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Abstract  

Electrical systems have evolved at a fast pace over the past years, particularly in response to 

the current environmental and climate challenges. Consequently, the European Union and the 

United Nations have encouraged the development of a more sustainable energy strategy. This 

strategy triggered a paradigm shift in energy consumption and production, which becoming 

increasingly distributed, resulted in the development and emergence of smart energy grids. 

Multi-agent systems are one of the most widely used artificial intelligence concepts in smart 

grids. Both multi-agent systems and smart grids are distributed, so there is correspondence 

between the used technology and the network's complex reality. Due to the wide variety of 

multi-agent systems applied to smart grids, which typically have very specific goals, the ability 

to model the network as a whole may be compromised, as communication between systems is 

typically non-existent. This dissertation, therefore, proposes an agent-based ecosystem to 

model smart grids in which different agent-based systems can coexist. 

This dissertation aims to conceive, implement, test, and validate a new agent-based ecosystem, 

entitled A4SG (agent-based ecosystem for smart grids modelling), which combines the concepts 

of multi-agent systems and agent communities to enable the modelling and representation of 

smart grids and the entities that compose them. The proposed ecosystem employs an 

innovative methodology for managing static or dynamic interactions present in smart grids. The 

creation of a solution that allows the integration of existing systems into an ecosystem, enables 

the representation of smart grids in a realistic and comprehensive manner. 

A4SG integrates several functionalities that support the ecosystem's management, also 

conceived, implemented, tested, and validated in this dissertation. Two mobility functionalities 

are proposed: one that allows agents to move between physical machines and another that 

allows "virtual" mobility, where agents move between agent communities to improve the 

context for the achievement of their objectives. In order to prevent an agent from becoming 

overloaded, a novel functionality is proposed to enable the creation of agents that function as 

extensions of the main agent (i.e., branch agents), allowing the distribution of objectives among 

the various extensions of the main agent. 

Several case studies, which test the proposed services and functionalities individually and the 

ecosystem as a whole, were used to test and validate the proposed solution. These case studies 

were conducted in realistic contexts using data from multiple sources, including energy 

communities. The results indicate that the used methodologies can increase participation in 

demand response events, increasing the fitting between consumers and aggregators from 12 % 

to 69 %, and improve the strategies used in energy transaction markets, allowing an energy 

community of 50 customers to save 77.0 EUR per week. 

Keywords: agent communities, agents’ mobility, energy aggregators, energy customers' active 

participation, multi-agent systems, reinforcement learning
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Resumo 

Os últimos anos têm sido de mudança nos sistemas elétricos, especialmente devido aos atuais 

desafios ambientais e climáticos. A procura por uma estratégia mais sustentável para o domínio 

da energia tem sido promovida pela União Europeia e pela Organização das Nações Unidas. A 

mudança de paradigma no que toca ao consumo e produção de energia, que acontece, cada 

vez mais, de forma distribuída, tem levado à emergência das redes elétricas inteligentes.  

Os sistemas multi-agente são um dos conceitos, no domínio da inteligência artificial, mais 

aplicados em redes inteligentes. Tanto os sistemas multi-agente como as redes inteligentes têm 

uma natureza distribuída, existindo por isso um alinhamento entre a tecnologia usada e a 

realidade complexa da rede. Devido a existir uma vasta oferta de sistemas multi-agente 

aplicados a redes inteligentes, normalmente com objetivos bastante específicos, a capacidade 

de modelar a rede como um todo pode ficar comprometida, porque a comunicação entre 

sistemas é, geralmente, inexistente. Por isso, esta dissertação propõe um ecossistema baseado 

em agentes para modelar as redes inteligentes, onde vários sistemas de agentes coexistem. 

Esta dissertação pretende conceber, implementar, testar, e validar um novo ecossistema multi-

agente, intitulado A4SG (agent-based ecosystem for smart grids modelling), que combina os 

conceitos de sistemas multi-agente e comunidades de agentes, permitindo a modelação e 

representação de redes inteligentes e das suas entidades. O ecossistema proposto utiliza uma 

metodologia inovadora para gerir as interações presentes nas redes inteligentes, sejam elas 

estáticas ou dinâmicas. A criação de um ecossistema que permite a integração de sistemas já 

existentes, cria a possibilidade de uma representação realista e detalhada das redes de energia. 

O A4SG integra diversas funcionalidades, também estas concebidas, implementadas, testadas, 

e validadas nesta dissertação, que suportam a gestão do próprio ecossistema. São propostas 

duas funcionalidades de mobilidade, uma que permite aos agentes mover-se entre máquinas 

físicas, e uma que permite uma mobilidade “virtual”, onde os agentes se movem entre 

comunidades de agentes, de forma a melhorar o contexto para a execução dos seus objetivos. 

É também proposta uma nova funcionalidade que permite a criação de agentes que funcionam 

como uma extensão de um agente principal, com o objetivo de evitar a sobrecarga de um 

agente, permitindo a distribuição de objetivos entre as várias extensões do agente principal.  

A solução proposta foi testada e validada por vários casos de estudo, que testam os serviços e 

funcionalidades propostas individualmente, e o ecossistema como um todo. Estes casos de 

estudo foram executados em contextos realistas, usando dados provenientes de diversas fontes, 

tais como comunidades de energia. Os resultados demonstram que as metodologias utilizadas 

podem melhorar a participação em eventos de demand response, subindo a adequação entre 

consumidores e agregadores de 12 % para 69 %, e melhorar as estratégias utilizadas em 

mercados de transações de energia, permitindo a uma comunidade de energia com 50 

consumidores poupar 77,0 EUR por semana. 

Palavras-chave: agregadores de energia, aprendizagem por reforço, comunidades de agentes, 

mobilidade de agentes, participação ativa dos clientes de energia, sistemas multi-agente 
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1 Introduction 

This initial chapter provides a general contextualization of the work described in this 

dissertation. This chapter presents the contextualization of the work, the main research 

question and objectives, the scientific contributions, and the document organization. 

1.1 Contextualization 

Renewable energy generation, like wind and solar, has huge potential to reduce both 

greenhouse gas emissions and other negative environmental impacts from electricity 

generation (European Parliament, 2018). However, integrating these technologies into the 

electric power grid poses ongoing technological and institutional challenges (Rehmani et al., 

2018). The large-scale integration of renewable power requires the modernization of the 

electrical power grid, both the high-voltage transmission network, needed to transport and 

integrate electricity generated from large, and variable renewable energy projects, and the low-

voltage distribution network needed to integrate small-scale, decentralized renewable energy 

sources (RES) (Fang et al., 2012).  

The emergence of the Smart Grid (SG) concept and its implementation stands out as the most 

viable solution for power systems modernization (Romero Agüero et al., 2017). While 

traditional power grids are generally used to carry power from a small number of central 

generators to a large number of customers, in contrast, the smart grid uses two-way flows of 

electricity and information to create an automated and distributed advanced energy delivery 

network (Fang et al., 2012). Smart grids are regarded as the new generation of electric power 

systems, combining the development of Information Technology (IT), distributed systems, and 

Artificial Intelligence (AI), to enable more features on real-time monitoring (Hossain et al., 2019).  

A smarter grid can contribute to both climate change mitigation and adaptation, by increasing 

low-carbon electricity production and enhancing system reliability and flexibility (Ourahou et 

al., 2020). In that way, it can have a serious impact on political agreements relative to climate 

and sustainable goals. For instance, the 2030 Climate and Energy Package (European 



2 

Commission, 2014) is binding legislation in force from 2021 to 2030, setting three main targets: 

(i) a 40 % reduction in CO2 emissions, compared to the levels verified in 1990; (ii) increase the 

use of renewable energy sources so that they represent 32 % of the production of energy in the 

European Union; and (iii) increased energy efficiency in 32.5 %. Besides that, other policies have 

been specified to motivate the reduction of energy misconduct and ensure that the defined 

targets are achieved, such as the European Green Deal (European Commission, 2019a) and the 

European Climate Law (European Commission, 2020). To reinforce the need to address 

environmental issues and sustainability, the United Nations proposes 17 Sustainable 

Development Goals (SDGs) to better target current research objectives. In the context of this 

work, the most relevant are: Affordable and Clean Energy, Sustainable Cities and Communities, 

Responsible Consumption and Production, and Climate Action. 

Despite bringing many benefits, the smart grid approach reinforces the decentralization of 

Power and Energy Systems (PES), transforming the entire existing system into a more complex 

one, where the existence of a single centralized control unit is not effective (Ansari et al., 2016). 

Besides that, the increasing complexity of the smart grid requires dealing with big amounts of 

data collected in a distributed manner (Zhang et al., 2018). In order to support decision-making 

processes, data is continuously communicated among equipment (e.g., sensors and actuators), 

mainly based on Internet of Things (IoT) technology (Casado-Vara et al., 2019). In systems where 

the decision process is data-based, data is pre-processed, processed, and then information is 

extracted for decision-making. The decision is based on the objectives to be achieved by the 

system and its participating entities.  

Innovative improvements in distributed AI techniques promoted the development of the Multi-

Agent Systems (MAS) (Weiss, 1999), and its subsequent application to the modelling of the 

smart grid, given its distributed nature. MAS are distributed and concurrent by nature; their 

agents are autonomous entities in the system with their own sense of the environment and 

objectives, as they work to accomplish the best for themselves while acting strategically to meet 

the system's overall objective (Mahela et al., 2022). Although MAS are widely employed in the 

domain of smart grids, there does not appear to be a system capable of modelling all entities 

and their interactions, nor are there any tools of simple implementation and deployment 

capable of unifying different MAS to form a complete solution. Thus, there is a need for an 

agent-based ecosystem in which different agents and MAS can comprehend and interact with 

one another seamlessly, so facilitating the access to new information and services and, as a 

result, achieving both the agents' and the overall system's objectives.  

The increasing amount of opportunities in the smart grid opens a new range of possibilities for 

energy customers to take advantage of their energy resources. With this, energy customers 

become more active in the search for services and aggregation entities that suit their profile, in 

order to create more advantages to their active participation in the smart grid (Baidya et al., 

2021). The customers' interaction with these services and aggregation entities can be seen as 

static and dynamic. The static interactions represent the ones where the customers cannot 

move from, at least, in a seamless way. For instance, the customers' interactions with the 

distribution system operator (DSO) and transmission system operator (TSO) are considered 
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static. On the other hand, dynamic interactions allow customers and entities to navigate 

through services and aggregation entities by signing contracts with various entities over time. 

Energy aggregators and retailers are examples of dynamic interactions present in the smart grid. 

In the context of an agents’ society, agents must be able to move between systems, which can 

represent aggregation entities, depending on their context and objectives. As such, systems 

that are part of the society must be prepared to receive agents who were previously part of 

other MAS. However, given the closed nature and heterogeneity of the agent-based systems, 

their agents become immobile. In addition, there is also a need to communicate with agents 

that do not belong to the society and integrate them as a part of it, as an agent should not be 

required to be on the same physical host as the other MAS’ agents to enable the communication 

and knowledge sharing with them.  

One of the primary topics of discussion when addressing MAS is the agents' intelligence and 

ability to learn from their own actions. Reinforcement Learning (RL), a trial-and-error learning 

method capable of utilizing agents' actions to interact with their environment, is one of the 

primary techniques used to integrate these characteristics in agents. However, RL typically deals 

with large datasets, and in the context of the smart grid, data is frequently missing during 

certain periods, making forecasting difficult and creating an uncertainty component in the 

application of this type of algorithms. In addition, MAS must typically be developed from scratch 

in order to incorporate RL into its agents, which is impractical for already deployed systems, 

especially when dealing with agents that represent physical devices and require continuous and 

real-time monitoring and control. 

To address the identified issues, this dissertation proposes the novel Agent-based ecosystem 

for Smart Grids modelling (A4SG), capable of representing the entities engaged in the smart 

grid as well as their static and dynamic interactions. Using an agent-based approach, this 

scalable ecosystem provides its customers with a methodology that enables their dynamic 

participation and decision-making in the smart grid. This methodology integrates functionalities 

that allow agents to move between physical hosts and agent-based systems (i.e., physically and 

virtually) and to create new agents (i.e., branch agents) to represent the main agent in new 

objectives of the entity it represents, promoting a more accurate and effective management of 

their energy resources. Besides that, A4SG allows the coexistence of several MAS and agent 

communities, promoting agents’ interaction between different systems. To test and validate 

the proposed ecosystem, multiple case studies were conceived and executed, considering 

different possible applications in the smart grid domain, and the results show an increase in the 

active participation efficiency of the energy customers, thus obtaining several benefits, for 

instance, at an economic level. 

1.2 Research Question and Objectives 

This dissertation presents the work developed to address multiple problems observed in the 

application of MAS to the modelling of the smart grid. To better guide the research within the 
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scope of this work, four primary research questions were formulated. This dissertation 

addresses these research questions throughout, and they are described as follows: 

• RQ1 – What is the current state-of-the-art of MAS, particularly in what regards its 

application to smart grid modelling? 

• RQ2 – Is an agent-based ecosystem capable of representing and modelling the smart 

grid in a unified solution? 

• RQ3 – Can agent mobility and agent branching be a way for representing the dynamic 

interactions present in the smart grid in an organic flow? 

• RQ4 – Does the integration of RL in an agent-based ecosystem benefit its application in 

real contexts? 

The main objective of this dissertation is the conception, implementation, testing and validation 

of a robust and effective solution for modelling the smart grid and intelligent participation 

within it.  In a way to facilitate the achievement of the main objective and to answer all the 

proposed research questions, multiple objectives for this work were appointed. They are 

described as follows:  

• O1 – Investigate the current state-of-the-art of MAS in general and its application to 

the smart grid domain; 

• O2 – Conceiving the agent concept capable of representing the energy customers and 

entities present in the smart grid; 

• O3 – Proposing an agent-based ecosystem to model the smart grid and its entities; 

• O4 – Proposing a physical mobility functionality capable of moving agents between 

hosts, in a request of the agents their selves (or the entities they represent) or of the 

ecosystem to balance the available host machines; 

• O5 – Proposing a virtual mobility functionality to address the dynamic relations of the 

smart grid, allowing agents to move between services and aggregation entities 

considering personalized evaluation functions; 

• O6 – Proposing a novel functionality, entitled branching, to allow customers and 

entities to have multiple representations simultaneously in the ecosystem, through 

multiple agents. This functionality should be able to decrease the overload of the agents 

in what regards objectives and data; 

• O7 – Proposing functionalities to deal with the difficulties introduced by having multiple 

agents (i.e., branch agents) representing the same customer or entity, such as 

objectives interdependencies and conflicts; 

• O8 – Conceiving an abstract service for RL seamless and intuitive integration in agent-

based systems in a smart grid context; 

• O9 – Testing the proposed mobility and branching functionalities in a smart grid context, 

verifying its advantages to energy customers; 
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• O10 – Testing the proposed agent-based ecosystem and all its services and 

functionalities as a unified solution. 

As all the outlined objectives have been met, this dissertation serves as the final report of the 

developed work. To facilitate the understanding of which objectives contribute to each research 

question, Table 1 presents the match between the proposed research questions and the 

objectives that are useful to answer them. 

Table 1 – Research Questions and Corresponding Objectives 

Research Questions Corresponding Objectives 

RQ1 O1 

RQ2 O2; O3; O4; O5; O6; O7; O8; O10 

RQ3 O4; O5; O6; O7; O9; O10 

RQ4 O8; O10 

1.3 Scientific Contributions 

This work was developed in the Research Group on Intelligent Engineering and Computing for 

Advanced Innovation and Development (GECAD)1, which have as mission the promotion and 

development of scientific research in the knowledge and decision sciences domains, having 

Information Technologies as support. It involves 2 main areas: intelligent systems and power 

energy systems.  

The work developed in this dissertation was supported by two R&D projects funded by the 

Portuguese Foundation for Science and Technology (FCT): 

• MAS-Society 2  - Multi-Agent Systems SemantiC Interoperability for simulation and 

decision supporT in complex energy systems (PTDC/EEI-EEE/28954/2017). 

• PRECISE 3 - Power and Energy Cyber-Physical Solutions with Explainable Semantic 

Learning (PTDC/EEI-EEE/6277/2020) 

The MAS-Society project focuses on providing effective agent-based solutions to enable the 

widespread deployment of distributed energy resources (DER), such as renewable-based 

generation, demand response (DR), energy storage systems (ESS), and electric vehicles (EV), 

thereby allowing them to realize their full potential for enhancing overall energy efficiency, 

economic and energetic sustainability. The systems designed to solve particular problems 

should be able to interoperate with one another by sharing information and services, thereby 

enabling the concept of a Multi-Agent Systems Society. On the other hand, the primary 

 
1 GECAD - http://www.gecad.isep.ipp.pt/ 
2 MAS-Society - http://www.gecad.isep.ipp.pt/MAS-Society/ 
3 PRECISE - https://www.gecad.isep.ipp.pt/precise/ 
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objective of PRECISE is to provide effective automated solutions to enable efficient, intelligent, 

and real-time consumer-side energy management. PRECISE models enable the widespread use 

of local Automated Energy Management (AEM), empowering consumers to reduce their energy 

bills while ensuring their preferences and needs are met. 

Besides the direct contribution to these two scientific projects, throughout the development of 

this work, a total of eight scientific papers were published (from those, four in scientific journals 

and four in scientific conferences): 

• [Conference] Gabriel Santos, Ricardo Faia, Helder Pereira, Tiago Pinto, Zita Vale 

“Blockchain-based Local Electricity Market Solution”, presented in “18th European 

Energy Market Conference” (EEM22), doi: 10.1109/EEM54602.2022.9921035 

• [Journal] Helder Pereira, Luis Gomes, Zita Vale, (2022) “Optimizing participation in local 

energy market through deep reinforcement learning in an agent-based ecosystem”, 

accepted for publication in Energy Reports 

• [Conference] Bruno Ribeiro, Helder Pereira, Luis Gomes, Zita Vale “Python-based 

Ecosystem for Agent Communities simulation”, presented in “17th International 

Conference on Soft Computing Models in Industrial and Environmental Applications” 

(SOCO 2022), doi: 10.1007/978-3-031-18050-7_7 

• [Journal] Helder Pereira, Luis Gomes, Zita Vale, (2022) “Peer-to-Peer Energy Trading 

Optimization in Energy Communities using Multi-Agent Deep Reinforcement Learning” 

accepted for publication in Energy Informatics 

• [Conference] Helder Pereira, Ricardo Faia, Luis Gomes, Pedro Faria, Zita Vale (2022) 

“Incentive-based and Price-based Demand Response to Prevent Congestion in Energy 

Communities”, presented in 2022 IEEE International Conference on Environment and 

Electrical Engineering (EEEIC), doi: 10.1109/EEEIC/ICPSEUROPE54979.2022.9854648 

• [Conference] Helder Pereira, Bruno Ribeiro, Luis Gomes, Zita Vale (2022) “CECOS: a 

Centralized Management Platform Supported by Distributed Services to Represent and 

Manage Resources Aggregation Entities and its End-users in a Smart Grid Context”, 

presented in “11th Symposium on Control of Power and Energy Systems” (CPES 2022), 

doi: 10.1016/J.IFACOL.2022.07.054 

• [Journal] Helder Pereira, Luis Gomes, Pedro Faria, Zita Vale, Carlos Coelho (2021) “Web-

based platform for the management of citizen energy communities and their members”, 

published in Energy Informatics in 2021, doi: 10.1186/S42162-021-00155-7 

• [Journal] Bruno Mota, Miguel Albergaria, Helder Pereira, José Silva, Luis Gomes, Zita 

Vale, Carlos Ramos (2021) “Climatization and luminosity optimization of buildings using 

genetic algorithm, random forest, and regression models”, published in Energy 

Informatics in 2021, doi: 10.1186/s42162-021-00151-x 
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In addition to the scientific papers already accepted and published, two other papers are 

submitted to journals, currently under review: 

• [Journal – Under review] Helder Pereira, Luis Gomes, Zita Vale “Agent-based Ecosystem 

with Branching and Mobility Mechanisms to Support Agent Communities: a Smart Grid 

Application” 

• [Journal – Under review] Helder Pereira, Bruno Ribeiro, Luis Gomes, Zita Vale “Smart 

grid ecosystem modelling using a novel framework for heterogenous agent 

communities” 

In addition to the publication of scientific papers, the author of this dissertation presented part 

of the papers at international conferences: 

• Energy Informatics.Academy Conference 2022 (EI.A 2022) – Vejle, Denmark (presented 

remotely) 

• 9th International Conference on Energy and Environment Research (ICEER 2022) – 

Porto, Portugal 

• 22nd International Conference on Environmental and Electrical Engineering (EEEIC 

2022) – Prague, Czech Republic (presented remotely) 

• 11th Symposium on Control of Power and Energy Systems (CPES 2022) – Fully remote 

• 1st Energy Informatics.Academy Conference Asia (EI.A Asia 2021) – Beijing, China 

(presented remotely) 

The European Union encourages research data to be findable, accessible, interoperable and 

reusable (FAIR), so in this dissertation, all the used datasets follow these guidelines, and besides 

that, a dataset was built and published, being accessible to the scientific community: 

• Helder Pereira, Luis Gomes, Hugo Morais, Zita Vale (2022) “Dataset of 30 energy 

customers with flexibility data, and distributed generation, considering residential, 

small commerce, large commerce, and industrial customers”, published in Zenodo,  doi: 

10.5281/ZENODO.6783289. 

As a result of the published scientific papers, two awards were won at international conferences: 

• Best Paper Award in Energy Informatics.Academy Asia 2021 (EI.A Asia 2021) with the 

paper “Helder Pereira, Luis Gomes, Pedro Faria, Zita Vale, Carlos Coelho (2021) “Web-

based platform for the management of citizen energy communities and their members” 

• Best Presentation Award in 9th International Conference on Energy and Environment 

Research (ICEER 2022) with the paper “Helder Pereira, Luis Gomes, Zita Vale, (2022) 

“Optimizing participation in local energy market through deep reinforcement learning 

in an agent-based ecosystem”. 
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1.4 Document Organization 

This dissertation is divided into seven chapters, each of which has been prepared and organized 

to facilitate the reading of the thesis as a whole or a part of a chapter. 

The first chapter is an introduction and describes the contextualization for the development of 

the work presented in this dissertation. Additionally, the main research questions, objectives, 

and scientific contributions are outlined. 

In the second chapter, the state of the art of the domains covered by this work is discussed, 

namely: the smart grids and the customers’ active participation, agents and multi-agent 

systems, and finally, machine learning. 

The third chapter describes the methods, models, materials, and tools used in the development 

of the work presented in this dissertation. Besides that, it contextualizes this work towards data 

privacy and protection, agents and data security, and possible ethical and social issues 

associated with it. 

The ecosystem developed in the scope of this work, entitled A4SG, is presented in the fourth 

chapter. Firstly, the ecosystem’s architecture is explained and then the types of agents are 

presented. The services and functionalities to support and integrate intelligence into the 

ecosystem and its agents are also described. 

The fifth chapter describes the smart grid services developed or integrated into the ecosystem 

as service-oriented agents, as well as how reinforcement learning is used to integrate intelligent 

service participation in the agents of the ecosystem. 

In the sixth chapter, the developed case studies to test and analyze the ecosystem when applied 

to real data and real contexts are described. 

Finally, in the last chapter are presented the final considerations and conclusions of the work 

and possible future developments. 
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2 State of the Art 

This chapter addresses the state of the art of the most relevant topics used in the project: smart 

grids, multi-agent systems, and machine learning. In addition to exploring the works proposed 

in these domains individually, are also analyzed the applications of multi-agent systems and 

machine learning on the smart grid. Besides that, the gaps in these domains’ literature are 

identified in the chapter's conclusions. 

2.1 Smart Grids and Energy Customers’ Participation 

The traditional electricity grid is a product of rapid urbanization and infrastructure 

developments in various parts of the world in the past century (Farhangi, 2010). With the 

advent of the digital economy and information era, the electric power industry is confronted 

with new challenges. Some problems relevant to climate change, environmental protection and 

sustainable development became more and more serious (Sachs et al., 2019). The European 

Union has committed much of its efforts in recent years changing the organization of the energy 

market and establishing new targets for deregulation and combating climate change 

(Tagliapietra et al., 2019). 

More recently, another aspect increased the difficulty of the management of the energy and 

power system as it was conceived. The introduction of distributed generation systems allowed 

consumers to inject energy into the grid, interfering with the normal process of demand and 

supply balance (Kakran and Chanana, 2018). Meanwhile, customers’ demand for higher supply 

reliability, excellent power quality and satisfactory services has emerged. Although traditional 

electric power technologies can alleviate these problems, they have proved to be inappropriate 

(Zame et al., 2018). As a result, new technology should be used to help with the resolution of 

these challenges. To allow pervasive control and monitoring, the smart grid is emerging as a 

convergence of information and communication technologies with power system engineering 

(Farhangi, 2010). Table 2 (Farhangi, 2010) presents a comparison between the traditional grid 

and the smart grid, considering important topics of innovation. 
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Table 2 – Comparison between the traditional power system and the smart grid. Adapted from 

(Farhangi, 2010) 

Comparison Feature Traditional Grid Smart Grid 

Main usage Electromechanical Digital 

Communication One-way communication Two-way communication 

Generation Centralized generation Distributed generation 

Network’s data access Blind Self-monitoring 

Network’s recovery Manual restoration Self-healing 

Behaviour with anomalies Failures and blackouts Adaptive and islanding 

Control type Limited control Pervasive 

The information and communication technology layer of the smart grid brings additional 

problems related to the security and privacy of all the parties involved in the energy system 

(Kumar et al., 2019). The potential consequences of successful cyber-attacks on the electricity 

grid are quite harmful to consumers and to the entities that are part of the smart grid. In this 

way, the information and communication layer must ensure a secure communication channel, 

where the main security objectives are confidentiality, integrity, and authorization of the 

exchanged data (Gunduz and Das, 2020).    

One of the advantages of the smart grid is the capability of seamlessly integrating microgrids. 

Small autonomous grids have existed for many decades in remote communities where the 

interconnection with the main power grid is not feasible due to technical and/or economic 

reasons (Olivares et al., 2014). The decentralization of power systems potentiates the rising 

adoption of microgrids. There are multiple definitions for microgrids across the literature, and 

consequently, there is not one unanimously accepted. However, there are definitions broadly 

used and consensual. One of the main ones is proposed by the CIGRÉ Working Group C6.22 

Microgrids Evolution Roadmap: “Microgrids are electricity distribution systems containing loads 

and distributed energy resources, (such as distributed generators, storage devices, or 

controllable loads) that can be operated in a controlled, coordinated way either while connected 

to the main power network or while is landed” (Marnay et al., 2015). The microgrids have two 

possible classifications, considering if they are connected to the main grid or not: grid-

connected or islanded. 

