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ABSTRACT 

Ridder, Bradley J. Ph.D., Purdue University, May 2015.  Modeling, Optimization, and 
Sensitivity Analysis of a Continuous, Multi-Segmented, Multi-Addition Plug-Flow 
Crystallizer for the Production of Active Pharmaceutical Ingredients. Major Professor: 
Zoltan Nagy. 
 
 
We have investigated the simulation-based, steady-state optimization of a new type of 

crystallizer for the production of pharmaceuticals. The multi-segment, multi-addition 

plug-flow crystallizer (MSMA-PFC) offers better control over supersaturation in one 

dimension compared to a batch or stirred-tank crystallizer. Through use of a population 

balance framework, we have written the governing model equations of population 

balance and mass balance on the crystallizer segments. The solution of these equations 

was accomplished through either the method of moments or the finite volume method. 

The goal was to optimize the performance of the crystallizer with respect to certain 

quantities, such as maximizing the mean crystal size, minimizing the coefficient of 

variation, or minimizing the sum of the squared errors when attempting to hit a target 

distribution. Such optimizations are all highly nonconvex, necessitating the use of the 

genetic algorithm. Our results for the optimization of a process for crystallizing 

flufenamic acid showed improvement in crystal size over prior literature results. Through 

the use of a novel simultaneous design and control (SDC) methodology, we have further 

optimized the flowrates and crystallizer geometry in tandem. 
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 We have further investigated the robustness of this process and observe significant 

sensitivity to error in antisolvent flowrate, as well as the kinetic parameters of 

crystallization. We have lastly performed a parametric study on the use of the MSMA-

PFC for in-situ dissolution of fine crystals back into solution. Fine crystals are a known 

processing difficulty in drug manufacture, thus motivating the development of a process 

that can eliminate them efficiently. Prior results for cooling crystallization indicated this 

to be possible. However, our results show little to no dissolution is used after optimizing 

the crystallizer, indicating the negative impact of adding pure solvent to the process 

(reduced concentration via dilution, and decreased residence time) outweighs the positive 

benefits of dissolving fines. The prior results for cooling crystallization did not possess 

this coupling between flowrate, residence time, and concentration, thus making fines 

dissolution significantly more beneficial for that process. We conclude that the success 

observed in hitting the target distribution has more to do with using multiple segments 

and having finer control over supersaturation than with the ability to go below solubility. 

Our results showed that excessive nucleation still overwhelms the MSMA-PFC for in-situ 

fines dissolution when nucleation is too high. 
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

In recent years, the continuous production of pharmaceuticals has grown considerably in 

research attention. Currently, most pharmaceuticals are produced via batch processes, at 

considerable expense and difficulty. A variety of financial [1]–[11] and regulatory [12] 

pressures on the pharmaceutical industry has motivated the research into cost-saving, 

streamlined approaches to their operations. The “blockbuster drug” business model has 

proven financially unsustainable. Drugs can take from 10-15 years to develop, have only 

a 20% chance of FDA approval, and cost between $800 million and $1 billion to bring to 

market [13]–[15]. Many currently-available, on-patent drugs lack suitable profit-

generating replacements once their predecessors go off-patent, and the drug industry 

faces stiff competition from generic manufacturers. 

 

Crystallization is an area of considerable interest from the standpoints of continuous drug 

manufactures as well as process systems engineering. While useful for small quantities of 

drugs, drugs which require higher production volumes would benefit greatly from 

continuous crystallization. As a pure systems problem, crystallization processes are 

interesting due to their high nonlinearity. 
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These processes demand a different set of mathematical tools to model and optimize 

them properly, as well as different solution approaches. 

  

Continuous crystallization systems, while already heavily used in many other industries, 

have attracted new interest for application to pharmaceuticals. Current methods of 

crystallization are focused overwhelmingly on batch systems. This is problematic, since 

batch systems have intrinsic drawbacks related to design, control, and scale-up. 

Continuous crystallization systems can be considered a sub-field of the more general 

research field of process intensification. 

 

A variety of new crystallizer designs have been proposed that can, via novel flow 

chemistry, crystallize drugs with a greater level of precision and control. One particular 

type of continuous crystallization is the plug flow crystallizer (PFC), which has been the 

subject of several investigations in recent literature (see Table 4 beginning on page 84). 

Lakerveld et al. [16] pointed out the need for more investigation into the crystallizer 

design itself, and that detailed modeling would be needed for the optimization thereof. A 

new design based on the PFC is the multisegment, multi-addition plug flow crystallizer 

(MSMA-PFC). This crystallizer is a group of PFCs linked in series, with an independent 

supersaturation actuator for each segment. This design allows for greater control of 

supersaturation in one dimension versus a stirred tank. 

 

Currently, there is a lack of design and optimization methodology in the literature for 

continuous crystallization systems. Multiobjective optimization is a useful tool for fully 
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investigating the tradeoffs between possible designs of a system, as well as identifying 

the envelope of attainability [17]. Much benefit could be achieved by use of an integrated 

framework for the design, optimization, and robustness analysis of new crystallizer 

designs, of which the MSMA-PFC is a contemporary example. Such a methodology 

would help trim the design space considerably when searching for an optimal design. 

 

The robustness and sensitivity of continuous crystallization systems for pharmaceutical 

use has also gone unstudied. The topic of sensitivity in crystallizers has been examined 

for the case of batch crystallizers by Ma et al. [18] using a worst-case framework, which 

among other conclusions showed that inaccurate control can wipe out the entire benefit of 

optimal control. For effective design and operation of new crystallizer technologies, it is 

important to know the impact of parametric uncertainty, random disturbances, control 

error, and observer uncertainty on quantities of interest (e.g. shift in CSD shape, purity). 

