
Revista de Informática Teórica e Aplicada - RITA - ISSN 2175-2745
Vol. 29, Num. 01 (2022) 81-90

RESEARCH ARTICLE

Integrating Embedded Multiagent Systems with Urban
Simulation Tools and IoT Applications
Integrando Sistemas Embarcados Multiagentes com Ferramentas de Simulação Urbana
e Aplicações IoT

Lucas Fernando Souza de Castro1*, Fabian Cesar P. B. Manoel2, Vinı́cius Souza de Jesus2,
Carlos Eduardo Pantoja2, André Pinz Borges3, Gleifer Vaz Alves3

Abstract: The smart city systems development connected to the Internet of Things (IoT) has been the goal of
several works in the multi-agent system field. Nevertheless, just a few projects demonstrate how to deploy and
make the connection among the employed systems. This paper proposes an approach towards the integration of
a MAS through the JaCaMo framework plus an Urban Simulation Tool (SUMO), IoT applications (Node-RED,
InfluxDB, and Grafana), and an IoT platform (Konker). The integration presented in this paper applies in a Smart
Parking scenario with real features, where is shown the integration and the connection through all layers, from
agent level to artifacts, including real environment and simulation, as well as IoT applications. In future works,
we intend to establish a methodology that shows how to properly integrate these different applications regardless
of the scenario and the used tools.
Keywords: Smart City — Multi-Agents — Urban Simulation — IoT

Resumo: O desenvolvimento de sistemas para cidades inteligentes conectados com Internet of Things (IoT)
tem sido o foco de muitas pesquisas no âmbito de Sistemas Multi-Agentes (MAS). Contudo, poucos trabalhos
mostram como realizar a implantação e conexão entre os softwares utilizados nestas diferentes áreas. Assim,
este trabalho propõe uma abordagem de integração de um SMA, usando o framework JaCaMo juntamente com
a ferramenta de Simulação Urbana (SUMO), aplicações IoT (Node-RED, InfluxDB e Grafana) e uma plataforma
IoT (Konker). A integração apresentada aqui é aplicada em um cenário de Estacionamento Inteligente com
caracterı́stica realista, onde a integração e conexão de todos componentes envolvidos é descrita desde o
nı́vel dos agentes e artefatos, passando pelo nı́vel do ambiente real (fı́sico), pelo nı́vel da simulação urbana,
chegando as aplicações de IoT. Em trabalhos futuros, pretende-se elaborar uma metodologia que mostre como
integrar essas diferentes aplicações independentemente dos cenários e das ferramentas utilizadas.
Palavras-Chave: Smart City — Multi-Agentes — Simulação Urbana — IoT

1Institute of Computing, Universidade Estadual de Campinas (UNICAMP), Campinas - São Paulo, Brazil
2Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ), Rio de Janeiro - Rio de Janeiro, Brazil
3Computer Science Graduate Program, Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba - Paraná, Brazil
*Corresponding author: lucas.castro@ic.unicamp.br, {souza.vdj, fabiancpbm}@gmail.com, pantoja@cefet-rj.br, {apborges,
gleifer}@utfpr.edu.br
DOI: http://dx.doi.org/10.22456/2175-2745.110837 • Received: 20/01/2021 • Accepted: 29/08/2021
CC BY-NC-ND 4.0 - This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

1. Introduction
In one of its reports, Cisco points to an estimated 50 billion
devices for the Internet of Things (IoT) in operation as of
2022 [1]. Besides, there is a growing demand for computer
systems that provides functionality and connectivity for these
devices. The development of these systems must fulfil the dy-
namics of the scenarios where the devices for IoT are located,
such as the smart city scenario.

A smart city could be defined as a city that provides in-
tegrated technologies to its citizens to have a quality of life
[2]. This quality provided to the population can be diversi-

fied into different categories: governance, security, economy,
environment, and mobility. This last one has been an area
of attention for research and industrial investment in smart
cities [3]. Thus, in face of such demands there must be a
development of systems capable to support citizens’ mobility.

Multi-Agent Systems (MAS) are candidates to provide
the necessary support for citizens’ mobility. It is achiev-
able due to some features provided by these systems, for
instance, autonomy, pro-activeness with cognitive reasoning,
decision-making, and finally the capability to communicate
with each other in order to achieve a common or conflicting

Integrating MAS with Urban Sim. Tools and IoT Apps

objective [4].
Through these features, the problems related to mobility

in smart cities are managed proactively without interference or
even knowledge of citizens, because the intelligent agents can
perform this role for the user’s benefit and negotiate with their
peers to take relevant decisions at a specific time to any service.
Whereas in a smart city there could be numerous devices
capable of exchanging information, the IoT emerges as an
essential technology in the implementation of such solutions
since, by definition, IoT [5] is a set of devices interconnected
by the Internet. Since MAS can be employed in a simulated
(virtual) and physical way, it is possible to forecast devices
embedded with MAS applied in IoT applications.

