
From SMART to Agent Systems Development

Ronald Ashri a Michael Luck a Mark d’Inverno b

aSchool of Electronics and Computer Science,University of Southampton,

Southampton, SO14 1JX, UK

bCavendish School of Computer Science, University of Westminster, London,

NW1 3ET, UK

Abstract

In order for agent-oriented software engineering to prove effective it must use princi-
pled notions of agents and enabling specification and reasoning, while still consider-
ing routes to practical implementation. This paper deals with the issue of individual
agent specification and construction, departing from the conceptual basis provided
by the smart agent framework. smart offers a descriptive specification of an agent
architecture but omits consideration of issues relating to construction and control.
In response, we introduce two new views to complement smart: a behavioural spec-
ification and a structural specification which, together, determine the components
that make up an agent, and how they operate. In this way, we move from ab-
stract agent system specification to practical implementation. These three aspects
are combined to create an agent construction model, actsmart, which is then used
to define the AgentSpeak(L) architecture in order to illustrate the application of
actsmart.

1 Introduction

As computer systems become more sophisticated and complex, the associated
difficulties of effectively managing the development process increase dramati-
cally. This is further complicated by changes to computing environments, with
increased distribution and openness, and embedded computers on, for exam-
ple, everyday household appliances. Such changes have placed huge demands
on system designers, who must now take into consideration a wide range of
issues, such as ad-hoc networking, user and device mobility and intelligent or
flexible behaviour, and integrate them within a single system design.

Email addresses: ra@ecs.soton.ac.uk (Ronald Ashri), mml@ecs.soton.ac.uk
(Michael Luck), dinverm@wmin.ac.uk (Mark d’Inverno).

Preprint submitted to Elsevier Science 21 November 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Goldsmiths Research Online

https://core.ac.uk/display/16467122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


It has been argued that agent-based computing can make the task of de-
signing systems for such environments easier [1]. The underlying concept of
decentralised, autonomous control expressed through agents that are able to
communicate and cooperate to achieve goals is especially appealing for appli-
cations in heterogeneous and dynamic computing environments. In particular,
agent-oriented software engineering offers a way to manage the complexity
of large-scale, distributed, complex software systems. Building on the agent
paradigm in which these autonomous problem-solving components are used
to decompose a system into its constituent parts, agent-oriented software en-
gineering seeks to provide a more natural means and effective means of devel-
opment.

In order to do this, however, two distinct aspects are required. First, it is
necessary to provide a way of specifying the individual agents and the rela-
tionships between them in support of a general system architecture. Second,
and an aspect that is often omitted from many agent-oriented frameworks,
a means for moving from this specification to an implemented application is
required. In this paper, we review the smart agent framework that addresses
the first of these requirements, and describe how it may be used as a basis
for the second requirement. In this respect, we focus on an agent construc-

tion model and show how it may be viewed as a system specification from an
implementation perspective.

1.1 From Framework to Construction

If a model or methodology for agent development is to be general, it should
not lead to the development of only a limited range of agent types for limited
applications and domains, but should allow the widest possible range of archi-
tectures to be defined using the same basic concepts. There are two possible
avenues to explore in support of this aim. One option is to define a generic
agent architecture and describe other architectures in terms of this generic
architecture. Such an approach has been suggested by Bryson in [2]. However,
apart from the inherent difficulty in constructing any general, all-inclusive
model, the drawback of this approach is that there may be features of other
architectures that cannot directly be translated to the generic one. The second
option is to provide an architecturally-neutral model, to avoid this translation
problem. Here, the challenge is to provide a model that is specific enough so
that it actually offers something to the construction of agents, but general
enough to support the development of a wide range of architectures. Through
an appropriate architecturally-neutral model, we can consider a range of ar-
chitectures based on a common set of agent-related abstractions and without
losing expressive capability.

2



actSMART SMART

Agent Models

Agent Architecture
Specification 

Goal-Based
Agent Relationship 

Models

Multi-Agent System 
Specification

Agent Construction
Model

Agent Architecture 
Specification

Multi-Agent Systems Models

Multi-Agent Systems Implementation in dynamic and heterogeneous environments

Conceptual 
Infrastructure

Specification
Artifacts

Practical 
Implementation

Design and 

Fig. 1. The relationships between actsmart and smart

The smart agent framework provides us with a set of abstract, formal models
to support the specification of individual agent architectures and multi-agent
systems in just this way. However, the model should also allow for modular
construction of agents, yet smart is limited to considering specification alone.
Modularity in construction is necessary both in order to meet general software
engineering concerns and to delineate clearly the different aspects of an ar-
chitecture. This approach calls for a separation between describing agents in
terms of their characteristics, their structure and their behaviour. Such an ap-
proach leads to a better understanding of the overall functioning of the agent
as well as how it can be altered, since the different aspects of the architecture
are clearly identified and the relationships between them made explicit.

Thus, while previous work on smart is suitable for describing agents, it lacks
the necessary features for constructing agents. For the purposes of reasoning
about systems, this is not a problem but, more generally from a method-
ological perspective, it is crucial to be able to provide tools that facilitate
the construction of agent architectures. In this paper, therefore, we do not
replace the descriptive capabilities of smart but instead complement them
with additional aspects, which are identified below.