 

 

 

1.2 Research Aim and Objectives 

The aim of this research is to develop a framework for modelling and optimizing a new 

type of antisolvent plug-flow crystallization systems, the MSMA-PFC. To analyze 

continuous crystallization system, we borrow the concepts of constrained optimization 

from the field of process systems engineering. By use of this modelling and optimization 

framework, we can investigate the capabilities of the system for achieving desirable 

properties of the generated crystals. Such a framework can gauge the feasibility of a plug-
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flow crystallization system for producing high-quality crystals of a particular drug, given 

correct experimental parameters. It can also predict correct operating conditions and 

vessel designs that will produce crystals with desired properties. We summarize our aims 

as: 

a. To gain a broad view of the impact of continuous crystallization’s potential via a 

thorough literature review of the continuous drug manufacturing research field. 

b. To develop a model-based simulation framework for modelling the plug-flow 

crystallization process. 

c. Unite the simulation framework with a multiobjective optimization methodology 

in order to investigate possible control strategies. This combined simulation-

optimization based framework is used throughout this work as a method of 

optimizing the properties of crystals at the exit of the crystallizer. 

d. As an example of this framework in action, analyze the performance of a new 

type of plug-flow crystallizer, termed the multi-segment, multi-addition plug-flow 

crystallizer (MSMA-PFC). This apparatus consists of a group of PFC’s linked in 

parallel, each with independent supersaturation control. To demonstrate this 

framework in action, our chosen crystal properties have been the size and spread 

of the crystal size distribution – though the framework is extendable to other 

important quality measures such as polymorph content or aspect ratio. 

e. Examine the sensitivity of the crystallization process, and determine the how this 

sensitivity affects the design considerations for design and control. 

f. To create a simultaneous design and control methodology which optimizes over 

not only flowrates but the actual crystallizer geometry as well. 
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g. To investigate the feasibility of plug-flow antisolvent crystallization for 

eliminating undesirable small crystals (“fines”). 

1.3 Research Contributions 

The main contributions of this thesis are summarized as: 

a. This thesis surveys not only the continuous crystallization literature, but the 

continuous pharmaceutical manufacturing field holistically. By overviewing the 

research field in this manner, it becomes more apparent how our contributions fit 

into the greater network of ideas and concepts. 

b. Through use of a population balance model-based framework, we have developed 

a model for the MSMA-PFC, coupled with the mass balance equation, which can 

track the properties of drug crystals at the exit of the crystallizer. This model 

incorporates the effects of dilution and also dissolution. 

c. Demonstrated that the optimization of a multi-segment plug-flow crystallizer is a 

nonconvex problem. 

d. Used multi-objective optimization (aided by the genetic algorithm) to investigate 

the envelope of performance of the crystallizer, and compared obtained values 

with prior literature results. Our results compare favorably (e.g. larger crystals). 

This methodology was able to successfully surmount the observed nonconvexity 

of the MSMA-PFC optimization problem. 

e. Investigated the sensitivity and robustness of the MSMA-PFC with respect to 

uncertainty in important values such as flowrate and kinetic rate parameters. 

Using a Monte-Carlo method, we determined that error in flowrate significantly 

affects the performance of the MSMA-PFC. Also, we found that significant 
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coupling exists between errors in crystallizer inputs, which significantly impacts 

the design and operation of the crystallizer. 

f. Through use of a simultaneous design and control (SDC) methodology, we 

successfully optimized not only the individual flowrates in the MSMA-PFC, but 

the geometry of the crystallizer as well. Significant improvement is shown when 

using SDC versus optimizing flowrates alone on a static geometry. 

g. Demonstrated that the dissolution of fine crystals in-situ is a sub-optimal strategy 

for the MSMA-PFC class of crystallization problems. 

 

 

 

1.4 Thesis Structure 

CHAPTER 1 of this thesis gives a broad overview of the remainder of the work. This is 

to supply the reader with a “bird’s eye view” of the topics discussed herein.  

 

CHAPTER 2 provides the reader with a literature review. We begin with a discussion of 

the current manufacturing process in pharmaceuticals, and discuss various problems and 

challenges related to it. New continuous technologies are discussed as well in areas 

outside of crystallization. We move then onto the importance of crystallization in the 

manufacture of drugs, and how continuous crystallization can solve many current 

problems encountered with batch crystallization. The remainder of the chapter is 

background information to help the reader understand the work in 
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CHAPTER 3 provides a more specific literature review on the topic of continuous 

crystallization. We give an overview of many contemporary devices for crystallization. A 

table at the end of the chapter neatly summarizes many studies of continuous 

crystallization for the reader. 

 

CHAPTER 4 is the first contribution chapter of this work. It presents our results on the 

multiobjective optimization of the MSMA-PFC. We further investigate the robustness of 

the design with respect to uncertainty in kinetic parameters as well as flowrate. 

 

CHAPTER 5 revisits the system from CHAPTER 4 on the simultaneous design and 

control (SDC) problem.  In this problem, we optimize the crystallizer not only over the 

flow profile, but the vessel geometry as well. Significantly more control over mean size is 

shown possible by optimizing both design and control in tandem. 

 

CHAPTER 6 is the final contribution of this work. In this chapter, we have investigated 

the use of the MSMA-PFC for in-situ dissolution of fine crystals. Unlike in Chapter 4, the 

new MSMA-PFC is capable of going below solubility, thus dissolving fine crystals while 

keeping large ones. The results show however, that dissolution is shown to be a sub-

optimal strategy. Comparison with prior in-situ fines dissolution work is given as well. 