Observing the technological demand required by urban
mobility, there is a requirement for a suitable system able to
face intelligent and organizational situations. Moreover, it
has to rely on the IoT to scale the problem resolution. There-
fore, the objective of this work is to describe an approach
for integrating different applications, involving MAS, Urban
Simulation, Embedded Systems, and the IoT applications with
the possibility to create solutions that are built under these
technologies in order to solve issues of mobility, heterogene-
ity, and low coupling among the technologies. Hence, this
integration aims to provide both a solution capable of being
applied in different scenarios and applications (heterogeneity),
and also a solution that provides the possibility of using only
a part - subset - of the integration as a solution (low coupling
among technologies).

Here, we use the JaCaMo framework [6] to implement
our approach, which is a composition of three programming
frameworks: Jason, CArtAgO, and Moise. Jason [7] interprets
an agent-oriented language called AgentSpeak in Java for pro-
gramming BDI agents (Belief-Desire-Intention). CArtAgO
is based on the Agents & Artifacts (A&A) model, which al-
lows the development of the MAS environments layer and
integrates the agents and artifacts of a MAS [8]. Finally,
Moise implements an organizational model for MAS based
on grouping, behavior, and objectives [6].

The remainder of this paper is organized as follows. Sec-
tion 2 presents the general approach to the integration of
systems. Section 3 describes the integration between MAS
agents and artifacts with the urban simulation. Afterward, the
Section 4 details the integration of agents and artifacts with
the physical environment. While, in Section 5, the integra-
tion of MAS with the IoT applications is presented. At last,
Section 6 describes the final remarks.

2. Integration of Systems
This section presents a heterogeneous approach to integrate
MAS, Urban Simulation, Embedded Systems, and the IoT
layer. This approach describes how to develop an embedded
MAS for IoT applications using the JaCaMo framework and
integrating several tools to facilitate the application and visu-
alization of such systems, including in different application
domains. The approach employed here allows the detachment

of a system structure into levels where the responsibilities
of software, hardware, and IoT are programmed separately
to facilitate integration depending on the solution that has
been created and which levels will be employed. The system
integration proposal is composed of four well-defined levels:
Agents, Environment, IoT, and Simulation level, as illustrated
in Figure 1.

The agent-level layer is responsible for creating MAS
agents using the Jason language. Agents have two specific
extensions: the first one is for interfacing hardware using
ARGO [9] and the second one is for communicating and trans-
porting agents using IoT. The agent-level layer connects with
different parts of the system: i) the environment level through
the artifacts provided by Cartago [8]; ii) the simulation level
to enable the proper simulation of agents using SUMO urban
simulator [10]; iii) the physical environment level directly
through the ARGO extended agent; iv) and the IoT level used
to scale-up the agent applications.

The environment’s level divides between the artifacts (pro-
vided by Cartago) and the physical environment, where hard-
ware platforms with sensors and actuators can interact with
the physical world. Thus, it is possible to create Simulated
Artifacts, those that maintain information only at the software
level, and Physical Artifacts, which perform the Hardware
interface through a Serial Interface. Both artifacts can co-exist
in a solution developed using the proposed approach since
the technologies used at each level are independent. Physical
Artifacts can also relate to the IoT level via MQTT (Message
Queuing Telemetry Transport) connections with KonkerLabs
and the Node-Red Application.

At the IoT level, ContextNet is employed as a middleware
for IoT that can deal with several characteristics of distributed
systems such as connectivity, scalability, and communicabil-
ity [11], for communication among agents. The proposed ap-
proach with communicator agents can connect to ContextNet
to exchange messages or transport agents from a MAS em-
bedded in one device to another MAS from a different device.

In this way, it is possible to create devices using the agent
approach to act physically in a Cyber-Physical System and
IoT applications. In this paper, a Device could be defined as
a component composed of an embedded MAS using Jason
and CArtAgO, capable of interfacing sensors and actuators
connected to a microcontroller (ATMEGA, PIC, Arduino) and
of connecting to an IoT network to exchange information.

3. Integration: Urban Simulation and MAS
The JaCaMo framework enables the use of three layers of
development for MAS: agents, artifacts, and social. Besides,
it can interconnect with different tools, for example, simula-
tion, embedded systems, and IoT. Such capacity is due to the
framework’s flexibility by providing CArtAgO’s environment
artifacts. This section describes how JaCaMo and SUMO are
connected.

In order to illustrate this integration, a MAS developed
through JaCaMo Framework is used to assign and negotiate

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 29 • N. 1 • p.82/90 • 2022

Integrating MAS with Urban Sim. Tools and IoT Apps

Figure 1. Systems Integration Approach: Overview

Figure 2. UTFPR (Ponta Grossa) - Map and Representation at SUMO

parking spaces in a Smart Parking. The developed MAS
covers one smart parking with two parking areas (see Figure
2): red circle (left) for students and visitors, green circle (right)
only for students. Regarding the simulation with SUMO, a
network was designed with the roads and the parking areas1

to simulate this scenario as showed in Figure 2.
The integration of MAS with SUMO was divided into two

layers: agents and artifacts. The agent layer comprises the
programming of agents in the Jason language and their inter-
actions. Meanwhile, the second layer presents the artifacts

1The term network in SUMO is used to denote a map used in the simula-
tion.

developed in CArtAgO and their agents’ interactions. Both
layers are described in detail in the following sections.