Smart grid adoption has a significant impact on larger energy customers, such as distribution 

and transmission entities, but also on the small and medium customers, that have the 

opportunity to participate in the smart grid in multiple ways, considering their context (Steriotis 

et al., 2018). In order to successfully build and implement a smart grid, it is necessary to set key 

policy objectives to ensure consumer acceptance and to make a scientific analysis of the factors 

affecting consumer acceptance, since the ultimate deployment of the smart grid depends on 

the customers' acceptance of smart grid products and services (Park et al., 2014). Consumers 

must change their behaviour to take full advantage of smart grids. For instance, well-informed 

and price-responsive consumers are expected to play an active role in managing electricity 
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consumption rather than being passive customers only (Rathor and Saxena, 2020). In that way, 

consumers can contribute to energy saving, energy efficiency and peak load shifts through the 

use of real-time electricity information and smart meters (Avancini et al., 2019). 

Therefore, the main advantages of implementing a smart grid include: (i) reliability and security 

of energy distribution, (ii) shift of the peak load, (iii) enhanced efficiency, (iv) enable high shares 

of renewables in power system, (v) decreased greenhouse gas intensity of power system, and 

(vi) active participation of consumers (Moretti et al., 2017). 

2.1.1 Transactive Energy 

The growing complexity of electrical energy systems has changed the paradigm of how they are 

managed, involving more consumer participation, and thus creating new opportunities for them. 

Distributed generation and prosumers (i.e., consumers with energy generation capacity) 

accentuate this change, as they can actively participate in the growing energy economy. The 

growing number of prosumers implies the creation and the establishment of an electricity 

trading mechanism that allows customers to trade electricity with each other (Zia et al., 2020). 

In this regard, the transactive energy (TE) concept has been addressed. 

Transactive energy is defined by the Gridwise Architecture Council as “techniques for managing 

the generation, consumption, flow of electricity within the power system that allow the dynamic 

balance between demand and supply keeping in view the constraints of the entire network” 

(Gridwise Architecture Council, 2015). In contrast to the typical hierarchical grid topology, it 

promotes a network environment for decentralized energy nodes. The network structure 

facilitates interaction, allowing all levels of energy generation and consumption to connect with 

one another (Huang et al., 2021). Under the concept of TE, distributed flexible resources are 

directly controlled by their owners (Chen and Liu, 2017). Transaction mechanisms are designed 

to align individual behaviours with the system’s interests. 

TE is a broad term that encompasses a variety of customer active participation techniques and 

methodologies, such as local markets and DR, which can be applied at any level of the smart 

grid, from transmission to distribution (Guerrero et al., 2020).  The current principles of 

wholesale transactive power systems are expanded into retail markets with customers 

equipped with sophisticated Energy Management Systems (EMS), allowing small electricity 

customers to participate actively in the electricity markets (Rahimi and Albuyeh, 2016). These 

systems can also enable peer-to-peer (P2P) management in smart grids through the use of 

intelligent devices, each of which has its own choice and aim, taking into account the owners, 

constraints, requirements, and context (Abrishambaf et al., 2019).  

The potential benefits of efficient integration of behind-the-meter DER are substantial (Li et al., 

2018). Prosumers are empowered by the inherent flexibility of DER as they can manage their 

electricity usage and production capabilities in response to price and dispatch signals. In this 

way, DER owners may reduce their electricity costs by managing their demand, reducing their 
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reliance on the grid, maximising the value of their DER, providing backup supply, or arbitrage 

their retail tariff (Burger and Luke, 2017). 

At the same time, distributed resources used for TE are intermittent (e.g., in the case of 

renewables) and nonuniformly deployed, posing significant new challenges to be faced in the 

resources’ management (Siano et al., 2019). These issues can be addressed using both 

centralized and decentralized approaches, with the strategy adopted depending on the context 

and the system’s objectives (Abrishambaf et al., 2019).  

2.1.2 Demand Response 

Peak energy demand hours are a major challenge to the correct operation of the electric energy 

grid, as the continuous demand growth raises the possibility of power outages as well as the 

raise the marginal cost of supply (Uddin et al., 2018). Power failures, or blackouts, can cause 

inconvenience to energy customers, and also financial losses (Wu et al., 2017). Therefore, 

recognizing and regulating peak hours allows customers to better manage their energy 

consumption while also allowing for real-time response strategies (Alduailij et al., 2021).   

The Demand Response (DR) concept is one of the most addressed topics in the literature when 

it comes to reducing the demand from a group of consumers, and the European Parliament 

defines it as “the change of electricity load by final customers from their normal or current 

consumption patterns in response to market signals,  including in response to time-variable 

electricity prices or incentive payments, or in response to the acceptance of the final 

customer ’s bid to dell demand reduction or increase at a price in an organized market” 

(European Parliament, 2019) in the Directive 2019/244. DR programs offer efficient solutions 

for many power system problems, such as high generation cost, high demand’s peak to average 

ratio, high emissions, reliability issues and congestion in generation, transmission and 

distribution systems (Jordehi, 2019). 

DR programs can be applied with multiple strategies, and they are classified into two types: 

incentive-based and price-based programs. The incentive-based programs aim to benefit or 

penalize consumers, depending on whether or not they comply with requests from the network 

(Imani et al., 2018). On the other hand, price-based programs aim at changing the price of 

energy tariffs to motivate consumers to reduce their demand during the peaks of electricity 

demand (Yan et al., 2018). In this case, consumers must have dynamic tariffs, which are not 

regulated by fixed-price contracts, where energy is always paid at the same price. The multiple 

strategies and approaches for the application of DR programs are represented in Figure 1 

(Jordehi, 2019). 

Despite the many advantages for consumers in the participation in DR programs, for them to 

be prepared to participate in these programs in a real context, there are some associated costs 

and disadvantages. The initial costs/disadvantages are related to the investment in technology 

that enables the participation and establishing a response plan or strategy, while the 

inconvenience related to reduced comfort or to the rescheduling of the energy consumption, 
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and maintenance costs, occur during the participation in the event (Bradley et al., 2013).  

Another   possible   situation,   this   one  related  to  the  network  itself,  is  the  appearance  of 

 

Figure 1 – Demand Response programs classification. Adapted from (Jordehi, 2019) 

rebound peaks. These peaks tend to arise from the mass execution of a DR program, which may 

cause the majority of the participating consumers to move their consumption to the same hours 

of lower demand, thus being able to transform them into peak hours due to the excessive 

number of consumers (Ghorashi et al., 2020). 

The real benefits of DR programs can only be achieved if they are implemented on a large scale, 

even because a minimum level of demand cut is required in most DR programs (Ribó-Pérez et 

al., 2021). As a rule, this minimum reflects a high value to be achieved by a single consumer, 

and consequently, direct participation in the programs is impossible. The participation of small 

and medium customers can then be performed by aggregating the cuts performed by them 

(Faria et al., 2018).  

2.1.3 Aggregators 

The vast majority of energy consumers are unaware of how energy is used most of the time, 

and they lack the ability to directly engage in energy markets. Therefore, an intermediary entity 

is required in this type of procedure, as it can motivate customers to participate actively and 

facilitate their engagement with energy markets (Kowalska-Pyzalska, 2018). 

An energy aggregator is a type of service provider that can increase or reduce the electricity 

consumption of a group of consumers according to the total electricity demand on the grid (The 

European Consumer Organisation, 2018). When the customers produce energy in excess, an 

aggregator can also manage directly or indirectly groups of consumers and prosumers in order 

to sell pools of loads and generators as single items in the electricity markets, (Ponds et al., 

2018). Customers require the services of an aggregator to help them to negotiate through the 

market complexities since they do not have the know-how and the technical resources to do it 

on their own. The aggregator provides backup to individual customers, reducing their risk and 

improving the reliability of their DR participation (Lu et al., 2020).  



14 

Energy aggregators can specialize in aggregating different sorts of customers, which are 

typically split into three categories: residential, commercial/large businesses, and small 

industries. This focus on a single sort of customer is attributable to several factors. The main 

one is that, to control various types of loads, different monitoring technologies are required. A 

washing machine, for instance, may be run manually, whereas heavier loads necessitate more 

complex control and communication devices (Zhang et al., 2018). Another reason for this 

specialization could be that different components of legal terms for bundling and selling 

flexibility may vary based on the type of consumer (Inshakov et al., 2019). 

The aggregator operates as an intermediary between the customers and the energy markets, 

negotiating contracts with several consumers to aggregate their capacity, to reduce or raise 

energy consumption or perform load shifting during specific periods. Thus, the aggregator can 

create a collection of consumers’ equipment that can be controlled (e.g., heating systems and 

washing machines) and that has characteristics that allow for flexibility in periods of need. As 

can be seen in Figure 2, the flexibility acquired by the aggregator through the optimization of 

consumption by contracted consumers can then be sold on the energy markets to the best offer 

(Ottesen et al., 2018). 

 

Figure 2 - Relationships established by the aggregator. Adapted from (Ottesen et al., 2018) 

When energy aggregators are linked to the final consumer market, they enable the 

establishment of automatic and tailored controls for various loads or installations that allow 

remote access, while taking into consideration consumer preferences and behavioural patterns 

(Iria and Soares, 2019a). Grid operators can also benefit from aggregators in terms of system 

maintenance expenses, as the need for grid maintenance and expansion is decreased, allowing 

for even better integration of renewable energy generating technologies (Kerscher and 

Arboleya, 2022). 

The role of an aggregator requires very valuable and specific skills. An aggregator requires, for 

instance, an in-depth understanding of industry operations as well as experience in identifying 

each industry's flexibility opportunities and limitations. Furthermore, an aggregator must have 
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the technical capabilities to connect consumers and incorporate their loads into their list of 

monitored loads (Poplavskaya and de Vries, 2020). 

2.1.4 Energy Communities 

The European Commission's Clean Energy Package breaks new ground for consumers by 

recognizing citizens' and communities' rights to participate directly in the energy industry for 

the first time under EU law (European Commission and Directorate-General for Energy, 2019). 

It formally acknowledges and sets out legal frameworks for certain categories of community 

energy as “energy communities”. 

Energy communities are specified in two separate directives of the European Clean Energy 

Package. The revised Renewable Energy Directive (EU) 2018/2001 sets the framework for 

‘renewable energy communities’ (REC) covering renewable energy (European Parliament, 

2018). The revised Internal Electricity Market Directive (EU) 2019/944 introduces new roles and 

responsibilities for “citizen energy communities” (CEC) in the power system, covering all types 

of electricity (European Parliament, 2019). Energy communities are described in the guidelines 

as a possible way to organize collective citizen actions in the power system (Frieden et al., 2019). 

According to the Electricity Market Directive, “the provisions on citizen energy communities do 

not preclude the existence of other citizen initiatives such as those stemming from private law 

agreements”. Both directions enable various energy community organizational forms (e.g., 

association or cooperative) to be established through a legal entity.  

Energy communities are incorporated as a sort of non-commercial market actor that combines 

non-commercial economic goals with environmental and social community goals(Roberts et al., 

2019). According to the amended Electricity Market Directive, CECs are a new form of business 

due to their membership structure, governance criteria, and function (European Parliament, 

2019). The revised Renewable Energy Directive makes special reference to the characteristics 

of local RECs in terms of size and ownership structure (European Parliament, 2018). 

Furthermore, both citizen energy communities and renewable energy communities can engage 

in similar activities such as energy generation, distribution, supply, aggregation, consumption, 

sharing, storage, and the provision of energy-related services (Caramizaru and Uihlein, 2020).  

An energy community, as articulated within the notion of sharing economies, is a type of 

community-driven institution that takes social control of shared energy resources through 

decentralisation. Individual consumers, producers, and prosumers in an enclosed topology can 

establish such space in order to build independent projects and actively contribute to a more 

sustainable paradigm (Moncecchi, 2021).  

As governments commit to national sustainability goals (e.g., meeting a certain percentage of 

the country's energy demand using renewable energy resources), energy communities can form 

their own goals and plans to achieve them, driving change locally through resources aggregation. 

(Caramizaru and Uihlein, 2020). Consequently, customers within a community can experience 

the benefits of the energy transition beyond the economic perspective, while they willingly 
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acquire several responsibilities as well, the more active their participation is in the community’s 

initiatives (Koirala et al., 2018).   

In contrast to microgrids, which aim to aggregate power, energy communities arise as legal 

entities that seek the aggregation of energy resources in order to lower power prices and power 

peaks (Radl et al., 2020). As a result, the primary goals of energy communities include: (i) 

lowering total electricity prices, as well as non-monetary goals such as (ii) ensuring clean energy 

supply (Gui and MacGill, 2018), (iii) enhancing the understanding and acceptance of renewable 

energies; or (iv) concentrating the reduction of greenhouse gas emissions (Schram et al., 2019). 

In Europe, there are already several energy communities deployed. In (Heaslip et al., 2016) the 

results of preliminary fieldwork investigations of sustainable energy community development 

approaches in two Danish islands and one rural village in Ireland are reported. The authors' 

major evidence suggests that social barriers are interrelated and frequently reinforce each 

other, posing the most significant challenge to the deployment of energy communities. In 

(Giordano et al., 2019) it is proposed the development of a smart energy community, which 

would bring savings of 66 % relative to energy costs, as the community would have a self-

consumption of nearly 95 %, meaning less power would have to be transported on the network. 

2.2 Agents and Multi-Agent Systems 

The software agent definition is not consensual in the literature, especially as it may change 

depending on its goals and area of application. A commonly accepted definition is that an agent 

is a computer system in a particular environment, with which it interacts through sensors and 

actuators, trying to accomplish its design objectives, thus acting reactively and proactively 

(Wooldridge and Jennings, 1995). Nevertheless, some of the agent characteristics are 

consensual in numerous definitions. Weiss proposed the characteristics that an agent must 

comply with to meet their goals (Weiss, 1999): 

• Agility: analysing and identifying new opportunities; 

• Autonomy: ability to control their actions; 

• Character: present a certain personality; 

• Flexibility: if your tasks do not need to be predetermined; 

• Intelligence: linking the characteristics of learning and autonomy. 

• Learning: gaining experience with the result of actions and adapting decisions futures; 

• Mobility: ability to move among machines based on the perception of the environment; 

• Persistence: how much an agent exists over long periods; 

• Pro-Activity: the ability to aim for a goal; 

• Reactivity: ability to react and adapt to changes in the environment. 
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• Sensory Capacity: sensitivity to the perception of the environment in which it operates; 

• Social Ability: ability to communicate with other agents in the system. 

Single-agent systems are very useful as stand-alone entities performing tasks delegated by a 

customer, freeing him from hard work (Neto, 2005). On the other hand, MAS are systems 

composed of multiple interacting computing elements, i.e., agents. Most often, agents coexist 

in environments containing other agents and interact with each other, thus composing a MAS. 

MAS are considered dynamic since the environment may change with an agent’s interaction. 

Reliability, modularity, scalability, adaptability, concurrency, parallelism, and dynamism are 

some of the advantages MAS present over single-agent systems (Dorri et al., 2018).  The agents, 

in the context of MAS, must have two important abilities. First, they are at least to some extent 

capable of autonomous action – of deciding for themselves in order to achieve their goals, and 

second, they are capable of interacting with other agents – not simply exchanging data but 

engaging in social activity (Wooldridge, 2009). A characteristic of MAS, particularly important 

when applied to power systems, is its robustness. This type of system must carry its normal 

execution, even when errors are detected in one or more agents of the system since these 

agents can be replaced by new agents that represent the customer or entity whose agent saw 

its execution interrupted.  

The general concept of a MAS is related to the creation of multiple autonomous agents that 

interact with each other to satisfy a common goal, although in the system each agent can have 

individual goals that it will try to achieve (Balaji and Srinivasan, 2010). This type of system can 

have two aspects in its execution.  The system can make use of agents so that they cooperate 

to try to achieve their objectives, and consequently solve the overall objective of the system. 

On the other hand, the system can use agents in a competitive mode, where they compete with 

each other to produce individual goals, being that in this mode it is more likely that some agents 

fail in the conclusion of their objectives (Balaji and Srinivasan, 2010).  

A commonly associated problem with MAS and agents is the data overloading and consequent 

performance capability. As such, a topic explored for resource optimization is agent cloning, a 

process in which an agent clones itself. In (Shehory et al., 1998), a model of agent cloning is 

proposed to solve the issue of local agents overload. Agent cloning encompasses 

task delegation and agent mobility. According to Shehory et al., agents can clone, delegate work 

to others, die, or merge (Shehory et al., 1998). As a result, MAS or agents that are overloaded 

with tasks can delegate responsibilities to other agents, produce new agents to undertake 

excess jobs and exploit unused resources, or move to other hosts. 

MAS and agent-based models can be applied to a wide variety of domains due to their ability 

to adapt to different contexts. For instance, they can be applied to production scheduling 

(Shukla et al., 2021), transportation (Monteiro et al., 2014), and fraud detection (Brito et al., 

2018). In what regards the application of MAS to smart grids, this technology can be useful to 

address multiple issues, namely: (i) control, operation and management, (ii) protection, (ii) 

monitor and diagnosis, (iv) transactive energy management, and (v) security (Hasanuzzaman 
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Shawon et al., 2019) (Xie and Liu, 2017). In Table 3 are described these main identified smart 

grid applications with the addressed challenges by each area of application. 

Table 3 – Applications of multi-agent systems to smart grids 

Smart grid application MAS Properties Main addressed challenges 

Control; Operation; 

Management 

The agents, normally, represent actuators 

or have actuators integrated, in order to 

enable direct actions on the energy network 

Load frequency control; 

Microgrid islanding; 

Reactive Power Control 

Protection 

Integration of protection standards (defined 

by the International Electrotechnical 

Commission) to ensure that the grid 

maintains its operational status 

Auto-configurable 

protection schemes; Self-

healing strategies 

Monitoring; Diagnosis 

The agents are mainly used to be connected 

to sensors, receiving and processing their 

data, but do not actuate in the environment 

Monitoring Systems; Fault-

detection 

Transactive energy 

management 

Coordination and competitivity between 

agents in transactive energy programs. The 

agents can include ML or optimization 

models to enhance participation 

Demand Response; Peer-to-

peer markets simulation; 

Demand-side management 

Security 

Cyber-Physical network technical (cyber 

threats) and non-technical (regulatory 

policies) security 

Cyber-attacks detections; 

Network vulnerabilities 

evaluation 

MAS have been used in power and energy systems to overcome problems that prove to be a 

challenge for traditional computing techniques. Within the field of electrical energy, MAS have 

been demonstrating their usefulness in the representation of entities and their customers, such 

as microgrids (Gomes et al., 2020a), energy communities (Reis et al., 2020), and their 

management models (Azeroual et al., 2020). In addition to representing entities belonging to 

the smart grid, MAS can also be used to individually represent customers and manage their 

resources, such as energy flexibility, and manage and support their active participation in the 

smart grid (Coelho et al., 2017). For instance, a topic commonly approached with MAS is 

participation in P2P energy markets and its optimization through intelligent algorithms and 

models. In (Gomes et al., 2020b) it is proposed a MAS able to run on single-board computers, 

to enable P2P trading in a microgrid, with a focus on the customer side, and in (Ye et al., 2021) 

it is proposed a multi-agent deep reinforcement learning approach capable of improving the 

scalability of the market. Besides that, MAS can be also used to ensure stability in the grid, by 

enabling fault diagnosis and grid reconfiguration (Rahman et al., 2018), voltage control (Wang 

et al., 2020), and voltage regulation (X. Wang et al., 2018). 

One of the main applications of MAS in the context of the smart grid is the simulation of 

aggregators and participation in DR. For instance, in (Woltmann and Kittel, 2022) the authors 

propose a MAS to simulate DR participation in an industrial context, and in it (Oliveira et al., 

2012) is proposed a smart grid simulation platform capable of representing virtual power 

players and curtailment service providers. In (Elshaafi et al., 2018) it is proposed an agent-based 
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decentralized approach to automated DR, where the methodology follows a hierarchical agent 

architecture able to represent different stakeholders to make their own decision processes. 

Another approach is to combine MAS and reinforcement learning, as proposed in (Aladdin et 

al., 2020), to optimize the participation in DR. With a different approach, not using MAS, but 

using a multi-agent-based algorithm to simulate DR, in (Rahmani et al., 2018) a methodology 

capable of minimizing costs and integrating a green data centre is proposed. 

2.2.1 Organizational Paradigms 

Associated with the characteristics of each agent and the system itself, various topologies and 

organizational paradigms can be applied, considering the relationships between the agents and 

the system's main goals.  An agent organization can be defined as a social entity composed of a 

specific number of agents that accomplish several distinct tasks or functions and that are 

structured following some specific topology and communication interrelationships in order to 

achieve the main aim of the organization (Abbas et al., 2015). Thus, agent organizations assume 

the existence of global common goals, outside the objectives of any individual agent, and they 

exist independently of agents. 

Given the wide range of MAS developed so far, many organizational paradigms have already 

been extensively explored, with the greatest examples being the following: hierarchies, 

holarchies, coalitions, teams, congregations, societies, federations, markets, matrix, and 

compound organizations (Horling and Lesser, 2004). It is generally agreed that there is no single 

type of organization that is suitable for all situations, and in some cases, no single organizational 

style is appropriate for a particular situation, and several different, concurrently operating 

organizational structures are needed (Oh et al., 2015). Table 4 (Horling and Lesser, 2004) 

presents a summary of MAS organizational paradigms. 

Table 4 – MAS organizational paradigms. Adapted from (Horling and Lesser, 2004) 

Paradigm Key Characteristic Benefits Drawbacks 

Hierarchy Decomposition 
Maps to many common 

domains; Scalable 

Potentially brittle; Can lead to 

bottlenecks 

Holarchy 
Decomposition 

with autonomy 

Exploit the autonomy of 

functional units 
Must organize holons; Low 
performance 

Coalition 
Dynamic, goal-

directed 

Exploit strength in 

numbers 
Short-term gains may not 
balance long-term drawbacks 

Team 
Group level 

cohesion 

Address larger-grained 

problems; Task-centric 
Increased communication 

Congregation 
Long-lived, utility-

directed 

Facilitates agent 

discovery 
Sets may be overly restrictive 

Society Open system 
Public services; Well 

defined conventions 

Potentially complex; Agents may 

require additional social 

capabilities 
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Paradigm Key Characteristic Benefits Drawbacks 

Federation Middle agents 

Matchmaking, brokering, 

translation; Facilitates 

dynamic agent pool 

Intermediaries become 

bottlenecks 

Market 
Competition 

through pricing 

Good at allocation; 

Increased fairness 

Potential for collusion; 

Allocation decision complexity 

can be high 

Matrix Multiple managers 

Resource sharing; 

Multiply influenced 

agents 

Potential for conflicts; Need for 

increased agent sophistication 

Compound 
Concurrent 

organization 

Exploit the benefits of 

several organizational 

styles 

Increased sophistication; 

Drawbacks of several 

organizational styles 

Additionally, there is much interest in the MAS approach as a means of designing self-organized 

systems. Agents must be able to adapt to the most appropriate organisations in open settings 

due to the environment's unpredictable changes. In this way, self-organization is defined as a 

mechanism or a process which enables a system to change its organization without explicit 

command during its execution time (Ye et al., 2017). 

2.2.2 Agents’ Mobility 

Mobility is one of the agent’s characteristics proposed in (Weiss, 1999), and is defined by the 

ability of an agent to move its execution to another machine/host. However, in general, the 

agents that are part of a MAS are not mobile, or, when they are, mobility is just a mechanism 

that changes the agent to another host, regardless of the environment or context that 

surrounds them. Figure 3 represents an example of physical mobility between machines. 

 

Figure 3 – Agents’ physical mobility 

Despite this, there are several examples where MAS are implemented with mobile agents. In 

(Cucurull et al., 2007) is proposed an architecture that enables agent mobility, based on IEEE- 
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Foundation for Intelligent Physical Agents (FIPA) standards. This architecture divides mobility 

into multiple steps, that can be adapted to the preference of the developers and/or agents, in 

order to create a flexible process. In the context of power systems, in (Akyol et al., 2012) is 

proposed VOLTTRON, an agent execution platform that supports agent mobility. Authorized 

hosts in VOLTTRON can dispatch and deploy agents using the mobility feature, making 

management and deployment easier and more flexible. 

Mobility is also a critical consideration when discussing agent-based services. This is because 

the majority of services require the subscriber to provide significant volumes of data to the 

service’s provider, such as historical data on energy consumption and generation. This makes 

participation in services extremely costly on a computational level for all the entities involved. 

Despite not being a solution normally used in MAS to solve these difficulties, the code-shipping 

paradigm can be highly advantageous when compared to data-shipping (Braun, 2003). With this 

methodology, the service’s provider agent moves to the host where the service’s subscriber is 

hosted so that there is not a huge amount of data transported between machines, but only the 

code of one agent. This type of paradigm is frequently employed in mobile edge computing (S. 

Wang et al., 2018). 

In the smart grid environment, when an agent signs up for a particular service or MAS, it is 

because, in its current context, it would be the most suitable one among the available to take 

greater advantage of its energy resources. However, the properties and objectives of the agents 

and the MAS themselves are not static. By changing these parameters, it may make sense to 

move the agent to another MAS, that best fits the agent's current context. For instance, 

relatively to power systems, an aggregator can change its target hours for the DR programs, or 

an energy retailer can change its tariffs, causing their target clients to change. 

Smart grids increasingly provide opportunities for their participants, and as such, they should 

be able to participate in the various initiatives that they find convenient in their context, 

something that, in agent-based systems can be achieved through mobility, which allows agents 

to move among MAS, in order to achieve their goals. As the agents may want to participate in 

multiple MAS, or even subscribe to different services, simultaneously, there is the need to have 

a functionality that enables this ability.    

2.2.3 Agents’ Intelligence and Learning 

Although intelligence is normally a characteristic associated with agents, having intelligent 

behaviour is not something intrinsic to a software agent, if it is not prepared for it. According to 

Russell and Norving, an intelligent agent must perceive its environment, act autonomously to 

achieve its goals, and should be able to improve its performance with learning methods or with 

the use of knowledge (Russell and Norvig, 2002). 

For an agent to be able to learn from its actions, it must be evaluated for each action it takes, 

taking into account the state of the environment that surrounds it, before and after the 

performed action. In these cases, Reinforcement Learning (RL) -  where an agent learns by 
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interacting with its dynamic environment (Kaelbling et al., 1996), is an adequate approach. In 

RL, at each time step, the agent perceives the state of the environment and takes an action, 

which causes the environment to transit into a new state. Figure 4 presents the basic agent-

environment interaction. A scalar reward signal evaluates the quality of each transition, and the 

agent must maximize the cumulative reward along the course of interaction. The RL feedback 

(the reward) is less informative than in supervised learning, where the agent would be given 

the correct actions to take (Cherkassy and Mulier, 1998). The RL feedback is, however, more 

informative than in unsupervised learning, where there is no explicit feedback on the 

performance (Hinton and Sejnowski, 1999). 

 

Figure 4 – Agent-Environment interaction 

In the context of power and energy systems, with the increasing quantity of data generated by 

advanced sensors and smart meters, RL is a solution for control and optimization problems, 

since it can extract optimal operational knowledge from historical data through continuous 

interactions with the environment while the global optimum is unknown (Cao et al., 2020). Its 

versatility, mainly due to the personalized definition of environments and training strategies, 

allows its application to topics such as building control (Wang and Hong, 2020), negotiation of 

energy contracts (Pinto et al., 2019), control of heating and ventilation systems (Macieira et al., 

2021), and electricity consumption forecast (Ramos, 2021). 