 

CHAPTER 7 is our summary and future directions chapter. In this chapter, we 

summarize the results of the previous chapters. We furthermore expound upon new 
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technologies and extensions of this work that can be of significant impact in 

crystallization design and control. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Introduction 

We begin with a general overview of the present state of pharmaceutical manufacturing, 

which foreshadows the benefits of continuous pharmaceutical manufacturing (CPM) 

discussed in section 2.2. The flowchart in Figure 2.1 below gives an overview of a drug 

manufacturing process (based on the diagrams in [1], [19]). This flowchart will serve as a 

useful guide in the discussion of pharmaceutical manufacturing. Once the basic process 

overview behind pharmaceutical manufacturing is presented to the reader, it will be clear 

what problems affect the process, and how our work fits in as a solution to some of those 

problems. 

 

 

 

2.1.1 Synthesis 

In Figure 2.1 below, raw materials enter the process at two points. At the start of the 

process, raw material precursors are transported to the manufacturing site for use in 

synthesis to create that active pharmaceutical ingredient (API). The API is the molecule 

which actually provides the curative effect to the patient. 
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During this phase of the operation, precursors are reacted together, which usually takes 

several reactions and work-up steps to attain the desired molecular form. In certain 

instances (e.g. penicillin), a bioreactor or fermenter is used to directly synthesize the API, 

followed by a variety of cleaning and filtration steps. Multiple syntheses reduce overall 

yield significantly. During this phase, workers may be in contact with toxic amounts of 

precursor or final API compounds. The solution containing the API is contaminated with 

unreacted compounds and organic solvents, and requires a separation. 
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Figure 2.1 Basic flowchart of a pharmaceutical manufacturing process. 
 

 

 

2.1.2 Separation 

Observing the middle of Figure 2.1, crystallization is the secondary process in 

pharmaceutical manufacture [1], [19]. This section directly relates to this thesis, as we are 
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investigating a new type of crystallizer. This new MSMA-PFC design is an intensified 

process that alleviates many of the problems described in the crystallization section of 

Figure 2.1. Crystallization is a key pre-formulation operation in pharmaceuticals [1], [5], 

[20]–[23], and between 80% and 90% of drugs are purified in this way [21], [22], [24]. 

Crystallization is predominant because it can achieve very high purities (> 98%). 

Crystallization also does not require harsh conditions (e.g. distillation), which would 

likely destroy most API molecules. Multiple crystallizations may be necessary to achieve 

sufficient purity, much in the same way that multiple equilibrium stages are required for 

distillation, liquid-liquid extraction, and gas-liquid extraction. Following crystallization, 

crystals require filtration, washing, and drying. The performance of the filtration, 

washing, and drying processes are highly dependent on the properties of the product 

crystals. The performance of downstream formulation processes are also dependent on 

crystal properties. 

 

 

 

2.1.3 Formulation 

“Formulation” is meant the final steps required to convert refined pharmaceutical crystals 

and various excipients into a “final dosage form” (FDF). As the name implies, an FDF is 

meant to deliver a precisely metered quantity of API to the patient.  Besides the quantity 

of drug, the dosage form must possess the desired physical and pharmacological 

properties that ensure proper bioavailability in the human body. The complexity of the 

human body places tight constraints on the properties of the FDF [25]. FDF’s can take on 
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many forms, which can dramatically change the formulation process. Examples are too 

numerous to list exhaustively, but include oral tablets (hard tablets, lozenges, chewable 

tablets for children, sublingual tablets), injectable drugs, topical creams, and inhalants. 

Each of these FDF’s has a variety of engineering challenges associated with continuous 

manufacturing. Since crystallization often cannot produce crystals with the desired 

properties, a variety of particle modification processes are used to remedy this during 

formulation. These include agglomeration operations such as wet granulation, roller-

compaction, and hot-melt extrusion [26]–[29]. Subsequently, API crystals are blended 

with a variety of excipients to attain desired properties (e.g. dissolution rate, color, 

sweetness, etc.). Excipients may also be process control agents, such lubricants, which 

can enhance qualities such as flowability [29]. Excipients often compose the majority of 

the dosage form [30].  Blending of powders together is another challenging process, since 

it is difficult to mix powders with consistent homogeneity. Following blending is 

typically a granulation process, which turns fine powders into larger chunks. Granulation 

is done for a variety of reasons, such as making the powder phase easier to handle, make 

tablets easier to press [25], and reducing the respiratory and explosion hazards from dust 

clouds [19]. Increasing the level of control over the CSD would simplify much of the 

formulation stage. Once powders are sufficiently mixed and/or granulated, they are 

pressed under mechanical force to create tablets. The thesis by Cipich on gives a good 

overview of several processes involved in continuous tablet production, including 

continuous blending, dry granulation via roller compaction, and a continuous tablet press 

[29]. 
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To summarize the pharmaceutical manufacturing process, the operations commonly 

found in the pharmaceutical industry are complicated from a scientific and engineering 

standpoint. Most operations after the synthesis stage possess at least two phases, such as 

crystallization slurries or wet granulation mixes. Analysis, design, scale-up, observation, 

and control of these processes is difficult to do. This is further complicated by the batch 

nature common to most of these processes, which are not only spatially complex, but 

time-dependent as well. Few major improvements to these processes have been attempted. 

Our objective in this work is, through the use of a rigorous modeling and optimization 

framework, investigate the potential use of the MSMA-PFC for producing 

pharmaceutical drugs. 

 

 

 

2.1.4 Problems Related to Batch Processes in General 

Most pharmaceutical manufacturing operations, such as crystallization, are performed 

using inefficient batch processes, and basic understanding of these important unit 

operations is limited.  This is in contrast to the bulk chemicals, food, and semiconductor 

industries which are mostly run continuously in well-understood processes [9], [31]. 

