219,847 research outputs found

    From SMART to agent systems development

    Get PDF
    In order for agent-oriented software engineering to prove effective it must use principled notions of agents and enabling specification and reasoning, while still considering routes to practical implementation. This paper deals with the issue of individual agent specification and construction, departing from the conceptual basis provided by the SMART agent framework. SMART offers a descriptive specification of an agent architecture but omits consideration of issues relating to construction and control. In response, we introduce two new views to complement SMART: a behavioural specification and a structural specification which, together, determine the components that make up an agent, and how they operate. In this way, we move from abstract agent system specification to practical implementation. These three aspects are combined to create an agent construction model, actSMART, which is then used to define the AgentSpeak(L) architecture in order to illustrate the application of actSMART

    Smart Home and Artificial Intelligence as Environment for the Implementation of New Technologies

    Get PDF
    The technologies of a smart home and artificial intelligence (AI) are now inextricably linked. The perception and consideration of these technologies as a single system will make it possible to significantly simplify the approach to their study, design and implementation. The introduction of AI in managing the infrastructure of a smart home is a process of irreversible close future at the level with personal assistants and autopilots. It is extremely important to standardize, create and follow the typical models of information gathering and device management in a smart home, which should lead in the future to create a data analysis model and decision making through the software implementation of a specialized AI. AI techniques such as multi-agent systems, neural networks, fuzzy logic will form the basis for the functioning of a smart home in the future. The problems of diversity of data and models and the absence of centralized popular team decisions in this area significantly slow down further development. A big problem is a low percentage of open source data and code in the smart home and the AI when the research results are mostly unpublished and difficult to reproduce and implement independently. The proposed ways of finding solutions to models and standards can significantly accelerate the development of specialized AIs to manage a smart home and create an environment for the emergence of native innovative solutions based on analysis of data from sensors collected by monitoring systems of smart home. Particular attention should be paid to the search for resource savings and the profit from surpluses that will push for the development of these technologies and the transition from a level of prospect to technology exchange and the acquisition of benefits.The technologies of a smart home and artificial intelligence (AI) are now inextricably linked. The perception and consideration of these technologies as a single system will make it possible to significantly simplify the approach to their study, design and implementation. The introduction of AI in managing the infrastructure of a smart home is a process of irreversible close future at the level with personal assistants and autopilots. It is extremely important to standardize, create and follow the typical models of information gathering and device management in a smart home, which should lead in the future to create a data analysis model and decision making through the software implementation of a specialized AI. AI techniques such as multi-agent systems, neural networks, fuzzy logic will form the basis for the functioning of a smart home in the future. The problems of diversity of data and models and the absence of centralized popular team decisions in this area significantly slow down further development. A big problem is a low percentage of open source data and code in the smart home and the AI when the research results are mostly unpublished and difficult to reproduce and implement independently. The proposed ways of finding solutions to models and standards can significantly accelerate the development of specialized AIs to manage a smart home and create an environment for the emergence of native innovative solutions based on analysis of data from sensors collected by monitoring systems of smart home. Particular attention should be paid to the search for resource savings and the profit from surpluses that will push for the development of these technologies and the transition from a level of prospect to technology exchange and the acquisition of benefits

    A Repository of Method Fragments for Agent-Oriented Development of Learning-Based Edge Computing Systems