3.1 Agent Layer
Altogether, three groups of agents compose the MAS: builder,
pspace, driver. Figure 3 illustrates the agents, beliefs, and
interactions (messages) of the system.

The agents group owns the following members:

• builder: it is responsible for instantiating all CArtAgO
artifacts, workspaces, and pspace agents.

• pspace: it is able to representing the parking space, both
physically and virtual (in SUMO, as shown in Figure 2).

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 29 • N. 1 • p.83/90 • 2022

Integrating MAS with Urban Sim. Tools and IoT Apps

Figure 3. Prometheus Diagram - Agents: beliefs and messages

• driver: it represents the driver who wants to get a parking
space.

The pspace agent has the following beliefs:

• price: the price for each hour of using the parking space;

• statusChanged: the value corresponding to the variation of
the distance (ultrasonic) sensor (in use or free);

• position: the network path position in SUMO (0 - one way /
1 - regress);

• maxTime: the maximum period of time that a driver can use
the parking space. If the time is over, there will be an extra
charge in the price;

• edge: the value that identifies the edge (street) of the SUMO
network in which the parking space is positioned. By de-
fault, SUMO provides pre-established editable values such
as (edge ID);

• waitingDriver: it informs if the parking space is in the
status waiting for a driver. This belief is used if the parking
space is occupied without being previously assigned to a
given driver. Thus, if this occurs, the parking space was
improperly occupied by an unwanted object or driver;

• parked: it indicates the presence of a driver parked in the
parking space that was assigned to the driver.

Among the group of agents, the following messages can
be exchanged:

• requestPSpace: the driver agent sends the message to the
pspace agent informing the parking space request for a price
predetermined by the price belief;

• systemReady: message sent when instantiating pspace agents,
and Cartago workspaces, and artifacts. In this process, the
builder agent sends a message to the pspace agents inform-
ing them that the system is working. Thus, pspace agents
are open to requests from driver agents;

• psInfo: when the pspace agent accepts a parking space
request, that agent must inform the respective driver agent
of the information about the assigned parking space (e.g.,
location).

For the sake of clarity, we shall not present the details of
how parking space is requested and negotiated. However, the
reader may find specific MAS solutions for the negotiation of
parking spaces in the following works [12], [13], and [14].

3.2 Artifact Layer - Connection with SUMO
The artifacts described in this scenario comprise the intercon-
nection of MAS with SUMO, illustrated in Figure 4. Based
on Figure 4, the artifacts used to connect the MAS to SUMO
are SUMOConnect,StructureInfo, and PSControl.
The artifact MQTTConnection is used to integrate the MAS
to IoT Tools, which is explained on the Section 5.

The following artifacts are used in the system:

• SUMOConnect: The artifact is used to connect to SUMO.
The connection to SUMO is made through the TraaS li-
brary 2 [15]. There are two operations that pspace agents
can perform on the SUMOConnect artifact.

– addVehicle: operation that adds vehicles to the SUMO
network. MAS driver agents in JaCaMo are considered
vehicles in SUMO, whereas pspace agents are SUMO’s

2Python-based library that communicates with the SUMO TraCI (connec-
tion with Socket).

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 29 • N. 1 • p.84/90 • 2022

Integrating MAS with Urban Sim. Tools and IoT Apps

JaCaMo

maps_sumo_Workspace (main)

Environment Level (Cartago)

StructureInfo

- buildSystem

setStatusSystem

PSControl
registerPSpace
printAllPSpaces
requestPSpace
freePSpace

driver_agents builder_agent

Agent Level (Jason)
pspace_agents

SUMOConnect

addVehicle
removeVehicle

sumoFail

TraaS Library

SUMO
TraCI SUMO Coretcp

Agent

composition

uses/observes

- attributes

 operations

Legend

signalArtifact

connect2Broker
sendMSG2Broker
string2JSON

MQTTConnection

Figure 4. Interaction between JaCaMo and SUMO

parkingSpace resources. Listing 1 features the addVehi-
cle function. The function parameters are the agent name
(SUMO vehicle id), the SUMO road id (edge), and the
road position (0 - one way, 1 - regress). The function
initially (line 5) adds the vehicle to the SUMO network.
In this line, there is also the routeToParking, which is pre-
viously defined as a sequence of roads used by the vehicle
to find the parking space for it. Finally, line 6 defines
which parking space the vehicle will occupy, which is
previously negotiated in the agent layer.

