on-premise. Although it provides a user-friendly GUI and a powerful
processing engine, the on-premise open source version does not support an alert mechanism. Hence, we
could not utilize it in our study.

5.6.2 Maintenance Strategy
In the Maintenance Strategy module, expert decision makers implement the necessary strategies for main-
tenance. The result of this module is used to react to the physical world to achieve a particular purpose, such
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Figure 5.41: Setting alert threshold for predicted results

Figure 5.42: Receiving maintenance alert in a Gmail

as minimizing the cost of maintenance, realizing zero-defect manufacturing, and reducing the breakdown.
Additionally, based on the outcome of the Setting Alarm System module, we can include the function of
error correction, compensation, and feedback control to continue to run the equipment and process in a
healthy condition.

There are different techniques to correct and compensate for the errors. Nonetheless, in our study, after
receiving the alert email indicating a critical situation of the pump, NTS experts, based on the symptoms
of failures, should decide about the maintenance strategy, e.g., modifying control parameters to resolve the
failure. However, we could not implement this module as it depends on the control engineer’s decision
which was not available.
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Conclusion and Future Work

This chapter presents the conclusions of the project. The first part focuses on providing answers to the
research questions. In the second part, we propose some suggestions for possible future work to continue
this project.

6.1 Conclusion

This dissertation set out to propose a predictive maintenance framework. The primary motivation behind
this work was to act against upcoming maintenance work proactively to lower the cost. To perfectly be
utilized in IoT-enabled smart companies and factories, we designed our proposed framework based on the
data-driven model and employed data analytics algorithms.

Most of the existing work in the domain of predictive maintenance has significantly focused on devel-
oping various anomaly detection techniques through simulations. However, in this study, we have aimed
at designing an end-to-end PdM framework. Therefore, we have further evaluated our proposed frame-
work using real-world manufacturing data. The obtained results have demonstrated the effectiveness of our
proposed framework.

In order to answer the first research question of this work 1.3, we have conducted an SLR on 27 existing
predictive maintenance research papers. Furthermore, we have classified the algorithms and techniques
addressed in these studies according to the multiple phases of an end-to-end predictive maintenance project.
In summary, the results of our SLR has shown that:

• 48% of the studies discussed how the data could be acquired for a predictive maintenance project,
• 11% of the studies presented some solutions for cleaning the data sets,
• 37% of the studies suggested some feature engineering techniques to prepare the data for some

algorithms,
• 15% of the studies proposed new algorithms to predict the upcoming maintenance based on the past

data, and finally
• 22% of the studies provided business decision making dashboards and guidelines for the companies.

After performing our SLR study, we have addressed the second research question 1.3. The primary purpose
of this question is to suggest a general predictive maintenance framework that is highly applicable per
different use cases. Consequently, We have designed an end-to-end predictive maintenance framework that
covers all the phases of a predictive maintenance project discovered in the previous research question. The
proposed predictive maintenance framework consists of 5 layers:

• Data Acquisition, which addresses sampling schema, Data transfer, source of data and data storage,
and Data visualization

• Data Preprocessing, which contains data cleaning, data enrichment and correlation, feature engin-
eering, and dimension reduction techniques
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• Predictive Analytics, which is divided into three groups: supervised learning, Semi-supervised learn-
ing, and unsupervised learning

• Result Evaluation, which supports the Supervised and semi-supervised model evaluation metrics,
Unsupervised Evaluation metrics, Model deployment, and Model improvement

• Decision Making, which provides setting alarm system and maintenance strategy

Finally, to answer the third research question (i.e., to evaluate our proposed framework), we have imple-
mented a case study at NTS Group. In this case study, we have illustrated a scenario in which a pump
installed in a printing machine was out of work after a couple of days. In particular, we employed the
NTS testbed and conducted several experiments to assess the impact of each block of the proposed frame-
work. Then, considering the impact of each block in the result, we decided on the strategy for selecting the
techniques.