1.2 Overview

In addressing the shortcomings identified above, we extend and refine smart

in two directions by both providing more practical models and adding to the
abstract concepts already there, as illustrated in Figure 1. In the figure, we rep-

3



resent three different levels of abstraction. First, the conceptual infrastructure
defines the models that can be used to specify an agent system. Second, the
specification artifacts represent specific instantiations of these models in order
to design an agent system. Finally, the design and practical implementation

represents the resulting multi-agent systems developed using the specification
artifacts from the level above. In this paper, we reflect these three levels in
the consideration of smart and its extensions culminating in actsmart.

The smart framework provides the conceptual infrastructure for describing
agents and goal-based agent relationships. These models enable the specifica-
tion of agent architectures and multi-agent systems, respectively.

However, we also require appropriate practical models for agent construction to
provide a clear path from the abstract agent models of smart to their imple-
mentation. We therefore need to extend smart in a more practical direction,
while basing this extension on the existing abstract agent models. In the fig-
ure, this extension is under the heading of actsmart, (Agent Construction
Toolkit for smart). At the conceptual infrastructure level, actsmart pro-
vides a model for constructing agents which, at the specification artifact level,
can enable the specification of agent architectures that can then find practical
implementation at the lowest level.

In this paper, we begin by briefly reviewing the smart agent framework,
and explain how it can be viewed as a descriptive system specification. Then
we introduce alternative views of structure and behaviour that facilitate the
practical development of agent systems. We consider each in turn, showing
how such systems are constructed with components based around a central
agent shell. The paper ends with an example system, based on AgentSpeak(L),
and shows how these three views offer different perspectives on agent systems
development.

2 smart as Descriptive Specification

We have previously proposed an agent framework, smart, through which to
address the lack of an unambiguous agent theory that could be used to describe
and relate existing work in the field, as well as act as the basis through which
to develop new systems and theories. A key benefit of smart is that it avoids
dependence on any specific agent architecture and does not make any limiting
assumptions about the environment or agent societies. This is particularly
important, since we aim to accommodate heterogeneous agent societies, in
which a variety of agent architectures, and dynamic environments, need to be
supported.

4



In this section, we briefly review the smart framework, before moving to
consider how it is used as the basis of agent construction. We do not provide
a detailed analysis of the framework — the work is described elsewhere [3] —
nor of the Z notation used to express it. Briefly, however, we have adopted
the specification language, Z [4], in the current work for two major reasons.
First, it is sufficiently expressive to allow a consistent, unified and structured
account of a computer system and its associated operations. Second, we view
our enterprise as that of building programs. Z schemas are particularly suitable
in squaring the demands of formal modelling with the need for implementation
by allowing transition between specification and program. Thus our approach
to formal specification is pragmatic: we need to be formal to be precise about
the concepts we discuss, yet we want to remain directly connected to issues of
implementation and program development.

Based on set theory and first order predicate calculus, Z extends the use of
these languages by allowing an additional mathematical type known as the
schema type. Z schemas have two parts: the upper declarative part, which
declares variables and their types, and the lower predicate part, which relates
and constrains those variables. Since in this paper, our use of Z is relatively
limited, we will not say more here, and assume familiarity on the part of the
reader.

Below, we present the conceptual infrastructure of smart, by considering
the specification of individual agents. The modular approach used through-
out smart means that these concepts form the foundation for all subsequent
definitions, including agent relationships (though we will not consider relation-
ships in this paper). This is particularly useful because it is consistent with
our aim of supporting reusable agent models. We begin with a detailed presen-
tation of these foundational concepts that define the different types of entities
and their relationship to the environment. Then, we discuss smart’s notion of
agenthood and introduce a refinement that provides more granularity in the
different types of agents that we can define.

2.1 Objects and Agents

At the base of smart is a view of agents as entities attempting to satisfy
goals, where goals are desirable states of affairs. Entities are hierarchically
organised in four different types, with each type refining the previous one.
These entity types are described using three primitives — attributes, actions

and motivations — each formally represented as a given set with no restrictions
on how it could be manifest in a particular system instantiation. A short
description of the primitive types follows, before we go on to describe the
different entity types. The formal specification in Z is shown in Figure 2.

5



[Attribute]

Environment == P
1
Attribute

[Action]

Goal == P
1
Attribute

[Motivation]

Entity

attributes : P Attribute

capabilities : P Action

goals : P Goal

motivations : P Motivation

attributes 6= { }

Object == [Entity | capabilities 6= { }]

Agent == [Object | goals 6= { }]

AutonomousAgent == [Agent | motivations 6= { }]

NeutralObject == [Object | goals = {}]

ServerAgent == [Agent | motivations = {}]

Fig. 2. Formal specification of the agent framework

Attributes are perceivable features of the environment and, through them,
entities and the environment in which they are situated can be described.
For example, if we consider a mobile device as an entity, then some of the
attributes that can be used to describe it are the name of the owner of the
device, the location of the device, and so forth. An environment can then be
defined as a non-empty set of attributes. Actions are discrete events that can
change the state of the environment. For example, a mobile device can perform
actions such as communicating with other devices, storing information, and
retrieving online documents.

In the traditional artificial intelligence sense, goals are desirable state of affairs
in the environment, and are represented as non-empty sets of attributes. For
example, a goal to find a particular online document can be described as
a state of affairs in which the location of the document is known. Finally,
motivations are any desires or preferences that drive an agent to set its own
agenda, as opposed to having goals dictated to it by a user or by other agents.
It is defined as a given set.