    Full text link
    [EN] The upcoming avenue of IoT, with its massive generated data, makes it really hard to train centralized systems with machine learning in real time. This problem can be addressed with learning-based edge computing systems where the learning is performed in a distributed way on the nodes. In particular, this work focuses on developing multi-agent systems for implementing learning-based edge computing systems. The diversity of methodologies in agent-oriented software engineering reflects the complexity of developing multi-agent systems. The division of the development processes into method fragments facilitates the application of agent-oriented methodologies and their study. In this line of research, this work proposes a database for implementing a repository of method fragments considering the development of learning-based edge computing systems and the information recommended by the FIPA technical committee. This repository makes method fragments available from different methodologies, and computerizes certain metrics and queries over the existing method fragments. This work compares the performance of several combinations of dimensionality reduction methods and machine learning techniques (i.e., support vector regression, k-nearest neighbors, and multi-layer perceptron neural networks) in a simulator of a learning-based edge computing system for estimating profits and customers.The authors acknowledge PSU Smart Systems Engineering Lab, project "Utilisation of IoT and sensors in smart cities for improving quality of life of impaired people" (ref. 52-2020), CYTED (ref. 518RT0558), and the Spanish Council of Science, Innovation and Universities (TIN2017-88327-R).García-Magariño, I.; Nasralla, MM.; Lloret, J. (2021). A Repository of Method Fragments for Agent-Oriented Development of Learning-Based Edge Computing Systems. IEEE Network. 35(1):156-162. https://doi.org/10.1109/MNET.011.2000296S15616235

    Integrating Embedded Multiagent Systems with Urban Simulation Tools and IoT Applications

    Get PDF
    The smart city systems development connected to the Internet of Things (IoT) has been the goal of several works in the multi-agent system field. Nevertheless, just a few projects demonstrate how to deploy and make the connection among the employed systems. This paper proposes an approach towards the integration of a MAS through the JaCaMo framework plus an Urban Simulation Tool (SUMO), IoT applications (Node-RED, InfluxDB, and Grafana), and an IoT platform (Konker). The integration presented in this paper applies in a Smart Parking scenario with real features, where is shown the integration and the connection through all layers, from agent level to artifacts, including real environment and simulation, as well as IoT applications. In future works, we intend to establish a methodology that shows how to properly integrate these different applications regardless of the scenario and the used tools

    A novel multi-level and community-based agent ecosystem to support customers dynamic decision-making in smart grids