In this case study, we have employed several supervised and unsupervised learning techniques. Particu-
larly, three regressors were utilized: Linear Regression, Generalized Linear Regression and Decision Tree.
Due to the lack of some available information, such as the historical Remaining Useful Life of the pump,
we did not expect to obtain this much precise results from our analysis. To overcome this limitation, we
have made some assumptions in our preprocessing steps. The results of our analysis show that PCA has a
negative impact and, eventually, leads to more errored values. Interestingly, in most of the experiments, the
Decision Tree shows the best results in terms of Root Squared Error and Mean Absolute Error. We have
also employed three classifiers: Logistic Regression, Decision Tree and Random Forest. For the test data
set, the classifiers performed quite well and obtained significant accuracy of 95%, 99%, and 98%, respect-
ively, for LR, DT and RF. As expected, LR had the lowest performance among all the other classifiers in all
the experiments. Moreover, involving the PCC technique for classifiers increased the recall by around 5%
and at the same time decreased precision by about 4% for Random Forest. As mentioned before, we have
also utilized the One-Class SVM, which is a semi-supervised learning algorithm. Applying the optimized
version of this classifier resulted in 99% for all of our evaluation metrics. These different algorithms and
techniques demonstrate that using raw data, extracted features combined with PCA and PCC should be
selected carefully to achieve better results, not deteriorating the result. Finally, we used Peak Detection as
an unsupervised method to detect whether the number of peaks in the speed signal of the pump exceeds a
predefined threshold and implement an alert system to warn the experts accordingly.

We stored all the results of ML algorithms in a MySQL database connected to the Grafana processing
engine to visualize further and demonstrate the results. Besides these ML algorithms, the preprocessing
steps such as scaling, feature extraction, feature selection, dimension reduction, and feature selection were
analyzed to achieve better accuracy and fewer error values. Accordingly, in almost all test scenarios, time-
domain feature extraction caused less accuracy and higher error as extracting this feature in low sampling
frequency resulted in discarding useful information. Generally, in training ML algorithms, the size of the
data matters a lot. On the other hand, when we work with time-domain features, sampling frequency plays
a crucial role in the results. Consequently, we can argue that the size of the data and higher sampling fre-
quency can highly impact the algorithm’s quality. Nevertheless, another important technique for alerting
results is feature importance. We have shown that PCC is more valuable than PCA in the case of low vari-
ance data. Based on the results, employing PCA alone can deteriorate the results. However, in combination
with PCC, it can alter the result negligibly in our dataset.

By summarizing, our research brings the following scientific achievements:

• A complete framework for failure prediction and analysis in emerging Industry 4.0 settings.
• A truly test over a real-life case study represented by a printing machine.

Please note that this case study had multiple limitations, mainly related to the duration of the experiment
and the small size of the collected data. In addition to this, our research also brings the following managerial
achievements:

• Failure prediction and analysis are a critical process of every organization that falls in the broader
Industry 4.0 setting; therefore, a common standardization action should be necessary (e.g., method-
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ologies, processes, software interfaces, etc.);
• In Industry 4.0 settings, the complex failure prediction and analysis process is not only a job for

data scientists but a multidisciplinary team should be formed to include expertise from every domain
(e.g., the mechanical and electrical area);

• Predictive maintenance is one of the critical future assets of next generation Industry 4.0 big data-
driven organizations; hence it should play a more significant role within stakeholders in future years.

6.2 Future Work
Currently, it should be noted that the framework has been applied to one use-case study so far. As future
work, we plan to test this framework on other machines and more use-cases to verify the results and findings
from this work. Furthermore, considering other machine learning models such as artificial neural networks
and other feature engineering methods, there is a significant opportunity to improve the predicted results.

Another aspect of future work on the framework is employing cloud analytics services. Having utilized
these types of services, the framework can be way more scalable when the data size is bigger and, thus,
more resources are required. Therefore, an exciting direction for future work is to run a cost comparison
between the on-premise realization of the framework versus on-cloud implementation.

Additionally, a work can be devoted to deriving key performance indicators by combining the essential
features discovered, deploying the model in a production environment, deriving a failure probability from
the multi-failure prediction output, and clustering failure modes to understand better the failure probability
root cause of the various faults.

Considering the limitations of the case study, we finally suggest NTS group collect the data for at least
one year to improve the training dataset. Further work will also focus on implementing the framework for
all 4 HSU of the printing machines to test the scaling limits over multiple HSUs.
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