The four different entities can now be considered using these primitive types.
First, the abstract Entity schema of Figure 2 defines an entity to have a set
of attributes, a set of actions (their capabilities), a set of goals and a set of
motivations. The only restriction for something to be of type Entity is that it
must have a non-empty set of attributes, as stated in the predicate part of the
schema. Entities in this sense are just placeholders.

Objects, which can correspond to real artifacts in the environment, are entities
with some capabilities that make it possible for them to perform actions that
can change the environment. Thus, the Object schema includes the Entity

6



schema, and further restricts it by requiring that the set of capabilities is
non-empty.

Building on this, agents can then be defined as objects that are attempting
to achieve goals. This means that there is a desirable state of affairs in the
environment that they are attempting to bring about. Correspondingly, the
Agent schema includes the Object schema and constrains the set of goals to
be non-empty. Agents can have or be ascribed goals that they retain over any
instantiation or lifetime.

The definition of agents given above relies on the existence of other agents to
provide the agent’s goals or ascribe goals to the agent. This means that some
other entity is always required to provide or ascribe the goals. In order to
ground the entity hierarchy, therefore, some agents must be able to generate

their own goals. These agents are defined as autonomous since they do not
depend on the goals of others, and possess goals that are generated from within

rather than adopted from other agents. Such goals arise through motivations,
which both cause an autonomous agent to generate its own goals and guide it in
choosing the goals to adopt when interacting with other agents. Formally, the
AutonomousAgent schema requires the set of motivations to be non-empty. We
will not discuss the generation of goals by motivated agents, but an extensive
analysis is available elsewhere [3].

In this way, the notions of agents and autonomous agents are clearly distin-
guished. Agenthood is ascribed to any entity that acts in order to satisfy some
goal, and motivations are required to support the self-generation of goals by
agents. The ability of an agent to generate its own goals is what defines it as
autonomous.

In addition to these basic concepts, smart also considers how non-autonomous
agents are created. In order to achieve this, the basic framework is further
refined to accommodate more sophisticated analyses of agent interaction by
introducing additional definitions of neutral objects as those objects that are
not agents, and server agents as those agents that are not autonomous. The
relationship between neutral objects and server agents is complementary and
dynamic. Neutral objects become server agents when they are given or ascribed
goals. Once these goals are achieved, or when pursuing them is no longer
feasible, the server agent reverts back to a neutral object. The schemas in
Figure 2 formalise these concepts. A NeutralObject is an Object with empty
sets of goals and motivations while a ServerAgent is an Agent with an empty
set of motivations.

The relationships between all the different entity types are illustrated in Fig-
ure 3, in which they are shown as a Venn diagram. As indicated, the most
general notion of entity subsumes all other notions, while neutral objects

7



Entities

SAgents

NObjects

Objects
Agents

Autonomous 
Agents

Fig. 3. The entity hierarchy

(NObjects) and server agents (SAgents) lie in the space between objects and
agents, and between agents and autonomous agents, respectively.

2.2 From Description to Structure and Behaviour

smart allows systems to be specified from an observer’s point of view. Agents
are described in terms of their attributes, goals and actions, not in terms of
how they are built or how they behave. In other words, the focus is on the
what and not the why or how. We call this a descriptive specification, since
it essentially describes a situation without analysing its causes nor the un-
derlying structures that sustain that situation. For example, if we return to
the issue of neutral objects becoming server agents when engaged, we can see
that smart says nothing about what happens structurally within the entity
that has changed status, nor how the mechanisms controlling its behaviour
have brought about this change. These are the types of issues we need to
address within an agent construction model. Therefore, along with the de-
scriptive specification we need to have the ability to specify systems based on
their structure, i.e. the individual building blocks that make up agents, as well
as their behaviour. We call these other views the structural specification and
the behavioural specification, respectively.

The structural specification enables the identification of the relevant building
blocks or components of an agent architecture. Different sets of building blocks
and different ways of connecting them can enable the instantiation of different
agent types. By contrast, the behavioural specification of an agent addresses
the process through which the agent arrives at such decisions as which ac-
tions to perform. Along with the descriptive specification, these specifications
provide a more complete picture of the system from different perspectives. It
is interesting to note that it is possible to begin from any one of these views
and derive the remaining two, but the correspondence is not one-to-one. Sev-
eral behavioural and structural specifications could satisfy a single descriptive
specification and vice versa.

8



Components
(Structure)

Shell

Description

Execution Sequence 
and Component Links 

(Behaviour)

Fig. 4. Agent construction model overview

To support these different views, and to bring them together in a practical
way that facilitates development, we need a particular focus for them in a
computational sense: the shell. Thus the main concepts and the relationships
between the descriptive, structural and behaviour specifications are illustrated
in Figure 4, in which the central artifact is the shell that manages an agent
architecture, with the architecture being made up of components. Components
are placed within this shell and the links for data-flow between components
are defined through the shell. In addition, the execution sequence of compo-
nents is defined by the shell. The components form the structural specification
of the agent, while the links and execution sequence define the behavioural
specification. Finally, a description of the overall agent is also stored within
the shell to complete the descriptive specification of the agent. These features
provide for a modular architecture with clear distinctions between the different
aspects of the architecture.

Now, since individual components are independent of the existence of other
components, and all links between them are managed by the shell, we can
more easily replace components or change data-flow between components in
the shell, as well as alter the execution sequence. These features allow us to
reconfigure the architecture in response to changing application requirements
or changing environmental needs.

