5,954 research outputs found

    Numerical validation of a population balance model describing cement paste rheology

    Get PDF
    Rheology control is essential during the period in which cement and concrete pastes are encountered in the fresh state, due to the fact that it directly affects workability, initial placement and the structural performance of the hardened material. Optimizations of clinker formulations and reductions in cement-to-water ratios induced by economic and environmental considerations have a significant effect in rheology, which invokes the need for mechanistic models capable of describing the effect of multiple relevant phenomena on the observed paste flow. In this work, the population balance framework was implemented to develop a model able to relate the transient microstructural evolution of cement pastes under typical experimental conditions with its macroscopic rheological responses. Numerical details and performance are assessed and discussed. It was found that the model is capable of reproducing experimentally observed flow curves by using measured cluster size distribution information. It is also able to predict the complex rheological characteristics typically found in cement pastes. Furthermore, a spatially resolved scheme was proposed to investigate the nature of flow inside a parallel-plates rheometer geometry with the objective of assessing the ability of the model of qualitatively predicting experimentally observed behavior and to gain insight into the effect of possible secondary flows

    Numerical modelling of polydispersed flows using an adaptive-mesh finite element method with application to froth flotation

    Get PDF
    An efficient numerical framework for the macroscale simulation of three-phase polydispersed flows is presented in this thesis. The primary focus of this research is on modelling the polydispersity in multiphase flows ensuring the tractability of the solution framework. Fluidity, an open-source adaptive-mesh finite element code, has been used for solving the coupled equations efficiently. Froth flotation is one of the most widely used mineral processing operations. The multiphase, turbulent and polydispersed nature of flow in the pulp phase in froth flotation makes it all the more challenging to model this process. Considering that two of the three phases in froth flotation are polydispersed, modelling this polydispersity is particularly important for an accurate prediction of the overall process. The direct quadrature method of moments (DQMOM) is implemented in the Fluidity code to solve the population balance equation (PBE) for modelling the polydispersity of the gas bubbles. The PBE is coupled to the Eulerian--Eulerian flow equations for the liquid and gas phases. Polydispersed solids are modelled using separate transport equations for the free and attached mineral particles for each size class. The PBE has been solved using DQMOM in a finite element framework for the first time in this work. The behaviour of various finite element and control volume discretisation schemes in the solution of the PBE is analysed. Rigorous verification and benchmarking is presented along with model validation on turbulent gravity-driven flow in a bubble column. This research also establishes the importance of modelling the polydispersity of solids in flotation columns, which is undertaken for the first time, for an accurate prediction of the flotation rate. The application of fully-unstructured anisotropic mesh adaptivity to the polydispersed framework is also analysed for the first time. Significant improvement in the solution efficiency is reported through its use.Open Acces

    Modelling of biological systems using multidimensional population balances

    Get PDF
    Biological systems are intrinsically heterogeneous and, consequently, their mathematical descriptions should account for this heterogeneity as it often influences the dynamic behaviour of the individual cells. For example, in the cell cycle dependent production ofproteins, it is necessary to account for the distribution of the individual cells with respect to their position in the cell cycle as this has a strong influence on protein production. A second notable example is the formation of cancerous cells. In this case, the failure of regulatory mechanisms results in the transition of somatic cells to their cancerous state. Therefore, in developing the corresponding mathematical model, it is necessary to consider both the different states of the cells as well as their regulation. In this regard, the population balance equation is the ideal mathematical framework to capture cell population heterogeneity as it elegantly takes into account the distribution of cell populations with respect to their intracellular state together with the phenomena of cell birth, division, differentiation and recombination. Recent developments in solution algorithms together with the exponential increase in computational abilities now permit the efficient solution of one-dimensional population balance models which attribute the heterogeneity of cell populations to differences in the age or mass of individual cells. The inherent complexity of biological systems implies that the differentiation of cells based on a single characteristic alone may not be sufficient to capture the underlying biological phenomena. Therefore, current research is focussing on the development of multi-dimensional population balances that consider the differentiation of cells based on multiple characteristics, most notably, the state of cells with respect to key intracellular metabolites. However, conventional numerical techniques are inefficient for the solution of the formulated population balance models and this warrants the development of novel, tailor-made algorithms. This thesis presents one such solution algorithm and demonstrates its application to the study of several biological systems. The algorithm developed herein employs a finite-volume technique to convert the partial-differential equation comprising the population balance model into a set of ordinary differential equations. A two-tier technique based on the solution technique for inhomogeneous differential equations is then developed to solve the system of ordinary differential equations. This approach has two main advantages: (a) the decomposition technique considerably reduces the stiffness of the system of equations enabling more efficient solution, and (b) semianalytical solutions for the integrals employed in the modelling of cell division and differentiation can be obtained further reducing computation times. Further improvements in solution efficiency are obtained by the formulation of a two-level discretisation algorithm. In this approach, processes such as cell growth which are more sensitive to the discretisation are solved using a fine grid whereas less sensitive processes such as cell' division - which are usually more computationally expensive - are solved using a coarse grid at a higher level. Thus, further improvements are obtained in the efficiency of the technique. The solution algorithm is applied to various multi-dimensional population balance models of biological systems. The technique is first demonstrated on models of oscillatory dynamics in yeast glycolysis, cell-cycle related oscillations in eukaryotes, and circadian oscillations in crayfish. A model of cell division and proliferation control in eukaryotes is an example of a second class of problems where extracellular phenomena influence the behaviour of cells. As a third case for demonstration, a hybrid model of biopolymer accumulation in bacteria is formulated. In this case, cybernetic modelling principles are used to account for intracellular competitions while the population balance framework takes into consideration the heterogeneity of the cell population. Another important aspect in the formulation ofmulti-dimensional population balances is the development of the intracellular models themselves. While research in the biological sciences is permitting the formulation of detailed dynamic models of various bioprocesses, the accurate estimation of the kinetic parameters in these models can be difficult due to the unavailability of sufficient experimental data. This can result in considerable parametric uncertainty as is demonstrated on a simple cybernetic' model of biopolymer accumulation in bacteria. However, it is shown that, via the use of systems engineering tools, experiments can be designed that permit the accurate estimation of all model parameters even when measurements pertaining to all modelled quantities are unavailable.Imperial Users onl