Listing 1. Function: addVehicle - CArtAgO
1 public class A_SUMOConnect extends Artifact {

SumoTraciConnection conn;
3 @OPERATION

public void addVehicle(String agentName,
String edge, double position) {

5 conn.do_job_set(Vehicle.add(agentName,"
DEFAULT_VEHTYPE", routeToParking, lane
, position, speed,Byte.valueOf("0")));

conn.do_job_set(Vehicle.setParkingAreaStop
(agentName, parkingAreaName, duration,
timeOut, flag);}

– removeVehicle: Listing Code 2 presents the function
of removing the vehicle from the network in SUMO. After
a driver agent finishes using a pspace, the corresponding
vehicle in SUMO is asked to leave the parkingArea3 (Line
3) and start the route to the network exit (routeToLeave)
(Line 4).

3The place where the driver parks the car we call parking space in this
paper. However, the SUMO calls it as parkingArea in its tool.

Listing 2. Function: removeVehicle - CArtAgO
@OPERATION

2 public void removeVehicle(String agentName) {
conn.do_job_set(Vehicle.resume(

agentName));
4 conn.do_job_set(Vehicle.setRoute(

agentName, routeToLeave));}

Finally, in SUMOConnect there is the use of the sumoFail
signal in case of a connection failure with TraCI and prob-
lems with the SUMO network.

• StructureInfo e PSControl: The PSControl artifact is used
for registration, allocation, release, and control of pspaces.
In turn, the StructureInfo artifact is used by the builder
agent to inform the other agents about the MAS status.

4. Integration: Physical Environment and
MAS

This section presents JaCaMo as an embedded system that
employs a MAS that interfaces physical environments. There
are two ways of interfacing the real world: i. using agents
that interfaces the physical environment directly; and ii. using
artifacts as an intermediary between agents and the hardware.

The first one allows agents to access raw data from sensors
and process them as perceptions directly in their reasoning
cycle in each cycle performed, and they can activate actuators
by sending commands to the hardware using a serial interface.
Since the hardware is managed by an autonomous and cogni-
tive agent, it allows improving the decision-making process

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 29 • N. 1 • p.85/90 • 2022

Integrating MAS with Urban Sim. Tools and IoT Apps

at the edge of the system once the information was processed
and reasoned. However, the more data the environment can
produce, the more information the agent will deal with and
its reasoning cycle could be overloaded in converting them
into perceptions. Some solutions were implemented to tackle
this issue, such as perception filters [16], which incorporates
a filtering perception engine inside Jason’s interpreter to elim-
inate the irrelevant perceptions and reduce processing time.
Even with the perception filter, it is still possible to overload
the reasoning cycle of an agent depending on how the filter is
designed or even if new information becomes available in the
environment considering its unpredictability.

The second way of interfacing with the real world is using
artifacts to communicate with microcontrollers in the phys-
ical environment. Using these artifacts, the agents do not
need to access the physical environment in each reasoning
cycle performed and access the artifacts only when it is really
necessary. In addition to alleviating the responsibility of the
reasoning cycle, the artifact can also be used by other MAS
agents, allowing sensors and actuators to be accessed by any
MAS agents.

Both agent and environment layers use a serial interface
for accessing sensors and actuators. The Javino [17] is a two-
way communication protocol, which provides reliability since
it has a process to verify the message’s integrity to guarantee
that there is no information loss during the communication
process between the low and high levels.

4.1 ARGO: Jason Agent and Hardware Integration
The integration of Jason agents with hardware allows devel-
oping MAS in real physical environments. The notion of
autonomy, pro-activity, and collaboration on the part of a
MAS agent justifies the need to integrate this system into
a real environment to deal with this physical environment’s
unpredictability.

ARGO [9] is a customized agent’s architecture for com-
municating with microcontrollers in the AgentSpeak program-
ming language. The agents using this architecture are named
ARGO agents and allow developing a MAS interacting in
a physical environment through Arduino, ESP, or PIC mi-
crocontrollers. ARGO uses the Javino serial communication
interface as a middleware to establish the communication
between the hardware and the MAS.

Therefore, with the Javino serial interface, an ARGO agent
can send and receive information from microcontrollers. The
information received is treated as perceptions that the ARGO
agent receives from the environment via sensors of the hard-
ware that the agent is controlling and, therefore, are auto-
matically added as beliefs in this agent’s belief base. The
information sent to the microcontroller is treated as actions
performed in the physical environment via hardware actuators.

In order to use these features of ARGO agents, four new
internal actions (i.e., pre-programmed actions or behaviors in-
herent to the agent [7]) were developed exclusively to control
microcontrollers, namely:

• .port(”Serial port”): defines which serial port the agent
will control and, consequently, which microcontroller the
agent will control. This internal action has an argument that
represents which serial port the agent will control;

• .perceive(open/block): defines whether the agent will per-
ceive the environment or not. This internal action argues
and has two options: open, used to make the agent open
perceptions and receive information from the hardware; and
block used to close the agent’s perceptions and no longer
receive information;

• .limit(Time in milliseconds): defines a time interval for the
agent to perceive the environment. This internal action has
an argument that represents the time in milliseconds that
the agent will switch perception from open to closed;

• .act(”Action”): defines an action that the microcontroller
must perform. This internal action has an argument that
represents the action that must be sent to the microcontroller
to perform.