Applying RL to a MAS can be challenging, but it will be beneficial for the system and for the 

agents that compose it. Two of the main challenges in the field are the definition of an 

appropriate formal goal for the learning multi-agent system, and the need for manually 

designing quality features on which to learn (Hernandez-Leal et al., 2019). Experience sharing 

can help RL agents with similar tasks learn faster and reach better performance. For instance, 

skilled agents may serve as teachers for the learner, or the learner may watch and imitate the 

skilled agents (Ndousse et al., 2021). Another advantage, that can be useful to increase the 

robustness of the system, is when one or more agents fail in a MAS, the remaining agents can 

take over some of their tasks (Hernandez-Leal et al., 2019).  

Another challenge commonly associated with the development of RL models is the design of 

training environments. Particularly when dealing with applications in a real-world context (e.g., 

involving the modelling of a physical electrical network), there are many obstacles to its intuitive 
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development (Dulac-Arnold et al., 2021). This is because, since RL is a trial-and-error technique, 

the number of states in an environment, and of actions that can be performed on it, is 

exponentially proportional to the complexity of the environment itself (Nguyen et al., 2020). In 

addition, namely in the power and energy domain, the tools used to create training 

environments are not insightful, creating the need for the existence of tools that facilitate the 

integration of RL in previously designed and/or deployed systems, without demanding the 

agents and the system itself to be programmed again. 

2.2.4 Interoperability 

The basic principle of the MAS is communication among agents, and it is assumed that all parties 

involved understand each other, since it is through the exchange of information, knowledge, 

and services that the proposed objectives of the agents and the system itself are achieved 

(Lazaridou et al., 2017). This topic becomes even more complex when communication can occur 

among different MAS since the concurrent distributed development has led to many types of 

MAS that are islands of functionalities, whose agents are unable to interoperate with each other 

(Poslad and Charlton, 2001).  

MAS are becoming increasingly heterogeneous, that is, they are composed of numerous types 

of agents, whether virtual or physical, which are frequently implemented in different ways (Lee 

and Shim, 2022). As a result, these systems must be able to transmit all the messages that 

agents send, which includes supporting various communication protocols. As is the case with 

IoT devices, different communication protocols are implemented based on the type of agent. It 

is important, therefore, not only to support these communication protocols but also to be able 

to translate messages from one communication protocol to another, so that they can reach 

their final destination regardless of their protocol or format (Derhamy et al., 2017). 

In this way, transmitting a message is not enough to create interoperability among agents. 

Communication is characterized not only by the transmission of information but also by 

knowledge sharing and coordination among the involved parties. So, to make truly effective 

interoperability it is necessary to establish standards that consider communication 

characteristics, such as protocol and language, and semantics that represents, interpretably,  

the content of the message (Santodomingo et al., 2014).  

Therefore, when designing MAS, the use of standards that promote interoperability between 

agents and systems is becoming increasingly important, if not mandatory (McArthur et al., 

2007a). The FIPA “is an IEEE Computer Society standards organization that promotes agent-

based technology and the interoperability of its standards with other technologies”, officially at 

the Institute of Electrical and Electronics Engineers (IEEE) since June 2005. From that moment 

on, FIPA standards began to be used often in the development of MAS (McArthur et al., 2007b). 

Following the FIPA standards, agents from heterogeneous platforms should be able to 

interoperate, which does not mean that the agents are able to exchange any useful information. 

Even if the agents use the same communication language and content language, if they do not 
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share a common vocabulary, they will not be able to interpret the incoming messages, nor to 

communicate effectively.  

A common approach to standardising the communication vocabulary among agents is the use 

of ontologies. In AI literature, one of the most agreed definitions of ontology was proposed by 

Gruber: “Ontology is an explicit specification of a conceptualization” (Gruber, 1993). More 

recently, Asim et al. defined ontology as the vocabulary and the formal specification of the 

vocabulary of a specific domain (Asim et al., 2018). The application of ontologies to MAS has 

been gaining popularity as the number of systems developed is increasing, and consequently, 

also their heterogeneity. 

A problem normally associated with ontologies is the difficulty of implementing them, as well 

as the difficulty of integrating them into already developed MAS. Thus, other approaches to 

introducing interoperability in agents emerge, one of which is the definition of a development 

base, such as an agent-based ecosystem, to ensure that the agents and the systems into which 

they are integrated follow the same principles, particularly in terms of communication and the 

definition of their knowledge base (i.e., data and behaviours). This approach has the advantage 

that, although the agents must follow a particular development base, they can be adapted and 

customized by the developers, considering the system's and agents' objectives. 

Although interoperability between different MAS is an essential topic for the success of the 

developed systems, it is also important to consider external and independent agents that want 

to participate or take advantage of the services provided by a MAS. Therefore, it should not be 

mandatory for a particular agent to be part of a MAS to use services provided by it, as long as it 

meets the requirements for participating in the system and/or services. For instance, an energy 

consumer may want to take advantage of the services of a MAS while making use of his own 

machine to host his agent, and thus take advantage of the system, without being an integral 

part of it. In this way, another need for interoperability arises, since, in addition to a MAS 

needing to understand and interoperate with external systems, it must also have the ability to 

communicate and interact with independent agents that are not part of it. 

2.2.5 Agent-based Platforms and Frameworks 

When designing and developing agent-based systems, programming language and platform 

selection become critical. Agent-based platforms are software packages that include the 

primary functionalities required to deploy and run MAS, hence simplifying their creation and 

deployment (Cardoso and Ferrando, 2021). On the other hand, an agent framework is a 

language environment, software library, or a combination of the two that provides the essential 

tools for constructing the agent-based system backbone. In this section are described some of 

the most used agent-based platforms and frameworks. 

Java Agent DEvelopment Framework (JADE) is an open-source platform for peer-to-peer agent-

based applications (Kumar and Kumar, 2014) and it was developed to create a FIPA-compliant 

framework that would allow MAS developed according to the FIPA specifications to be more 
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extensible and compatible. It includes agent abstraction, a simple but powerful task execution 

and composition model, asynchronous peer-to-peer agent communication, and a yellow pages 

service with publishing, subscribing, and discovering mechanisms, among many other advanced 

features that make developing an agent-based system easier and less time-consuming. The 

authors of JADE say that, unlike architectures that rely on a single entity, a peer-to-peer 

architecture lowers failure circumstances. JADE agents communicate by exchanging messages 

using the FIPA ACL language. 

The Open Agent Architecture (OAA) is presented as “A framework for integrating a community 

of heterogeneous software agents in a distributed environment” (SRI International, 2022). It 

was created to allow heterogeneous software agents to work together in distant contexts. The 

dynamic and extensive character of black board-based systems, the efficiency of moving items, 

and the vitality of the agents' interactions are all provided by OAA. The InterAgent 

Communication Language (ICL), a logic-based declarative language capable of expressing high-

level, complicated tasks and natural language expressions, is used in OAA for inter-agent 

communications. It features a conversational protocol that is similar to KQML's communication 

layer and is specified by a list of event kinds and related parameters. The content layer, on the 

other hand, is similar to the one in KIF and consists of specific goals, triggers, and data items 

that may be placed within various events. 

Mesa is a Python-based agent-based modelling framework (Masad and Kazil, 2015). It enables 

the rapid building of computational models based on agents using core components like Spatial 

Grids and Agent Scheduling, as well as bespoke components. Agent-based models are computer 

simulations in which several agents behave and interact with one another based on their actions. 

Because these models assess a system at both an individual (each entity/agent) and a system-

wide level, they may determine the impact that each agent has on the system. Mesa has a 

modular framework that simplifies the addition of new components. 

The Smart Python Agent Development Environment (SPADE) is a Python-based multi-agent 

systems platform based on the Extensible Messaging and Presence Protocol (XMPP) (Palanca et 

al., 2020). Because SPADE is an asynchronous system, it is quick and efficient. The XMPP 

protocol is flexible and extendable, allowing the integration and setup of a variety of 

functionalities, with instant messaging as the primary focus. Because of the modular nature of 

XMPP, SPADE can interact with agents using any XMPP server. The FIPA specifications can be 

integrated thanks to this protocol. It also permits the usage of presence notifications, which 

allow the system to know the current condition of each agent in real-time. 

2.3 Machine Learning 

Machine Learning (ML) is a subfield of Artificial Intelligence that studies the mechanisms by 

which a computer may learn to recognise patterns in a given set of data (Pouyanfar et al., 2018). 

Its objective is to enable a system to enhance its ability to accomplish a certain activity without 

being explicitly coded. According to Flach, machine learning is the process of developing a 
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model that enables a computer to complete a job based on a collection of attributes extracted 

from training data (Flach, 2012). The learning process is described in the literature as 

transforming experience into knowledge, in which the training set used reflects the experience 

and the output symbolizes the knowledge that can be applied to different datasets (Shalev-

Shwartz and Ben-David, 2014). 

While ML algorithms offer the benefit of not requiring explicit programming to enhance their 

forecast performance in response to fresh evidence in the form of extra data, their use does 

have certain limitations. To begin, if an ML method is not correctly parameterized, it is 

susceptible to overfitting, a phenomenon in which the model is not sufficiently generalised to 

make predictions outside of the values encountered during the training process (Ying, 2019). 

Similarly, machine learning algorithms have limited applicability outside of the contexts in 

which they were trained, particularly if the correlations upon which they are based are context-

specific and the discrepancies with other settings are accurately modelled by the selected 

features, or if there is a dearth of data for other contexts. Despite this, the biggest problem with 

ML resulted from its greater use in sensitive areas, such as health. This is because there are 

several questions about the fairness and bias of the models (Mehrabi et al., 2021). 

There are different types of machine learning, each one addressing different types of problems 

and contexts. The most addressed ones are supervised, unsupervised, and reinforcement 

learning. Despite that, there is semi-supervised learning, which combines both supervised and 

unsupervised learning, using labelled and unlabelled data for training (Zhu, 2005). In Figure 5 

semi-supervised learning is compared to supervised and unsupervised learning in what regards 

data labelling. 

 

Figure 5 – Comparison between supervised, semi-supervised, and unsupervised learning data 

labelling (adapted from (Schmarje et al., 2020)) 

2.3.1 Supervised Learning 

Supervised learning is a subfield of ML in which both the input and output data of datasets are 

known throughout the training process. Supervised algorithms are capable of analysing and 

forecasting outputs for unknown input data, based on the knowledge obtained from the 
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training dataset (Ahmad and Chen, 2020). It is the most addressed type of ML, mainly due to its 

simple and quick application to a wide range of domains (Kulkarni et al., 2021). 

Supervised learning tasks may be generated using one of two separate types of output labels: 

discrete data (e.g., recognising the appliance that is generating a specific load pattern) or 

continuous data (e.g., estimating energy prices). Problems that deal with the discrete target 

data are described as classification problems, while if the target data is continuous it is 

considered a regression problem (Ahmad and Chen, 2020). 

There are several algorithms to employ supervised learning. The most addressed ones are 

described as follows (Saravanan and Sujatha, 2019) (Gianey and Choudhary, 2018):  

• Linear and Polynomial regressions: are used to estimate actual values using continuous 

variables as input; 

• Logistic regression: it is a classification technique that is used to approximate discrete 

values from a collection of independent variables; 

• Support vector machines (SVM): each property is mapped into a vector in n-

dimensional space using a classification or regression algorithm. The data is divided into 

groups by tracing a space whose dimension varies with the number of characteristics; 

• Decision trees: frequently employed in classification issues, this technique divides the 

population into homogenous groupings based on the most salient characteristics; 

• Random forest: terminology used to refer to a collection of decision trees. To assign a 

new object a class based on its characteristics, each tree assigns a rating and vote to 

the class. The class with the greatest number of votes is chosen; 

• K nearest neighbours (KNN): it's a straightforward algorithm that saves all possible 

situations and ranks them based on a majority vote from their K closest neighbours. It 

may be used for classifying and regression; 

• Naïve bayes: Bayes' theorem-based classification technique. The Naive Bayes classifier 

assumes that the existence of one characteristic in a class is unrelated to the existence 

of any other attribute; 

• Artificial neural networks (ANN): similar to the way a human brain performs, neural 

networks use communication between simple computing cells (called neurons) to 

generate predictions. 

Traditional supervised learning algorithms have limitations in terms of their capacity to 

interpret unstructured natural data and also to process high volumes and variety of data. For 

decades, developing a system capable of pattern recognition required meticulous engineering 

and extensive domain knowledge, in order to construct a model capable of extracting suitable 

representations (Zhou et al., 2017). The emergence of the concept of Deep Learning (DL) has 

revolutionized this domain of AI. A deep neural network (DNN) may express progressively 

complicated tasks by adding additional hidden layers and units to each layer. DNNs may learn 

as a supervised algorithm, where the training data contains the target attribute to predict or 
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classify, or as unsupervised, where training data is created automatically from unlabelled data 

with small human interaction. (Zhou et al., 2017). Fundamentally, the goal of DL is to deliver 

solutions to issues that are too complicated for humans to handle without their assistance. With 

the advancement of technology that enable Deep Learning approaches and innovation in the 

field, a variety of models have been suggested, each with a distinct application and purpose. 

Table 5 contains a summary of the deep learning networks (Pouyanfar et al., 2018).  

Table 5 – Deep Learning models comparison. Adapted from (Pouyanfar et al., 2018) 

Network architecture Key Points 

Recursive Neural Network Uses a tree-like structure; Preferred for NLP 

Recurrent Neural Network 
Good for sequential information; Preferred for NLP & 

speech processing 

Convolutional Neural Network 
Originally for image recognition; Extended for NLP, speech 

processing, and computer vision 

Deep Belief Networks Unsupervised learning; Directed connections 

Deep Boltzmann Machine 
Unsupervised learning; Composite model of RBMs; 

Undirected connections 

Generative Adversarial Network Unsupervised learning; Game-theoretical framework 

Variational Autoencoder Unsupervised learning; Probabilistic graphical model 

In the scope of the smart grid, supervised learning is mainly used in energy consumption 

forecasting (Seyedzadeh et al., 2018) (Ramos et al., 2022). Despite that, many other applications 

are possible. In  (Ebrahimian et al., 2018) is proposed an energy prices forecast with the use of 

a three-stage neural network. In the domain of fault detection, in (Jan et al., 2021) is proposed 

a distributed sensor fault detection and diagnosis framework using support vector machines, a 

fuzzy deep neural network, and an auto-encoder, that shows that multiple ML models can be 

combined to enhance the accuracy in predictions. Another commonly addressed domain is load 

scheduling, and in (Kaur et al., 2021) is proposed a price-based load scheduling for optimal IoT 

control in smart homes, using Adaptive Boosting, a statistical supervised algorithm. Other topics 

in the context of the smart grid addressed with supervised learning are: (i) energy resources 

optimization (Mota et al., 2021), adaptive control (Kolluri and De Hoog, 2020), distributed 

generation units sizing (Purlu and Turkay, 2021), data-breach detection (Cui et al., 2020), and 

EV scheduling (Shahriar et al., 2020). 

2.3.2 Unsupervised Learning 

In contrast to supervised learning, unsupervised learning treats all objects in the dataset 

identically, with no difference made between the training and testing sets. This occurs because 

the target values are unknown from the beginning of the training process. As a result, the major 

goal of these types of algorithms is to independently find hidden patterns or data groupings 
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(Shalev-Shwartz and Ben-David, 2014), and also to detect anomalies in a dataset (Meira et al., 

2022), for instance, to predict security breaches. 

Unsupervised Learning is divided into 3 major topics: clustering, dimensionality reduction, and 

association rules. Clustering is the most researched topic in unsupervised learning, with the goal 

of dividing a finite, unlabelled dataset into a finite number of groups, named "clusters”, based 

on data similarities (Xu and Tian, 2015). The typical result of a clustering algorithm is a scatter 

plot indicating the formation of clusters/groups, as seen in Figure 6 (Varghese et al., 2018). 

Dimensionality reduction is a technique for lowering the dimensionality of characteristics while 

retaining the data. In a truncated or low-dimensional dataset, critical characteristics persist 

even if a particular pattern disappears (Zebari et al., 2020). Association rules are typically used 

for knowledge discovery and pattern discovery, in which associations are created among data 

characteristics (Wu and Wang, 2020). 

 

Figure 6 – Clustering example. Extracted from (Varghese et al., 2018) 

Unsupervised algorithms can also be applied to consumers categorization or segmentation 

(Rajabi et al., 2020). Electricity customer categorization might theoretically follow segmentation 

standards based on commercial categories of activity. However, the load patterns of clients 

engaged in the same sort of activity might vary significantly (Chicco, 2012). As such, 

classifications based on activity type and business codes are often inefficient at capturing the 

individual characteristics of power usage. The distinction can then be made between a few 

macro-categories (e.g., residential, industrial, commercial). 

Clustering algorithms are often employed in power and energy systems to conduct an in-depth 

analysis of customers. Clustering enables customers’ aggregation (Iria and Soares, 2019b), for 

instance, to enhance their participation in DR (Lin et al., 2019). Multiple clustering algorithms, 

including K-Means, are explored in (Teichgraeber and Brandt, 2019) to optimize power systems 

via the identification of relevant periods. Additionally, as described in (Nepal et al., 2019), it is 

feasible to examine electricity consumption trends and optimize power system design (Kotzur 

et al., 2018). Coefficients relating to intra-group homogeneity and inter-group heterogeneity, 
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such as Elbow and Silhouette, are typically used as assessment measures to determine the ideal 

number of clusters. 

2.3.3 Reinforcement Learning  

Reinforcement Learning (RL) is a type of learning in which an agent/learner interacts with their 

environment through trial and error. In contrast to other machine learning techniques, the 

agent is not instructed on the appropriate course of action to pursue. Rather than that, the 

agent explores the environment to maximize its future rewards (or, statistically, the total of 

expected rewards), which is typically the quest for the achievement of a goal/objective (or a 

target space) represented numerically by a large reward. (Recht, 2019).  

The agent is placed in an environment and provided with an observation, such as the system's 

condition. The agent is then free to choose from a predefined set of actions that, when done, 

alter the environment. It will be rewarded if it performs something positive; if it does not, it 

may also receive a penalty (Shin et al., 2019). In this way, the agent explores/exploits the 

environment and can learn a good strategy, in RL called a policy, by maximizing the rewards. 

The policy indicates the likelihood of an action occurring in a certain state. In a conventional RL 

environment, the model is a Markovian Decision Process (MDP), and the rewards should also 

be Markovian. MDP's objective is to provide a mapping of ideal actions for each environment 

state. MDP is based on Markovian property, which considers just current events, and the 

prediction of the upcoming state is decoupled from previous states (Naeem et al., 2020). In a 

summary, this means that the rewards only depend on the current state, not on how the agent 

got there. 

In some cases, pursuing instant rewards is counterproductive, as the long-term rewards may be 

greater for another action. If the agent chooses a lesser immediate reward, it may receive a 

bigger cumulative reward in the long run. If given sufficient time, the agent can learn this policy 

(Han et al., 2021). Additionally, a discount function can be utilized to communicate the relative 

importance of future rewards to those received at the moment. Specific RL approaches employ 

a value function to decide whether activities produce desirable outcomes in the future, as 

opposed to immediate feedback rewards. The main goal of learning is to maximize the expected 

discounted cumulative reward. 

After training, the agent's policy dictates which actions will be taken in response to the observed 

state of the environment. It is available in two alternatives: deterministic and agnostic. The 

latter returns a stochastic policy, in which a distribution (action, state) specifies the likelihood 

of the agent doing a certain action given a specific state. On the other hand, the deterministic 

policy function maps a given state to an action (Sutton and Barto, 2018). 

The exploration vs. exploitation dichotomy is a recurrent subject in RL and artificial intelligence 

more broadly. “Should we exploit acquired information?” (i.e., should we take a known, high-

reward path), or “Should we explore uncharted states in quest of a more effective new policy?” 

(Arulkumaran et al., 2017). The combination of the two significantly boosts the agent's learning 
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performance. One probable explanation emerges: To begin, an agent must investigate the 

greatest possible number of states, followed by utilising obtained knowledge to obtain superior 

results once the agent is confident of having thoroughly studied the universe. It is extremely 

difficult to determine whether sufficient exploration has been conducted in uncertain/dynamic 

environments (Padakandla, 2021). 

The exponential growth of deep learning eventually extended to reinforcement learning, which 

had a beneficial effect on its potential applications. Deep Reinforcement Learning  (DRL) 

combines the sensing capability of deep learning with the decision-making capability of RL 

(Botvinick et al., 2019). Deep learning extracts information about the goal observation from the 

environment and delivers state information about the current environment. The RL algorithm 

then transfers the current state to the associated action and assesses values in terms of 

expected return (Arulkumaran et al., 2017). Figure 7 presents the comparison between a RL and 

a DRL algorithm (i.e., Q-Learning vs. Deep Q-Learning).  A continuous interaction process 

transforms decision-making behaviour into a step-by-step process (François-Lavet et al., 2018). 

DRL resolves typical problems in RL by completing complex tasks with less prior knowledge, 

owing to its capacity to learn abstraction levels from data (Agostinelli et al., 2018). 

 

Figure 7 – Comparison between a) Q-Learning, and b) Deep Q-Learning. Adapted from 

(Choudhary, 2019) 

In the domain of smart grids, RL and DRL have been widely used to solve several complex 

problems. It can be used for smart building energy management, both with model-based and 

model-free algorithms, as proposed in (Yu et al., 2021). The conclusions extracted from (Yu et 

al., 2021) is that, for this specific task, model-based algorithms are more practical than model-

free, as the majority of the model-free algorithms are not yet implemented in practice due to a 

long exploration time and a high exploration cost. Besides that, it can be used to model and 
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optimize the participation in DR programs (Vázquez-Canteli and Nagy, 2019) and P2P (Chen et 

al., 2022), electricity markets simulation and strategic bidding (Ye et al., 2020), operational 

control (Diao et al., 2019), among others (Cao et al., 2020). 

2.4 Chapter Conclusions 

While MAS developed for the smart grid have well-defined objectives, they are frequently 

restricted to specific domains (e.g., energy community representation, DR, and P2P simulation). 

Thus, there appears to be no system in which multiple MAS can coexist and communicate, 

making it difficult to fully represent the smart grid and its entities. 

As a result, it is essential to conceive an ecosystem capable of integrating multiple agent-based 

systems, with the capacity to model even the most complex interactions and representations 

present in the smart grid, such as the dynamic relationships created by the provider-client 

paradigm, in which clients should be able to search for the best service providers for their 

context, naturally and seamlessly. The majority of the interactions in the smart grid are based 

on the provider-client paradigm, creating the opportunity to directly apply the ecosystem to 

that specific domain. Besides being useful to better represent the smart grid, an agent-based 

ecosystem can be considered as an implicit solution for agents’ interoperability, since it allows 

multiple systems and agents to be developed and deployed under the same standards. 

In addition to the capabilities used to represent the smart grid, it is possible to conclude that 

agent-based systems have deficiencies concerning data and objectives overloading, and also in 

what regards computational performance. Despite that, multiple techniques have already been 

proposed to address the agents' overloading and performance. For instance, there is the agent 

cloning technique, which even though being useful for dividing the agents' tasks, it does not 

ensure that the agents' objectives are met, much less following the requirements outlined by 

the entities they represent. Besides that, MAS should consider techniques to balance the 

computational load of its agents, especially when the agents are hosted in multiple physical 

hosts with different computational power. 

Reinforcement learning is one of the techniques that is intended to be integrated into the 

ecosystem to address the energy customers' active participation in energy communities due to 

its ability to introduce the characteristics of intelligence and learning in the agents. Although 

reinforcement learning is a vastly explored technique, its development for MAS is typically not 

intuitive and highly dependent on a large number of parameters. Normally, MAS have to be 

developed from scratch to integrate RL training and simulation, not allowing already developed 

and deployed agents to enhance their behaviour in real-time. This capability would be a big step 

towards the application of RL in real-context MAS, where agents represent physical devices. 
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3 Methods and Materials 

This chapter describes the methods/algorithms used in the development of the agent-based 

ecosystem, and the tools used both to develop it and to test it. Besides that, this chapter 

presents the technological and social challenges related to the domain of development. 

3.1 Materials and Tools 

This section describes the material and tools that enable the development of the proposed 

system. The obtained data is described (in this case from energy communities), the MAS 

development framework, machine learning libraries that enable an intuitive implementation of 

sophisticated algorithms, and ontologies established for the modelling of smart grids. 

3.1.1 Multi-Agent Systems Development Frameworks 

The first step in the development of a multi-agent system is the choice of a platform or 

development framework, or, in specific cases, agents can be developed from scratch, something 

that involves other responsibilities and concerns in their implementation. The platform chosen 

for the development of the system and its agents was the Python-based framework for 

hEterogeneous Agent Communities (PEAK)4 (Bruno Ribeiro et al., 2022).  This decision is due to 

three main reasons: the first is that JADE, the most used platform for the development of multi-

agent systems, has already been properly explored and its innovation is already limited since 

its last version is dated from 2017; the second one is that PEAK is developed over SPADE, which 

by default uses XMPP to enable the agent’s communication, which is a naturally extensible 

protocol; and the third one is that PEAK is implemented in Python, therefore being possible to 

extract the full potential of the language in the development of the ecosystem. 

 
4 PEAK website - https://www.gecad.isep.ipp.pt/peak 
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SPADE is a framework that is regularly updated, is open-source and has the MIT license. SPADE 

is a modular framework, which allows its expansion using plugins. It is FIPA-complaint and its 

communication architecture, despite being different from the mainstream architecture, it ends 

up being more efficient because it provides many functionalities used for agent communication. 

This type of architecture allows human-agent interaction more easily, allows a more reliable 

communication between agents, because if one agent goes offline the conversations are not 

lost, and adds the ability to find the other agents more easily without the need for a facilitator 

agent. However, SPADE can be improved, because despite providing various tools for MAS 

development it lacks some fundamental functionalities, for instance, proper management tools 

for the MAS and better mechanisms for group communication. For these reasons, PEAK was 

used since it covers a lot of the SPADE’s limitations. 

PEAK, which architecture is shown in Figure 8, is a framework that facilitates and provides every 

tool needed for a developer to create a MAS and integrate it into an agent-based ecosystem. 

helps to create any type of agents, create simulation environments, extract data from the MAS 

and create group chats where agents can communicate with each other easily. Additionally, this 

component has tools to facilitate the integration of IoT technologies in the MAS, as it is possible 

to use the Modbus TCP and the HTTP protocols and is flexible to use other protocols as well. 

The PEAK framework contains a dashboard component, which is a graphical user interface that 

allows to visualize, interact and monitor the PEAK agents. The dashboard to work must be 

initially connected to the Directory Facilitator (DF) agent REST API. One of the main features of 

the Dashboard is the ability to visualize the entire hierarchical architecture of the ecosystem. 

 

Figure 8 – PEAK framework architecture 
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The DF agent is crucial to the general maintenance of the ecosystem. This agent is responsible 

for numerous tasks, with the following being the most important in the context of the proposed 

ecosystem: (i) registering agents and groups in the ecosystem, allowing the establishment of a 

multi-level tree-like hierarchy, and (ii) providing a Yellow Pages Service that facilitates the 

discovery of all registered agents, services, and groups. Tags can be associated with the register 

to enable a faster and more accurate search. 