Throughout, the main concepts that underpin the development of agent ar-
chitectures are the abstract agent model provided by smart, and a functional
separation of components into four generic types, described in the next sec-
tion. The different component types allow us to define architectures without
needing to specify the internal behaviour of components in great detail. These
features support the requirement for an architecturally-neutral model that can
be applied in a wide range of situations. The structural and behavioural views
are considered in more detail below.

9



3 Structural Specification through actsmart

The aim of the agent construction model for smart, actsmart, is to embody
the design principles discussed in Section 1 as well as support construction
based on the underlying concepts of smart, while providing a direct route
to implementation. Central to these concerns is the distinction between the
structural, behavioural and descriptive specifications and a modular, recon-
figurable approach. In this section, we examine the structural specification,
which is concerned with the different types of components that can be used to
make up an agent architecture, as well as the types of information exchanged
between them, and the operational cycle of a component.

3.1 Components

In order to support the division of an architecture’s different aspects as de-
scribed above, and to satisfy the requirement for modularity and re-configurability,
we take a component-based view of agent architectures [5,6]. Components are
understood as units of composition that can be deployed independently from
each other, through a third-party that coordinates their interactions [7]. Inter-
action with a component takes place through a well-defined interface, which
allows the implementation of the component to vary independently of other
aspects of the system.

The are several benefits of decomposition through a component-based ap-
proach, in line with our aims.

• Describing an agent architecture through the composition of components
promotes a clearer identification of the different functionalities, and allows
for their reuse in alternative contexts.

• Different types of components can be composed in a variety of ways to
achieve the best results for the architecture at hand.

• By connecting the abstract agent model of smart to component-based soft-
ware engineering, we bring it much closer to practical development concerns
within a paradigm that is not foreign to developers.

Components are the basic buildings blocks for an agent, and they can be
considered as the structural representations of one or more related agent func-
tionalities, which are considered at two different levels. At an abstract level,
the functionality is described in generic terms, which we present below. At the
implementation level, the abstract functionality is instantiated through the ac-
tual computational mechanisms that support it. The reason for distinguishing
between these different levels is so that we can use generic component types
to specify an agent architecture at a high level of abstraction without making

10



direct reference to the detailed behaviour of each component. This allows us
to move between the different levels while retaining a good understanding of
the overall architecture, and identifying which specific components best suit
each of the generic functionalities.

At an abstract level, we can divide components into four generic types, each
representing a class of generic functionality for the agent: information collec-
tion (sensors); information storage (infostores); decision-making (controllers)
and directly effecting change in the environment (actuators). These four generic
types of components, elaborated in more detail below, can be used to describe
a very wide range of agent architectures.

• Controllers are the main decision-making components in an agent. They
analyse information, reach decisions as to what action an agent should per-
form, and delegate those actions to other components. Controllers are state-

less, since each decision is taken depending just on information provided
through inputs at any given execution, and not on previous decisions that a
controller has taken. Information that may affect decisions over time should
be stored in infostores so that it can be provided to controllers as required.

• Sensors are able to sense environmental attributes, such as signals from
the user or messages received from other agents. They provide the means
through which the agent gains information from the environment. Similarly
to controllers, sensors are stateless.

• Actuators cause changes in environmental attributes by performing actions.
Actuators are also stateless, since every action they perform is not influenced
by previous actions.

• Infostores are components whose main task is that of storing information.
This information could be anything from the beliefs of an agent about the
world, to plans, to simply a history of the actions an agent has performed, or
a representation of its current relationships with others. In contrast to the
other components, infostores are not stateless. The information they store
represents their current state, and the manner in which information changes
results from the way the component manipulates and updates information.
For example, in the case of a BDI architecture, there may be various ways of
representing and updating beliefs, such as dealing only with beliefs referring
to the current state of the environment [8].

3.2 Component Statements

The internal operation and structuring of components, irrespective of their
type, is divided into a functionally-specific part and a generic part. In this
subsection, we describe the generic part that is common to all components,
and outline the types of information that components can exchange.

11



Each component accepts a predefined set of inputs and produces a predefined
set of outputs. A component generates an output either as a direct response
to an input from another component, a signal from the environment or an
internal event. For example, a sensor component attached to a thermometer
may produce an output every five minutes (based on an internal clock), or
when the temperature exceeds a certain level (an external signal), or when
requested from another component (as a response to the other component).

In actsmart, inputs and outputs share a common structure; they are state-

ments, and have a type and a body. The body carries the information content
(e.g., an update from a sensor), while the type indicates how the information
in the main body should be treated. We make use of three types of statements,
described below.

• Inform-type statements are used when one component simply passes infor-
mation to another component. In order for one component to inform another
of something, it must be able to produce the inform-type statement as an
output, and the other must be able to accept it as an input.

• Request-type statements are used when one component requires a reply
from another component. In this case, the receiving component processes
the request and produces an inform statement that is sent to the request-
ing component. The mechanisms through which statements are transmitted
from one component to an other are introduced in Section 4.2.

• Execute-type statements are used to instruct another component to exe-
cute a specific action. Typically, controller components send such statements
to actuators so that changes can be effected in the environment.

It should be noted that this list of statement types is not exhaustive, and
they are simply representative of the needs of most applications due to their
generic nature. Some domains may benefit from more specific statement types.
It should also be noted that message-passing between components at this
level should not be compared with message exchange as defined in high-level
agent languages such as KQML/FIPA [9]. Typing statements simply provides
additional information to aid control of component behaviour.