In addition to ARGO agents, there are also Physical Arti-
facts that enable you to integrate conventional artifacts from
the CArTAgO framework with physical devices and their mi-
crocontrollers [18].

4.2 Physical Artifacts: CArtAgO and Hardware Inte-
gration

The JaCaMo architecture [6] presents the difference between
two environments: the internal environment, where the arti-
facts are logically organized, and the external environment,
which can be represented by simulated or real scenarios.
When adopting a physical environment composed of hard-
ware technologies represented as artifacts, it is possible to
develop Cyber-Physical Systems (CPS) employing agents
using our proposed approach.

Artifacts can be used to interface the hardware in the
real world since any agent from the MAS can access them
if they are available. Besides, agents do not need to gather
information from sensors and process it as perception in their
reasoning cycle, which overloads agents depending on the
application domain. Moreover, when agents interface such
artifacts they do not need to process the gathered information
in every cycle and they request it whenever it is necessary and
available.

One advantage of these artifacts is the abstraction of the
technical details of the hardware employed since agents access
their operations provided by the usage interface. An artifact
responsible for interfacing hardware in a physical environ-
ment is named Physical Artifact in this paper. It exchanges
commands and data between hardware and agents, controls
the actuators, and monitors the sensors of this device.

The Physical Artifact is an extension of traditional artifacts
from CArtAgO and it also has (1) a set of operations that can
be performed by agents, (2) instructions that describe how
these artifacts should have their functionality accessed, (3)

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 29 • N. 1 • p.86/90 • 2022

Integrating MAS with Urban Sim. Tools and IoT Apps

the purpose of existence, and (4) the internal structures of
its functionalities [8]. In CArtAgO, methods call Operations,
which determine the behavior of the artifact, and Observable
Properties allow the artifact to notify the agent of any event
of the environment. Thus, agents can obtain data from a
Physical Artifact by using Observable Properties, and they
can perform commands in actuators using Operations. The
Physical Artifacts also use Javino for interfacing the device’s
microcontroller. Thus, it is necessary to implement three
abstract methods in the project:

• String definePort(): returns the value of the communication
port to be used to exchange data with the microcontroller;

• int defineAttemptsAfterFailure(): returns the number of
times the artifact will attempt to send the same message
when an error has occurred during the message exchange;

• int defineWaitTimeout(): returns the waiting time in mil-
liseconds between two requests made to the device.

When it is necessary to implement Operations and Ob-
servable Properties of Physical Artifacts, two methods can be
employed:

• String read(): returns a message sent by the device’s micro-
controller, usually showing the measurements collected by
its resources;

• void send(String message): sends the message passed by
parameter to the device, usually presenting a command to
operate this device’s resources.

5. Integration: IoT Applications and MAS
The proposed approach so far showed how to integrate MAS
with the external environment, whether physical or simulated.
Although the approach offers these mechanisms, there is still
a gap when MAS needs to communicate with peers or with
other entities. If this communication became possible, MAS
and other entities inserted in similar or different environments
could share their knowledge and optimize processes.

In this context, the Internet of Things (IoT) promises that
devices and clients can establish communication as a network
node on a large scale. However, one of the challenges of IoT
is to ensure that devices of different types communicate in the
same language and in a secure and scalable way.

In order to develop such a feature, communicating the
MAS with other IoT entities through the network, we design
different modules that together provide interaction between
MAS and IoT platforms. Figure 5 presents these modules as
well as their connections and sequential interactions, which
are described below.

• IoT Prototype: The prototype consists of three items: Two
Arduino (One Arduino MEGA and one Arduino UNO), and
a Raspberry Pi 3. Initially, the Arduino performs the reading
and sends the sensor data (ultrasonic distance) to the pspace

agents on MAS. The Raspberry Pi 3 is responsible to host
the MAS, NODE-RED Application, Influx Database, and
the Grafana Server and its Dashboards;

• MAS: The MAS is composed of the following agents and
artifact to connect the MAS to the IoT Tools;

– Artifact: MQTT Connection It is able to estabilish a con-
nection with the IoT Platform (MQTT Broker) in order to
notify it about the pspace sensors and drivers. The com-
munication between the MQTTConnection and the IoT
Platform is provided by the Eclipse Paho4. This artifact
is composed by three operations, which are:

* connect2Broker: This operation is able to connect the
MAS to the MQTT Broker (see Listing 3). Initially on
lines 4-8, there is setup to assign the device id, url and
port of the broker, and the user and password. After, on
line 10, the MAS tries to connect.