Since the communications of PEAK agents are carried out through the XMPP protocol, then all 

of them must be registered in an XMPP server. The chosen server was Prosody5, which is a 

recent and modern XMPP server software. It is extremely simple to install and configure and 

consumes minimal system resources. Additionally, it is quite simple to edit and change, as well 

as test with new protocols. It is one of the most efficient servers, as it can operate on low levels 

of RAM. Another advantage of Prosody is that many of its components are modular, allowing 

for the addition or removal of functionality in the application (Aryanto et al., 2021). Additionally, 

it can be connected to other XMPP servers on a network to function as a multi-server system. 

It is extremely efficient and secure; all communication is encrypted. The most important 

modules in Prosody in the context of this work are “Bosh” and “WebSockets” since they allow 

communication over HTTP, which is critical for the proposed model since in this way they enable 

direct communication between the platform's graphical user interface and the agents. 

To be able to regulate interactions between agents and also to improve the capacity to identify 

inaccuracies in them, it is critical to have tools that allow for the recording and monitoring of 

communications in real-time. For this task, the used tool is Pidgin6, a chat client that enables 

logging into several chat networks at the same time, including XMPP groups. Pidgin integrates 

a number of these chat networks' capabilities, including file transfers, away messages, friend 

icons, custom smileys, and typing notifications. Numerous plugins additionally extend Pidgin's 

capabilities beyond the standard features. 

3.1.1 Python and Machine Learning Libraries 

To develop and implement the models proposed in this work, multiple libraries and modules 

are used, in order to complement each other. This type of library saves developers time and 

work, besides allowing them to concentrate on applying the models to their systems. 

In terms of data analysis and general software development, several libraries were used.  Of 

these, two are particularly useful when it comes to data representation and processing: Pandas 

(Reback et al., 2022) and NumPy (Harris et al., 2020). Pandas is a library which provides fast, 

versatile, and expressive data structures meant to make working with “relational” or “labelled” 

data both easy and natural. It is highly suited for many various forms of data, such as tabular 

data and any other form of observational/statistical datasets. NumPy is a library for scientific 

computing that provides a multidimensional array object, various derived objects, such as 

 
5 Prosody website - https://prosody.im/ 
6 Pidgin website - https://www.pidgin.im/ 
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masked arrays and matrices, and a variety of routines for fast array operations, namely 

mathematical, logical, and sorting. 

In what regards code analysis two libraries were used: Pylint7 and Pysa8. Pylint performs code 

analysis without actually executing it. It checks for mistakes, enforces a coding standard, 

searches for code smells, and makes suggestions for refactoring the code. Pylint is extremely 

flexible and allows the development of plugins to provide custom inspections (for example, for 

internal libraries or an internal rule). Pysa - Python Static Analyzer, produces a different type of 

code analysis, named taint analysis. It operates by tracing data flows from their origin to their 

destination. For instance, it monitors flows in which user-controlled request data flows into a 

function call, resulting in a remote code execution vulnerability.  

Regarding machine learning, multiple libraries have been deeply explored and used. Scikit-learn 

is a Python module that integrates a diverse set of cutting-edge machine learning methods for 

solving supervised and unsupervised issues on a medium scale (Pedregosa et al., 2011). This 

package aims to make machine learning accessible to non-specialists through the use of a 

general-purpose high-level language. TensorFlow is a machine learning module that operates 

in large-scale heterogeneous environments, with a major focus on deep learning models (Abadi 

et al., 2016). TensorFlow represents computation, shared state, and the operations that modify 

that state using dataflow graphs. In what regards RL development, the environment design has 

a big impact on the problem’s definition, and on the model’s performance. Gym is a "toolkit for 

developing and comparing reinforcement learning algorithms" (Brockman et al., 2016) which 

was created by OpenAI9 . Their primary goals were to advance the area of reinforcement 

learning by establishing a uniform benchmark and standardising conditions that facilitate the 

implementation of publications in real-world systems. Lastly, the Ray RLlib library (Liang et al., 

2017) provides the implementation of several RL algorithms, and its main highlight is the direct 

integration of multi-agent RL algorithms. If the environments where the algorithms are applied 

are OpenAI Gym-compliant, then the integration between the two libraries is straightforward. 

To finalize, it was a library to model and represent the physical energy network. Pandapower is 

a Python-based, BSD-licensed power system analysis tool aimed at the automation of static and 

quasi-static analysis and optimization of balanced power systems (Thurner et al., 2018). It 

provides services such as power flow, optimal power flow, and state estimation. 

3.1.2 Datasets 

Even though multi-agent systems are not always data-driven models, data are required for the 

agents to learn from experience and to find the optimal context given their characteristics. As 

such, four datasets, each one with specific objectives, were collected to be then used in the 

creation and development of the agents. 

 
7 Pylint website - https://pylint.pycqa.org/ 
8 Pysa website - https://pyre-check.org/docs/pysa-basics/ 
9 OpenAI website - https://openai.com/ 
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The first acquired dataset was studied in (Pereira et al., 2021), and it is based on the one 

presented in (Silva et al., 2019). The dataset contains information on 996 customers, 

considering 5 full days, with a granularity of 15 minutes. The information about the dataset 

features is described in Table 6. This dataset is very useful for the characterization of customers 

since it contains a large number of features that can be essential for differentiating them, 

considering other topics than the historical profiles of consumption and generation. The 

customers represented in the dataset do not have a connection among them, and thus, they 

can be grouped as several aggregation entities, for instance, energy aggregators, retailers and 

communities. 

Table 6 – Description of the first used dataset’s features 

Feature Name Description Unit 

Consumption Profile Energy consumed during each period kWh 

Generation Profile Energy generated during each period kWh 

Consumption Type 
Type of customer, i.e., domestic, small commerce, 

medium commerce, large commerce, or industrial; 
- 

Generation Type 
Type of generation of the customer, i.e., photovoltaic, 

wind, biomass, or hydrogen; 
- 

Consumption Tariff Energy consumption tariff applied EUR/kWh 

Generation Tariff Energy generation tariff applied EUR/kWh 

Flexibility Consumption flexibility for each period % 

Contracted Power Power defined in the consumption tariff contract kVA 

The second dataset contains an energy community with 96 real customers’ profiles, half of them 

being consumers, and the other half being prosumers. It was used in (Pereira et al., 2022a). The 

dataset uses real consumption and generation profiles from (Working Group on Intelligent Data 

Mining and Analysis (IDMA), 2022) and (Hebrail and Barard, 2012). The energy flexibility, of 

each customer, was generated using a normal distribution with a mean of 15 % and a standard 

deviation of 5 %. Regarding energy prices, the Iberian Electricity Market (MIBEL) market prices 

were used (OMIE, 2022) The dataset has a granularity of 15 minutes, and it represents a week 

with seven days (i.e., 672 periods).  

The third dataset, published in (Pereira et al., 2022b), was conceived with the main objective of 

testing the mobility functionality proposed in this work. The dataset has 30 customers: ten 

residential, ten small commerce, five large commerce, and five industrial customers. The 

combination of several energy customer types allows the creation of a dataset with different 

types of consumption profiles, generation, and flexibility, and, therefore, different values of 

participation in DR events. The residential profiles of the considered customers use the data 

available in the (Working Group on Intelligent Data Mining and Analysis (IDMA), 2022). The 

values represent a week period using 15 minutes reading periods. All the values are represented 

in kWh. 
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The last used dataset represents a realistic energy community, and it is available in (Goncalves 

et al., 2022). The data describes an electrical energy community, containing photovoltaic (PV) 

production profiles and customer consumption profiles, desegregated by individual appliances 

used. A dataset of a residential community was constructed based on real data, where sample 

consumption and photovoltaic generation profiles were attributed to 50 residential households 

and a public building (municipal library), a total of 51 buildings. The data concerns a full year. 

Despite the overall power consumption of these houses being desegregated into the 

consumption of 10 commonly used appliances using real energy profiles, in the scope of this 

work, only the aggregated data were used. Also, in the scope of this work, only the residential 

households’ data were used. 

Besides the use of datasets, the agents must have the capacity to acquire data from other 

sources. For instance, the agents are able to acquire data in real-time, with connections to real 

sensors and external devices, to create a more robust and representative model of their entities. 

In this way, the agents must have the capability to access external data and interpret it correctly. 

Missing data is created using simulation engines and manual creation. The manual creation is 

used to carry out controlled tests of specific agents to evaluate their individual performance in 

the system. 

3.2 Methods and Models 

In this section are explored the chosen methods, algorithms, and paradigms for the 

development of A4SG and its functionalities. The addressed topics are the customers’ 

aggregation algorithm, MAS organizational paradigms, and the RL algorithm used to optimize 

participation in P2P energy markets. 

3.2.1 Customers’ Aggregation  

The customers’ aggregation is essential to optimize the mobility functionalities proposed in this 

work, to reduce the possible options of mobility of an agent depending on its objectives and 

context. The goal is to find to most similar agents to the one using the mobility functionality 

and use that information to give the best mobility options to an agent. 

The chosen algorithm to perform the customers’ aggregation/segmentation was the K-Means 

clustering. In the term K-Means, the “K” refers to the number of clusters. Typically, the value of 

“K” is unknown and must be determined by the developer. Each cluster has a centroid, which 

is often calculated as the mean of the cluster's feature vectors (Sinaga and Yang, 2020). Each 

data point is assigned to a cluster using the K-Means clustering technique based on the cluster 

centroid that is closest to the point. Because centroids cannot be determined directly until 

clusters are created, the developer sets “K” initial centroids values at the start of the clustering 

process. After clusters have been established, the actual centroid values are determined. 
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The evaluation of clustering algorithms is performed using techniques that determine the ideal 

number of clusters to a dataset  (or neighbourhoods, in the case of density-based clustering), 

such as Elbow, Silhouette, and Davies-Bouldin Index. The Elbow technique takes the total 

Within-cluster Sum of Squares (WSS) into account as a function of the number of clusters that 

are acceptable for a dataset (Marutho et al., 2018). When the function curve forms an elbow, 

the optimum number of clusters is obtained. The Silhouette Score (SS) is a criterion for cluster 

cohesiveness (Choi et al., 2019). It computes not only the similarity of a point to the rest of its 

group but also the dissimilarity of the same element to the points of other groups. Thus, a value 

between -1 and 1 is produced, where 1 indicates that groups have a high degree of cohesiveness 

and -1 indicates that individuals of the same group do not conform to one another (Lengyel and 

Botta-Dukát, 2019). The Davies-Bouldin Index (DBI) uses a positive correlation for the ‘within-

class’ measurement and a negative correlation for the ‘between-class’ measurement (Xiao et 

al., 2017). DBI is used as a metric because the clustering validation contains two main categories: 

external and internal validation.  

Before the application of clustering algorithms, typically, there is a step where occurs dimension 

reduction. This enables clustering to be applied to a dataset with a smaller dimension, which 

improves prediction accuracy by reducing the number of features and making them easier to 

classify (Huang et al., 2019). Principal Component Analysis (PCA) is an algorithm for 

dimensionality reduction. PCA provides a roadmap for reducing a complex data set to a lower 

dimension to reveal the simplified structures that frequently underlie it, with minimal effort. 

PCA maps n-dimensional data onto a d-dimensional subspace while minimizing the sum of 

squared errors or maximizing the variance (Huang et al., 2019). Figure 9 exemplifies the 

application and possible results of PCA. 

 

Figure 9 – Dimensionality reduction exemplification. Extracted from (Karim, 2019) 

3.2.2 Multi-Agent System’s Organizational Paradigms 

Multiple organizational paradigms are considered in A4SG with the purpose of coordinating the 

different agent-based systems, groups, and agents in a unified solution. The organization types 

were chosen based on the goal of each group and the communications and interactions that 

their agents can perform. 
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The ecosystem organization can be seen as a society of MAS (Horling & Lesser, 2004), whose 

agents can communicate and interact openly in pursuit of their individual objectives, and in 

certain cases group/community objectives. In addition to the communication that can be 

carried out among agents in the same MAS, the proposed solution also enables communication 

among agents within different MAS.  For the proposed society to be viable, it must be governed 

by rules and norms that its agents must comply with, to guarantee the proper operation of the 

ecosystem. These rules can validate the mobility of agents, their branching, and their 

connections to other agents, among others. 

The organizational type associated with the relationship between MAS and agent communities 

are holarchies, as they are multi-levelled, grouped hierarchies (Horling & Lesser, 2004). In other 

words, this organization establishes that one entity or group contains other groups that, while 

sharing certain characteristics with the group that contains them, are different in their own 

right, with objectives that may or may not be related or complementary. Therefore, in the 

context of A4SG, a MAS can contain multiple agent communities. 

In each agent community there may also be other groups, also agent communities, but with 

more specific objectives, which, for instance, can bring together agents who register to serve 

and participate in specific types of services. These groups follow the paradigm of congregations, 

which generally are long-lived, utility-directed groups (Horling and Lesser, 2004). In the context 

of this system, these groups, among other possible applications, have the main objective of 

facilitating the discovery of agents that perform a particular service that the customers seek. 

Taking the example of the DR services, it is possible to have multiple agent communities, to 

serve different types of DR (i.e., such as real-time pricing and direct load control), in an agent 

community which is composed of all the participants of the DR events. 

3.2.3 Energy Peer-to-Peer Trading Markets Participation Optimization 

The integration of reinforcement learning in agent-based systems is a state-of-the art approach 

to integrate learning and intelligence characteristics into agents. As such, in the context of this 

work, it is proposed a reinforcement learning model to enhance customers’ participation in P2P 

programs. 

Traditional reinforcement learning algorithms are tabular, that is, all the values obtained from 

the training are stored in tables, which brings critical drawbacks. Firstly, the tabular structure 

constrains the algorithms to situations with few states and actions, since the state space of the 

majority of real-world situations is too big to be stored on a standard computer. Second, when 

a tabular structure is used, the method is unable to use similarities between states to exchange 

information. To circumvent these constraints, it is usual to replace the tables with function 

approximators that learn to map between the features characterising the state of the 

environment and the values of the estimated function. A deep neural network is the most 

frequently utilized function approximation for reinforcement learning. Their capacity to 

estimate non-linear functions and extract meaningful characteristics from raw inputs enables 
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generalisation to previously unexplored states. One of the most used and explored algorithms 

is Q-Learning, but it only supports discrete observation and action spaces, which prevents it 

from being used originally in many smart grid situations. Its adaptation deals with continuous 

spaces, which involves the discretization of actions and observations, which can result in the 

loss of valuable information, preventing optimal results. Therefore, two RL algorithms will be 

explored, the Deep Deterministic Policy Gradient (DDPG) and Twin Delayed DDPG (TD3). 

DDPG is an algorithm that simultaneously discovers a Q-function and a policy. It employs off-

policy data and the Bellman equation to learn the Q-function, then employs the Q-function to 

learn the policy. This method is closely related to Q-learning and is similarly motivated: if you 

know the optimal action-value function 𝑄∗(𝑠, 𝑎), then in any given state, the optimal action 

𝑎∗(𝑠) can be found by solving 

𝑎∗(𝑠) = arg𝑚𝑎𝑥 𝑄∗(𝑠, 𝑎). (1) 

DDPG interleaves learning an approximator to 𝑄∗(𝑠, 𝑎) with learning an approximator to 𝑎∗(𝑠), 

and it does so in a way which is specifically adapted for environments with continuous actions.  

As with many RL algorithms, DDPG training may be unstable and highly dependent on finding 

the optimal hyperparameters. This is because the algorithm consistently overestimates the Q 

values of the critic network. Over time, these errors may drive the agent to reach a local 

optimum or develop forgetfulness for prior experiences. TD3, proposed in (Fujimoto et al., 

2018), solves this problem by concentrating on decreasing the overestimation bias. TD3 is an 

algorithm that tackles this problem by proposing three crucial techniques: 

• Using a pair of critic networks: TD3 tends to underestimate Q values. This 

underestimating bias is not a concern because low values are not propagated through 

the algorithm, unlike high values. This technique provides a more stable approximation, 

hence enhancing the algorithm's stability; 

• Delayed updates of the actor: TD3 allows the definition of the delay periods to update 

the policy (and target networks) as a hyperparameter, thus updating it less often; 

• Action noise regularization: when calculating the targets, clipped noise is added to the 

action. This makes that higher values are preferred for more robust actions. 

Both algorithms are used to train agents in the context of P2P markets so that there is a 

comparison component and a possibility of mobility between models. 

3.3 Technological and Social Challenges 

This section describes the technological and social implications of this dissertation. It addresses 

topics from data privacy, protection, and security, to ecosystem and its agents security, as well 

as several ethical considerations related to the application of AI algorithms in the smart grid.  
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3.3.1 Data Privacy and Protection 

The amount of data generated and made available by devices and sensors has been increasing 

exponentially in recent years, especially with the emergence of IoT technology (Rahman and 

Asyhari, 2019). As that, protecting data privacy and complying with privacy policies is of utmost 

importance, especially when handling sensitive personal information. Considering the events 

of recent years (i.e., massive personal data leaks by several companies, to have some return, 

usually financial), customers of the most diverse services have some prudence in adhering to 

data-driven technologies (Beckett, 2017). 

The European Union introduced and adopted in 2018 the General Data Protection Regulation 

(GDPR), a comprehensive legislation body that has had an enormous impact on how personal 

data is collected, stored, processed, and shared (Voigt and dem Bussche, 2017). The legal 

enforcement of GDPR is also transforming how digital solutions, applications, and systems 

handle sensitive data. For instance, the need for explicit consent for the use of data, the right 

to timely receive all data collected for oneself, or the right to completely delete personal data 

are specified in this law, forcing technical solutions to be provided following the regulations. 

Furthermore, with the introduction of this regulation, energy customers are also more 

demanding in terms of their data protection and privacy. 

In the scope of the smart grid, data privacy and protection is addressed mainly in smart 

metering, enabled by the Advanced Metering Infrastructure (AMI), and in the network’s 

communication layer (Ferrag et al., 2018). Given the data collected by smart meters in a smart 

grid context, privacy concerns become critical to the success of the initiative's aims. In the AMI, 

privacy extends beyond anonymity to include the invisibility of particular domestic appliances' 

functioning conditions (Uludag et al., 2015). However, an inevitable result of such a volume of 

data is the ease with which personal information can be extracted for possible abuse or misuses, 

such as behavioural inferences, and deduction of particular habits or activities. (Triantafyllou et 

al., 2020). For instance, residential appliances can be classified and monitored, in addition to 

allowing the study of the behaviour of their owners through the appliance load data, with non-

intrusive methods. (Devlin and Hayes, 2019). 

Participation in DR and P2P programs is excepted to be of the most important elements of next-

generation power systems (Aggarwal et al., 2021). However, active participation in these 

initiatives can reduce the privacy of customers, as they share private information, from which 

can be drawn insights from their behaviour. The most usual is the study of competitors' bidding 

strategies, and this information can be used in the future to harm customers, both in DR (Balli 

et al., 2018), and P2P (Son et al., 2020) participation. 

In the ecosystem to be developed, the customers must have full control over their data, from 

how it is obtained to its storage. In this way, they can, for instance, select the maximum period 

of historic data (relative to energy consumption, generation, flexibility, etc.) that should be 

stored in the system (e.g., 6 months, 1 year, 3 years, etc.). However, customers should be 

warned that with a smaller amount of history, their agents’ adaptation to the context, and the 
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study of their behaviour will be reduced, something that can harm their participation in services. 

This situation should also be addressed when participating in services where bids involving 

energy and/or money (e.g., P2P markets) are carried out. If the customers choose not to keep 

their participation history, their agents will lose the ability to learn from past experiences. 

3.3.2 Agents and Data Security 

The digitalization of the energy grid brings great benefits to all the stakeholders involved in it, 

but also creates weaknesses in the system. Using IoT devices enables real-time monitoring on 

a whole new level and is very convenient in smart grids, but the communications have multiple 

vulnerabilities that can be explored (Kimani et al., 2019). Because control and monitoring are 

carried out via Internet-based protocols and open-source software, the smart grid may be 

extremely appealing to attackers as a critical infrastructure. For instance, an attacker could 

assault electrical devices by altering the real-time balance of energy output and consumption 

through the use of falsified data generated by the appliances (Gunduz and Das, 2020). 

A multi-agent system involves, by default, a lot of communication between agents, and 

consequently, a lot of data to circulate among different software and physical hosts. But this 

concept is taken to another level when the system involves mobile agents, which, in addition to 

transporting their data, must also know its code and execution status, when they change their 

host. Therefore, the security in MAS that involves mobile agents is mainly based on: (i) 

protecting the agent platform, (ii) protecting the mobile agents, and (iii) protecting the agent 

network (i.e., physical hosts from the MAS) (Bagga and Hans, 2017). 

When an agent moves from one host to another, it is normal that the destination machine (i.e., 

its owner, or the entity that is responsible for its management,) to have some doubts about the 

agent's intention, as it will execute there and may cause damage to the host. Mobile agents can 

transport with them obscure malign codes causing harm to other agents or leading to the agent 

host platform’s disruption (Acharya et al., 2021). To protect the host, a pre-analysis of the 

agent’s code can be performed (Celik et al., 2019). On the other hand, also the hosts can be 

dangerous to the agents, and as such, constant monitoring must be carried out to ensure that 

the agents that are hosted in a specific machine have the best possible conditions for execution, 

possible with the use of a Trusted Platform Module (TPM) (Shaik, 2018). This verification must 

also be carried out when the host registers in the system, and in all mobility processes, creating 

a more robust mobility functionality since this is a problem that is aggravated by the presence 

of external/independent agents in the agents’ ecosystem.  

In the situation of service participation, in many of them, large amounts of data have to be 

shared between machines, with the risk of the data being used for purposes other than those 

initially defined, threatening both security and data privacy (Bhattarai et al., 2019). This occurs 

mainly because the data transitions from a completely distributed pattern to a centralized one 

in the service’s execution. Two solutions can be explored in the development of the ecosystem: 
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• Data encryption: with a private key, only known to the system. In this way, even if the 

data is accessed, it will not be interpretable. 

• Code-shipping: allows services to move their agent to the host where the participants 

are located, although this may not be possible for all services. This solution is viable to 

the customers who do not permit their data to flow to physical hosts other than theirs. 

Figure 10 represents the main difference between data-shipping and code-shipping, 

where it is possible to observe that in the code-shipping the service participants data 

do not flow between physical hosts. 

The frameworks used to develop the agents’ ecosystem (SPADE and PEAK) integrates several 

security features such as authentication based on username and password, and especially SSL 

tunnel encryption in the communication between agents. 

 

Figure 10 – Comparison between (a) data-shipping, and (b) code-shipping  

3.3.3 Ethical and Social Issues 

In addition to issues associated with the privacy and security of customers and their data, ethical 

and social issues come to have great weight in the development of AI techniques/models and, 

consequently, in the representation of the smart grid. In what regards AI systems, the European 

Commission proposed the ethical principles to build trustworthy AI (European Commission, 

2019b): 
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• Human agency and oversight: AI systems should enable equitable societies by 

supporting human agency and fundamental rights, rather than limiting, decreasing or 

misguiding human autonomy.  

• Robustness and safety: Trustworthy algorithms must be reliable, consistent, and robust 

enough to deal with failures and/or inconsistencies during the AI system's life cycle. 

• Privacy and data governance: Citizens should have complete control over their personal 

information, and data related to them should not be used to harm or discriminate them. 

• Transparency: It is necessary to secure the traceability of AI systems.  

• Diversity, non-discrimination, and fairness: AI systems should take into account the 

whole range of human abilities, skills, and requirements, as well as ensure accessibility. 

• Societal and environmental well-being: AI systems should be used to promote positive 

social transformation as well as environmental sustainability and responsibility. 

• Accountability: Mechanisms for ensuring responsibility and accountability for AI 

systems and their consequences should be put in place. 

The prominence of considering social science input when designing applications for AI systems 

has been noted by several authors (Sloane and Moss, 2019) (Miller, 2019). This is also extremely 

important in smart grid applications. One reason for this is that, even if the most advanced 

multi-agent systems, game-theoretic tools, and AI systems in general, are employed to 

automate decision-making processes considering the customers’ historical profiles, people's 

energy practices may deviate dramatically from those predicted by these models (Robu et al., 

2019). Consequently, this creates distrust on the part of the customers of these systems, and 

to counter this trend, customers should play a more active role in the development of models, 

being able, for instance, to give feedback on the actions taken. 

Another point related to the automation of these systems, and of the decision processes carried 

out by them, is the fairness involved in these same decisions. In general, AI is being employed 

in power systems to make increasingly complex judgments, normally not addressed by 

traditional systems. For instance, when designing a smart contract in an aggregator or a local 

energy market, the contract will specify who gets energy first (e.g., which electric vehicle owner 

can charge first and who must wait (Qureshi et al., 2021)), or, in the case of excess renewable 

energy, which photovoltaic panels should be given priority to sell their energy or may need to 

reduce their generation (Moradmand et al., 2021). Therefore, the importance of inputs from 

multiple disciplines is highlighted by the fact that using AI systems to make decisions clearly 

involves not only economics but also social and ethical issues in the way systems are created 

and developed. One of the solutions explored is the use of incentives in the design of these 

systems. That is, the customers who have a higher rate of participation and understanding of 

the system (e.g., give up instant charging in their electric vehicle to respect the decision process), 

receive incentives, such as cheaper energy at home (Robu et al., 2019). 
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However, the fact is that many customers are not aware of the technologies that are developed 

to benefit them and the electricity grid itself, and as such, they are quite reticent to adhere to 

the suggested programs. Something normal, such as their participation, can have an impact on 

comfort and finances (Shakeri et al., 2020). As such, customers should be treated as 

stakeholders of the smart grid, and be integrated into all the initiatives that are suited to their 

context (Le Ray and Pinson, 2020). A big step towards this is to improve the connection between 

the domains of smart grids, AI, and Human-Computer Interaction (HCI) (Faheem et al., 2018). 

That includes, for example, designing novel ways to interact with power systems, such as 

intuitive interfaces (Pereira et al., 2021) and devices that enable consumers to specify their 

energy preferences, understand their own energy consumption patterns (Wei et al., 2018), and 

search for tariffs that best fit their energy context or/and needs (Vom Scheidt et al., 2019). 

3.4 Chapter Conclusions 

In this chapter, the materials and methods used to conceptualize and develop the proposed 

ecosystem are described. The chosen programming language and multi-agent frameworks are 

crucial topics, as all the developments are dependent on them. Modularity makes them 

particularly suitable for this task. In the case of Python, there are a large number of open-source 

libraries that can be used to improve ecosystem capabilities. On the other hand, PEAK and 

SPADE can be utilized to address technological and social challenges, primarily due to their 

integrated data privacy and security tools. 

Regarding the data used in this study, it adheres to the Horizon 2020 guidelines, which state 

that the data should be findable, accessible, interoperable, and reusable (FAIR), as all datasets 

are well-described and open. This makes it easier for other developers to reproduce this work, 

in order to compare their work or improve what has been developed thus far. 