Manufacturing costs accounts for about 30% of sales for brand-name drug manufacturers 

[11], with 30-40% as the general industry average [7], [11]. In addition to being labor-

intensive and environmentally wasteful, current drug manufacture is error-prone [32], 

leading to costly recalls and contamination [7], [9], [15], [19]. The drug industry’s batch 

operations are also widely distributed geographically, which requires costly, time-
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consuming transport of material between manufacturing plants [33]. Clearly, complete 

manufacturing within a single manufacturing site would be preferable to playing “factory 

pinball” with various drug components.  

 

Despite being worth over $250 billion [8], the pharmaceutical industry’s manufacturing 

apparatus has become antiquated. Most industries shift to continuous production as 

quickly as affordable [13]. This is because, at large economies-of-scale, continuous mode 

is more efficient than batch processes. The reader might wonder, “Why the lag in 

technology?” The reason for this lag, is that the pharmaceutical industry has historically 

been tightly regulated, with even minor changes to processes requiring re-approval [13], 

[34]. However, recent reforms [12], [35], [36] to the regulatory framework have greatly 

lessened this impediment and given much more freedom to make process changes within 

an approved “design space” (see [34]). To address this lag in technology, the 

pharmaceutical industry has recently expressed great interest in upgrading and 

streamlining its research, development, manufacturing, and logistical operations. 

 

 

 

2.1.5 Problems Related to Batch Crystallization 

We are especially interested in this work on problems related to batch crystallization, and 

how continuous crystallization can solve many of these problems. The continuous 

crystallization of pharmaceuticals is a research endeavor with very high potential impact, 

as crystallization is a ubiquitous process operation in pharmaceuticals and a key stage at 
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which quality can be engineered into the final product. This folds in with the concept of 

“QbD”, discussed in section 2.2.1. Most industrial pharmaceutical crystallization is done 

batch-wise, which has a variety of drawbacks related to scale-up, observation, and control. 

Efficient, controlled production of drug crystals with desired properties has been 

described as a “primary bottleneck” to large-scale production of certain drugs [37]. 

Improving crystallization operations can improve the manufacturing process as a whole, 

since the properties of the produced crystals affect the performance of subsequent 

processes [21], [38]. Table 1 below summarizes the problems associated with batch 

crystallization. Plumb [19] neatly summarizes the problems associated with batch 

manufacturing as follows: “Batch processes are poorly understood, time-dependent, and 

scale-dependent operations.” This is in contrast to continuous processes, which are 

capable of attaining a physically and mathematically well-defined steady-state of 

dynamic equilibrium. Batch processes also fail to process all material in a uniform, 

consistent fashion, due to the existence of uncontrollable spatial gradients in fluid 

velocity, supersaturation, temperature, solids fraction, and chemical composition. This is 

in contrast to a steady-state, continuous flow process, over which significant control over 

these gradients is possible, as well as tight residence time distributions.
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Scale-up is another serious problem encountered in batch crystallization. In chemical 

engineering, a common problem is taking a small, laboratory-scale system, and 

increasing its production capacity to meet mass-market demand. For drugs, API 

crystallization is almost entirely done batch-wise, and direct scale-up from the laboratory 

model is difficult to achieve [39]. The main reason the scale-up of agitated crystallization 

vessels is difficult is due to incongruous scaling rules for heat, mass, and momentum 

transfer. To scale-up a crystallizer, one calculates a set of dimensionless numbers based 

upon the geometry of the crystallizer, the impeller design, fluid properties, and the power 

input to the impeller. Dimensional analysis of the governing equations shows that it is 

impossible to preserve all dimensionless groups with increasing tank size, regardless of 

agitation speed [39], [40]. The phenomena described by these dimensionless numbers – 

such as heat transfer rate, hydrodynamic flow patterns, shear rate, and suspension 

velocity - scale in opposing ways [40], [41]. Plumb [19] provides numerical results 

clearly indicating this problem, and Mersmann and Foster [42] gives a large table of 

dimensionless correlations for stirred vessels. Significant changes in the velocity field can 

result upon scale-up, resulting in supersaturation gradients and ultimately a CSD that 

does not meet desired characteristics [40], [43]. Scale-up also leads to changes in the 

internal hydrodynamics of the crystallizer that are difficult to model and predict [39], [44]. 

These issues are discussed at length by Genck [39], Wei [45], and in the text by Peker 

and Helvaci [46]. In continuous crystallization (and CPM in general), we replace large-

volume process equipment with smaller apparatus that output lower, constant volumetric 

flow rates. Continuous operation requires somewhat more time to accomplish for the 
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same relative amount of material to be processed, but at the gain of superior control over 

the product properties. 

 

A workaround for the scale-up problems is to avoid scaling-up the batch apparatus, and 

just use a larger number of batch crystallizers in parallel. This however, leads to much 

greater capital and operating costs, and the problem of batch-to-batch variability [19], 

[24], [47]. This variability results from the fact that even small discrepancies in operating 

conditions can drastically change the physical properties of the obtained crystals [21]. 

There are a variety of causes for this problem, such as differences in feedstocks [21], [30], 

[48] (upstream variation), mechanical wear and fouling, and reusing the same vessel for 

multiple processes [49]. These changes can alter the hydrodynamic and/or heat and mass 

transfer characteristics of the equipment slowly over time, thus altering the CSD obtained 

from a particular vessel. 