The information within a statement’s body is, in its most general form, de-
scribed through attributes, as per the definitions given in Section 2.1. For the
purpose of practicality, we divide attributes along the lines of architecture-

specific attributes and domain-specific attributes. Architecture-specific attributes
are thoses that are only relevant within the internal scope of an agent archi-
tecture. For example, a BDI-based architecture could define attributes such as
plans, beliefs, intentions and so forth. 1 Architecture-specific attributes can be
considered as defining the internal environment of an agent. Domain-specific

1 This approach was adopted by d’Inverno and Luck when formalising AgentS-
peak(L) [10]

12



while active and not executing do

listen for statements

if statements received then

store statements

if call to execute then

retrieve stored statements

while stored stateents not empty do

if INFORM then

update relevant attributes

if REQUEST then

retrieve relevant attributes

create INFORM statement

push statement to outbound stack

if EXECUTE then

push statement to execution stack

pop statements from execution stack and perform actions

send statements to other components

Fig. 5. Component Lifecycle

attributes define features that are relevant to the environment within which
the agent is operating. In the case of an auction agent, for example, these
attributes may include features such as auction-house name, item for sale,
and so forth. Application-independent agent architectures, such as BDI-based
architectures, typically make use of both types of attributes, including domain-
specific attributes within the architecture-specific attributes. Thus, a plan may
prescribe an action to contact a service, as identified by its service name. The
components of an AgentSpeak(L) [10] architecture, for example, could then
manipulate plans and beliefs, and have some generic way of manipulating the
domain-specific attributes. However, a developer may also choose to develop
an agent that has no architecture-specific attributes, creating components that
can directly manipulate domain-specific attributes. Below, we describe a typ-
ical operation cycle for a component to explain how the different types of
statements are handled.

3.3 Component Operation

An outline of the component operation is shown in Figure 5. Components
begin their operation in an inactive state within the shell, where they do not
receive or send statements. Once activated by the shell, components perform
any relevant initialisation procedures and can then enter one of two possible
types of operation. The default type is to receive statements until the shell
calls them to enter their execution phase. An alternative behaviour is for the
receipt of a statement to trigger their execution phase. Below, we consider the
default operation first, before discussing the alternative.

13



When a statement is received, it is typically stored within the component
until the component enters its component-execution phase, at which point all
statements received by a component are processed. According to the type of
statements received, the component performs one of three actions, as follows.

• An inform statement simply causes the component to update any relevant
attributes, based on the information contained within the statement.

• An execute statement is placed on an execution stack. Once the pro-
cessing of all received statements is completed, the execute statements
are retrieved and the component performs the actions described within the
statement.

• A request statement causes the component to attempt to retrieve the
information requested and create an inform statement that contains that
information. This inform statement is then placed in an outbound stack
that stores all statements to be sent out. Outbound statements are sent
once the processing of all received statements has finished and the actions
prescribed by execute statements have been performed.

The entire process continues until a component is deactivated. Note that while
a component is executing it cannot receive any statements. If statements are
still arriving at the component, it is the task of the shell to manage those
statements until the component is able to receive them.

The alternative behaviour for a component is to process every statement as
it arrives, using the same method described above for the different types of
statements. This event-based behaviour is especially useful for infostores that
are typically queried with request statements for information, so that they
can thus provide the response immediately.

At any given time, the state of a component, in terms of the information
to be manipulated, is given by the set of statements that have not yet been
processed, the set of statements in the execution stack, the set of statements
in the outbound stack and any attributes that the component manipulates.
Depending on the specific implementation of a component, it may be possible
to interrogate components for their individual states.

4 Behavioural Specification

As discussed above, communication between components takes place through
the exchange of statements. Individual components are not aware of the ori-
gin of received statements nor the destination of statements they produce,
ensuring that components are independent of each other. Third-party coor-
dination is achieved by placing components within a shell, which acts as the

14



Fig. 6. Agent shell

third-party that manages the sequence in which components execute and the
flow of information between components. These are the aspects that make up
the behavioural specification of the agent.

4.1 Shell

The shell manages components, firstly, by defining links between components
and, secondly, through the execution sequence of components. The basic as-
pects of a shell are illustrated in Figure 6. Components are placed within a
shell, links are created between components to enable the flow of statements,
and an execution sequence is defined. In addition, the shell can be used to
maintain descriptions of agents in terms of attributes, capabilities and goals.
We consider each of these aspects in more detail below.

4.2 Links

Information flows through links that the shell establishes between compo-
nents. Each link contains paths from a statement-producing component to the
statement-receiving components. Each component that produces statements
has a link associated with it that defines the components that should receive
those statements. Links also ensure that, in the case of a request statement,
the reply is sent to the component that produced the request. Thus, links
manage paths, which are one-to-one relationships between components. They
are usually unidirectional, except in the case of a request statement, for
which an inform may be returned in the opposite direction.

The shell then uses the information within links to coordinate the flow of
statements between components. Ultimately, this coordination depends on the
choices that a developer makes, since it requires knowledge of each component
and how they can be composed.