Initiatives by the European Union and the United Nations to create secure and equitable 

projects have increased the significance of the technological and social challenges identified in 

this chapter. With the introduction of automatic software development toolkits, it is simpler to 

create and deploy software, typically without regard for the customers' privacy, security, or 

ethical concerns. All of these issues are considered in this project to enable the development of 

systems with a sustainable foundation. 
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4 Agent-based Ecosystem for Smart Grid 

Modelling – A4SG  

As previously stated, there is a high number of MAS developed in the context of the smart grid. 

However, the MAS proposed in the literature are heterogeneous and mostly closed, i.e., 

communications are only possible inside the same MAS, with no efficient methods for 

interaction and communication among multiple systems and their agents. The ecosystem 

proposed in this work aims to intelligently manage multiple agent-based systems and all the 

agents that compose them. The proposed ecosystem, named Agent-based ecosystem for Smart 

Grids modelling (A4SG), uses a new perspective toward MAS applied to smart grids. 

The A4SG can integrate, simultaneously, multiple MAS, and a MAS can contain multiple agent 

communities (ACOM), creating a multi-level hierarchy inside the ecosystem. In the scope of 

A4SG, an ACOM represents a group created in order to help with the ecosystem’s management, 

or groups managed by an entity, e.g., an aggregator, an energy retailer, or a forecast service 

provider.  The members of each ACOM are agents that share an objective (e.g., to participate 

in DR programs), that might be achieved competitively or collaboratively. Thus, in this 

ecosystem, an ACOM can be the representation of multiple types of groups, such as: 

• Aggregation entities at the physical level, such as energy communities, or microgrids; 

• Aggregation entities at the contract level, such as aggregators, retailers, or virtual 

power plants; 

• Services forum, such as services for energy balance, DR, forecast, or resources 

optimization. 

Each ACOM may contain further ACOMs inside, with more specific objectives that are 

necessarily related to the objective of the ACOM above it in the hierarchy. Each ACOM is 

characterized by several attributes, defined at the time of its creation, that identify it towards 

the ecosystem and facilitate its discovery by the agents. This characterization includes 

specifying the ACOM's type (i.e., one of the specified in the list above), primary objective, and 
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target audience, among other characteristics. Each ACOM has an ACOM main agent responsible 

for group management, described in the A4SG Agents subsection. 

As explained before, the proposed ecosystem considers multiple organizational paradigms to 

coordinate and manage both the groups and their agents. For the proposed society to be viable, 

it must be governed by rules and norms that its agents must comply with, to guarantee the 

proper operation of the ecosystem. These rules can validate the mobility of agents, their 

branching, and their connections to other agents, among other types of validations. For 

instance, there is an internal MAS to the ecosystem (i.e., A4SG Representation Community (ARC) 

– represented in Figure 11), to allow the ecosystem’s customers to register agents and host 

them there. However, customers can register their hosts to the A4SG ecosystem, enabling the 

reception of A4SG agents, on a free or paid basis. These rules and norms can be directly defined 

in the ecosystem, and each host/group owner or manager can define different rules. 

A4SG's communication is FIPA-compliant, meaning that it is possible to use the standards 

provided by FIPA to standardize and add meaning to the messages sent by agents, thereby 

enhancing the agents' interoperability. In addition to the message's body and its content, it is 

also possible to include metadata in each communication. Thus, it is possible to personalize the 

inclusion of additional information in messages. For instance, it is possible to add ontologies 

and references to ontologies, so that the message recipient not only receives but also 

comprehends the message. 

The A4SG ecosystem is currently designed and implemented considering smart grid business 

models, but one of its greatest benefits is its seamless adaptability to other domains. The rules 

and the norms of other business models can be easily implemented in the society and in each 

group that composes it, besides the ecosystem being able to deal with different types of agents 

to represent other entities with different requirements and restrictions, which can be 

developed from scratch by the customers and entities. 

4.1 Architecture 

The A4SG's architecture is one of its defining characteristics, as it supports MAS and ACOMs 

with a multi-level, scalable and high-performance design. The architecture consists of four 

layers: CECOS, Common Services, A4SG Agents, and Customer/Entity Side. Each layer has 

specific objectives, and the ecosystem can only be deployed and used, when all layers are 

combined, conceiving a robust architecture. Figure 11 represents the architecture of the A4SG, 

(i.e., without specifying services and aggregation entities types). 
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Figure 11 – Representation of the A4SG architecture  

4.1.1 Citizen Energy Communities Operator System Layer 

In the bottom layer of the architecture, the proposed A4SG uses the Citizen Energy 

Communities Operator System (CECOS) as a graphical user interface. CECOS is a control 

interface that was proposed and developed by the author of this work, that provides multiple 

services to its customers, such as tariffs management and price-elasticity calculation. The 

CECOS components produce the CECOS layer of A4SG.  

CECOS was target of three main stages of development, until the last version was complete, in 

order to support decentralized systems: 

• Centralized CECOS, only supporting city energy communities - a web-based platform, 

which data flow is represented in Figure 12, allows the community’s operator to analyze 

customers’ historical data and execute multiple services regarding the community’s 

management, published in (Pereira et al., 2021). In this stage, the platform was divided 

into four main services, as shown in Figure 12. The arrows specify the normal procedure 

of the operator from the moment he starts using the platform until all services have 

been successfully executed. Besides that, the platform data flow is described, and each 

step is explained.  
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Figure 12 – Centralized CECOS data flow (Pereira et al., 2021) 

• Decentralized CECOS, supporting multiple aggregation entities – as there were some 

limitations in the first version of CECOS, such as low scalability to other service 

providers and the ability to manage only citizen energy communities, in (Pereira et al., 

2022c) it is proposed a significant upgrade in the concept, functionalities, and 

capabilities of CECOS. In the second version, CECOS no longer represents an individual 

and isolated energy community. Figure 13 represents the upgraded version’s 

architecture. This upgrade allows CECOS to be used in a collaborative way where 

multiple instances of CECOS, one per aggregation entity, can interact, transact 

information, and have customers being part of more than one CECOS instance. The new 

upgraded version also allows the concept of service providers that can publish their 

services in CECOS instances. This enables the use of, for instance, energy forecasting 

service providers to promote and publish their services in multiple aggregation entities. 

• Distributed CECOS – In the last version of CECOS, the platform can handle 

communication with agents through XMPP messages. In this way, it is possible to have 

a direct connection between customers and agents, which allows, for instance, to start 

simulations, define the evaluation equations for mobility, or even modify the agent's 

knowledge base (e.g., change the source agent data). Despite these changes, the 

services proposed in previous versions are still available to agents. 
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Figure 13 – Decentralized CECOS architecture (Pereira et al., 2022c) 

4.1.2 Common Services Layer 

The Common Services Layer is composed of the services and functionalities that are available 

to all the ecosystem’s agents. As such its components are the SPADE and the PEAK frameworks, 

and the A4SG Core, the component of the ecosystem that enables access to all the proposed 

services, and functionalities. These services and functionalities are presented, respectively, in 

Section 4.3 and Section 4.4. 

The A4SG ecosystem, as previously stated, is developed on top of two other frameworks, PEAK 

and SPADE. Therefore, the A4SG solution uses third-party XMPP servers to handle the 

communications and clients’ groups. Starting with SPADE, it is compliant with the FIPA 

standards and has an agent communication channel (ACC), which is a component that manages 

all the communications among agents in the platform by establishing a connection through an 

XMPP server. This server redirects all messages from the sender to the receiver without user 

intervention. This framework integrates multiple security features, such as 

username/password-based authentication for each agent and SSL tunnel encryption in ACC. On 

top of SPADE, the PEAK framework provides several features for the development of robust 

multi-agent systems and agents. It provides a variety of XMPP capabilities to the agents that 

SPADE does not, including participation in Multi-User Chats (MUC) and communication through 
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Publisher-Subscriber (PubSub) nodes. Besides that, it allows the distributed execution of agents, 

unlike SPADE which runs the agents in the same process but on different threads. 

4.1.3 A4SG Agents Layer 

In the A4SG Agents Layer, the ecosystem accommodates all the registered physical and virtual 

hosts, agent-based systems, and agents. In this layer of the ecosystem is designed an open 

world of communication among different MAS and agents and the entire business logic of the 

ecosystem is represented, including the groups' hierarchy and the deployed agents. 

Although the ecosystem has a well-defined and robust architecture, this layer is completely 

dynamic, since its structure depends on the groups and agents present in the system at a given 

moment. For instance, the creation and deployment of a new MAS or ACOM will affect the 

group's architecture and hierarchy but will have no negative impact on the ecosystem's overall 

management as well as on other groups. 

The A4SG Communication Ecosystem is one of the components of the A4SG Agents Layers. This 

component is essential for ensuring that all agents can communicate with one another without 

the need for third-party tools to create and send messages. Multiple XMPP servers are 

supported, allowing for both client-to-server and server-to-server connections. This increases 

the number of possibilities for agents registered in A4SG, as they can contact a greater number 

of agents, for instance, connected to another XMPP server. 

Also represented in this layer is the ARC, which is a MAS made available by the ecosystem to 

host the agents that compose it. This MAS represents a straightforward and convenient method 

for deploying the ecosystem's customers agents. 

4.1.4 Customer/Entity Side 

This layer represents all the users registered in A4SG, including energy customers and smart 

grid entities. It also represents the customers’ connections to their representation agents, 

which can be either physical (e.g., a connection to a real energy storage system) or virtual (e.g., 

accessing data through an external API). Multiple communication protocols, such as Hypertext 

Transfer Protocol (HTTP) and Modbus Transmission Control Protocol (TCP), can be used to 

establish these connections. 

The A4SG customers can use their own machines to host their agents as shown with the external 

representation agent that is deployed in the Customer/Entity side layer of Figure 11, but they 

can also use ARC to take advantage of its computational power and for the convenience of not 

having the agent executing in their hosts. Customers can also configure their machines as 

general hosts of A4SG, enabling the deployment of agents from other customers. 



53 

4.2 Agent Types 

The A4SG agents, as previously stated, are developed based on the agents supplied by the PEAK 

framework, which themselves derive from the SPADE agents. Each of them has properties that 

are valuable to the agents based on them, as represented in Figure 14. SPADE agents create a 

direct connection to an XMPP server to enable communications between various agents, in 

addition to enabling each agent to execute asynchronously. In turn, PEAK agents offer several 

XMPP functionalities that SPADE does not support, such as communication through Multi-User 

Chat and PubSub. Furthermore, it provides a distributed execution of the agents and a direct 

integration with datasets/drivers to access and update the agent's data.  

 

Figure 14 – A4SG agent types and a brief description 

4.2.1 Ecosystem Agents 

The ecosystem agents are a main component of the A4SG and are generated by the system core 

in response to the ecosystem's requirements. These agents are essential to the ecosystem’s 

management as a whole and to the administration of each created group. There are different 

variations of this type of agent, according to their responsibilities, being: MAS main agents, 

ACOM main agents, synchronizer agents, and mobility agent. 
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The MAS main agents are responsible for managing a specific multi-agent system, and also for 

accessing information from the physical host where it is located. Therefore, they play a crucial 

role in validating mobility and branching operations, and in deploying and registering agents in 

the ecosystem and in the host they represent. As such, this type of agent is able to retrieve 

information about the host's physical machine (e.g., CPU utilization, RAM consumption, and 

disk storage capacity) and the environment in which it is executing (e.g., installed software, and 

available packages and libraries). This type of information is essential to determine whether a 

host is capable of executing an agent's software for the processing of the mobility and branching 

functionalities. 

The ACOM main agents are similar to the MAS main agents, except they represent the entities 

that coordinate a particular group or operate as management agents. For instance, in a group 

with the clients of an aggregator, an agent of this type is responsible for representing the 

aggregator itself, whereas, in a group created for a service provider to deploy a forecast service, 

the ACOM main agent serves merely as the group manager. 

The synchronizer agent is a type of agent developed on top of the PEAK framework's simulation 

tools. It is capable of running simulations in a single group using Multi-User Chat communication 

or in several groups concurrently using the PubSub protocol. This agent enables the 

configuration of many simulation parameters, including the number of periods to simulate, the 

granularity of the periods, and the duration of each period in real-time. 

The mobility agent is responsible for managing the necessary communications for both types 

of mobilities available in A4SG (i.e., physical and virtual). When an agent wishes to move to a 

different host or aggregation entity, it sends a message to the mobility agent, which responds 

with a list of mobility options. Using the Group Selector component (described in Section X.X), 

the mobility agent must be able to analyze and evaluate the different mobility options available 

to an agent in a personalized manner. 

4.2.2 Representation Agents 

The representation agents, as the name indicates, have as their main purpose the 

representation of energy customers and entities in the A4SG. They can also represent individual 

IoT devices or energy resources and loads that want to engage in A4SG (i.e., devices and 

resources disassociated from a customer).  

The main component of these agents, which defines them, is their knowledge base, composed 

of the agent’s behaviours, information about the customer or entity the agent represents, the 

data obtained from the resources owned by the entity it represents, and the information to 

retrieve those data.  

This type of agent has the ability to move to other physical hosts or aggregation entities (i.e., 

MAS and ACOMs), and to execute a branching process, creating other agents to extend and 



55 

represent itself. Therefore, the multiple representations of these agents can be in multiple 

physical and virtual hosts simultaneously. 

These agents can be hosted outside the scope of A4SG (i.e., on hosts that are not registered in 

the ecosystem), thus being considered independent or external agents. However, even though 

they are external, they have access to all the features and functionalities of the ecosystem, and 

they can also take advantage of the hosts registered in A4SG with the branching functionality 

to improve the efficiency of the execution of their agents. 

4.2.3 Branch Agents 

The branch agent is a type of agent created by a representation agent to facilitate the 

accomplishment of its objectives. They inherit a part of their representation agent's knowledge 

base, considering the purpose for which they were created, and the information required to 

accomplish that purpose. This type of agent is dependent on its representation agent, and 

therefore only exists as long as the representation continues to execute; otherwise, its 

execution stops. The branch agents maintain a direct line of communication with their 

representation agent to report the current status of goal accomplishment. The procedure for 

generating branch agents is elaborated on in the section on the branching functionality – 

Section 4.4.3. In A4SG there are two types of branch agents, with different types of purposes: 

goal-oriented and service-oriented agents. 

The goal-oriented agents are created to achieve a clear objective, defined in their creation. The 

goal-oriented agents must inform their representation agent of each decision they are about to 

make, so that the agent can validate it and verify, for instance, that there is no conflict or 

dependency between concurrently pursued objectives. In Figure 15 is exemplified a an energy 

customer representation agent and its respective branch agents, with the following objectives: 

(i) participation in DR programs, (ii) subscription to demand forecast services, and (ii) 

participation in local energy markets are examples of goal-oriented agents. 

 

Figure 15 - Example of the representation of a customer, considering the agents’ branching  
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To enable the virtual mobility between groups of the ecosystem, fully described in Section 4.4.2, 

goal-oriented must be able to evaluate themselves based on the objective they are pursuing. 

This evaluation can be directly implemented in the goal-oriented agent or inherited from its 

representation agent, considering a satisfaction criterion that, for instance, evaluates 

customer’s comfort and energy costs. 

The service-oriented agents, on the other hand, provide services to other agents. These services 

may be public or private, and free or paid. The agent's service can be embedded within its code 

or in an external API; in this case, the service-oriented agent acts as a gateway agent. These 

agents may be created, for example, to provide forecasting, optimization, and tariff 

management services. In contrast to goal-oriented agents, service-oriented agents are not 

required to evaluate themselves; however, they are required to provide information about the 

service they provide so that goal-oriented agents can evaluate them. 

4.2.4 Agents Characteristics in A4SG 

The agents developed for A4SG, despite being able to be further developed by other customers 

and entities that wish to participate in the ecosystem, already integrate the necessary 

characteristics and functionalities to be considered an agent. Table 7 presents the agents’ 

characteristics proposed in (Weiss, 1999), and their integration into A4SG agents. 

Table 7 – Integration of agents’ characteristics into A4SG agents  

Characteristic Brief Description Implementation in A4SG agents 

Agility 
Analysing and identifying 
new opportunities 

The representation agents can create branch agents 
for new objectives when the agents themselves or the 
entities they represent identify a new objective to 
achieve 

Autonomy 
Ability to control their 
actions 

All A4SG agents are autonomous since they can make 
their own decisions without any interaction from their 
owners 

Character 
Present a certain 
personality 

The agents can integrate personalized methods of 
self-evaluation, as well as execute custom behaviours 

Flexibility 
If your tasks do not need 
to be predetermined 

Due to their perception of the environment, agents 
are able to adapt and seek new objectives or make 
decisions that are not directly programmed 

Intelligence 
Linking the characteristics 
of learning and autonomy 

All A4SG agents are capable of adopting autonomous 
behaviours, and learning can be integrated via 
personalized evaluations or reinforcement learning 

Learning 
Gaining experience with 
the result of actions and 
adapting decisions futures 

The agents can either learn and evaluate their actions 
to consider, for instance, mobility, or learn to optimize 
their participation in services through reinforcement 
learning 

Mobility 

Ability to move between 
machines depending on 
the perception of the 
environment 

The proposed mobility functionalities allow agents to 
move to different physical hosts or to other groups 
within the same physical host 
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Characteristic Brief Description Implementation in A4SG agents 

Persistence 
How much an agent exists 
over long periods 

Branch agents can stop their execution if their 
objective is not continuous and has been 
accomplished. However, representation agents are 
completely persistent, and their execution can be 
stopped only if the entity they represent commands it 

Pro-Activity 
The ability to aim for a 
goal 

In A4SG all the agents have well-defined objectives, 
working proactively to achieve them 

Reactivity 
Ability to react and adapt 
to changes in the 
environment 

The agents are able to adapt and react based on the 
data they obtain from their environment (for instance, 
via sensors) 

Sensory 
Capacity 

Sensitivity to the 
perception of the 
environment in which it 
operates 

The agents can have direct connections to real sensors 
or read their data through an API 

Social Ability 
Ability to communicate 
with other agents in the 
system 

A4SG follows the society’s paradigms, where each 
agent can communicate and share knowledge with 
the other agents of the ecosystem 

4.3 Tools and Services for A4SG 

The tools and services presented in this section of the dissertation were developed by the 

author within the scope of this work, however, they contribute primarily to facilitate the general 

operation of the ecosystem. 

4.3.1 Static Code Analysis 

Static code analysis is a technique for debugging computer programs that examine the code 

without executing the program. The procedure helps guarantee that the code complies with 

industry standards by providing knowledge of the code's structure. In the context of A4SG, it is 

used every time an agent is ready to be executed and when the code of an agent is transferred 

between different machines. 

This service is essential to ensure the operational status of the ecosystem and its agents, and, 

as such, it has two main objectives: 

• Prevent compilation errors – Compilation errors are becoming less frequent as more 

and more programming assistance is introduced into development environments, but 

in fact, a minor mistake can lead to critical errors that prevent the software from 

executing. Therefore, Pylint was used to ensure that the code is executable and 

functional. This library can recognize syntax and semantic errors, as well as customized 

errors, such as ecosystem internal rules.  

• Find security vulnerabilities – In the smart grid, due to the increasing dependency on 

digitalization and IoT, various security incidents such as unauthorized access, malware 
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attack, and data breach, have grown at an exponential rate in recent years. As a result, 

it is becoming increasingly vital to address security concerns, and while the XMPP server 

used in the ecosystem implements security mechanisms, the agents' source code is 

entirely open for development. Using the Pysa library, it is determined whether or not 

the developed Python code employs certain internal frameworks that are designed to 

prohibit access to an agent’s data based on technical privacy policies. Pysa is also very 

useful in the detection of XSS and SQL injection. 

In A4SG the static code analysis is an automated process so that the ecosystem maintains a 

functional operation, and its security is reinforced, therefore allowing A4SG to be more robust 

and fault tolerant. Figure 16 presents the flowchart of this service. 

 

Figure 16 – Static Code Analysis flowchart 

4.3.2 Translator Interface for Different Communication Protocols  

Communication is a crucial aspect of agent-based systems because it enables agents to interact 

and share information. Thus, it is essential to increase the means by which agents can 

communicate, with the focus here being on communication protocols. As previously explained, 

the primary communication protocol of A4SG is XMPP, but others can be crucial, such as when 

communicating with physical devices. Thus, gateways for MQTT and HTTP communication have 

been integrated into the ecosystem. 

This service behaves differently from the others proposed in this section. This because, this 

service is represented by agents in the ecosystem as if it were a service provided by an external 

service provider. When an XMPP server is added to the ecosystem, a service-oriented agent is 

created to represent this service on that server, functioning as a gateway agent to enable 

communication in other protocols to the agents registered in that server. This is done to prevent 

communication failures between servers and ensure the emission and reception of all messages. 

To access this service, agents must communicate with the gateway agent defined to the 

communication protocol that they have access to, which in this case are MQTT and HTTP. These 

gateway agents will be subscribed to the MQTT topic with their respective names and provide 

an HTTP API, enabling the reception of MQTT and HTTP messages. Several elements of 

information are required for these agents to perform the necessary translations, depending on 

the communication protocol being used. For example, MQTT requires the topics where to 
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publish the message, HTTP requires the URL to contact the agent, and XMPP requires the 

agent's name and the server on which it is registered. The translations can be done for each 

combination of protocolos, in any direction, creating a greater range of options: (i) XMPP-MQTT, 

(ii) MQTT-XMPP, (iii) XMPP-HTTP, (iv) HTTP-XMPP, (v) MQTT-HTTP, and (vi) HTTP-MQTT. 

This service represents a scalable method for increasing ecosystem interoperability. Three 

communication protocols have been integrated so far, but others can be easily added to expand 

the range of communication options. 

4.3.3 Group Selector 

The necessity for mobile agents in A4SG stems from two key motivations: (i) the construction 

of a robust ecosystem in which agents can adapt to their context, and (ii) giving energy 

customers the ability to seek better solutions to optimize the use of their energy resources. 

These mobility mechanisms are represented in the ecosystem by a centralized agent (i.e., 

mobility agent), which is unique inside the ecosystem, in order to guarantee that it knows the 

existence of each different entity registered in A4SG, and how to contact them. The mobility 

agent has access to the Group Selector tool. 

The Group Selector, represented by blue squares in Figure 11 and Figure 15, is a tool provided 

by A4SG with a high preponderance in the proposed mobility and branching functionalities. Its 

primary objective is to evaluate the available groups for an agent to move, either at the time of 

the agent creation (i.e., branching) or when the agent requests mobility. These groups may be 

physical hosts, MAS, or ACOMs. 

Regarding the physical hosts evaluation, the priority is to ensure that the machine provides the 

necessary software for the agent to execute properly. Therefore, a machine that is not able to 

execute an agent, is automatically excluded from the mobility options. Other criteria that 

consider information about the machine, such as CPU usage, free RAM, and free disc memory, 

can be considered depending on the objective of the mobility.  

In what regards the evaluation of MAS, ACOMs, and their respective services, the evaluation 

parameters are more dynamic, since they vary based on the agent's objectives and the type of 

aggregating entity under consideration. Moreover, the customers of the A4SG may choose to 

evaluate objectives not initially addressed during the development of the ecosystem, making 

this evaluation more difficult and complex than the evaluation of physical hosts. As a result, in 

those situations, a function or equation must be submitted to the Group Selector. Some services 

may have embedded evaluation tools, since, normally, the used metrics do not differ much. For 

instance, in the case of the forecasts, the customer can pass a customized function or equation, 

or choose one of the available metrics: mean absolute error, mean absolute percentage error, 

root mean squared error, or coefficient of determination 
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4.4 Novel Functionalities for Multi-Agent Systems 

In this section, all the functionalities proposed in this work, which constitute a significant part 

of the contributions and innovation it proposes, are described in depth. These functionalities 

have as their main objective to integrate intelligence in the agents, as well as in the ecosystem 

itself. The proposed functionalities are summarized and described in Table 8. 

Table 8 – Overview of proposed functionalities 

Functionality Objective Usage Benefits 

Physical Mobility and 
Computing Load 

Balancing 

Allowing agents to move between 
physical hosts considering the 
convenience of their host, and the 
balance between hosts in what 
regards to computing load 

Enable customers to deploy agents 
in evenly loaded physical hosts 

Virtual Mobility 

Allowing agents to move between 
agent-based systems (i.e., multi-agent 
systems and agent communities) in a 
personalized way 

Addresses the dynamic 
interactions present in the smart 
grid, where the customers can find 
the best services for their profiles 

Branching 
Allowing representation agents to 
create branch agents to achieve new 
objectives in a distributed way 

Enables agents to not overload 
their selves in terms of data and 
objectives 

Objective 
Interdependency 

Creating direct communication 
channels between dependent and 
interdependent ways 

Less communication in the XMPP 
server, as the representation 
agents lose the responsibility of 
facilitator between branch agents 

Intra-agent Conflict 
Resolution 

Resolving the possible conflicts 
between multiple branch agents that 
represent the same entity 

Manage multiple objectives from 
the same entity to comply with 
contracts, maximize customer’s 
comfort and minimize energy costs 

 

4.4.1 Physical Mobility and Computing Load Balancing 

The proposed ecosystem allows the integration of several physical hosts (e.g., servers, 

computers) as well as virtual hosts (e.g., virtual machines). For this same reason, it is important 

to consider and address the distribution of agents by the available hosts, both for the 

convenience of the entities represented by the agents and for the cause of balancing the 

computational load between the hosts. This ability in the ecosystem is made possible by the 

developed physical mobility. 

The physical mobility to a different host, such as a different server or computer, allows an agent 

to stop its execution in a specific host in order to be deployed in another host, without changing 

its knowledge base. This mobility is executed through a weak mobility, that saves and restores 

only the runtime values of the agent's properties, unlike strong mobility that also saves data 

from the agent’s runtime state, for instance, the execution stack (Mitrovic et al., 2011). This 

type of mobility is either requested by the agent (i.e., representing its entity in the request), 
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which selects a new host as the destination, or by the ecosystem's computing load balancing 

functionality.  

If the mobility is requested by the entity that the agent represents, for instance from the CECOS 

platform, the process is relatively straightforward. In this situation, the entity itself can select 

the new host, and if the process is validated, the agent's execution is then moved to the new 

host. This type of mobility can be convenient for the A4SG’s customers to execute their agents 

on hosts other than their personal computer or server, as the agent's continuous operation 

becomes safer.  

On the other hand, physical mobility can be triggered by the Computing Load Balancing 

functionality. In related works, this functionality is normally referred to as a load balancing 

module, and it enables the distribution of the computing load throughout the ecosystem's hosts. 

This distribution considers multiple attributes of the physical hosts, and these are considered 

in the following order: 

1. RAM usage; 

2. CPU usage; 

3. Million Instruction Per Second (MIPS); 

4. Free disc memory. 

The Computing Load Balancing functionality uses the above-mentioned parameters to 

distribute the workload equally on available resources (i.e., in the context of A4SG – physical 

hosts).  The functionality iterates through the parameters sequentially, in the defined order, 

and selects the host with the best value from the considered parameter to execute the agent. 

If two or more hosts tie in a given parameter, the subsequent parameter is used to determine 

the agent’s destination. If all the parameters have equal values, one of the hosts is chosen 

randomly. In order to make the evaluation more objective, the values are not assessed directly; 

rather, they are fuzzified into an interval of integer values, from 1 to 10, before being used. This 

is done to ensure that minimal alterations in parameter values do not have a significant impact 

on the distribution of agents. In these situations, it is a responsibility of the MAS Main agent 

that is representing a particular physical host to obtain these parameters from the machine. 