Listing 3. Operation:connect2Broker - CArtAgO
@OPERATION

2 void connect2MQTTBroker() {
mqttClient = new MqttClient(MQTT_Config.BROKER

.getValue(), MQTT_Config.DEVICE_ID.
getValue(), persistence);

4 cOptions = new MqttConnectOptions();
cOptions.setCleanSession(true);

6 cOptions.setPassword(MQTT_Config.PASS.getValue
().toCharArray());

cOptions.setUserName(MQTT_Config.USER.getValue
());

8 try {
mqttClient.connect(cOptions);

10 System.out.println("Connecting to broker:
" + MQTT_Config.BROKER.getValue());

* sendMSG2Broker: After a successful connection to the
Broker, the MAS sends a message to the Broker with
an updated sensor value if some sensor has its value
changed. The message is based on JSON format due
to the required payload from the Broker. The JSON
message is composed of two fields: value and unit.
Since we use ultrasonic sensors, the unit is centimeters.
This operation is presented on Listing 4. First, on line
1 is the sensor value is being cast as a JSON message.
After on line 2 is the QoS setup and finally on line 3
is the publishing of the JSON message on the MQTT
Broker.

Listing 4. Operation: sendMSG2Broker - CArtAgO
MqttMessage message = new MqttMessage(this.

string2JSON(msg, "cm").getBytes());
2 message.setQos(Integer.valueOf(MQTT_Config.QOS

.getValue()));
mqttClient.publish(MQTT_Config.PUBLISH_TOPIC.

getValue(), message);

– ARGO Agent: it establishes the connection with the IoT
prototype to perceive the physical environment through

4This is library by the Eclipse Foundation that provides MQTT connec-
tions (publish/subscribe) between the client and broker MQTT

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 29 • N. 1 • p.87/90 • 2022

Integrating MAS with Urban Sim. Tools and IoT Apps

MAS

Agents

IoT Prototype IoT Platform

InfluxDB
Database

Grafana
Dashboard

 Serial

ph
ot

o
to

 b
e

in
se

rte
d

ARGO

Artifacts

SUMOConnect

MQTT_ConnectionCommunicator

PSpace Builder Driver StructureInfo PSControl

 MQTT

 MQTT NodeRED Application HTTP

 HTTP

Figure 5. Integration: Prototype, MAS, platform and IoT Applications

ultrasonic distance sensors. Upon obtaining the percep-
tions, the ARGO agent notifies the artifact MQTTConnec-
tion and the Communicator agent if there is environment
changing (significant change in the sensor values). In our
work, the pspace agents are considered the ARGO agents,
since the pspace agents have to perceive the physical
environment to check if something has ocurred;

– Communicator Agent (ContextNET): the agent is respon-
sible for communicating with other MAS via the Con-
textNET network. Using this agent, the MAS can commu-
nicate with other MAS for multiple cooperation between
the systems. For example, a network of smart parking
lots available at various locations in the same city. Thus,
a single parking lot can provide parking spaces.

• IoT Platform: the IoT platform is a MQTT Broker which
aims to integrate different IoT devices through MQTT routes
(publish/subscribe). Upon receiving the messages via the
prototype’s MQTT, the platform redirects the messages via
MQTT to NodeRED. The platform used is the one pro-
vided by KonkerLabs. Moreover, there are other solutions
provided by Eclipse, Google, and others;

• NodeRED: used to decomposition and extract JSON mes-
sages from the IoT platform and storage in InfluxDB via
HTTP. Decomposition and extraction is used to obtain the
value of the prototype sensors;

• InfluxDB: Time series databases (TSDB). The use of this
type of database is due to its characteristic of having a
timestamp as its primary key. Thus, the storage of the
sensor values is carried out according to the measurement
time;

• Dashboard Grafana: The Grafana dashboard provides dif-
ferent components for visualizing data in real-time. The
dashboard accesses the sensor data via HTTP in the In-
fluxDB database.

5.1 The ContextNet
The ContextNet [11] is a middleware created based on the
Internet of Things (IoT) and context service that focuses on
collaborative applications, coordination of activities of mobile
entities, and information sharing. Mobile entities can be mo-
bile devices, such as vehicles, smartphones, tablets, laptops,

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 29 • N. 1 • p.88/90 • 2022

Integrating MAS with Urban Sim. Tools and IoT Apps

or even autonomous robots connected to the IoT network.
Among the technologies used for the development of Con-
textNet, the Scalable Data Distribution Layer (SDDL) is a
middleware embedded in ContextNet responsible for the abil-
ity to communicate and distribute context. The other features
of ContextNet were developed in software modules at the top
of the distribution layer. Besides, ContextNet allows devices
to enter the network and treat them appropriately.

Besides the MAS integration with the physical environ-
ment and urban simulation, our approach also allows MAS
to be integrated with the IoT. Thus, each embedded system
can communicate with another embedded system or even with
other nodes in the ContextNet network.

5.2 The Communicator Agent
Communicator Agent [19] is an agent extension that imple-
ments an IoT node using ContextNet. With this, Communica-
tor Agent can communicate with entities distributed over the
network, no matter they are sensors, actuators, web clients,
or even other Communicator Agents. Each Communicator
Agent has a Universally Unique Identifier (UUID), which
must be known by the entity that wishes to exchange mes-
sages. When sending messages, Communicator Agents can
define the illocutionary force as tell or achieve. The first is to
update the receptor agent’s belief base, and the second is to
update the receptor agent’s plan library.