By decoupling the handling of statements between components from the com-

15



ponents themselves, we gain considerable flexibility. We can manage the com-
position of components and the flow of information without the components
themselves needing to be aware of each other. It is the architecture developer’s
task to ensure that the appropriate links are in place. At the same time, there
is flexibility in altering links, and it becomes easier to introduce new compo-
nents. Furthermore, basic transformations can be performed on a statement
from one component to the other to ensure compatibility if the output of one
component does not exactly match the required input for another. For exam-
ple, if a sensor component provides information from a thermometer based on
the Celsius scale, while a controller that uses that information uses Fahren-
heit, the link can be programmed to perform the necessary transformation.
These features thus enable the reconfiguration of architectures.

4.3 Execution Sequence

Apart from the management of the flow of information, we also need to con-
sider the execution of components for a complete view of agent behaviour. This
is defined via an execution sequence that is managed by the shell. Execution
of a component includes the processing of statements received, the dispatch
of statements, and the performance of any other actions that are required.
The execution sequence is an essential part of most agent architectures and,
by placing the responsibility of managing the sequence within the shell, we
can easily reconfigure it at any point during the operation of the agent. For
many architectures this may be purely sequential, but there are cases in which
concurrent execution of components is desired (e.g., the DECAF architecture
is based on a fully concurrent execution of all components [11]). In general,
the issue of supporting complex execution sequence constructs, such as con-
ditional paths and loops, is considered to be an issue that goes beyond the
scope of this research, and there is a wealth of existing research that can be
accessed to address this need. For example, recent developments within the
field of Semantic Web Services provide a process model language for describ-
ing the operation of a web service [12]. Nevertheless, through our proposed
mechanisms, we facilitate the necessary separation of concerns to enable the
integration of such work within the scope of agent architecture development.

4.4 Agent Description

The description of the agent as a whole can be maintained by the shell or
explicitly within the agent architecture, with components dedicated to the
task, depending on the capabilities and needs of the architecture. In the for-
mer case, the shell can store a number of attributes that describe the agent

16



owner, its location, user preferences, etc. The level of detail covered by this
description is mostly an application-specific issue, and this information can
either be provided directly to the shell by the developer, or collected from
the various components. The shell could query a component that is able to
provide information about the current location, for example, and add it to the
description of the whole agent. Likewise, it may keep a record of the current
goal an agent is trying to satisfy, or the plan it is pursuing. The capability
to collect and provide attributes describing the agent within the shell may be
particularly useful in a situation in which a developer wants to export a view
of the agent for debugging purposes, or when some information needs to be
advertised, to facilitate discovery by other agents.

5 Applying actsmart to AgentSpeak(L)

In order to test the effectiveness of actsmart for constructing agent architec-
tures we developed a BDI-type architecture based on Rao’s AgentSpeak(L) [13]
language. Luck and d’Inverno have previously formalised AgentSpeak(L) within
the framework of smart [14], and this formalisation is used as the basis of
our implementation. The presentation is divided into the descriptive, struc-
tural and behavioural aspects of the architecture, and an overview of the three
perspectives is illustrated in Figure 7.

The basic operation of agents in AgentSpeak(L) is based around their beliefs,
desires and intentions. An agent has beliefs (about itself, others and the envi-
ronment), desires (in terms of the states it wants to achieve in response) and
intentions as adopted plans. In addition, agents also maintain a repository of
available plans, known as the plan library. Agents respond to changes in their
goals and beliefs, which result from perception, and which are packaged into
data structures called events, representing either new beliefs or new goals.
They respond to these changes by selecting plans from the plan repository for
each change and then instantiating one of these plans as an intention. These
intentions comprise actions and goals or plans to be achieved, with the latter
possibly giving rise to the addition of new plans to that intention. More de-
tails of the architecture can be found in [13,14], but this brief description will
suffice for the purpose of elaborating the actsmart model.

5.1 Descriptive Specification

As discussed in Section 3.2, the attributes used within an architecture can
be divided into domain-specific and architecture-specific attributes. This dis-
tinction is adopted in our implementation of AgentSpeak(L) since it uses its

17



Attributes 

Beliefs
Intentions
Plans
Events
Goals
Triggers

Capabilities

Actions

Goals

Achieve Goals
Query Goals

Descriptive Specification Behavioural Specification Structural Specification
Receive sensor information

Update Beliefs

Trigger Plans

Choose Plans

Create new intentions

Select intention to pursue

Create internal events

Perfom actions

Sensors

BDIEventProcessor (Controller)

Actuators

BDIActionProcessor (Controller)

BeliefBase (Infostore)

PlanBase (Infostore)

PlanSelector (Controller)

IntentionBase (Infostore)

IntentionSelection (Controller)

 

Fig. 7. Agentspeak descriptive, behavioural and structural specification

own terminology for describing both the external and internal environment
of the agent. The descriptive specification is in essence a specification of this
terminology, which can then be connected to the concepts of smart.

In AgentSpeak(L), beliefs represent facts about the world. Actions are the
plan steps that make up the body of plans and intentions. Plans are made up
of triggers that define the invocation conditions (either a belief or a goal), the
context that is the set of beliefs under which the plan is applicable, and the body

that defines what actions are to be taken or what goals are activated. Triggers

are divided into external and internal triggers where the former are determined
externally and the latter are determined through components within the agent.
Goals are simply collection of beliefs to be brought about and can either be
achieve goals (making some belief true) or query goals (testing whether a belief
is true). Finally, intentions are sets of plans that are currently activated.