    Get PDF
    Electrical systems have evolved at a fast pace over the past years, particularly in response to the current environmental and climate challenges. Consequently, the European Union and the United Nations have encouraged the development of a more sustainable energy strategy. This strategy triggered a paradigm shift in energy consumption and production, which becoming increasingly distributed, resulted in the development and emergence of smart energy grids. Multi-agent systems are one of the most widely used artificial intelligence concepts in smart grids. Both multi-agent systems and smart grids are distributed, so there is correspondence between the used technology and the network's complex reality. Due to the wide variety of multi-agent systems applied to smart grids, which typically have very specific goals, the ability to model the network as a whole may be compromised, as communication between systems is typically non-existent. This dissertation, therefore, proposes an agent-based ecosystem to model smart grids in which different agent-based systems can coexist. This dissertation aims to conceive, implement, test, and validate a new agent-based ecosystem, entitled A4SG (agent-based ecosystem for smart grids modelling), which combines the concepts of multi-agent systems and agent communities to enable the modelling and representation of smart grids and the entities that compose them. The proposed ecosystem employs an innovative methodology for managing static or dynamic interactions present in smart grids. The creation of a solution that allows the integration of existing systems into an ecosystem, enables the representation of smart grids in a realistic and comprehensive manner. A4SG integrates several functionalities that support the ecosystem's management, also conceived, implemented, tested, and validated in this dissertation. Two mobility functionalities are proposed: one that allows agents to move between physical machines and another that allows "virtual" mobility, where agents move between agent communities to improve the context for the achievement of their objectives. In order to prevent an agent from becoming overloaded, a novel functionality is proposed to enable the creation of agents that function as extensions of the main agent (i.e., branch agents), allowing the distribution of objectives among the various extensions of the main agent. Several case studies, which test the proposed services and functionalities individually and the ecosystem as a whole, were used to test and validate the proposed solution. These case studies were conducted in realistic contexts using data from multiple sources, including energy communities. The results indicate that the used methodologies can increase participation in demand response events, increasing the fitting between consumers and aggregators from 12 % to 69 %, and improve the strategies used in energy transaction markets, allowing an energy community of 50 customers to save 77.0 EUR per week.Os Ășltimos anos tĂȘm sido de mudança nos sistemas elĂ©tricos, especialmente devido aos atuais desafios ambientais e climĂĄticos. A procura por uma estratĂ©gia mais sustentĂĄvel para o domĂ­nio da energia tem sido promovida pela UniĂŁo Europeia e pela Organização das NaçÔes Unidas. A mudança de paradigma no que toca ao consumo e produção de energia, que acontece, cada vez mais, de forma distribuĂ­da, tem levado Ă  emergĂȘncia das redes elĂ©tricas inteligentes. Os sistemas multi-agente sĂŁo um dos conceitos, no domĂ­nio da inteligĂȘncia artificial, mais aplicados em redes inteligentes. Tanto os sistemas multi-agente como as redes inteligentes tĂȘm uma natureza distribuĂ­da, existindo por isso um alinhamento entre a tecnologia usada e a realidade complexa da rede. Devido a existir uma vasta oferta de sistemas multi-agente aplicados a redes inteligentes, normalmente com objetivos bastante especĂ­ficos, a capacidade de modelar a rede como um todo pode ficar comprometida, porque a comunicação entre sistemas Ă©, geralmente, inexistente. Por isso, esta dissertação propĂ”e um ecossistema baseado em agentes para modelar as redes inteligentes, onde vĂĄrios sistemas de agentes coexistem. Esta dissertação pretende conceber, implementar, testar, e validar um novo ecossistema multiagente, intitulado A4SG (agent-based ecosystem for smart grids modelling), que combina os conceitos de sistemas multi-agente e comunidades de agentes, permitindo a modelação e representação de redes inteligentes e das suas entidades. O ecossistema proposto utiliza uma metodologia inovadora para gerir as interaçÔes presentes nas redes inteligentes, sejam elas estĂĄticas ou dinĂąmicas. A criação de um ecossistema que permite a integração de sistemas jĂĄ existentes, cria a possibilidade de uma representação realista e detalhada das redes de energia. O A4SG integra diversas funcionalidades, tambĂ©m estas concebidas, implementadas, testadas, e validadas nesta dissertação, que suportam a gestĂŁo do prĂłprio ecossistema. SĂŁo propostas duas funcionalidades de mobilidade, uma que permite aos agentes mover-se entre mĂĄquinas fĂ­sicas, e uma que permite uma mobilidade “virtual”, onde os agentes se movem entre comunidades de agentes, de forma a melhorar o contexto para a execução dos seus objetivos. É tambĂ©m proposta uma nova funcionalidade que permite a criação de agentes que funcionam como uma extensĂŁo de um agente principal, com o objetivo de evitar a sobrecarga de um agente, permitindo a distribuição de objetivos entre as vĂĄrias extensĂ”es do agente principal. A solução proposta foi testada e validada por vĂĄrios casos de estudo, que testam os serviços e funcionalidades propostas individualmente, e o ecossistema como um todo. Estes casos de estudo foram executados em contextos realistas, usando dados provenientes de diversas fontes, tais como comunidades de energia. Os resultados demonstram que as metodologias utilizadas podem melhorar a participação em eventos de demand response, subindo a adequação entre consumidores e agregadores de 12 % para 69 %, e melhorar as estratĂ©gias utilizadas em mercados de transaçÔes de energia, permitindo a uma comunidade de energia com 50 consumidores poupar 77,0 EUR por semana

    Electrospun Nanofibers for Entrapment of Biomolecules

    Get PDF
    This chapter focuses on nanofiber fabrication by electrospinning techniques for the effective immobilization of biomolecules (such as enzymes or active pharmaceutical ingredients—APIs). In this chapter, the development of precursor materials (from commercial polymer systems to systematically designed biopolymers), entrapment protocols, and precursor-nanofiber characterization methods are represented. The entrapment ability of poly(vinyl alcohol) and systematically modified polyaspartamide nanofibers was investigated for immobilization of two different lipases (from Candida antarctica and Pseudomonas fluorescens) and for formulation of the antibacterial and antiviral agent, rifampicin. The encapsulated biomolecules in electrospun polymer fibers could be promising nanomaterials for industrial biocatalysis to produce chiral compound or in the development of smart drug delivery systems