    Effects of Aging and Crystal Attributes on Particle Size Distributions in Breakage Experiments in Stirred Vessels

    Get PDF
    Particle breakage can be significant in stirred vessels such as crystallizers. During crystallization, particle breakage can occur due to particle contact with other particles, the impeller, the suspension fluid, and/or the vessel. Such breakage produces fines and can cause filter plugging downstream. Although research has been conducted with respect to particle breakage, a comprehensive study is still needed to quantify the breakage occurring in stirred vessels. The overall goal of this research is to model the particle breakage occurring in a stirred vessel by analyzing the particle size and shape distributions that result from breakage. Breakage experiments are based on collision influences that affect the two dominant collisions types, crystal-to-crystal and crystal-to-impeller collisions. Results showed that the quantity of fines produced are affected by the solids concentration or magma density and suspension fluid utilized. Additionally, aqueous saturated solutions produced particle size distributions that differ from those obtained using a nonsolvent. Similar particle size distributions for two different materials (NaCl and KCl) are achieved in the same nonsolvent (acetonitrile) by adjusting the agitation rate using the Zwietering correlation to account for property differences; moreover, the same agitation rate adjustment produced similar distributions for KCl in acetone and acetonitrile which were both nonsolvents. However, modifications to the Zwietering correlation, such as changing the significance of the initial particle size, are proposed before this method of adjustment is deemed accurate. Number-based population modeling of particle breakage is achieved within 1-5% error for NaCl at each agitation rate investigated. Breakage modeling using a discretized population balance equation with Austin\u27s equation for attrition and the power law form of the product function for fragmentation is a viable approach; however, more work is needed to increase the accuracy of this model

    Nickel powder precipitation by high-pressure hydrogen reduction

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 87-91).The effect of impurities on the precipitation behaviour of nickel powder produced by high-pressure hydrogen reduction was investigated in order to determine the factors responsible for the formation of powder with undesirable morphology. In nickel precipitation by hydrogen reduction, two product morphologies have been observed: the spherical, open powder (desirable) and the spherical, closing/closed powder (undesirable). Two major impurities were studied namely; a morphology modifier (a polyacrylic acid derivative) used as an additive and iron which is an inherent impurity

    Quadrature-based models for multiphase and turbulent reacting flows

    Get PDF
    The simulation of physical systems requires accurate and robust methods with relatively low cost and it is still the challenge in many applications of engineering processes, specifically in multiphase flow systems. Soot formation, distribution of the aerosols in the atmosphere, reactive precipitation, and combustion modeling are some examples of these processes. Computer simulations of theses systems require a model that can be adapted to that reality. In this study, a quadrature based method of moments (QBMM) is used to address the problems related to the reactive multiphase flow systems. First, the log-normal kernel density function is implemented into the extended quadrature method of moments (Ln-EQMOM). Ln-EQMOM is verified reconstructing the NDF and calculating the moments of a distribution obtained by the linear combination of two log-normal distributions. Later, this numerical procedure is used for problems of aggregation and breakup of fine particles to solve the population balance equation (PBE). The results are compared to the rigorous solutions reported for the cases under consideration \citep{vanni2000}. Finally, the method is verified using two analytically known problems (\textit{e.g.} coalescence and condensation). In comparison to EQMOM with Γ\Gamma kernel density function \citep{yuan2012}, Ln-EQMOM is faster in terms of computations and it preserves the moments more accurately. Then EQMOM with β\beta kernel density function is implemented to approximate the solution of the transport equation for the composition probability density function (PDF) of a passive scalar using the Fokker-Planck model to treat the molecular mixing term. The results then compared in a similar condition to those obtained with direct numerical simulation (DNS). The L2L_2 norm of the PDF is reported for two test cases that have been considered. Later the new approach is introduced to address the problems includes the mixing and reaction. Conditional quadrature method of moments (CQMOM) and using the joint composition PDF for the mixture fraction and progress variables, it is possible to address the problems with two consecutive competitive reactions, one reaction and fast reaction, all including the mixing of reactants. direct quadrature method of moments (DQMOM) also expressed for the joint composition PDF. Results obtained with CQMOM and DQMOM are compared with each other. Finally, the CQMOM approach for mixing problems was tested considering two consecutive competitive reactions to verify the implementation and validate the proposed approach. Coupled mixing-PBE approach was then used to investigate polymer aggregation in a multi-inlet vortex reactor (MIVR), typically used to perform flash nanoprecipitation for the production of nanoparticles used in pharmaceutical applications