In the formalisation of AgentSpeak(L), beliefs, events, intentions, triggers,
goals and plans are all defined in terms of attributes. Thus, the descriptive
specification of AgentSpeak(L) is a mapping between the smart concepts
of attributes, capabilities and goals and their respective concepts within the
AgentSpeak(L) architecture. In essence, AgentSpeak(L) goals are the same as
smart goals, AgentSpeak(L) actions map to smart capabilities, and descrip-
tions of AgentSpeak(L) beliefs, intentions, plans, events, goals and triggers
map to smart attributes.

Note that we differentiate between a goal as an attribute used to describe the
information stored within an agent (and as a result a describable feature of
the agent’s internal environment) and a goal as a desirable state of affairs in
smart. The former refers to a data structure stored within the architecture,
while the latter refers to an intrinsic value that may not be explicitly stored
within the architecture.

18



5.1.1 Structural Specification

The structural specification of an agent is based on its individual components
and the kinds of statements that they produce or receive. The statements are
constructed with attributes of the types described above. A description of each
component and its main functionality follows.

BeliefBase The BeliefBase is an infostore that stores the beliefs of an agent. It
can accept inform statements that carry beliefs to be added to, or update, the
set of existing beliefs. It can also accept request statements about existing
beliefs from linked components at each cycle of operation.

PlanBase The plans that the agent has at its disposal are stored in the
PlanBase, which can accept inform statements to update the existing set of
plans, and inform statements relating to triggers in plans. Based on these
triggers, the PlanBase fires inform statements containing the plans activated
by the triggers.

PlanSelector The PlanSelector is a controller that selects plans based on
current beliefs and relevance. It can then send execute statements to other
components about plans that should be activated.

IntentionBase The IntentionBase is an infostore that stores active and in-
active intentions. It administers the status of stored intentions based on infor-
mation received from other components.

IntentionSelection The IntentionSelection controller analyses intentions and
decides what action to take based on the body of the plans. It sends execute

statements to components for actions to be performed, or inform statements
to other parts of the architecture when internal triggers are matched or when
intentions are to be suspended or cancelled.

BDIEventProcessor The BDIEventProcessor component is not an intrinsic
part of the AgentSpeak(L) architecture. Its task is to translate information
received from sensor components into attribute types that are consistent with
the rest of the architecture. It converts any information received into the
appropriate belief data types so that they can be manipulated by the rest of the
architecture. Such a component is required when sensors are not designed to
take into consideration the attribute structures of AgentSpeak(L), something
that is likely in highly heterogeneous environments with legacy applications.

BDIActionProcessor Similar to the BDIEventProcessor, the BDIAction-

Processor controller translates architecture specific commands for action to a
form understandable by the actuators. Once more, this is only necessary if the
actuators have not been designed with AgentSpeak(L) in mind.

19



AgentSpeak(L) Agent

Intention
Selector

sensors

actuators

BeliefBase

PlanBase

Intention
Base

PlanSelector

BDIEvent
Processor

BDIAction
Processor

Fig. 8. Architecture components

5.1.2 Behavioural Specification

To a large extent, the structural specification indicates how components should
be linked in order for the architecture as a whole to operate in a sensible
manner. The behavioural specification, however, gives precise definitions of
these links. By separating the two aspects, we gain flexibility in altering the
behaviour to the extent that changing links between components allows. In
addition, components can be replaced without affecting the rest of the archi-
tecture as long as the statements they produce are consistent with what other
components can process.

The links between components are illustrated in Figure 8, in which the ex-
ecution sequence begins with statements arriving at the BDIEventProcessor

from sensors. These events are translated to triggers and are passed in state-
ments to the BeliefBase and the PlanBase. The BeliefBase is informed of new
beliefs, or changes its existing beliefs, while the PlanBase retrieves plans that
have a trigger equal to the triggers produced by the BDIEventProcessor. The
PlanBase then informs the PlanSelector about the plans that have appropri-
ate triggers, and the BeliefBase informs the PlanSelector about the current
beliefs of the agent. Based on this information, and plans that are already
activated, the PlanSelector chooses the applicable plans and informs the In-

tentionBase of these plans. The IntentionBase creates a new intention and
sends this intention along with any other pending intentions to the Inten-

tionSelection component. In turn, this analyses the intentions and produces
the appropriate internal events, which propagate to the PlanBase and Inten-

tionBase, and sends execute statements to BDIActionProcessor about the
actions that need to be performed.

This execution cycle is, of course, only one of several possibilities. The key
point to note is that it can be dynamically altered to suit specific situations

20



as long as the inputs and outputs to components are statements they can
process.

6 Discussion

Initial experience with actsmart is positive. The BDI architecture described
above is readily implementable, and a working prototype system has been
developed in exactly the way specified here. In particular, the implementa-
tion of the architecture in actsmart has provided useful experience as to the
suitability of the model for agent construction in an application development
setting. The fine-grained control over every aspect of the agent aids signifi-
cantly in testing and debugging, since components can be tested individually
and, more importantly, they can be tested in connection with other compo-
nents without requiring an instantiation of the entire architecture. Moreover,
the state of each component, and the agent as a whole, is clearly defined at
each moment, and changes to individual components and to the overall archi-
tecture are easy to achieve. Finally, constraining exchanged inter-component
information to specific attribute types provides a tight link to the ontology
the agent uses to describe the environment. This minimises confusion between
different data types, and makes integration of different components simpler.