    Applications of Agent-Based Methods in Multi-Energy Systems—A Systematic Literature Review

    Get PDF
    The need for a greener and more sustainable energy system evokes a need for more extensive energy system transition research. The penetration of distributed energy resources and Internet of Things technologies facilitate energy system transition towards the next generation of energy system concepts. The next generation of energy system concepts include “integrated energy system”, “multi-energy system”, or “smart energy system”. These concepts reveal that future energy systems can integrate multiple energy carriers with autonomous intelligent decision making. There are noticeable trends in using the agent-based method in research of energy systems, including multi-energy system transition simulation with agent-based modeling (ABM) and multi-energy system management with multi-agent system (MAS) modeling. The need for a comprehensive review of the applications of the agent-based method motivates this review article. Thus, this article aims to systematically review the ABM and MAS applications in multi-energy systems with publications from 2007 to the end of 2021. The articles were sorted into MAS and ABM applications based on the details of agent implementations. MAS application papers in building energy systems, district energy systems, and regional energy systems are reviewed with regard to energy carriers, agent control architecture, optimization algorithms, and agent development environments. ABM application papers in behavior simulation and policy-making are reviewed with regard to the agent decision-making details and model objectives. In addition, the potential future research directions in reinforcement learning implementation and agent control synchronization are highlighted. The review shows that the agent-based method has great potential to contribute to energy transition studies with its plug-and-play ability and distributed decision-making process

    Surveillance Risks in IoT Applied to Smart Cities

    Get PDF
    With the advent of the IoT, proximity sensor devices are installed in many places in smart cities. Without any regulation or social policy, they could lead to a super-surveillance network managed by multi-agent systems in the future. Such networks may be able to reduce accidents, risks, damage and errors. However, they also pose high risk of surveillance and data breaches, including hacking attacks or malware intrusion. This research project is aimed at investigating the implications of IoT-driven surveillance in smart cities from privacy, data protection and ethical perspectives. The identification of the critical issues related to the extensive deployment of such sensing devices in the urban area will constitute a starting point for the development of a new regulatory framework for sensor-based surveillance in European Smart Cities. This new regulatory system shall be aimed at providing citizens with effective tools to exercise their rights to privacy and data protection when facing IoT-driven surveillance. Indeed, setting a clear set of rules governing big urban data processing shall be considered crucial to ensure a fair, democratic, human-centric development of smart cities in Europe

    A model driven component-based development framework for agents

    Get PDF
    Developing agent-oriented systems is still a difficult task. However, a component-based approach can help by supporting both modular modification of existing systems and construction of new systems from existing parts. In this paper we develop a foundation (conceptual model) for a component-based agent development framework by extending the concepts of the SMART framework. We apply our definitions to an existing agent application in order to both refine the definitions, and to evaluate the extent to which the model is able to support modification of existing systems. A prototype toolkit called Component Agent Framework for non-Experts (CAFnE) that implements the component framework is also explained briefly