 

Lastly, despite the simplicity of the equipment, batch crystallizers are highly complicated 

nonlinear systems [19], [38], [40], [50], [51], and complex dynamic behavior arises with 

increasing complexity of the crystallizer network. Tavare has compiled an expansive 

table of dynamic phenomena observed in conventional MSMPR systems, which are 

stirred tanks similar to a batch system [51]. Multiplicities of steady-states, oscillations, 

orbits, and limit cycles have all been observed [47], [50], [52], and appear generally to be 

caused by the recycle of re-dissolved fines. Time-dependence of the CSD is highly 

undesirable, since disturbances in the crystallizer can propagate downstream to other 

processes, and render the final product’s quality inconsistent [20], [53], [54]. A 
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continuous approach solves many of these problems, as continuous processes are not as 

difficult to control and scale-up. The analysis of the MSMA-PFC is a step forward 

towards the “blue sky” vision of fully continuous, automated drug manufacture by 

streamlining a crucial separation step. 

 

To summarize, particulate processes in the drug industry are poorly understood; this goes 

for not only crystallizers but also dry-powder-phase processes and liquid-powder 

processes. The drug industry is looking to remedy these problems by shifting to the more 

economical continuous mode of operation. This motivates our study into new crystallizer 

designs, that can produce high-quality crystals consistently with much less severity of 

scale-up and much easier mechanisms of control over batch processes. 

 

 

 

2.2 Overview of Technologies for Continuous Pharmaceutical Manufacturing 

The pharmaceutical industry is modernizing its research, manufacturing, and logistical 

operations. The technologies discussed in section 2.1.1 are almost entirely run in batch 

mode currently, which is inefficient at the pharmaceutical industry’s economy of scale. 

Research effort is increasingly being done toward continuous pharmaceutical 

manufacturing (CPM). Several industry-academic partnerships have appeared to develop 

technologies along this line, such as the Novartis-MIT Center for Continuous 

Manufacturing [23], [55], and the Center for Structured Organic Particulate Systems [9], 

[56]. These technologies snap a panorama of the chemical engineering corpus, and are 
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highly inter-disciplinary, such as the continuous feeding of powders, continuous  

blending, freeze-drying and granulation [9], [28], [29], [31], [57]. The work by Mascia et 

al. [23] at the MIT group is a good summary of the benefits possible with continuous 

manufacturing. That work discusses a variety of improvements their continuous tablet 

plant has made over conventional batch, especially in the reduced number of unit 

operations and an 84% reduction in plant residence time. This research has great potential 

benefit in reducing manufacturing costs, increasing product quality, and improving 

consumer safety. Preliminary estimates of the impact of CPM show cost reductions 

between 25%-40% [5], [20], [23], or higher [19]. Equipment efficiencies of 30% are 

common today, but continuous processing can attain over 80% efficiency [19]. 

 

 

 

2.2.1 Quality-by-Design (QbD) Thinking 

Variability is a ubiquitous problem in contemporary pharmaceutical processes [19], [48]. 

Raw material variations in composition can affect the yield of API produced during 

chemical reaction, as well as contamination. Variability in excipient properties is a 

serious problem as well, [48], [58]. Even though these components contain no API, 

excipients are added to alter the physical properties of the final dosage form; especially 

the dissolution rate. Variation in particle size distribution, composition, and other 

properties of an excipient can lead to off-specification FDFs [48]. The pharmaceutical 

industry’s current approach to handling off-specification product is to simply throw the 

batch out, which increases costs and environmental impact. 
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The variety of possible FDF’s, tight constraints on product quality, high manufacturing 

costs, and wide variability in final products has motivated the introduction of Quality-by-

Design (QbD) thinking into pharmaceutical process design. Strongly encouraged by the 

FDA [35], Quality-by-Design (QbD) is a methodology for reducing product variability 

during manufacturing. Through a complete process understanding of inputs, outputs, and 

disturbances, and a list of target specifications for the final product, it becomes possible 

to “build quality into” the final product [59]. When successfully implemented, product 

specifications are very likely to be on-target at the end of the process [34], [60]. Our own 

work directly relates to the concept of variability as shown in CHAPTER 4 and 

CHAPTER 5, where the mathematical framework we developed was used to directly 

attempt to minimize unwanted variability in the crystal product. 

 

 

 

2.2.2 Critical Quality Attributes and Critical Process Parameters 

Wu et al. [9] discuss the concept of QbD at length in their comparison of chemical 

engineering successes and opportunities in the pharmaceutical and semiconductor 

industries. QbD involves defining the product fully in terms of critical quality attributes, 

or CQA’s. CQA’s are primarily linked to product requirements and safety, but can also 

be tied to other important “marketing” type characteristics, such as having the proper 

color or shape. Then, the proposed manufacturing process is studied in detail using 

models, experiments (especially design-of-experiments, or DOE, approaches [1], [34], 

[61]), and other prior knowledge [62], to identify the critical process parameters (CPP) 
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that impart the most variability  into the final product. A CPP may also be an important 

process disturbance. The collection of process inputs and CPP’s defines the “control  

space,” within which we capable of hitting any of the accept CQA’s in the “design space.” 

In our work , an example of the CQA would be the size of the produced crystals, while a 

CPP would be any of the flowrates.  Further discussion of CQAs and CPPs is given by 

Bondi and Drennen [34].  The QbD archetype stands in contrast to the traditional method 

of Quality-by-Testing (QbT) for pharmaceuticals, where large samples of drug products 

are destructively tested at the end of the process, while still failing to test the quality of all 

the drug product intended for public release. 