While our case study of AgentSpeak(L) demonstrates the validity of the ap-
proach and highlights its value, more empirical analysis is required, especially
on limited devices. In particular, the benefits that are offered come at an
increased computational cost in relation to the use of a specific means of ex-
changing information between components, and throughout an agent. This
is clearly not an optimal, nor most cost-effective, means of information ex-
change between components. Although the consequences of this are still to be
completely understood, and although more work is needed, both analytical
and experimental (or developmental), initial tests on PCs and high-end PDAs
indicate that the difference is not significant.

Through this example, and through others reported elsewhere [15,16] we have
shown how the combination of smart and actsmart can be used to support
the development process of agent systems by offering three distinct but com-
plementary views. Descriptive specification provides an abstract (and typically
formal) means for systems specification, but largely ignores issues of system
development. By introducing actsmart, however, we complement this with a
specification of both the system structure, and its behaviour, at a level that
enables ready implementation.

This is a first iteration towards a methodology. We have identified notations
and models for use in agent specification and development, and have illustrated

21



their use in application to the development of a sophisticated agent architec-
ture. Similarly, we have provided a component-based agent system that lends
itself to reconfiguration for different platforms, but have only briefly consid-
ered how this suggests the use of a library of components, and have not at
all considered whether and how agent patterns [17] may be used in this con-
text, which seems almost an ideal combination. However, we have not fully
elaborated the process of development, which is essential for a mature and
industrial-strength contribution to support agent-oriented software engineer-
ing. In that respect, much more remains to be done, but the work described
here provides a platform on which to base it.

References

[1] N. R. Jennings, On agent-based softare engineering, Artificial Intelligence
117 (2) (2000) 277–296.

[2] J. Bryson, L. A. Stein, Architectures and Idioms: Making Progress in Agent
Design, in: C. Castelfranchi, Y. Lespérance (Eds.), Intelligent Agents VII. Agent
Theories Architectures and Languages, Vol. 1986, Springer, 2001, pp. 73–88.

[3] M. d’Inverno, M. Luck, Understanding Agent Systems, 2nd Edition, Springer,
2004.

[4] J. Spivey, The Z Notation, 2nd Edition, Prentice Hall, 1992.

[5] J. Cheesman, J. Daniels, UML Components: A Simple Process for Specifying
Component-Based Software, Addison-Wesley, 2000.

[6] D. D’Souza, A. Wills, Objects Components and Frameworks with UML,
Addison-Wesley, 1998.

[7] C. Szyperski, Component Software: Beyond Object-Oriented Programming,
Addison-Wesley, 1998.

[8] A. S. Rao, M. P. Georgeff, BDI-agents: from theory to practice, in: Proceedings
of the First International Conference on Multiagent Systems, AAAI Press/ The
MIT Press, 1995, pp. 312–319.

[9] T. Finin, Y. Labrou, J. Mayfield, KQML as an agent communication language,
in: J. Bradshaw (Ed.), Software Agents, MIT Press, 1997.

[10] M. d’Inverno, M. Luck, Engineering AgentSpeak(L): A Formal Computational
Model, Journal of Logic and Computation 8 (3) (1998) 233–260.

[11] J. Graham, K. Decker, Towards a Distributed Environment-Centered Agent
Framework, in: N. Jennings, Y. Lesperance (Eds.), Intelligent Agents VI Agent
Theories, Architectures, and Languages, Vol. 1757 of LNCS, Springer, 1999.

22



[12] A. Ankolenkar, M. Burstein, J. R. Hobbs, O. Lassila, D. L. Martin,
D. McDermott, S. A. McIlraith, S. Narayanan, M. Paolucci, T. R. Payne,
K. Sycara, DAML-S: Web Service Description for the Semantic Web, in: I. F.
Cruz, S. Decker, J. Euzenat, D. L. McGuinness (Eds.), The First Semantic Web
Working Symposium, Stanford University, California, 2001, pp. 411–430.

[13] A. S. Rao, AgentSpeak(L): BDI Agents Speak Out in a Logical Computable
Language, in: W. V. de Velde, J. W. Perram (Eds.), Agents Breaking Away,
7th European Workshop on Modelling Autonomous Agents in a Multi-Agent
World, Vol. 1038 of LNCS, Spinger, 1996, pp. 42–55.

[14] M. Luck, M. d’Inverno, Motivated Behaviour for Goal Adoption, in: C. Zhang,
D. Lukose (Eds.), Multi-Agent Systems: Theories, Languages, and Applications,
4th Australian Workshop on Distributed Artificial Intelligence, Vol. 1544 of
LNCS, Springer, 1998, pp. 58–73.

[15] R. Ashri, I. Rahwan, M. Luck, Architectures for Negotiating Agents,
in: V. Marik, J. Muller, M. Pechoucek (Eds.), Mutli-Agent Systems and
Applications III, Vol. 2691 of LNAI, Springer, 2003, pp. 136–146.

[16] R. Ashri, M. Luck, An Agent Construction Model for Ubiquitous Computing
Devices, in: P. Giorgini, J. Muller, J. Odell (Eds.), Proceedings of the Fifth
International Workshop on Agent-Oriented Software Engineering, 2004.

[17] J. Gonzalez-Palacios, M. Luck, A framework for patterns in gaia: A case-study
with organisations, in: P. Giorgini, J. Muller, J. Odell (Eds.), Proceedings of the
Fifth International Workshop on Agent-Oriented Software Engineering, 2004.

23