    Designing a goal-oriented smart-home environment

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10796-016-9670-x[EN] Nowadays, systems are growing in power and in access to more resources and services. This situation makes it necessary to provide user-centered systems that act as intelligent assistants. These systems should be able to interact in a natural way with human users and the environment and also be able to take into account user goals and environment information and changes. In this paper, we present an architecture for the design and development of a goal-oriented, self-adaptive, smart-home environment. With this architecture, users are able to interact with the system by expressing their goals which are translated into a set of agent actions in a way that is transparent to the user. This is especially appropriate for environments where ambient intelligence and automatic control are integrated for the user’s welfare. In order to validate this proposal, we designed a prototype based on the proposed architecture for smart-home scenarios. We also performed a set of experiments that shows how the proposed architecture for human-agent interaction increases the number and quality of user goals achieved.This work is partially supported by the Spanish Government through the MINECO/FEDER project TIN2015-65515-C4-1-R.Palanca CĂĄmara, J.; Del Val Noguera, E.; GarcĂ­a-Fornes, A.; Billhard, H.; Corchado, JM.; Julian Inglada, VJ. (2016). Designing a goal-oriented smart-home environment. Information Systems Frontiers. 1-18. https://doi.org/10.1007/s10796-016-9670-xS118Alam, M. R., Reaz, M. B. I., & Ali, M. A. M. (2012). A review of smart homes: Past, present, and future. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 42(6), 1190–1203.Andrushevich, A., Staub, M., Kistler, R., & Klapproth, A. (2010). Towards semantic buildings: Goal-driven approach for building automation service allocation and control. In 2010 IEEE conference on emerging technologies and factory automation (ETFA) (pp. 1–6) IEEE.Ayala, I., Amor, M., & Fuentes, L. (2013). Self-configuring agents for ambient assisted living applications. Personal and Ubiquitous Computing, 17(6), 1159–1169.Cetina, C., Giner, P., Fons, J., & Pelechano, V. (2009). Autonomic computing through reuse of variability models at runtime: The case of smart homes. Computer, 42(10), 37–43.Cook, D. J. (2009). Multi-agent smart environments. Journal of Ambient Intelligence and Smart Environments, 1(1), 51–55.Dalpiaz, F., Giorgini, P., & Mylopoulos, J. (2009). An architecture for requirements-driven self-reconfiguration. In Advanced information systems engineering (pp. pp 246–260). Springer.De Silva, L. C., Morikawa, C., & Petra, I. M. (2012). State of the art of smart homes. Engineering Applications of Artificial Intelligence, 25(7), 1313–1321.Huhns, M., & et al. (2005). Research directions for service-oriented multiagent systems. IEEE Internet Computing, 9, 69–70.Iftikhar, M. U., & Weyns, D. (2014). Activforms: active formal models for self-adaptation. In SEAMS, (pp 125–134).Kucher, K., & Weyns, D. (2013). A self-adaptive software system to support elderly care. Modern Information Technology, MIT.Lieberman, H., & Espinosa, J. (2006). A goal-oriented interface to consumer electronics using planning and commonsense reasoning. In Proceedings of the 11th international conference on Intelligent user interfaces (pp. 226–233).Liu, H., & Singh, P. (2004). ConceptNet—a practical commonsense reasoning tool-kit. BT Technology Journal, 22(4), 211–226.Loseto, G., Scioscia, F., Ruta, M., & Di Sciascio, E. (2012). Semantic-based smart homes: a multi-agent approach. In 13th Workshop on objects and Agents (WOA 2012) (Vol. 892, pp. 49–55).Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan, S., Paolucci, M., Parsia, B., Payne, T., & et al (2004). OWL-S: Semantic markup for web services. W3C Member Submission, 22, 2007–2004.Matthews, R. B., Gilbert, N. G., Roach, A., Polhill, J. G, & Gotts, N. M. (2007). Agent-based land-use models: a review of applications. Landscape Ecology, 22(10), 1447–1459.Molina, J. M., Corchado, J. M., & Bajo, J. (2008). Ubiquitous computing for mobile environments. In Issues in multi-agent systems (pp 33–57). BirkhĂ€user, Basel.Palanca, J., Navarro, M., Julian, V., & GarcĂ­a-Fornes, A. (2012). Distributed goal-oriented computing. Journal of Systems and Software, 85(7), 1540–1557. doi: 10.1016/j.jss.2012.01.045 .Rao, A., & Georgeff, M. (1995). BDI agents: From theory to practice. In Proceedings of the first international conference on multi-agent systems (ICMAS95) (pp. 312–319).Reddy, Y. (2006). Pervasive computing: implications, opportunities and challenges for the society. In 1st International symposium on pervasive computing and applications (p. 5).de Silva, L., & Padgham, L. (2005). Planning as needed in BDI systems. International Conference on Automated Planning and Scheduling.Singh, P. (2002). The public acquisition of commonsense knowledge. In Proceedings of AAAI Spring symposium acquiring (and using) linguistic (and world) knowledge for information access
    • 

    corecore