Therefore, this type of agent is implemented in order to be able to provide this type of data 

when other agents are requesting physical mobility. 

The main objective of this functionality is to provide continuous service to the agents, especially 

in case of failure of any physical host by provisioning and deprovisioning the application 

instances along with proper utilization of resources. In addition, load balancing aims to 

minimize the response time for tasks and improve resource utilization, which enhances system 

performance at a lower cost. In this way, it is ensured that no machines are overloaded, and 

therefore, the agents can execute in optimal environments considering their context. In Figure 

17 is exemplified the use of the Computing Load Balancing functionality, where it is possible to 

observe agents exiting overloaded machines. 
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Agents and the entities they represent can benefit from this type of mobility, especially when 

employed in a real-world context. The physical mobility can help entities that own agents to 

save money, for example, by enabling them to move agents to a host with lower hosting fees 

or energy costs. Moreover, it provides dynamic access to profitable and reliable services, as well 

as the capacity to relocate agents to the most cost-effective host, such as one that maximizes 

the use of renewable energy, so enabling the practice of green computing  (Saha, 2014).  

 

Figure 17 – Exemplification of the Computing Load Balancing functionality 

4.4.2 Virtual Mobility 

The architecture of the A4SG Agents Layer is mostly composed of groups, these being MAS or 

ACOMs, taking into account their level in the hierarchy, and the specificity of their objectives. 

These groups can represent various smart grid entities, such as aggregators, energy retailers, 

energy communities, or even microgrids. With the evolution of the smart grid, these entities 

have become increasingly important, and with more advantages to provide to energy 

customers. As such, some of these entities stand out for having more benefits, or for adapting 

better to some types of customers than to others, introducing the concept of competitiveness 

in these groups. A significant part of these groups’ interactions is based on a provider-client 

model. This model is utilized, for instance, by aggregators, energy retailers, and distribution 

systems operators (DSO). And while some of these interactions are static, as, for instance, it will 

be challenging for a customer to change the DSO, the most frequent and complex interactions 

are dynamic. These dynamic interactions allow customers and entities to navigate the system 

by signing contracts with various entities over time. The dynamic characterization of the smart 

grid increases its modelling complexity but also supports the usage of MAS, and the proposed 

virtual mobility in A4SG, to model this type of system. 

The Virtual Mobility functionality allows A4SG agents to move to other MAS or ACOMs on the 

same physical host. However, it can be combined with the physical mobility to allow mobility 

to a group present in another physical host. The virtual mobility, not deeply explored in the 

literature, in the context of the smart grid, enables energy customers to search in a personalized 

manner for the entities that best match their profile. Depending on the type of aggregation 
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entity or service being evaluated, A4SG agents and the entities they represent can have 

customized evaluation functions (i.e., functions developed by the customers). This aligns this 

methodology with the most current European Union strategies, which emphasize customer 

empowerment, i.e., giving the customers authority in the decision-making. Despite that, there 

can be a greater abstraction in this evaluation, as it can be performed through the Group 

Selector service, which allows using default functions to evaluate the agents’ participation. 

Figure 18 represents the virtual mobility in the context of A4SG. 

 

Figure 18 – Exemplification of the Virtual Mobility functionality 

The evaluation that triggers virtual mobility is continuous and occurs at intervals determined by 

the agent. This is because, depending on the aggregation entity or service being evaluated, it 

may make sense to analyze, for instance, on a weekly or monthly basis. In the case of 

aggregators, a weekly assessment may be appropriate, whereas a retailer may benefit more 

from a monthly evaluation in order to have a monthly cost overview. In other circumstances, 

such as resource optimization or even demand forecast services, a daily evaluation may be 

appropriate. 

The options to be evaluated by each agent must be related to the agent's objective, and 

therefore, the agent communicates with the mobility agent to make a request, taking into 

account its objective. The mobility agent, in turn, processes the request and its data, returning 

the options available in the ecosystem. As the ecosystem evolves and more aggregation entities 

and services are registered in A4SG, this process becomes less efficient because more 

evaluations will be required, since this process follows a brute-force approach, where all the 

options are evaluated. Therefore, it is required to develop a method for optimizing this 

procedure. The solution found is filtering the mobility alternatives before evaluating each one. 

To support the filtering of the mobility options in a smart grid context, it was used the clustering 

technique, which allows the identification of similar data, splitting it into a finite number of 

groups. In this process, the ecosystem's customers will be grouped in order to determine which 

ones are similar based on the various parameters of their knowledge base. The division into 

clusters is determined by the parameters chosen, which in turn are determined by the mobility 

objective. For instance, it makes sense to consider flexibility when moving between aggregators, 

whereas it makes more sense to consider only consumption and generation profiles when 

moving between forecast services. This procedure, with the flowchart represented in Figure 19, 
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involves multiple steps, including dimensionality reduction, support algorithms, clustering, 

results visualization, and evaluation of the filtered mobility options. 

 

Figure 19 – Virtual Mobility functionality - options filtering flowchart 

The agents may contain a great amount of data that is required for mobility. However, 

clustering does not perform well when there are numerous distinct parameters. Consequently, 

the first step of the model, dimensionality reduction, which applies the Principal Component 

Analysis (PCA) algorithm, is used to transform the data to a lower dimension. It employs the 

evaluation through the Davies-Bouldin Index (DBI) to find the best number of data dimensions 

to enhance the clustering results, where the best number of dimensions is the n-dimension with 

the lowest DBI score. DBI requires the list of n-dimensional points contained within the dataset, 

as well as the classification assigned to each point by the clustering algorithm used to calculate 

the evaluation between these parameters. 

The second step is the application of the support algorithms, which in the context of this work 

are the Elbow and Silhouette algorithms, which are used to determine the optimal number of 

data clusters. This is a crucial component in this context, as it will determine which customers 

in the ecosystem are similar, thereby triggering the evaluation of services or aggregation 

entities in which comparable customers participate. In the next step, the K-Means algorithm is 

applied to the reduced data, using the results from the support algorithms to obtain the final 

clustering results. 

The fourth step is optional, as it is not required for the completion of the process; it involves 

the visualization and analysis of the results. It enables the visualization of clusters in a scatter 

plot, where the points are plotted based on the reduced dimensions of the data or the original 

parameters from the agents. The visualization is compatible with both two and three 

dimensions. This visualization has no direct effect on the results of virtual mobility, but 

customers can analyze it to determine why certain services or aggregation entities were 

selected over others, and even manually select a different mobility option. 

After the mobility options have been filtered, the process advances to the final step, where the 

filtered options are evaluated based on the evaluation equation of function from the agents to 

the objective in question. To process virtual mobility, the option with the highest evaluation 

score is selected, and if the process is validated, the agents are moved to their new group. 
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4.4.3 Branching 

The concept of agent and objectives is directly connected, especially since in several agent 

definitions it is said that an agent "interacts through sensors and actuators, trying to accomplish 

its design objectives" (Wooldridge and Jennings, 1995). Therefore, it is typical for agents and 

MAS to have objectives that are pursued individually or in group. In the context of smart grids, 

however, as the number of opportunities to be addressed increases, agents may become 

overloaded, and therefore the knowledge and processing ability required to accomplish the 

same objectives may become unsustainable for a single agent.  

To address this problem, in A4SG it is proposed a novel functionality, entitled branching. This 

functionality enables the creation of branch agents to handle new objectives from the 

representation agent, hence preventing an agent from becoming overloaded with data and 

objectives. This functionality employs a similar approach to agent cloning techniques, such as 

the ones proposed in (Shehory et al., 1998) and (Rosaci and Sarné, 2013). However, in contrast 

to the agent cloning strategies, which prioritize resource optimization and service provision, the 

branching functionality permits branch agents to pursue diverse objectives in the name of their 

representation agent. Figure 20 presents the branching functionality flowchart. 

 

Figure 20 – Branching functionality flowchart 

The process of branching begins, if required, by gathering and evaluating all accessible groups 

to facilitate the agent to achieve its objective. The optimal group is selected, and if the 

branching is validated, the agent is deployed into the new group. Alternatively, if the branching 

is not validated, for instance, if the group does not accept more agents, the next best evaluated 

group is considered. In the last step, the branch agent notifies its representation agent that it is 

now executing and requests a part of its knowledge base.  

With the use of the branching functionality, a representation agent becomes a distributed 

entity, where each of its branch agents represents it for the accomplishment of a single 

objective. In this way, by separating the objectives by different agents, the capacity to achieve 

a single objective and the collection of objectives of a representation agent is increased.  

Therefore, in the context of the smart grid, the branching functionality enables agents to 

participate in multiple aggregation entities, or even subscribe to several different services, 
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simultaneously. There are two types of branch agents: goal-oriented, and service-oriented, as 

described in Section 4.2.3. In Figure 15, as previously presented, are exemplified possible 

branch agents of an energy customer’s representation agent. On the other hand, a service 

provider representation agent can create branch agents to provide multiple services, as 

presented in Figure 21. 

 

Figure 21 – Example of the representation of a service provider in A4SG, considering the 

agents’ branching functionality 

Using the Group Selector service, the branching functionality identifies the optimal aggregation 

entity or service for an agent, given its context, restrictions, and requirements. Therefore, the 

branching functionality utilizes both the proposed mobility functionalities (i.e., Computing Load 

Balancing and Virtual) to determine where to deploy the agent, at both the physical and virtual 

levels. A significant benefit of integrating the branching and mobility functionalities is that a 

single agent can simultaneously act in several locations. Although it must be physically hosted 

on a computer or a server, it can have multiple virtual representations on multiple hosts. In 

addition, these functionalities enable agents to continuously seek solutions that are better than 

their current ones, so supporting the dynamic relationships of the smart grid, and an organic 

flow between groups in the ecosystem. 

One advantage of the branching functionality is the locational flexibility in terms of the physical 

resources where service participation takes place. As previously mentioned, some customers 

may not want to move their agents to other hosts for data privacy and security concerns, 

necessitating the branching of services in which they want to participate to the host where their 

agents are running. In this manner, there is a form of code-shipping in which the original 

service's code is duplicated on the agent's host. Depending on the type of service and the 

service provider's definitions, this process may incur fees for customers. 

Although this functionality brings significant benefits to the agents and to their participation in 

the smart grid, it actually introduces potential difficulties in the management of the agents, 

particularly in their decision-making process. The existence of different objectives, and the issue 

of their management being carried out by different agents, make the agents’ decision-making 
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process significantly more complex, requiring consideration of additional types of parameters 

and data that a single branch agent lacks the information to resolve. As a result, two new 

functionalities were developed to address objectives' dependencies and potential conflicts. 

4.4.4 Objective Interdependency 

The deployment of a high number of branch agents will assist an entity in achieving all of its 

objectives more efficiently, with a distributed architecture, that is also personalized for each 

agent and entity. The reality, however, is that when distributing the decision-making process 

and assigning an agent to each objective, a branch agent may not have access to all of the 

information required to achieve that objective. For instance, if there is a branch agent for 

participation in DR and another for subscribing to forecast services, the agent for participation 

in DR will require the data obtained by the forecast, and it is not guaranteed that this 

information can be obtained intuitively and without an exponential number of communications. 

Figure 22 represents the direct communication channels in the ecosystem before the 

implementation of the Objective Interdependency functionality. 

 

Figure 22 – Communication between branch agents before the implementation of the Objective 

Interdependency functionality 

The objective of the Objective Interdependency functionality is to facilitate the achievement of 

objectives by facilitating communication between branch agents who can assist each other in 

either direction. This functionality employs two functionalities for this purpose: 

• Create/deploy new branch agents 

• Create direct communication channels between agents 
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When an agent is created (with a focus on branch agents), this functionality verifies the type of 

data the agent requires to accomplish its objective. If it is only data that would normally be 

contained in the knowledge base of a representation agent (e.g., consumption profile, 

generation profile, flexibility, etc.), the functionality does not have any intervention. However, 

if it requires additional data, such as forecasts or resource optimization, the functionality checks 

to see if other agents are pursuing those objectives. If there are insufficient agents to provide 

the required data, the Objective Interdependency functionality will create a new branch agent. 

However, if an agent has already been created to fulfil the necessary objective or provide the 

required data this functionality establishes a direct communication channel between the two 

agents. Thus, there is no longer a need for an intermediary in the communication. Figure 23 

represents the direct communication channels in the ecosystem after the implementation of 

the Objective Interdependency functionality. 

 

Figure 23 – Communication between branch agents after the implementation of the Objective 

Interdependency functionality 

With the application of this functionality, it is ensured that an agent has the data and services 

required to achieve its objective in the most efficient manner and with the fewest number of 

messages to other agents. In this way, the representation agent has the greatest responsibility 

to manage its entity as a whole, obtaining data from sensors and APIs that make its data 

accessible, losing its role as a facilitator between branch agents that are dependent 

(dependence in only one direction) or interdependent (dependence in both directions). 

4.4.5 Intra-agent Conflict Resolution 

With the diversification of service offerings on the smart grid, energy customers have a greater 

chance of benefiting from the usage of their energy resources. However, just as there can be 
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dependent and interdependent objectives, there can also be conflicting objectives. These 

conflicts may arise for different reasons, namely: 

• Contractual situations; 

• Usage of the same physical resources; 

• Usage of the same information or potentially impact the same parameters. 

Consequently, the existence of these conflicts must be resolved so that the collection of branch 

agents of a representation agent understands what decisions to make in these circumstances. 

In this way, a method for resolving conflicts on the smart grid is proposed, based on 

communication between agents and the definition of priorities, represented in the 

methodology as the priority stack. Figure 24 shows the conflict resolution methodology 

flowchart, which incorporates multiple steps crucial for its application. 

 

Figure 24 –  Intra-agent Conflict Resolution functionality flowchart 

Firstly, it is necessary to detect the conflict between agents, and this is done through triggers in 

the representation agents. The triggers verify if the branch agents may have a conflict in what 

regards one of the topics of the list above mentioned, and in positive situations, the 

functionality is triggered. In the following step, the conflicted agents must share their data to 

start the process. The first verification stage relates to the contracts of the consumers, as the 

customer's contracts may contain a clause that obligates the customer to participate in some 

cases. If such a clause exists, it would take precedence in resolving the conflict as the 

determining factor, and the conflict would be resolved. If the conflict cannot be resolved using 

simply the contract terms, the functionality proceeds to the following verification phases, 

where the customer-defined priority stack is applied. 

The methodology’s priority stack consists of three levels, of which two are defined by the 

customer represented by the agent in question. The first one, which is mandatory, relates to 

security. In this case, security refers to both the energy network as a whole, as different 

requirements must be met to keep the grid operational, and the agent's physical devices (i.e., 

IoT devices, such as air conditioners, washing machines, and sensors). The second and third 

levels, in the order determined by the customer, are the level of comfort and the associated 
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costs. The order is optional because the preferences can vary depending on the entity or 

customer being represented. Even the same entity or customer may have different preferences 

depending on their context, considering different factors, such as the time of day. To specify 

their preferences, the customers and entities have to establish an equation or function to 

evaluate the various comfort and cost parameters. This customization by the customers enables 

their agents to make autonomous decisions based on the customer's preferences. 

After this step, the conflict is resolved, and as so, the final step is realized, in which the new 

participation data in the services is generated according to the results obtained by this 

functionality and is communicated to the respective branch agents. 

4.5 Chapter Conclusions 

In this chapter, is described the primary contribution of this work, the A4SG. This solution allows 

multiple multi-agent systems and agent communities to coexist in order to model smart grid 

entities as individuals and the smart grid as a whole. It has a robust four-layered architecture 

with clearly defined responsibilities for each layer and its components or services.  

In addition to the proposed services and functionalities, the proposed types of agents have 

distinct responsibilities and are entirely adaptable by entities that wish to employ them. 

Customization is one of the primary innovations of this solution, as all of the proposed agents 

and functionalities can be used to increase the quality of the active participation in the smart 

grid, considering customizable methods for evaluating agents and services. Besides that, both 

the programming language (Python) and the multi-agent systems development framework 

(PEAK) used to develop the proposed ecosystem are modular and extensible, allowing the 

addition of new features that can improve the ecosystem operation. 
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5 Service-based Agents for Smart Grid 

Business Models 

In this chapter are described the proposed smart grid services integrated into the agent-based 

ecosystem as service-based agents. With the exception of the integrated demand forecast 

services, all other services were proposed and developed by the author of this dissertation. 

5.1 Energy Demand Forecast 

Demand and supply forecasting is a crucial part of the strategic planning of the entire power 

and energy systems, as the improvement of the forecasts' accuracy can reduce uncertainty and 

lead to better operational decisions. A significant part of the services and programs offered by 

the smart grid depend on forecasts because they are planned on an hour-ahead or day-ahead 

basis, and therefore there are no certain values of the customers' demand. 

As energy demand forecast is one of the most addressed domains in the smart grid, with a large 

number of developed and deployed works, it was not the objective of this study to propose new 

forecast models. As a result, some state-of-the-art forecast models were incorporated into the 

ecosystem. There were used forecasts with various technological capacities, processing 

requirements, and training errors, including the following: 

• Baseline – mathematical model, published in (Gomes and Vale, 2022); 

• Support Vector Machines – machine learning model, based on the Support Vector 

Machines algorithm, published in  (Gomes and Vale, 2022); 

• XGBoost – machine learning model, based on the ensemble algorithm, named XGBoost 

published in  (Gomes and Vale, 2022); 

• Neural Network – deep learning model, based on the artificial neural networks 

algorithm, published in (Ramos et al., 2021) 
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5.2 Electric Network Analysis  

The power flow research in electricity networks is regarded as one of the most frequent and 

generally addressed issues in power systems studies (Baczynska and Niewiadomski, 2020), as it 

is a required process in the analysis of the energy grid performance (Montoya Giraldo, 2019). 

Power flow calculation can be considered a tool that is implemented to obtain, via an iterative 

methodology, all the voltage final values of an electrical network with a determinate tolerance 

acceptance to obtain the full operative status (Baczynska and Niewiadomski, 2020).  

The proposed power flow model analyzes multiple grid attributes, including energy load, energy 

supply, energy losses, and energy generation, to detect problems in the grid. Each of these 

characteristics is broken down into three distinct categories: active, reactive, and apparent. 

Pandapower is the library used to construct the energy network and manage the power flow. It 

was used a balanced AC power flow, based on the backward/forward sweep algorithm. 

The power flow algorithm is executed with the energy customers’ data and outputs the 

information regarding the network in each period. To maintain the grid in an optimal operation 

state, two types of issues can be detected: 

• Active load above the grid’s transformer threshold (i.e., limit to reliable operation). 

• Unbalance between supply and demand in the grid. 

The verification performed to ensure that the active load values are within the limits of the 

transformer is described as: 

𝑃𝐿𝑜𝑎𝑑𝑝 <= 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝐿𝑖𝑚𝑖𝑡  (2) 

where 𝑃𝐿𝑜𝑎𝑑𝑝  is the active load in period 𝑝 , in kW, and 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝐿𝑖𝑚𝑖𝑡 is the grid’s 

transformer operation limit, in kW. The transformer limit is extracted from the network’s data. 

The community operator must address the periods in which this condition does not apply. 

The supply-demand balance is defined by the equality between supply (i.e., energy supply 

coming from the main grid and energy generation) and demand (i.e., energy load and energy 

losses). The constraints that verify the balance of the grid in a specific period, in the active, 

reactive, and apparent components, respectively, are as follows:  

𝑃𝐿𝑜𝑎𝑑 + 𝑃𝐿𝑜𝑠𝑠𝑒𝑠 = 𝑃𝑆𝑢𝑝𝑝𝑙𝑦 + 𝑃𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (3) 

𝑄𝐿𝑜𝑎𝑑 + 𝑄𝐿𝑜𝑠𝑠𝑒𝑠 = 𝑄𝑆𝑢𝑝𝑝𝑙𝑦 + 𝑄𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (4) 

𝑆𝐿𝑜𝑎𝑑 + 𝑆𝐿𝑜𝑠𝑠𝑒𝑠 = 𝑆𝑆𝑢𝑝𝑝𝑙𝑦 + 𝑆𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (5) 

If one of the constraints identified in equations (3), (4), or (5) does not comply, it means that 

the grid is unbalanced regarding its supply and demand. In case of unbalanced periods, it is 

possible to apply DR models to target a decrease in the demand.  
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Another service offered by the power flow analysis is the visualization of the energy grid via the 

graphical user interface of the CECOS platform. Similar to the power flow algorithm, the 

visualization is provided by the Pandapower library, which accepts a Python file containing 

network data as input and generates a network image file. Figure 25 depicts a realistic example 

of a low voltage network (i.e., used in the second dataset presented in the Datasets Sections). 

     

Figure 25 – Physical energy network graphic visualization (exported from CECOS) 

5.3 Demand Response  

This section describes two DR programs, one price-based and the other incentive-based, that 

can be implemented independently or combined to solve more complex problems, in what 

regards to congestion management in the energy grid. These programs were originally designed 

for use in citizen energy communities, but they are applicable to any group of energy customers. 

5.3.1 Price-based Program 

The price-based program uses the price elasticity profile of energy customers to set the real-

time price for the energy community. Price elasticity (𝑃𝑒) is defined as the ratio of consumption 

variation over the price variation, as proposed in (Thimmapuram et al., 2010): 

𝑃𝑒 =  
∆𝐶

𝐶
/
∆𝑇

𝑇
 (6) 

where ∆𝐶 represents the difference between the final energy consumption (𝐶), and the energy 

consumption of the last period, both in kWh. Relatively to ∆𝑇, the same logic is applied, but it 

represents the difference between the final energy tariff price (𝑇), and the last period's energy 

price, both in EUR/kWh. This equation, when applied to all data periods, yields points in a 



 

74 

cartesian system. The plotted points can then be used to construct an elasticity profile for each 

customer, based on linear and polynomial regressions, which can be used to forecast customers’ 

consumption variation based on energy tariffs price variation.  

The profiles can be used to predict the consumption variation of the customers, considering a 

certain price variation (Faria and Vale, 2011). In other words, the community operator asks for 

a reduction and the price variation is increased until the required variation in the community’s 

demand is reached. 

5.3.2 Incentive-based Program 

The incentive-based DR uses an asymmetric auction model based on (Faia et al., 2019), to 

calculate how much the community operator will pay for the flexibility of each customer. Each 

customer specifies the price, in EUR/kWh, that will be accepted to reduce consumption. The 

community operator makes an auction call, where the customers will be able to present their 

bids. These bids are sorted in ascending order of price, so the smaller the price, the greater the 

possibility for the customers to sell their flexibility. The asymmetric model will be applied, 

where all the accepted bids required to meet the necessary flexibility amount are paid at the 

clearing price (i.e., the most expensive accepted bid). Therefore, the cost of the power cut (i.e., 

consumption reduction) is represented as 

𝐶𝑢𝑡 𝐶𝑜𝑠𝑡 = 𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝐿𝑜𝑎𝑑 ∗ 𝐶𝑙𝑒𝑎𝑟𝑖𝑛𝑔 𝑃𝑟𝑖𝑐𝑒. (7) 

The maximum reduction appliable by a customer in the incentive-based program is given by 

𝑀𝑎𝑥𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑝 = 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑝 ∗ 𝐹𝑙𝑒𝑥𝑖𝑏𝑙𝑖𝑡𝑦𝑝 (8) 

 where 𝑀𝑎𝑥𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑝  represents the customer’s maximum reduction in period 𝑝, in kW, 

𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑝 represents the customer’s consumption in period 𝑝, in kW, and 𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑝 

represents the customer’s flexibility in period 𝑝, in %. 

5.4 Reinforcement Learning for Peer-to-Peer Transactions 

Within the context of the smart grid, with the customer empowerment strategy, where 

decisions are made on the customer-side, it is becoming increasingly important to optimize 

both the customers' active participation and their energy resources usage. This optimization, 

which improves customers' participation in the smart grid, benefits both the customers and the 

grid as a whole, which can use the intelligent behaviours of its customers to improve the energy 

network management and gain the ability to automate its processes. Reinforcement learning 

(RL) is the chosen technique for solving this problem. This technique is applicable to agents and 

agent-based systems and aligns with the primary objective of integrating intelligence into the 

smart grid’s services participation.  
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The proposed service aims to provide decision support for participants in local energy markets, 

regarding the amount of energy to be transacted, the price bided/offered for that transaction, 

and the use of flexibility to counter possible extra costs related to participation in P2P. In this 

service, the customers' representation agents can use reinforcement learning-based training to 

improve their participation in P2P markets using simulation environments. For this, two Deep 

RL algorithms will be used, i.e., multi-agent versions of DDPG and TD3, separately, allowing the 

choice of agents who will take advantage of them. The RL training in this service focuses on two 

main blocks, the environment and the agents. The environment incorporates the P2P model 

used and provides agents with customized observations for each one. The agents receive the 

observations from the environment, compute the action to take, determined by the policy or 

exploration mechanism, and then execute the after-market phase. The architecture of the 

service is shown in Figure 26. As can be seen, although there are several agents, with actions 

decided by themselves, these are centralized when entering the environment and the P2P 

market, in order to guarantee the integrity of the environment. 

 

Figure 26 – RL environment and agents interaction in training 

Regarding the observation of the state by an agent, it includes important factors for the 

customers’ decision process. The observation for customer 𝑝 in period 𝑡 is given by: 

𝑜𝑡
𝑝
= (𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑡

𝑝
, 𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑡

𝑝
, 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑡−1

𝑝
, 𝑃𝑒𝑟𝑖𝑜𝑑𝑇𝑖𝑚𝑒𝑡, 𝑇𝑜𝑈𝑡 , 𝐹𝑖𝑇𝑡) (9) 

where 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑡
𝑝

 is the demand forecast of customer 𝑝 for period 𝑡, in kWh,  𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑡
𝑝

 is 

the forecasted flexibility of customer 𝑝 for period 𝑡, also in kWh, 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑡−1
𝑝

 is the list of 

transactions made by customer 𝑝  in period 𝑡 − 1 in the P2P market, including information 

about the price and quantities of energy transacted, and 𝑃𝑒𝑟𝑖𝑜𝑑𝑇𝑖𝑚𝑒𝑡 provides information 

about the period of the day represented by period 𝑡. 𝑇𝑜𝑈𝑡 and 𝐹𝑖𝑇𝑡 are, respectively, the price 

to buy and sell energy to the energy retailer. 
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The agents' actions are related to the strategy that each one of them develops to participate in 

the P2P market. Thus, each agent generates two different actions, one regarding the price, and 

the other regarding the amount of energy to transact, both in the interval [0, 1], representing a 

percentage value. Thus, the actions of each agent are given by: 

𝑎𝑡
𝑝
= (𝑎𝑃𝑟𝑖𝑐𝑒𝑡

𝑝
, 𝑎𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦𝑡

𝑝
) (10) 

where 𝑎𝑃𝑟𝑖𝑐𝑒𝑡
𝑝

 represent the action relative to the price to pay for energy, 𝑎𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦𝑡
𝑝

 is the 

action that indicates the amount of energy to trade in the P2P market, both represented in 

percentual points, regarding period 𝑡 and customer 𝑝. 