 

 

 

2.2.3 The Problem of Quality-by-Testing 

Figure 3.1 below demonstrates the inadequacy of Quality-by-Testing. In Figure 2.2, each 

colored square represents an allotment of drug that has been randomly selected for 

quality-assurance testing. When performing lot testing, the samples taken for analysis are 

obviously checked, but their sibling products are not, and are merely assumed to be safe 

or dangerous based on the results of sampled ones. In Figure 2.2(a), the random selection 

has worked as intended – some of the contaminated samples are discovered, deeming the 

lot unsafe. However, in Figure 2.2(b), the random selection has chosen solely on-

specification samples, but several contaminated ones evade detection. Bear in mind, that 

all of the samples in Figure 2.2(a) would be rejected – not just the two off-specification 

samples identified. This problem neatly demonstrates the goal of QbD – to eliminate the 
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need for off-line testing by tightly controlling all variability in the process, with 

continuous monitoring and logging of all product properties from entrance-to-exit. In this 

manner, the entirety of the released drug product is tested and guaranteed to be safe, at far 

lower cost than using repeated off-line testing. Currently, testing is done a priori using 

analytical techniques such as near-infrared spectroscopy [48] and nuclear magnetic-

resonance spectroscopy [30]. However, since feedstocks are usually natural products [30], 

there are many potential sources of variability [58], and it is impossible to eliminate them 

all. Given measurements of feedstock properties, it can be difficult to know what process 

adjustments should be made to achieve a consistent final dosage form. The correction of 

this variability by advanced process control strategies and novel process designs are some 

of the major thrusts of research in continuous pharmaceutical manufacturing. 

 

 

 

 

Figure 2.2 (a) Depiction of pharmaceutical lot testing. Blue samples are safe, but brown 
ones are off-specification. 
 

(a) (b)
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2.2.4 QbD and Crystallization 

Crystallization is a key operation in drug manufacture. In crystallization, one typically 

desires large crystals with little size variance – or more generally, desires a certain CSD. 

As we have mentioned previously, crystallization is typically near the beginning to the 

middle of the flowsheet. There is significant interaction between the CSD obtained 

during crystallization, and the efficiency of other downstream process operations. Proper 

development of crystallization processes can provide much greater control over these 

important properties earlier in the process, making downstream processing much easier – 

or eliminating certain unit operations altogether. At the same time, it can also greatly 

improve the drug’s final quality. Batch crystallizers, as discussed in section 2.1.4 have 

serious shortcomings in the way of scale-up, monitoring, control, and product consistency, 

making it difficult to apply QbD to the full drug manufacturing process. This motivates 

the development of more novel crystallization technologies, with better control over 

crystal quality and more economical scale-up [21]. To summarize, proper control of 

crystallization processes is necessary for quality to be designed into the drug product. 

 

 

 

2.2.5 Process Analytical Technology 

Process analytical technology (PAT) encompasses a variety of advanced mathematical 

tools, data management methodologies, and chemical analysis equipment that aid in the 

production of safe, cost-effective drugs via improved process observation [36]. One 

might consider PAT to be the evidence-based analog of drug manufacturing, compared to 
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“evidence-based medicine” in the practice of medicine [34], [63].  Bondi and Drennen 

[34] bring up the simple but astute point that, unlike virtually every other product a 

consumer might use in his daily life, he has no idea whether the medicine he is using is 

working or not. It is critical that drugs released to the public not only be safe, but actually 

work as intended using proven scientific methods. This is hardly the case with the drug 

industry today, which relies heavily on end-product testing and strict adherence to master 

recipes as a means of quality assurance [32]. We discuss several definitions which will be 

of benefit to the reader. From Yu et al. [64]: 

• In-line: Real-time measurement of the process material as it is being processed. This 

is the ideal method of observing a CPM process. 

• On-line: Process material must be diverted to analysis equipment, but is still 

monitored during the process. 

• At-line/Offline: Process material must be taken elsewhere for analysis. This is the 

standard manner in which pharmaceuticals are tested. At-line refers to analysis at the 

manufacturing site, offline is elsewhere. Both are undesirable, as they are slow, 

expensive, and a risk factor for process contamination. 

• Invasive: An observation probe must be in contact with the process for a reading to 

occur. This situation is unfavorable for obvious safety and health reasons. There are 

also problems associated with fouling of the sensor, chemical attack, and laborious 

cleaning and sterilization processes. 

• Non-Invasive: No probe is necessary. A reading can be obtained without any contact 

with the process material. 
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The Venn diagram in Figure 2.3 illustrates which of these qualities belongs to various 

types of analytical chemistry tools. Monitoring of pharmaceutical and crystallization 

processes is generally difficult, and significant technical challenges exist in practical 

implementation of these apparatus for adoption by industry. Non-invasive process 

analytical technology (PAT) sensors are highly favored by regulators and industry, since 

there is less direct contact with the process material. The Venn diagram in Figure 2.3 

below shows the relationship between the previous categories and the current 

technologies in use  [13], [64]–[71]. Clearly, there is a dearth of noninvasive sensors. The 

extensive table in Scott and Wilcock mentions virtually every process involved in drug 

manufacture except crystallization [32]. Process analyzers for pharmaceutical 

manufacturing are an active field of research, and crystallization is not the only subfield 

of CPM where new sensors are being developed. Gradinarsky et al. investigated the user 

of a coaxial microwave probe sensor for the measurement of moisture content in a wet 

granulator [72]. The use of new PAT sensors for the monitoring of chemical reactions, 

granulation, and freeze-drying have been reviewed extensively by Scott and Wilcock [32]. 