The integration between MAS and urban simulation using
the UTFPR map (Ponta Grossa) (see previously in Figure 2)
can also be done with Communicator Agents. In this case,
pspace and driver become Communicator Agents who com-
municate through ContextNet to negotiate parking spaces.
With this, these agents can even be in different MAS, which
allows expanding the MAS reach that carries out the negotia-
tion.

The Communicator Agent has an internal action called
sendOut that takes as a parameter the recipient’s UUID, the
elocutionary force of the message (achieve or tell), and the
message. The messages sent between Communicator Agents
are given as follows:

• requestPSpace: sent from agent driver to agent pspace by
calling sendOut. The parameters are the UUID of the agent
pspace, the elocutionary force tell and the parking space
request message. Example:

.sendOut (”788b2b22-baa6-4c61-b1bb-01cff1f5f879”, achieve,
requestPSpace(MT)),

where requestSpot(MT) is the request message.

• psInfo: sent from agent pspace to agent driver by calling
sendOut. The parameters are the UUID of the agent driver,
the elocutionary force tell and the message with the parking
space information.

6. Conclusion
This work presents an approach for integrating a MAS de-
veloped in JaCaMo with Urban Simulation tools, Embedded

Systems, and IoT Applications. The main objective is to de-
ploy such a variety of tools and systems in a way that a strong
coupling between all the levels is avoided.

The advantage of this approach is its generalization. The
proposed levels are heterogeneous, allowing different applica-
tions to use this approach as support for systems integration.
Another advantage is the low coupling between the layers,
which gives the flexibility to use both the fully integrated ar-
chitecture and only parts. Through this work, problems that
demand scalability and an intelligent system can be solved
with IoT integrated into a MAS. It is still possible to choose
which type of environment should be used: simulated or phys-
ical one.

As future work, we intend to develop an integration method-
ology as a framework for integrated urban mobility solutions
MAS, IoT, Simulation, and Embedded Systems. It is also
necessary to deploy an application (robust and complex) in
the domain of Smart Cities, which uses all the proposed lev-
els. With such an application, it will also be possible to run
experiments to evaluate the integration methodology’s char-
acteristics, such as scalability, low coupling, reliability in the
exchange of messages and information, among others. Finally,
we also intend to develop the social organization layer by us-
ing Moise (JaCaMo). Thus, it will be possible to establish
rules and behaviors in agent societies, promote a social organi-
zation, and create social groups of agents; these elements can
properly represent smart cities and urban mobility features.

Acknowledgements
The work of the first author is supported by Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001. The author is grateful for the
financial support.

Author contributions
• Conceptualization: All authors.

• Formal Analysis: All authors.

• Investigation: All authors.

• Practical experiments: Lucas Fernando Souza de Castro,
Fabian Cesar P. B. Manoel, Vinı́cius Souza de Jesus.

• Supervision: Lucas Fernando Souza de Castro, Gleifer Vaz
Alves.

• Writing-original draft: Lucas Fernando Souza de Castro,
Fabian Cesar P. B. Manoel, Vinı́cius Souza de Jesus.

• Writing-review & editing: All authors.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 29 • N. 1 • p.89/90 • 2022

Integrating MAS with Urban Sim. Tools and IoT Apps

References
[1] EVANS, D. How the Next Evolution of the Internet of
Things Is Changing Everything. Cisco Internet Business
Solutions Group, p. 11, 2011.

[2] ALBINO, V.; BERARDI, U.; DANGELICO, R. M.
Smart cities: Definitions, dimensions, performance, and
initiatives. Journal of urban technology, Taylor & Francis,
v. 22, n. 1, p. 3–21, 2015.

[3] NEIROTTI, P. et al. Current trends in smart city
initiatives: Some stylised facts. Cities, v. 38, p. 25 – 36,
2014. Disponı́vel em: 〈http://www.sciencedirect.com/science/
article/pii/S0264275113001935〉.
[4] WOOLDRIDGE, M. J. Reasoning about rational agents.
[S.l.]: MIT press, 2000.

[5] ZHANG, D. et al. Internet of things. J. UCS, v. 18, p.
1069–1071, 2012.

[6] BOISSIER, O. et al. Multi-agent oriented programming
with jacamo. Science of Computer Programming, Elsevier,
v. 78, n. 6, p. 747–761, 2013.

[7] BORDINI, R. H.; HüBNER, J. F.; WOOLDRIDGE,
M. Programming Multi-Agent Systems in Agent Speak using
Jason. [S.l.]: John Wiley & Sons Ltd, 2007. 273 p.

[8] RICCI, A.; VIROLI, M.; OMICINI, A. Programming
MAS with artifacts. v. 3862 LNAI, p. 206–221,
2006. Disponı́vel em: 〈https://www.scopus.com/
inward/record.uri?eid=2-s2.0-33745661012&doi=
10.1007%2f11678823 13&partnerID=40&md5=
6c8f34aae1c78bccd47fabd2c3705e5e〉.
[9] PANTOJA, C. E. et al. Argo: An extended jason
architecture that facilitates embedded robotic agents
programming. In: SPRINGER. International Workshop on
Engineering Multi-Agent Systems. [S.l.], 2016. p. 136–155.