Regarding the bid price, the prices offered/asked are limited to the purchase and sale price of 

energy on the grid. In what regards the energy amount to transact the agents consider the 

forecast error, and as that, the first step is to determine the potential error in a period. This 

error is computed using the evaluation metrics of the algorithm for forecasting at the time of 

testing. If it is the Mean Absolute Percentage Error (MAPE), it must be multiplied by the 

forecasted value for the period in question; if it is the Mean Absolute Error (MAE), it is used as 

the error's direct value. After calculating the error, the value of 𝑎𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦𝑡
𝑝

 is applied within 

the forecast's possible range. As such, the price to pay and the amount of energy to be 

transacted are given by the following equations: 

𝐵𝑖𝑑𝑃𝑟𝑖𝑐𝑒𝑡
𝑝
= 𝑎𝑃𝑟𝑖𝑐𝑒𝑡

𝑝
∗ (𝑇𝑜𝑈𝑡 − 𝐹𝑖𝑇𝑡) + 𝐹𝑖𝑇𝑡 (11) 

𝐸𝑟𝑟𝑜𝑟𝑡
𝑝
= {

𝑀𝐴𝑃𝐸 ∗ 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑡
𝑝
, 𝑖𝑓 𝑀𝑒𝑡𝑟𝑖𝑐 = 𝑀𝐴𝑃𝐸

𝑀𝐴𝐸              , 𝑖𝑓 𝑀𝑒𝑡𝑟𝑖𝑐 = 𝑀𝐴𝐸
  (12) 

𝐵𝑖𝑑𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦𝑡
𝑝
= 𝑎𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦𝑡

𝑝
∗ ((𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑡

𝑝
+ 𝐸𝑟𝑟𝑜𝑟𝑡

𝑝
) − (𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑡

𝑝
−

 𝐸𝑟𝑟𝑜𝑟𝑡
𝑝
)) + (𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑡

𝑝
− 𝐸𝑟𝑟𝑜𝑟𝑡

𝑝
) 

(13) 

where 𝐵𝑖𝑑𝑃𝑟𝑖𝑐𝑒𝑡
𝑝

 represents the price to pay in the P2P market, in EUR/kWh, 𝐸𝑟𝑟𝑜𝑟𝑡
𝑝

 is the 

mean error of the forecast of the customer, in kWh, and 𝐵𝑖𝑑𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦𝑡
𝑝

 is the amount of energy 

to transact in the P2P market, in kWh, all regarding customer 𝑝 in period 𝑡. 

Bearing in mind that in this service is used an hour-ahead market, there is a need for energy 

forecast models to carry out the market, and not real demand values. Therefore, the true 

impact can only be measured in the period after the transactions, when the real values of 

consumption and generation are known. Thus, in period 𝑡 the data related to the transactions 

carried out are stored, while in period 𝑡 + 1, interactions with the grid to buy or sell energy are 

executed, and the reward for period 𝑡 is calculated. 

Regarding the calculation of the reward, it is directly linked to the savings made by the customer. 

The first step is to calculate the cost or profit of buying or selling the energy to the grid (i.e., 

𝐶𝑜𝑠𝑡𝐺𝑟𝑖𝑑𝑡
𝑝

), where the actual demand of the customer is multiplied by the corresponding 

market price, represented in Equation (7). Then, the next step is to calculate the money 

transacted in the P2P market (i.e., 𝐶𝑜𝑠𝑡𝑀𝑎𝑟𝑘𝑒𝑡𝑡
𝑝

), that is given by the summation of price 

multiplied by energy transacted in each deal of the market, as represented in Equation (8). 
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𝐶𝑜𝑠𝑡𝐺𝑟𝑖𝑑𝑡
𝑝
= 𝐷𝑒𝑚𝑎𝑛𝑑𝑡

𝑝
∗ {
𝑃𝑟𝑖𝑐𝑒𝑡

𝐵𝑢𝑦
, 𝑖𝑓 𝑅𝑜𝑙𝑒𝑡

𝑝
= 𝐵𝑢𝑦𝑒𝑟

𝑃𝑟𝑖𝑐𝑒𝑡
𝑆𝑒𝑙𝑙 , 𝑖𝑓 𝑅𝑜𝑙𝑒𝑡

𝑝
= 𝑆𝑒𝑙𝑙𝑒𝑟

  (14) 

𝐶𝑜𝑠𝑡𝑀𝑎𝑟𝑘𝑒𝑡𝑡
𝑝
= ∑(𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑒𝑑𝐸𝑛𝑒𝑟𝑔𝑦𝑖 ∗ 𝑃𝑟𝑖𝑐𝑒𝑖)

𝑁

𝑖=0

 (15) 

Even with market transactions, the interaction with the grid to buy/sell energy from/to the grid 

is almost inevitable. This because, using the forecast as a basis for the amount of energy to be 

transacted, there will always be errors, even if small, that make this interaction mandatory. The 

amount of energy to buy/sell from/to the grid (i.e., 𝐸𝑛𝐸𝑥𝑡𝑟𝑎𝑡
𝑝

) is given by equation (9) and is 

the difference between the real demand and the amount of energy traded in the market. In 

order to try to reduce the cost of interacting with the grid, when it is necessary to buy, that is, 

when a buyer does not transact enough energy in the market, or when a seller transacts more 

energy, flexibility is used to reduce costs. Equations (10) and (11) describe the process of 

calculating how much flexibility is needed, and the cost associated with this interaction in the 

after-market phase. In Equation (10) the amount of flexibility is given by the minimum between 

𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑡
𝑝

 and 𝐸𝑛𝐸𝑥𝑡𝑟𝑎𝑡
𝑝

, both regarding customer 𝑝 in period 𝑡, in kWh. On the other hand, 

the result of equations (9) and (10) are used to calculate the cost of buying/selling energy to 

the grid in the after-market phase. The flexibility is used only in the periods that demand the 

buying of more energy from the grid. 

𝐸𝑛𝐸𝑥𝑡𝑟𝑎𝑡
𝑝
= ∑(𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑒𝑑𝐸𝑛𝑒𝑟𝑔𝑦𝑖)

𝑁

𝑖=0

− 𝐷𝑒𝑚𝑎𝑛𝑑𝑡
𝑝

 (16) 

𝑈𝑠𝑒𝑑𝐹𝑡
𝑝
=  𝑚𝑖𝑛(𝐸𝑛𝐸𝑥𝑡𝑟𝑎𝑡

𝑝
, 𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑡

𝑝
) (17) 

𝐶𝑜𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑡
𝑝
=

{
 
 

 
 

𝐸𝑛𝐸𝑥𝑡𝑟𝑎𝑡
𝑝
∗ 𝐹𝑖𝑇𝑡             , 𝑖𝑓𝑅𝑜𝑙𝑒𝑡

𝑝
= 𝐵𝑢𝑦𝑒𝑟 𝐴𝑁𝐷 𝐸𝑛𝐸𝑥𝑡𝑟𝑎𝑡

𝑝
≥ 0

𝐸𝑛𝐸𝑥𝑡𝑟𝑎𝑡
𝑝
∗ 𝐹𝑖𝑇𝑡             , 𝑖𝑓𝑅𝑜𝑙𝑒𝑡

𝑝
= 𝑆𝑒𝑙𝑙𝑒𝑟 𝐴𝑁𝐷 𝐸𝑛𝐸𝑥𝑡𝑟𝑎𝑡

𝑝
< 0

(𝐸𝑛𝐸𝑥𝑡𝑟𝑎𝑡
𝑝
− 𝑈𝑠𝑒𝑑𝐹𝑡

𝑝
) ∗ 𝑇𝑜𝑈𝑡 , 𝑖𝑓𝑅𝑜𝑙𝑒𝑡

𝑝
= 𝑆𝑒𝑙𝑙𝑒𝑟 𝐴𝑁𝐷 𝐸𝑛𝐸𝑥𝑡𝑟𝑎𝑡

𝑝
≥ 0

(𝐸𝑛𝐸𝑥𝑡𝑟𝑎𝑡
𝑝
− 𝑈𝑠𝑒𝑑𝐹𝑡

𝑝
) ∗ 𝑇𝑜𝑈𝑡 , 𝑖𝑓𝑅𝑜𝑙𝑒𝑡

𝑝
= 𝐵𝑢𝑦𝑒𝑟 𝐴𝑁𝐷 𝐸𝑛𝐸𝑥𝑡𝑟𝑎𝑡

𝑝
< 0

  (18) 

Finally, the reward is calculated by measuring the impact of participation in P2P in reducing 

costs or increasing profits, so there is a differentiation in the formula for sellers and buyers. The 

equation that gives the reward is then given by: 

𝑟𝑡
𝑝
= {

𝐶𝑜𝑠𝑡𝐺𝑟𝑖𝑑𝑡
𝑝
− 𝐶𝑜𝑠𝑡𝑀𝑎𝑟𝑘𝑒𝑡𝑡

𝑝
+ 𝐶𝑜𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑡

𝑝
 , 𝑖𝑓𝑅𝑜𝑙𝑒𝑡

𝑝
= 𝐵𝑢𝑦𝑒𝑟

𝐶𝑜𝑠𝑡𝑀𝑎𝑟𝑘𝑒𝑡𝑡
𝑝
− 𝐶𝑜𝑠𝑡𝐺𝑟𝑖𝑑𝑡

𝑝
−  𝐶𝑜𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑡

𝑝
, 𝑖𝑓𝑅𝑜𝑙𝑒𝑡

𝑝
= 𝑆𝑒𝑙𝑙𝑒𝑟

  (19) 

It is important to note that this service was conceived and developed on top of an abstract RL 

service, developed by the author of this dissertation, in order to facilitate the application of this 

field of machine learning to multi-agent systems. As previously stated, it is already common 

practice to apply RL to multi-agent systems, but agent-based systems must be developed 

intentionally to integrate RL from scratch. This service fills this gap in the state of the art, where 



 

78 

it is possible to integrate RL in previously conceived and deployed agent-based systems, to 

incorporate intelligent participation in services using RL models. 

The environment is a crucial component of RL models, and it is typically the bottleneck in terms 

of development simplicity, as it is created using complex data that requires intensive processing. 

In the proposed abstract service, the RL environment is completely abstract, and customers are 

only required to select the environment's principal attributes, which in this case are the action 

space, the observation space, and the state transition function. Both the action and observation 

spaces can be conceived with the different types of available data (discrete or continuous), and 

it is possible for these spaces to be constructed automatically, with the service identifying the 

types of data being processed for each space. In addition, in some instances, the state transition 

function is not required, such as in time-dependent environments where agents' actions can 

have a direct effect on the environment but are not permanent across time periods. 

This service also addresses the possibility of using actual environments to train the models. The 

service enables the use of simulated contexts, in which training is accelerated and agents 

interact with simulation-developed environments, but also enables the application of RL in real 

environments, with real energy customer data and physical devices, in the case of smart grids. 

5.5 Chapter Conclusions 

This chapter's primary objective was to describe the services that were conceived/adopted, 

developed, and integrated into the ecosystem as service-based agents. These services consist 

of energy demand forecasts, power flow-based energy network analysis, DR programs, and a 

reinforcement learning model for P2P participation. 

Energy demand forecasts have a significant impact on the majority of other smart grid services, 

which are typically executed on an hour-ahead or day-ahead basis; therefore, it is crucial to 

integrate this type of service into the ecosystem. To test the virtual mobility between forecast 

services, the integrated services are state-of-the-art models with distinct error profiles. The 

energy network analysis and DR programs are integrated services that support a congestion 

management method. 

The final integrated service is an optimization model for P2P market participation based on 

reinforcement learning. This model is developed on top of an abstract reinforcement learning 

service applied to multi-agent systems. As it allows for the intuitive development of 

reinforcement learning models, without the need to deal with data pre-processing and with the 

creation of observation and action spaces, it fills a gap in the existing literature. Using this 

service, the focus is on the definition of the action's value, state transition function, and rewards. 
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6 Case Studies 

In this chapter, the developed case studies for testing and validation the proposed ecosystem 

and its functionalities are presented. Table 9 presents the descriptions of the case studies, 

including their main objectives.  

Table 9 – Proposed case studies summary 

Case study name Main objective 

Smart Grid Services Integration 
in Citizen Energy Community 
Operator System 

Integrating multiple smart grid services in CECOS, in order to 
validate the platform's scalability and intuitiveness in the 
execution of the services 

Customer-Aggregator Fitting for 
Demand Response Efficient 
Participation  

Simulating ten weeks of participation in DR, allowing agents to 
move between aggregators to enhance energy customers 
participation and the customer-aggregator fitting 

Optimize Participation in P2P 
Markets Using Reinforcement 
Learning 

Training energy customers’ agents with reinforcement learning 
models to optimize their participation in P2P markets 

Smart Building Participation in 
P2P Markets Considering 
Energy Storage Systems 

Enabling a smart building to participate in P2P markets using 
reinforcement learning models, considering mobility in forecast 
services to enhance the participation 

6.1 Smart Grid Services Integration in Citizen Energy 
Community Operator System  

This case study's primary objective is to evaluate CECOS's ability to integrate multiple smart grid 

services and provide them to energy communities. It consists of two main parts: (i) integrate 

tariffs management, customers aggregation, and price elasticity services, and (ii) integrate a 

congestion management methodology, with a power flow algorithm, and a price-based and 

incentive-based DR program. Each part of the case study employs a distinct dataset, being, 

respectively, the first and second datasets described in the Datasets section (i.e., Section 3.1.2). 

This case study is presented in two publications: 
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• [Journal] Helder Pereira, Luis Gomes, Pedro Faria, Zita Vale, Carlos Coelho (2021) “Web-

based platform for the management of citizen energy communities and their members”, 

published in Energy Informatics in 2021, doi: 10.1186/S42162-021-00155-7 

• [Conference] Helder Pereira, Ricardo Faia, Luis Gomes, Pedro Faria, Zita Vale (2022) 

“Incentive-based and Price-based Demand Response to Prevent Congestion in Energy 

Communities”, presented in 2022 IEEE International Conference on Environment and 

Electrical Engineering (EEEIC), doi: 10.1109/EEEIC/ICPSEUROPE54979.2022.9854648 

In the case study’s first part, to enable the execution of the tariff calculation and attribution 

model, the developed platform demands the input of an file with a set of available consumption 

and generation tariffs. The used tariffs were generated considering hourly prices based on the 

MIBEL market. The tariffs file contains five consumption and five generation tariffs. After the 

tariffs are loaded to CECOS, it is possible to calculate the best tariff, by type (consumption or 

generation), for each one of the customers. After the calculations are finished, the operator can 

visually analyze the original and the most profitable tariff to each customer, through a 

comparative graph, shown in Figure 27.  It is also possible to check if the best-calculated tariff 

is better than the original, considering the cost or profit. 

 
Figure 27 – Most profitable tariff comparison with the original tariff (exported from CECOS) 

For the aggregation service, multiple parameters combinations were studied. The chosen ones 

were consumption profile, consumption type, generation profile, generation type, and 

contracted power. To examine the details of the aggregation service, the results for the 

combination generation profile and generation type are analyzed individually. The optimal 

number of clusters obtained by the Elbow method was 3, and by the Silhouette method was 8. 

In Figure 28, it is possible to analyze the generated evaluation graphs by those methods. 

 
Figure 28 – Customers’ aggregation evaluation metrics (exported from CECOS)  
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Considering the Elbow method result as optimal, the data will be divided into three different 

groups. In Figure 29 it is possible to analyze the created clusters. The first cluster is composed 

totally of the customers without energy generation (generation type is None). The second 

cluster contains the customers with wind-generated energy, and the last one contains all the 

other customers. It is an interesting separation because it does not split any of the customers 

with the same generation type into more than one cluster, being helpful for future analysis. 

However, it also is an expected division, considering that the non-producers (i.e., consumers) 

have an exclusive group, and the wind generation is in majority on the dataset (254 customers). 

On the other hand, if the considered evaluation method is Silhouette, the optimal number of 

groups is eight. It is an expected number since there are eight different generation types on the 

dataset. With eight clusters, it is made a perfect division, considering that each one of the 

clusters is exclusive to one generation type. Both considered number of clusters provides a good 

division of the dataset. The chosen number of groups will always depend on the context and 

the goal of the division since there are multiple applications for both obtained cluster numbers. 

 

Figure 29 – Customers’ aggregation results for three clusters (exported from CECOS) 

In what regards the price elasticity service, the first step is to calculate the price elasticity for 

each period of the dataset, to each of the customers. Then, all the calculated points are plotted 

in a scatter plot, where it is possible to analyze the elasticity of each customer. Executing the 

service, all the resulting regressions have negative coefficients. It is an expected result since the 

consumption and tariff price should have opposite directions. This because, if the customers’ 

profiles are explored, it is normal to decrease energy consumption when there is a price 

increase, and the same happens for the opposite situation. As expected, none of the linear 

regressions achieved a greater score than the quadratic regressions. Even so, the linear 

regressions in the graph were maintained for purposes of comparison and testing. The average 

score for linear regressions was 0.498, and for quadratic was 0.688. 

After this part, is made the transition to the second part of the case study, where are integrated 

the proposed grid analysis model and DR models. Besides using the previously described data, 

in order to enable the use of power flow algorithms, it is used a realistic low voltage distribution 

network, composed of 236 buses and 235 lines, supplied by an 85 kW medium voltage 
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connection with a transformer, visually represented in Figure 25. This part of the case study 

uses the described data to (i) execute the power flow algorithm, (ii) predict congestion issues, 

and (iii) launch DR programs. The results compare the use of the proposed DR programs (i.e., 

incentive-based vs price-based), and the combination of both.  

Executing the grid analysis model, the results show that there are 31 periods (i.e., 4.6 % of total 

periods) above the grid’s transformer limit. Despite being a significant number of possible 

failures, the values above the threshold are not very high, varying from 0.546 kW to 17.571 kW. 

The periods above the threshold are used to launch the proposed DR programs.  

The programs were executed independently, and their results for days 2 and 3 (to facilitate the 

reading) are summarized in Table 10. The table presents, for all the considered periods, the 

reductions achieved by each DR program, as well as the strategy to achieve the pretended 

results. For example, the necessary increase in energy price is calculated for the price-based 

program, whereas the clearing price of the market is determined for the incentive-based.  

Table 10 – Demand Response simulation considering power flow results for days 2 and 3 

Period 
(Day, 
Time) 

Needed 
Reduction 

(kW) 

Price-based Incentive-based 

Average 
Reduction 

(kW) 

Price 
increase 

(%) 

Number of 
participating 

customers 

Average 
Reduction 

(kW) 

Clearing 
price 

(EUR/kWh) 

Number of 
participating 

customers 

2, 08;00 6.164 6.328 2.10 70 6.164 0.098 31 

2, 21:00 10.218 10.354 3.34 79 10.218 0.131 36 

2, 21:15 17.571 - - - - - - 

3, 08:00 3.161 3.197 1.21 60 3.161 0.040 24 

3, 21:15 1.089 1.105 0.59 31 1.089 0.034 10 

3, 21:30 11.211 11.623 3.51 78 11.211 0.138 54 

3, 21:45 9.900 9.942 3.26 77 9.900 0.110 44 

3, 22:00 4.060 4.103 1.46 62 4.060 0.074 15 

Relative to the price-based program, it is noticeable that the customers in this community are 

meaningly reactive to energy tariff changes. Therefore, the necessary price increase to achieve 

the pretended reductions was never very high. In this program, the reductions are not exactly 

the necessary ones. This happens because the reduction is the dependent variable since the 

one that is controlled and independent is the price variation. It can be positive, to not keep the 

transformer at the exact load limit it can handle.  

The required reductions were exactly met in all studied times, except for a specific period (day 

2, 21:15), that required both programs to be executed. The asymmetric market's 

implementation allows an accurate reduction in each period, as the last accepted offer is 

decreased to the power required to cover the reduction needs. It is also possible to observe, 

that the cut cost in each of the periods is strongly correlated with the aggregated flexibility of 

consumers, since the greater this flexibility, the more easily the necessary reduction is achieved, 

and consequently, the cost is lower.  
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Analysing the DR programs outcome, it shows that one of the intervals does not follow the same 

process as the others. Neither the price-based nor incentive-based program could achieve the 

needed decrease to prevent the detected issue. In these instances, the incentive-based 

program might be applied first, and then the price-based. Customers would be able to sell their 

flexibility first and then lower their consumption due to the tariff increase. Considering this, the 

asymmetric market pool reduced 16.668 kW, leaving a 0.903 kW gap. The price-based program 

was used to produce the remaining reduction, increasing the price by 4.05 % and reducing 0.927 

kW. The two programs working together prevented a problem that neither could handle alone. 

6.2 Customer-Aggregator Fitting for Demand Response Efficient 
Participation 

The goal of this case study is to illustrate the use of A4SG and its architecture's performance 

when tested in a real-world scenario of DR participation. The goal is to engage all the available 

customers in DR initiatives that are appropriate for them. For that, 30 customers are initially 

assigned to one of the three aggregators available within the ecosystem. Over time, if the 

customers are not satisfied with the results, they will request to be moved to another 

aggregator, and so on, until they achieve a high flexibility fitting rate. The profiles of the 

considered customers use the data available in (Pereira et al., 2022b). Having different types of 

customers means having different types of consumption profiles and flexibility, and therefore, 

different needs regarding the demand reductions made by DR events. Three aggregators with 

different profiles of needed reductions are simulated. The 3 defined aggregators have different 

profiles, and as such, they will attract different types of customers to their DR programs. One 

of the aggregators will have a profile that is more appealing to residential customers, another 

to industrial customers, and the other to customers who fall somewhere in the middle. These 

differences will motivate customers' mobility. This case study resulted in one scientific paper: 

• [Journal – Under review] Helder Pereira, Luis Gomes, Zita Vale “Agent-based Ecosystem 

with Branching and Mobility Mechanisms to Support Agent Communities: a Smart Grid 

Application” 

To evaluate the weekly performance of the customers in DR programs, the following equations 

are considered: 

Part𝑖 = {
1, 𝑖𝑓 Flex𝑖 ≥ MinP𝑖
 0, 𝑖𝑓  Flex𝑖 < MinP𝑖

  
(20) 

TotalPart =∑Min (
Flex𝑖
MaxP𝑖

 ,
MaxP𝑖
Flex𝑖

) × Part𝑖

𝑁

𝑖=0

 (21) 

Flexibility Fitting Rate =  
TotalPart

𝑁
 (22) 
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where, Flex𝑖 represents the flexibility, in kW, of the customer in the period of the event 𝑖, MinP𝑖 

represents the minimum participation per customer of the DR event 𝑖, MaxP𝑖 represents the 

maximum paid participation in kW, and 𝑁  represents the number of DR events from the 

aggregator in the evaluation period. 

Equation (20) determines if a customer can participate in the aggregator's DR event 𝑖. In other 

words, it evaluates if the customer's flexibility throughout the event period is more than or 

equal to the aggregator-defined minimum participation. If the consumer does not meet the 

minimum participation requirement, the event's parcel is set to zero, contributing negatively to 

the flexibility fitting rate. Equation (21) calculates the sum of the quotient between the 

customer's flexibility and the maximum paid participation in each of the DR events. To ensure 

that the evaluation is reliable and that unfavourable evaluation periods for different causes (i.e., 

excess and lack of flexibility) do not cancel each other out, the minimum between two parcels 

is determined, to ensure that the participation in a given event is always between 0 and 1. 

Equation (22) calculates the flexibility fitting rate of a customer in relation to an aggregator, and 

consequently, to its DR events. This evaluation is given by the quotient between the result of 

Equation (21) and the number of the customer’s current aggregator DR events in the evaluation 

period. The Flexibility Fitting Rate is a value in the interval [0, 1] (i.e., a percentual value). If 

the flexibility fitting rate is in the interval of [0, 0.5], the customer will move, necessarily, to 

another aggregator, without considering the current one as an option. If it is in the range ]0.5, 

0.7], the mobility will be considered, but the current aggregator will also be included as a 

possible destination, meaning that the mobility result can be the aggregator where the 

customer already is. If the flexibility fitting rate is above 70 %, the customer will remain in the 

current aggregator during the following week. 

The simulation is executed for ten weeks, where, at the end of each week, each of the 

customers will evaluate their participation in the respective aggregators, with the use of the 

proposed flexibility fitting rate. At the initial week, the customers distribution to the 

aggregators is executed randomly. The simulation is processed in one-hour periods, making a 

total of 120 periods per week (excluding weekends). As such, the simulation will have a total of 

1200 periods. In each of the weeks, each aggregator will launch between one and five DR events. 

The branching functionality will be used in the initial phase of the simulation to allow customers 

to subscribe to the aggregators they are initially associated with. Using this functionality, the 

number of agents related to customers will be 60 in total, 30 of which will be representation 

agents and 30 will be goal-oriented agents (i.e., where the objective is to participate in 

aggregators). In addition, there will be multiple ecosystem agents deployed, including a MAS 

main agent, 3 agents to represent the aggregators (ACOM main agents), a mobility agent, and 

a synchronizer agent to guide the simulation. Figure 30 represents the considered agents and 

groups, although the figure does not show all the amount of representation agents, to facilitate 

its reading and understanding. In this figure are represented the aggregator’s groups and their 

agents. In this case study, the mobility functionality is used at the end of every week of 

simulation, depending on the respective evaluations of the agents, with the support of the 

Group Selector component, to send the best mobility options to each agent. 
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Figure 30 – A4SG Agents Layer architecture considering the case study structure, between week 

9 and 10 of simulation (i.e., agents and groups)  

The results from the simulation, regarding the number of mobilities and the types of customers 

in each aggregator, are summarized in Table 11.  In this table, for each aggregator, are described 

the types of customers that compose them in each of the weeks, besides the number of 

customers that moved in and out at the beginning of each week. Observing the table, it is 

possible to see that the amount of mobility decreases over the weeks, which means that 

customers' assignments to aggregators are converging and evolving to the aggregators best 

suited to their consumption and flexibility profiles.  

In addition, it is possible to see that Aggregator 1 is mainly composed of residential and small 

commerce customers, thus being good for smaller levels of flexibility. On the other hand, 

Aggregator 3 is primarily composed of industrial customers, as it requires members with a 

significant. consumption reduction capacity. Aggregator 2 serves intermediate needs, and as a 

result, a sizable portion of its members are large commerce customers. 