Concentration (more generally, supersaturation) is a critical variable in for monitoring in 

crystallization processes, since nucleation and growth are direct, strong functions of the 

supersaturation [37]. Sensors such as FTIR [37] and Raman spectroscopy can feasibly 

measure concentration. FTIR is also suitable for simultaneous measurement of multiple 

concentrations in a multi-component mixture. Raman spectroscopy is particularly 

attractive, due to the non-invasive nature of the instrument. Particle vision measurement 

is probably the most intuitive to understand of all the analytical techniques discussed here 

– essentially, the technique is simply taking pictures of the crystals, and visually 
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computing sizes and shapes. However, the image analysis algorithms used to accomplish 

this physically are complicated. Furthermore, very high solids concentrations will make 

image analysis impossible, since it will become impossible to differentiate individual 

crystals.
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2.2.6 Real-Time Monitoring and Real-Time Release 

Real-time PAT monitoring and control abrogates the need for costly post-hoc rejection 

testing, and makes feasible the concept of real-time release (RTR), e.g. where the drug is 

ready to be packaged and distributed as quickly as it is manufactured, with its quality 

assured [73]. Implementation of PAT for real-time monitoring, feedback control of CPPs 

(e.g. concentration, purity, temperature, etc.) would permit adjustments within the design 

space as necessary to keep the product on-spec [13]. This would be a boon to the drug 

industry, which currently requires about 95 days to turn input raw materials into a final 

dosage form [32]. RTR also has the significant advantage over batch testing, since the 

entire drug product being sold has actually been inspected. As reported in Scott and 

Wilcock, to obtain similar levels of quality assurance with rejection testing would 

increase the cost of drugs by about 20% [32]. 

 

Besides inspecting the entire drug production run, online monitoring also has the 

potential to do a better job. This is because end-product testing can only detect serious 

deviations from normal quality and high contamination. Furthermore, end-product testing 

can only detect bacteriological contaminants that will grow in available biological media 

reasonably quickly. Online sensor monitoring using PAT tools (e.g. spectroscopy) would 

be significantly more sensitive to contamination or disturbances than end-product testing. 

A challenge in crystallization, is the development of sensors that can function without 

causing contamination, and can operate correctly despite the presence of a liquid and 

dispersed solid phase.  
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2.2.7 Multivariate Statistical Methodologies 

The complex nature of pharmaceutical manufacturing and crystallization in particular, 

sometimes make first-principles modeling very difficult, or outright infeasible. In such 

situation, multivariable statistical “black box” modeling methods can be helpful. Such 

methods do not seek to match inputs to outputs from a contrived model, but only to find a 

model that does match by use of experimental data. Techniques such as partial least 

squares (PLS) and principal component analysis (PCA) can use ostensibly unrelated 

measurement data to infer and predict system properties [59], [71]. PCA and PLS are 

useful tools as well for “data-reduction”, which is very helpful when dealing with the 

“data avalanche” typical of CPM processes [13], [74]. Such tools have been used for 

some time the field of chemometrics [13]. As shown in Bondi and Drennen, methods 

such as principal component analysis (PCA) can be useful quality assurance parameters, 

capturing the effect of many variables into a single number, whose deviation from a 

certain value is a red-flag that something is amiss [34]. The solution of overdetermined 

systems of equations and redundant measurements can be used to create “soft sensors”, 

which are not actual hardware sensors, but instead are a mathematically-sophisticated 

state observer [71], [75]. Soft sensors can reconcile large amounts of measurement data 

with the governing equations to infer an optimal estimate of the true value of the data (e.g. 

the Kalman filter [75]). By utilizing multiple measurements of completely different 

natural phenomenon, a more accurate state estimate can be obtained. We cover only 

small portion of the “CPM-metrics” field here, as the body of literature is extensive. 

Other methods, such as design-of-experiments (DOE), response surfaces, and Bayesian 

statistics are discussed elsewhere in the literature [59]. A major challenge in modeling of 
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crystallization processes is in accurate estimation of their kinetic parameters. Wong et al. 

[76] have used an artificial neural network to model the crystallization kinetics of lactose, 

including the agglomeration effect. Using first principles to develop a model including 

the effect of stirrer speed would have been very difficult. Wu et al. [77] used a full 

factorial design (33) and a combination of linear regression models and a neural network 

to investigate and model the co-precipitation of naproxen (Aleve™) and Eudragit™. 

Other works have focused on dimensional reduction, which is a very powerful method for 

simplifying the data analysis, control, and fault diagnosis [59], [78], [79] of experiments 

involving CPM processes. Tomba et al. applied a multivariate statistical framework for 

organizing and analyzing data from a granulation and tabletting process [59]. PCA was 

used extensively in that work to identify dominant variables amongst a large possible set, 

in order to properly identify critical process parameters. Routinely a space of 10 or more 

variables could be described with only 2 or 3 principal components. Such an approach 

can be highly useful in CPM processes. The thesis by Cipich discusses the use of several 

multivariate tools for the detection of systematic (“gross”) errors in a continuous tablet 

pressing process [29]. In that work, several statistical tests are used for fault detection, 

and a quadratic programming problem is solved to reconcile the process measurements. 

 

 

 

2.2.8 Technologies for Powders, Particles, and Tablets 

While this work is focused mainly on crystallization, it is important for the reader to have 

an understanding of the CPM field as a whole. Over 80% of drug FDFs are oral tablets, 
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which are manufactured by blending API with powder-phase excipients and pressing 

them [29], [80]. Proper control over crystal properties is necessary to achieve a good 

press. Oral tablet FDF’s have a variety of manufacturing difficulties caused by the 

complicated interactions within multicomponent powder mixtures. Powders possess 

properties significantly different from the bulk phase. Particle modification processes are 

often necessary to ease handling, such as wet or dry granulation. Such powder systems 

are difficult to mathematically model, and cannot be realistically modeled as fluids. 