[10] KRAJZEWICZ, D. et al. Sumo (simulation of urban
mobility)-an open-source traffic simulation. In: Proceedings
of the 4th middle East Symposium on Simulation and
Modelling (MESM20002). [S.l.: s.n.], 2002. p. 183–187.

[11] ENDLER, M. et al. Contextnet: context reasoning and
sharing middleware for large-scale pervasive collaboration
and social networking. In: ACM. Proceedings of the
Workshop on Posters and Demos Track. [S.l.], 2011. p. 2.

[12] CASTRO, L. F. S. D.; ALVES, G. V.; BORGES, A. P.
Using trust degree for agents in order to assign spots in a

Smart Parking. ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal, v. 6, n. 2, p. 45–55, jun.
2017. Disponı́vel em: 〈http://revistas.usal.es/index.php/
2255-2863/article/view/ADCAIJ2017624555〉.
[13] DUCHEIKO, F. F.; ANDRé, P. B.; GLEIFER, V. A.
Implementação de Modelo de Raciocı́nio e Protocolo de
Negociação para um Estacionamento Inteligente com
Mecanismo de Negociação Descentralizado. Revista
Junior de Iniciação Cientı́fica em Ciências Exatas e
Engenharia, v. 1, n. 19, p. 25–32, 2018. Disponı́vel em:
〈http://www.icceeg.c3.furg.br/index.php?Itemid=837&
option=bloco texto&id site componente=1241〉.
[14] ALVES, B. R. et al. Experimentation of Negotiation
Protocols for Consensus Problems in Smart Parking Systems.
In: MARIK, V. et al. (Ed.). Industrial Applications of Holonic
and Multi-Agent Systems. Cham: Springer International
Publishing, 2019. (Lecture Notes in Computer Science), p.
189–202.

[15] KRUMNOW, M. Sumo as a service–building up a web
service to interact with sumo. In: SPRINGER. Simulation of
Urban MObility User Conference. [S.l.], 2013. p. 62–70.

[16] STABILE Jr., M. F.; PANTOJA, C. E.; SICHMAN, J. S.
Experimental analysis of the effect of filtering perceptions in
bdi agents. International Journal of Agent-Oriented Software
Engineering, Inderscience Publishers (IEL), v. 6, n. 3-4, p.
329–368, 2018.

[17] LAZARIN, N. M.; PANTOJA, C. E. A Robotic-Agent
Platform for Embedding Software Agents using Raspberry Pi
and Arduino Boards. In: 9th Software Agents, Environments
and Applications School. [S.l.: s.n.], 2015.

[18] MANOEL, F. C. P. B. et al. Physical artifacts for
agents in a cyber-physical system: A case study in oil
& gas scenario (EEAS). In: GARCÍA-CASTRO, R.
(Ed.). The 32nd International Conference on Software
Engineering and Knowledge Engineering, SEKE 2020,
KSIR Virtual Conference Center, USA, July 9-19, 2020.
KSI Research Inc., 2020. p. 55–60. Disponı́vel em:
〈https://doi.org/10.18293/SEKE2020-154〉.
[19] PANTOJA, C. E. et al. An architecture for the
development of ambient intelligence systems managed by
embedded agents. In: SEKE. [S.l.: s.n.], 2018. p. 215–214.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 29 • N. 1 • p.90/90 • 2022

http://www.sciencedirect.com/science/article/pii/S0264275113001935
http://www.sciencedirect.com/science/article/pii/S0264275113001935
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33745661012&doi=10.1007%2f11678823_13&partnerID=40&md5=6c8f34aae1c78bccd47fabd2c3705e5e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33745661012&doi=10.1007%2f11678823_13&partnerID=40&md5=6c8f34aae1c78bccd47fabd2c3705e5e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33745661012&doi=10.1007%2f11678823_13&partnerID=40&md5=6c8f34aae1c78bccd47fabd2c3705e5e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33745661012&doi=10.1007%2f11678823_13&partnerID=40&md5=6c8f34aae1c78bccd47fabd2c3705e5e
http://revistas.usal.es/index.php/2255-2863/article/view/ADCAIJ2017624555
http://revistas.usal.es/index.php/2255-2863/article/view/ADCAIJ2017624555
http://www.icceeg.c3.furg.br/index.php?Itemid=837&option=bloco_texto&id_site_componente=1241
http://www.icceeg.c3.furg.br/index.php?Itemid=837&option=bloco_texto&id_site_componente=1241
https://doi.org/10.18293/SEKE2020-154

	Introduction
	Integration of Systems
	Integration: Urban Simulation and MAS
	Agent Layer
	Artifact Layer - Connection with SUMO

	Integration: Physical Environment and MAS
	ARGO: Jason Agent and Hardware Integration
	Physical Artifacts: CArtAgO and Hardware Integration

	Integration: IoT Applications and MAS
	The ContextNet
	The Communicator Agent

	Conclusion
	References