    Modeling, optimization, and sensitivity analysis of a continuous multi-segment crystallizer for production of active pharmaceutical ingredients

    Get PDF
    We have investigated the simulation-based, steady-state optimization of a new type of crystallizer for the production of pharmaceuticals. The multi-segment, multi-addition plug-flow crystallizer (MSMA-PFC) offers better control over supersaturation in one dimension compared to a batch or stirred-tank crystallizer. Through use of a population balance framework, we have written the governing model equations of population balance and mass balance on the crystallizer segments. The solution of these equations was accomplished through either the method of moments or the finite volume method. The goal was to optimize the performance of the crystallizer with respect to certain quantities, such as maximizing the mean crystal size, minimizing the coefficient of variation, or minimizing the sum of the squared errors when attempting to hit a target distribution. Such optimizations are all highly nonconvex, necessitating the use of the genetic algorithm. Our results for the optimization of a process for crystallizing flufenamic acid showed improvement in crystal size over prior literature results. Through the use of a novel simultaneous design and control (SDC) methodology, we have further optimized the flowrates and crystallizer geometry in tandem.^ We have further investigated the robustness of this process and observe significant sensitivity to error in antisolvent flowrate, as well as the kinetic parameters of crystallization. We have lastly performed a parametric study on the use of the MSMA-PFC for in-situ dissolution of fine crystals back into solution. Fine crystals are a known processing difficulty in drug manufacture, thus motivating the development of a process that can eliminate them efficiently. Prior results for cooling crystallization indicated this to be possible. However, our results show little to no dissolution is used after optimizing the crystallizer, indicating the negative impact of adding pure solvent to the process (reduced concentration via dilution, and decreased residence time) outweighs the positive benefits of dissolving fines. The prior results for cooling crystallization did not possess this coupling between flowrate, residence time, and concentration, thus making fines dissolution significantly more beneficial for that process. We conclude that the success observed in hitting the target distribution has more to do with using multiple segments and having finer control over supersaturation than with the ability to go below solubility. Our results showed that excessive nucleation still overwhelms the MSMA-PFC for in-situ fines dissolution when nucleation is too high

    Morphological population balance modelling of the effect of crystallisation environment on the evolution of crystal size and shape of para-aminobenzoic acid

    Get PDF
    A current morphological population balance (MPB) modelling methodology, which integrates crystal morphology, facet growth kinetics with multi-dimensional population balance, is overviewed and demonstrated, hence providing an attractive approach for modelling crystallisation processes. MPB modelling is applied to simulate the batch crystallisation of the alpha-form of para-aminobenzoic acid from ethanolic solutions as a function of the crystallisation environment including cooling rate, seeding temperature and seed conditions (loading, size and shape). The evolution of crystal shape/size and their distributions revealed that higher loading led to smaller and less needle-like crystals with similar yields, hence potentially being an important parameter for process control. Examination of the development of the fracture surface for broken seeds, mimicking the seed conditions after milling in practice in the simulated processes, demonstrated that these faces grew fast and then rapidly disappeared from the external crystal morphology. Restriction and challenges inherent in the current model are also highlighted

    Measurement, modelling, and closed-loop control of crystal shape distribution: Literature review and future perspectives

    Get PDF
    Crystal morphology is known to be of great importance to the end-use properties of crystal products, and to affect down-stream processing such as filtration and drying. However, it has been previously regarded as too challenging to achieve automatic closed-loop control. Previous work has focused on controlling the crystal size distribution, where the size of a crystal is often defined as the diameter of a sphere that has the same volume as the crystal. This paper reviews the new advances in morphological population balance models for modelling and simulating the crystal shape distribution (CShD), measuring and estimating crystal facet growth kinetics, and two- and three-dimensional imaging for on-line characterisation of the crystal morphology and CShD. A framework is presented that integrates the various components to achieve the ultimate objective of model-based closed-loop control of the CShD. The knowledge gaps and challenges that require further research are also identified
    corecore