Table 11 – Customers’ description and mobilities for each aggregator per week 

Week 

Aggregator 1 Aggregator 2 Aggregator 3 

Number of 
Customers  
(+ In; - Out) 

Types of   
Customers  

Number of 
Customers  
(+ In; - Out) 

Types of 
Customers 

Number of 
Customers  
(+ In; - Out) 

Types of 
Customers 

R SC LC I R SC LC I R SC LC I 

1 9 (+9; -0) 4 2 2 1 9 (+9; -0) 3 1 2 3 12 (+12; -0) 3 7 1 1 

2 9 (+2; -2) 5 3 1 0 11 (+4; -2) 4 3 1 3 10(+3; -5) 1 4 3 2 

3 10 (+2; -1) 5 4 1 0 12 (+2; -1) 4 5 1 2 8 (+1; -3) 1 1 3 3 

4 12 (+2; -0) 7 4 1 0 11 (+2; -3) 3 4 2 2 7 (+2; -3) 0 2 2 3 

5 14 (+3; -1) 7 7 0 0 7 (+0; -4) 2 2 2 1 9 (+3; -1) 1 1 3 4 

6 16 (+2; -0) 9 7 0 0 5 (+0; -2) 1 2 1 1 9 (+1; -1) 0 1 4 4 

7 16 (+1; -1) 8 8 0 0 6 (+2; -1) 2 2 2 0 8 (+1; -2) 0 0 3 5 

8 15 (+0; -1) 8 7 0 0 7 (+1; -0) 2 3 2 0 8 (+0; -0) 0 0 3 5 

9 17 (+2; -0) 9 8 0 0 5 (+1; -3) 1 1 2 1 8 (+1; -1) 0 1 3 4 

10 18 (+1; -0) 10 8 0 0 6 (+2; -1) 0 2 3 1 6 (+0; -2) 0 0 2 4 

R = Residential; SC = Small Commerce; LC = Large Commerce; I = Industrial  
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In general, from the aggregators' perspective, it is less vital to know who their customers are 

than it is to ensure that the required consumption reductions are accomplished through their 

flexibility. Thus, it is critical to verify that the aggregators have the capacity to meet the 

objectives of their DR programs. Figure 31 depicts the percentage of  events  in which the 

required reductions were achieved over the course of the simulated weeks. It is possible to 

observe that the trend is positive, in the sense that the number of DR events that are 

successfully completed goes up over the weeks. This is important for both aggregators and 

customers, because financially it is essential that the necessary reductions are achieved, so that 

they can be rewarded  for  their  participation. From the customers’ perspective, it is not only 

essential to be able to participate in the events, but it is critical that their aggregators reach the 

required reduction, in order to be paid for participating. 

 

Figure 31 – Percentage of events in which the aggregated reduction target was achieved for 

each aggregator per week  

With regard to the individual participation of customers, its assessment was carried out with 

the application of Equation (22). Figure 32 shows the area between the minimum and maximum 

flexibility fitting rate for each of the simulation weeks, as well as the average flexibility fitting 

rate of all the customers (which is calculated as an arithmetic average of the flexibility fitting of 

each of the customers). It is possible to conclude that the three studied metrics (minimum, 

average, and maximum) have an upward trend across the simulation, demonstrating the 

advantage of using a mobility functionality that considers the profiles of the customers and their 

association to the available aggregation entities. The increase in these metrics can mean several 

advantages, both for customers and for aggregators, for instance, from a financial point of view. 

 

Figure 32 – Customers’ flexibility fitting rate area (minimum and maximum) and average 
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Analysing the positive evolution in customers’ flexibility fitting rate, it reveals a correlation with 

the amount of mobilities performed inside the ecosystem. As expected, the higher the 

customers’ flexibility fitting rate, the lower the number of mobilities in the week. Taking into 

account the evaluation metrics and the ranges of values used to determine whether a customer 

should consider moving to another aggregator or not, the decrease in the number of mobilities 

over time is a positive indicator, meaning that the customers are converging to the aggregators 

that offer the type of participation that is most suited to their profile. 

In contrast to previous customer selection methodologies, which aim to find the best customers 

for one aggregator based on their profile and context, the methodology employed in this case 

study considers multiple aggregators and prioritizes customer benefits. For instance, in the  

works  proposed in (Silva et al., 2020), (Martinez-Pabon et al., 2017), and (Liang and Ma, 2022) 

customers are evaluated taking into account whether they are eligible to participate in DR, 

whether their flexibility profile is suitable to the type of DR launched, and how robust and 

reliable is their participation in different contexts. 

Comparing the proposed methodology with the work developed in (Silva et al., 2020), there is 

a possibility of an increase in the percentage of events in which the aggregator achieves the 

necessary demand reduction for the event to be successful, since the defined aggregators in 

the developed case study resulted in 100 % of events achieving the aggregated reduction and 

in the referenced work these results were only 73 %. These results support the notion that focus 

and benefit the customers also have favourable consequences for aggregators, as they 

strengthen the context between customers and aggregators. This type of methodology, where 

the customer makes the decision, is consistent with the European Union's smart grids strategy, 

which focuses on customer empowerment. Moreover, as this case study demonstrates, placing 

the decision on the customer side can be advantageous for the smart grid entities. 

6.3 Optimize Participation in Peer-to-Peer Markets Using 
Reinforcement Learning  

In order to test the proposed methodology, a case study was developed using an energy 

community of 50 customers (Goncalves et al., 2022). The objective was to validate whether the 

two reinforcement learning algorithms used allow the A4SG ecosystem’s agents to improve 

their participation in the P2P energy transactions market. This case study resulted in two 

scientific papers: 

• [Journal] Helder Pereira, Luis Gomes, Zita Vale, (2022) “Optimizing participation in local 

energy market through deep reinforcement learning in an agent-based ecosystem”, 

accepted for publication in Energy Reports 

• [Journal] Helder Pereira, Luis Gomes, Zita Vale, (2022) “Peer-to-Peer Energy Trading 

Optimization in Energy Communities using Multi-Agent Deep Reinforcement Learning” 

accepted for publication in Energy Informatics 
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Of the 50 customers of the energy community, 20 will be sent to training with TD3, 20 to training 

with DDPG, and 10 will remain without training, in order to have a strong component of 

comparison between these three aspects. The distribution of the customers is random. The flow 

and steps of the case study are shown in Figure 33. The objective is to (i) simulate a P2P week 

without training,  (ii) train the agents with the proposed RL models, and then (iii) compare the 

simulated market week with the agent's participation in the market with the trained policies. 

From the point of view of the A4SG ecosystem, the agents will be distributed among the 

different training ACOMs, despite being together in the energy community ACOM.  

 

Figure 33 – P2P participation optimization case study steps 

In order to compare the performance of P2P agents with and without training, three negotiation 

profiles were used prior to RL training to generate offers: 

• Greedy profile: agents adhering to this profile will attempt to trade between 80 % and 

100 % of the forecasted demand at a price between 20 % and 80 % within market limits; 

• Safety profile: where agents attempt to negotiate between 90 % and 110 % of the 

forecast, while in terms of price, they use the limits between 60 and 100 %; 

• Cheaper profile: where agents try to seek deals at a lower price. These contracts aim to 

trade between 80 % and 100 % of the forecast but utilize only between 0 % and 50 % 

of the price limits. 

The most effective method for assessing the performance of reinforcement learning algorithms 

is to examine agent rewards across training iterations. An increase in the value of rewards 

indicates that agents are performing better at the task for which they are undergoing training. 

However, in competitive contexts such as the P2P market, it is common for some agents to 

achieve better results than others, as strategies are not shared and each agent seeks to achieve 

the best results for himself, which in most cases results in poorer outcomes for the others. 

Figure 34 depicts the average reward received by each agent for each algorithm throughout the 

training episodes. In general, the TD3 algorithm enabled better learning for most agents, 

whereas roughly half of the agents in the DDPG were very close to their initial values. In addition, 

agents with TD3 saved an average of 0.05 EUR per period, whereas, in the DDPG, this value was 

close to 0.03 EUR. 
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Figure 34 – Mean reward for each agent per training episode: (a) DDPG, and (b) TD3 

From the perspective of the general community, there are greater differences in terms of 

rewards between the two algorithms. The minimum, mean, and maximum are depicted in 

Figure 35 for the agents that participated in the training of each algorithm. On the one hand, 

the TD3 has a much higher maximum reward value than the DDPG, with a value of 0.47 

compared to 0.34 for the DDPG. Regarding the average value, the behaviour of both was quite 

similar,  as  the  difference  was  only  0.02;  however, the TD3 again held the advantage. On the 

other hand, as far as the minimum value is concerned the DDPG has the advantage, and based 

on the analysis of the graph, there appears to be a greater balance between all market-

participating agents. This indicates that, with the use of DDPG and a competitive strategy, a 

balance has been reached between the customers’ profits. 

 
Figure 35 – Maximum, mean, and minimum reward per episode: (a) DDPG, and (b) TD3 

Considering the overall savings of the community and the fact that the rewards are positive for 

all agents who participated in the training, it is possible to conclude that costs were reduced, 

i.e., the customers saved money through the training that enabled them to develop P2P 

participation strategies. Figure 36 depicts the results of participating in a P2P week before and 

after training, broken down by agents who trained with DDPG, agents who trained with TD3, 

and agents who received no training. As can be seen,  the most significant difference is between 
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agents with and without training, with agents with trained policies having a significant 

advantage in the week following the training. From a total profit of 13.29 EUR to a loss of 3.78 

EUR, untrained agents incurred a loss. Comparing trained agents, those with DDPG saved 15.99 

EUR (i.e., from a cost of 7.38 EUR to a profit of 8.61 EUR, representing savings of 217 %), while 

those with TD3 saved 28.66 EUR (i.e., from a cost of 36.64 EUR to a cost of 7.97 EUR, 

representing savings of 78 %). These results demonstrate that agents trained with the TD3 

algorithm realized greater cost savings. Analysing the results, in what regards the percentage, 

the DDPG had better results, but this is due to the low cost previously associated with the 

customers who trained with this algorithm, going from having costs to profit. 

 
Figure 36 – Comparison of the energy costs during the week before and the week after the RL 

training, for both RL algorithms and the agents without training 

The final metric used is the amount of energy traded on the P2P market. As a matter of fact, it 

can also be used as an evaluation metric for the participation of agents in the market as a 

community, since the goal is to maximize the energy transacted to create greater sustainability 

within the energy community while interacting with the utility grid as little as possible. Figure 

37 shows the energy exchanged per period in the week preceding and following RL training. As 

can be seen, in the vast majority of periods following training, the amount of energy transferred 

increased by 40 %, from 245.11 kWh to 342.84 kWh, getting much closer to the maximum value 

throughout the week (i.e., 387.39 kWh). 

 
Figure 37 – Energy transacted in the P2P market before and after the RL training 
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The results obtained are highly positive, particularly when comparing the performance of 

trained and untrained customers. It is apparent that a customers trained with one of the RL 

models can make use of the intelligence it provides to employ the best strategies in each 

situation to minimize their energy costs. In addition, since training is conducted competitively 

with other customers, it is possible to perceive multiple strategies and prepare the customer 

for various market circumstances. The proposed methodology considers the forecast error to 

deal with uncertainty, being an improvement when compared, for instance, to the model 

proposed in (Qiu et al., 2021), where forecast errors are not considered. Also, this case study 

used a realistic dataset, with real measurements, for a community of 50 agents, contributing to 

the testing of the scalability of the proposed ecosystem and used algorithms. The dataset used 

is a public dataset that can be used by other authors to compare results (Goncalves et al., 2022). 

6.4 Smart Building Participation in Peer-to-Peer Markets 
Considering Energy Storage Systems 

This case study considers an energy community with a total of 20 energy prosumers, where: (i) 

energy community members are able to search for better demand hour-ahead forecast services, 

with the main objective of lowering their forecast errors, and (ii) using the forecasting results 

obtained from the first part of the case study, the community members can participate in a P2P 

market. The main objective is to understand if the decrease of forecast erros can increase 

positively the P2P participation. The results of this case study are part of two scientific papers: 

• [Conference] Helder Pereira, Bruno Ribeiro, Luis Gomes, Zita Vale (2022) “CECOS: a 

Centralized Management Platform Supported by Distributed Services to Represent and 

Manage Resources Aggregation Entities and its End-users in a Smart Grid Context”, 

presented in “11th Symposium on Control of Power and Energy Systems” (CPES 2022), 

doi: 10.1016/J.IFACOL.2022.07.054 

• [Journal – Under review] Helder Pereira, Bruno Ribeiro, Luis Gomes, Zita Vale “Smart 

grid ecosystem modelling using a novel framework for heterogenous agent 

communities” 

In the considered energy community, 6 prosumers will have energy storage systems (ESS). 

Although the energy community members’ energy profiles were created by using external data 

sources (i.e., (Goncalves et al., 2022) and (Working Group on Intelligent Data Mining and 

Analysis (IDMA), 2022)), the ESS are actual units available in GECAD, creating a hybrid simulation 

that will use simulated data and physical ESS. The 6 energy community members that have ESS, 

will be able to use them in an after-market phase to reduce costs related to the purchase and 

sale of energy on the grid. The 20 members will be integrated into an ACOM representing the 

energy community in A4SG, with access to a P2P energy trading market. Taking advantage of 

the functionalities provided by A4SG, a three-week simulation will be carried out where 

customers can adapt to reduce the costs inherent to their energy resources. In this scenario, 

the agents are able to move between different forecast services, with different error profiles. 
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The three considered forecasts are: (i) a baseline forecast, only using mathematical models, (ii) 

a support vector machines (SVM) model, and (iii) an artificial neural network (ANN) model. 

For customers’ participation in P2P energy transactions, the bids (i.e., energy amount to be 

transacted and maximum/minimum price accepted) are generated from pre-trained 

reinforcement learning policies, using the algorithms integrated for the case study presented in 

Section 6.3 (i.e., DPPG and TD3).  

At the beginning of the simulation, different groups and agents are created, both to guarantee 

the integrity of the ecosystem and of the simulation itself, as well as to represent energy 

community members and service providers. Table 12 presents the groups and the agents that 

are part of each one of them. In this case study there are two MAS: (i) in ARC there are the 

forecast groups, for the energy forecast service providers, represented by ACOMs, and (ii) in 

the Community MAS there is the ACOM to represent the energy community and its members. 

Each of the MAS has a Main ACOM to host representation agents, while the other ACOMs 

contain branch agents. Besides that, an ACOM main agent is needed in each one of the ACOMs 

to manage the groups and to communicate information about the ACOM to other agents, such 

as the objective of the group and the events or services history. As it is possible to conclude 

with the observation of Table 12, all groups, with the exception of the forecast groups, maintain 

their agents from the beginning to the end of the simulation. In the case of forecast groups, the 

members are dynamic, as energy customers will move between them, taking into account the 

performed evaluation. 

Table 12 – Ecosystem structure to support the case study: groups and agents 

Group 
Ecosystem 

Agents 
Representation 

Agents 
Branch Agents 

ARC 
1 MAS Main Agent 

1 Mobility Agent 
- - 

Main-ARC 1 ACOM Main Agent  
20 Customers 

2 service providers 
- 

Forecast Baseline 1 ACOM Main Agent - 
1 Service-oriented (Forecast) 

𝑁 Goal-oriented (Customers) 

in each group 

Forecast SVM 1 ACOM Main Agent - 

Forecast ANN 1 ACOM Main Agent - 

Community MAS 1 MAS Main Agent - - 

Main-Community MAS 1 ACOM Main Agent - - 

Energy Community with P2P 1 ACOM Main Agent - 

1 Service-oriented (Market 

Operator) 

20 Goal-oriented (Customers) 

The first situation to study is the mobility of agents across the forecast groups, and to see the 

effect that this mobility has on the error associated with the energy forecast services. As can be 

seen in Table 13, the final distribution of the agents is quite different from the initial one (i.e., 

random distribution), indicating that the agents were able to perform mobilities during the 

simulation to pursue better energy forecast results. At the end of the first week, the baseline 
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forecast lost more than half of its customers, and by the end of the second week, it was without 

any agents, proving that this was the worst service available to agents. Regarding the other two 

services, the one that uses an ANN as an algorithm is, in general, better than the service that 

uses an SVM. Even so, some of the agents stayed on the SVM forecast service provider until the 

last week, as it was the service that best adapted to their consumption and generation profiles. 

The community MAE dropped from 0.741 at the beginning of the simulation to 0.389 at the end. 

Table 13 – Forecast services groups’ customers and errors for each week of simulation 

Week 

Baseline Forecast SVM Forecast ANN Forecast 

Number of 
Customers 

Average MAE 
Number of 
Customers 

Average MAE 
Number of 
Customers 

Average MAE 

1 8 1.036 6 0.650 6 0.438 

2 3 0.627 6 0.513 11 0.401 

3 0 - 5 0.459 15 0.366 

One of the great advantages provided by PEAK, and used in A4SG, is the possibility of generating 

a chart with the groups that are part of the ecosystem so that it is possible to analyze them 

more graphically and intuitively. Figure 38 represents the chart from this case study. In this 

figure are represented the groups in the first and third weeks, showing the differences caused 

by the mobility functionality in the ecosystem hierarchy. Figure 38.a side shows the groups in 

the first week, and Figure 38.b shows the same groups in the third week. As expected, the chart 

shows the mobilities that were processed in the ecosystem during the simulation, reflecting the 

information provided in Table 13. 

 

Figure 38 – Ecosystem structure (extracted and adapted from the PEAK graphical interface) 

representing the names and the number of agents of agent communities: a) agent communities 

at week 1 showing the distribution of agents among the forecast providers, and b) agent 

communities at week 3 showing the distribution of agents among the forecast providers.  
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Figure 39 illustrates data for a single day of the week and a comparison of forecasts for the one 

of the energy community members, in order to better illustrate the impact of forecast mobility. 

The considered prosumer passed by all the forecast services, starting at the baseline, moving to 

the SVM, and finishing in the ANN forecast. As can be seen, the initial forecast is significantly 

out of step with actual consumption. The SVM forecast, despite already showing improvements, 

identifies numerous peaks that did not occur in reality, whereas the ANN forecast allows for a 

substantial increase in the accuracy of the consumption forecasts. 

 

Figure 39 – Forecast services comparison for one of the studied energy community members 

For these mobilities to have a positive effect on the energy customers, they must be used so 

that customers' participation in P2P markets is more effective and helps them to reduce energy 

costs. Figure 40 represents this analysis. In this figure, the second and third weeks are compared 

with the previous week for each customer in terms of energy costs. As it is possible to observe, 

most of the customers benefited from the mobility they performed, due to the decrease in 

energy forecast error. Only two of the energy community members were harmed (member 3 

and member 7), that is, 90 % of the members benefited from the change of their forecast service 

provider to a lower error forecast. Overall, comparing the third week of simulation with the first, 

there were savings of 10.62 EUR in the community. 

 

Figure 40 – Energy costs in the second and third weeks compared to the previous week 

Another factor that was influenced by the mobility of the agents is the use of ESS. Since ESS are 

used after the peer-to-peer market, to minimize the buying and selling of energy from and to 
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the grid, the more accurate the bids for peer-to-peer are, the less the use of ESS will be required. 

Figure 41 represents a comparison of the ESS load (state-of-charge) between weeks for each 

period. As it is possible to observe, the ESS were less used with the advance of the weeks, and 

there was a 22 % decrease in ESS usage comparing the final with the initial week. 

 

Figure 41 – ESS load (state-of-charge) comparison between weeks for each studied period 

To understand the benefits that this methodology provides to energy customers, two additional 

scenarios are simulated to serve as a baseline to assess the full scenario. The first scenario 

employs neither the P2P market nor the mobility proposed by A4SG, while the second scenario 

employs P2P but without mobility. To compare the three simulated scenarios, Table 14 shows 

the data regarding all the scenarios. The greatest difference, as expected, is the introduction of 

the P2P market, especially with intelligent bid strategies provided by the reinforcement learning 

policies. Mobility allows for extra energy savings, proving that it can help energy customers to 

adapt to a context more advantageous to them, which is the reduction of the energy forecasting 

model to be considered for the P2P.  

Table 14 – Scenarios comparison considering P2P and mobility 

Scenario Community Overall Cost (EUR) 
Mean Energy  

Price (EUR/kWh) 

Without P2P and mobility 585.49 0.142 

With P2P and without mobility 392.34 0.126 

With P2P and mobility 377.85 0.119 

6.5 Chapter Conclusions 

All the case studies presented and integrated into the proposed ecosystem demonstrated 

positive outcomes in terms of the energy customers’ active participation and the smart grid's 

overall benefits. 
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The case study involving aggregators and DR was the greater test for the virtual mobility 

functionality, in which a personalized method for evaluating participation in DR was proposed 

and used to trigger the mobility of agents. In comparison to a random distribution of customers 

per aggregator, the mean proposed flexibility fitting rate increased from 12 % to 69 % in a 

simulation lasting ten weeks. This indicates that the adequacy between the DR events of 

aggregators and the flexibility profiles of energy customers increased. 

In the case studies related to participation in P2P markets (i.e., Optimize Participation in P2P 

Markets Using Reinforcement Learning and Smart Building Participation in P2P Markets 

Considering Energy Storage Systems), intelligent participation in P2P markets was able to help 

energy customers reducing their energy bills. This intelligent participation was made possible 

through the application of the proposed reinforcement learning service, which was shown to 

be implementable in a complex smart grid domain dealing with the uncertainty that demand 

forecasting introduces. In addition, the integration of this type of service is essential for 

reducing the energy market prices and the CO2 emissions generated by the customers of an 

energy community, as their interaction with the grid to buy and sell energy decreases. 

In conclusion, the case studies were able to test each of the proposed services and 

functionalities that were integrated into the ecosystem, as well as the ecosystem as a whole, 

particularly in terms of agent deployment, communication, and interoperability. Moreover, 

compared to other types of methodologies, the functionalities incorporated into A4SG place 

the decision on the customer's side, emphasizing the strategy of customer empowerment. 
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7 Conclusions 

This chapter will focus on the major conclusions drawn from this dissertation. Additionally, the 

achieved objectives will be described. Several functionalities and capabilities are proposed for 

future integration in order to contribute to the ecosystem's evolution. 

7.1 Main Conclusions 

With the completion of the described work, it is possible to conclude that all objectives have 

been achieved and all research questions have been answered. During the project's 

development, unexpected obstacles and difficulties emerged that demanded the re-planning 

of certain options in order to achieve the best results; however, the final results meet the 

initially defined objectives. 

The first objective addressed in this dissertation was to deeply investigate the multi-agent 

system's state-of-the-art, especially when applied to the smart grid domain, to identify the main 

gaps of the literature (accomplishing O1 and answering RQ1, defined in Section 1.2). The 

proposed agent-based ecosystem (i.e., A4SG) presents an advance in the current multi-agent 

systems literature, filling the identified gaps in Chapter 2.  

The proposed A4SG enables agents from multiple multi-agent systems and agent communities 

to coexist in a unified solution (related to O2, O3, and RQ2). A4SG's distributed solution allows 

it to circumvent the issue that agent-based systems are highly specialized and have specific 

objectives. This ecosystem takes a novel approach, providing an open society of agents in which 

all types of entities can register and take advantage of the ecosystem's functionalities and the 

services offered by other agents. Besides that, it enables the representation of real energy 

customers and smart grid entities, providing multiple types of agents to deal with the different 

parameters that they can handle. The most significant innovation relates to the system 

architecture and its novel functionalities. 
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The proposed functionalities have a great impact on the ecosystem operation and bring 

significant advantages to the smart grid customers. The physical mobility allows agents to move 

between physical hosts, which, when combined with the computing load balancing 

functionality, prevents the physical hosts registered in A4SG from becoming overloaded. The 

virtual mobility functionality covers a big gap in the literature of multi-agent systems and smart 

grids, as it enables agents to move between agent-based systems considering their context, in 

order to find the groups that best suit their energy resources, therefore representing the 

dynamic interactions of the smart grid. The branching functionality enables agents to have 

multiple representations in the ecosystem simultaneously. This facilitates the participation in 

multiple aggregation entities and smart grid services. Finally, the objective interdependency 

and the intra-agent conflict resolution functionalities enable different branch agents to 

optimize their performance and operation, considering personalized comfort and cost functions. 

The conception, development, testing, and validation of these functionalities contribute to O4, 

O5, O6, O7, O9, and RQ3. 

In A4SG there is integrated a web-based platform, entitled CECOS, that can enable a more 

intuitive use of the ecosystem. It integrates multiple smart grid services, such as tariff 

management and demand response, and it also enables the direct registration of new services. 

It enables the monitoring of the agents and the data analysis of its resources. As such, a 

graphical user interface facilitates the connection between customers and agents, besides 

facilitating the understanding of service results. 

The training of reinforcement learning policies for the ecosystem’s agents is one of the services 

integrated into A4SG. This service allows the training of decisions in controlled environments 

provided by the reinforcement learning approach. Because this service is located in the 

ecosystem, outside individual agents, already existing and deployed agents can use this service 

without needing modifications in their source codes, representing a significant advancement 

when compared to state-of-the-art approaches. The development and integration of this 

service is related to O8 and RQ4. 

To test and evaluate the use of the ecosystem, developed multiple case studies were developed, 

in which different functionalities and services of the solution are tested. The designed case 

studies demonstrated the capability of validating the entire solution. The results demonstrated 

the possibility for the energy customers to reduce their energy bills with the use of 

reinforcement learning to participate in peer-to-peer transactions or virtual mobility to enhance 

their participation in demand response programs through aggregators. These case studies 

contribute to O9 and O10. 

As a result of the solution testing and validation, it is possible to conclude that customer 

empowerment strategies can be advantageous for both the customers and the system as a 

whole. A4SG's entire methodology is based on the idea of putting the decision-making power 

in the hands of the customers, based on customized functions and equations that are tailored 

to the preferences of each individual customer. With this, the entire smart grid can benefit, as 

each customer can automate the optimization of their resources, thereby contributing , for 

instance, to the reduction of CO2 emissions. 
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The proposed ecosystem, being a combination of multiple complex models and functionalities, 

facilitates the practical implementation of the new European directives in the area of power 

and energy systems, namely energy markets, whose wide-scale execution demands novel 

models. This dissertation produced multiple substantial outputs that can be replicated and 

applied in other projects. Multiple models and functionalities were conceived, developed, 

tested, and validated, from which stand out: the reinforcement learning model to improve peer-

to-peer participation, the virtual mobility functionality supported by a model of energy 

customers aggregation based on unsupervised machine learning, and the branching 

functionality that allows the decentralized pursuit of agent objectives.  

This dissertation resulted in 10 scientific publications, from which six have been published or 

are in the process of being published in journals, and the other four have been presented at 

scientific conferences. These papers serve as proof that the proposed solution is innovative and 

fills the identified gaps in the state of the art. 

7.2 Future Work 

The proposed work has proved its value in achieving all the initially defined objectives in 

different contexts. Despite that, there are some possible adjustments and upgrades that can be 

made to improve the possible uses of A4SG. 

The integration of multiple agent-based systems in A4SG demonstrated to be a good approach 

to intuitively improve the interoperability between different systems and agents. However, the 

definition of a common vocabulary, for instance, through middleware data translators can be a 

good improvement, that would facilitate other developers to integrate their systems into A4SG. 

Middleware data translators, unlike the proposed communication protocols translator in this 

dissertation, which aims to increase the number of agents that receive messages, aim to give a 

meaningful representation to each agents’ message. 

The implementation of the abstract reinforcement learning service shown to be easily deployed 

in a smart grid setting, more especially, peer-to-peer market participation optimization. To 

rigorously test this service, its implementation in other smart grid domains, such as 

participation in demand response programs, or more complex tasks, such as energy resources 

usage optimization, can be carried out. In addition, a more robust test of the service can be 

conducted in a domain unrelated to the smart grid. 

The final future work task, that would have a great impact, is the test and adaptation of the 

A4SG to other domains. The core concept of the ecosystem, as well as the conception of the 

different types of agents, is unrelated to a particular domain; as such, it would be a good test 

of the ecosystem concept, and extremely beneficial if the results are positive.  
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