Kleinbudde [28], Vervaet and Ramon [31], and Pernenkil and Cooney [57] have 

reviewed the processing of pharmaceutical powders in depth. A vast amount of research 

has been done on process design, modeling, and simulation of pharmaceutical powder 

processes. We present a brief summary of the research on solid pharmaceutical 

processing in Table 2 below. Boukouvala et al. [81] modeled and simulated continuous 

blending processes for the homogenization of two-powder mixtures. Four-dimensional 

population balance models have been used to track the distributions of size, composition, 

liquid content, and porosity of particles within a wet granulator [25]. The discrete 

element method has been used to examine the variability in film properties of liquid-

coated tablets in rotary coating equipment [82]–[84]. Sinha et al. used finite element 

methods borrowed from the field of soil mechanics to investigate the compaction of 

powders during tablet pressing [85]. 
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2.2.9 Pharmaceutical Informatics 

 

Figure 2.4 Conceptual diagram of CPM implementing PAT for real-time release of final 
drug products. Information collected from analytical chemistry equipment (among other 
things) provides evidence of safety and quality. 
 

 

 

Pharmaceutical informatics is the application of management information systems (MIS) 

tools to the observation and improvement of pharmaceutical manufacturing processes and 

quality control [13], [32]. Figure 2.4 above illustrates how the large amounts of data that 

can be collected from monitoring tools are another route for implementing QbD and 

continuous improvement. Informatics and data mining methods are useful for finding 

unforeseen process defects and rapid fault correction [86]. The enormous amounts of data 

produced and demanded by the pharmaceutical supply chain forms a complicated data 

management problem. Venkatasubramanian [74], [87] and Zhao [88] discuss 

pharmaceutical informatics in greater detail. Further discussion of information 

management/big-data analytics applied to pharmaceutical manufacturing is beyond the 

scope of this work. 

CPM Process
Process Analytical

Technology
Raw 

material

Release of Drug 
Product for 
Public Use

Data from 
instruments 
establishing 

safety

Data is stored for analysis. Can 
aid in fault diagnosis and process 

improvement.
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2.2.10 Process Control 

The last major topic for review is a discussion of the optimization and process control of 

CPM processes, in which continuous crystallization is utilized. In the manufacture of 

chemical products, a proper control system is vital for ensuring process stability and 

safety. This is especially true in the drug industry, since not only plant personnel but the 

customer depend on the proper operation of controllers. For smaller-scale processes, 

separate control loops for each unit operation provide a simple method for controlling the 

entire process. However, for much larger plants and production levels, the number of 

control loops can reach into the thousands, and there can be a significant amount of 

detrimental interaction between different unit ops. The optimal control strategy for the 

process as a whole will be much different (and significantly more efficient) than a 

strategy that is optimal unit-op-by-unit-op. Model-based control of batch and continuous 

crystallizers is reviewed in [86], [89]–[91]. This problem of plant-wide control (PWC), 

refers to the choices of controlled variables, manipulated variables, what measurements 

will be made, and what types of controllers will be used [92]. It is a problem of immense 

difficulty and practical importance, and its difficulty is compounded by the presence of 

disturbances and uncertainty in process parameters, as well as the fact that the optimal 

control structure can shift with time due to market conditions [92], an issue of great 

importance to the pharmaceutical industry. Plant-wide optimization and plant-wide 

control has been applied extensively in other areas of the chemicals industry. Challenges 

arise in the full optimization of CPM flowsheets, due to the complexity of the models 

used to describe underlying physical phenomena. Among other methods, an optimization 

approach can be applied to PWC, by sifting through possible control structures in some 
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fashion, simulating the plant with the generated structure and assumed disturbances, and 

then calculating a scoring function based upon the observed dynamic and steady-state 

performance (typically profit maximization.) In general, this is a difficult constrained 

combinatorial optimization problem (generally, a mixed-integer nonlinear programming 

problem, or MINLP), requiring a great deal of computing power to iteratively simulate 

the plant. CPM processes are especially difficult to rigorously optimize due to model 

complexity. There are a variety of computational difficulties related to fast and accurate 

solution of the model equations involved. In addition to solving the mass and energy 

balance equations for the plant, the population balance equations must also be solved for 

relevant unit operation. Powder processing operations, such as granulation, blending, and 

tablet coating, require costly discrete element method (DEM) simulations to model 

correctly, as mentioned in section 2.2.8. This problem stymies the use of rigorous 

optimization for solving the plantwide-control problem for CPM processes [91]–[93]. 

 

 

 

2.2.11 Specific Examples of Plantwide Simulation, Control, and Optimization 

A review of various plant-wide control methodologies is given by Vasudevan and 

Rangaiah [93]. In that work, one can observe a variety of industrial chemical processes 

for which PWC has been applied; none of these are pharmaceutical processes. Clearly, 

there is a limited amount of literature available on the subject. However, an important 

result from the literature studies discussed here is that parameters upstream from the 

process can have a significant impact on the quality of the final drug product. Mascia et 
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al. utilized a two-layer approach to control system design for their continuous tablet 

manufacturing pilot plant [23]. One layer was used for stabilization, whilst the other was 

for controlling quality. The stabilization loop kept each unit operation within its specified 

bounds, while the quality controller focused on guiding the process to ensure the 

produced tablets met quality standards. They present data that demonstrate process 

resilience against disturbances. Lakerveld et al. examined the use of optimal average 

level control to control disturbances in a buffer tank downstream from a crystallizer and 

upstream from a chemical reactor. The exit concentration and outlet flowrate of the buffer 

tank was used to stop the propagation of disturbances from affecting the downstream 

reactor. The overall work shows robustness is an important requirement for effective 

control of a pharmaceutical process. Sen et al. [53] reported results for modeling and 

simulation of a continuous pharmaceutical process. The process consisted of a continuous 

cooling crystallizer, filter, fluid-bed dryer, and screw blender process for production a 

final drug product. Using a dynamic PBM-DEM (population balance model-discrete 

element method) model, they investigated the effect of various parameters on the 

homogeneity of the API-excipient mixture produced by the blender. As expected, altering 

the cooling profile of the crystallizer changes the output crystal CSD. However, the 

different CSDs obtained showed a different dynamic response in the API content of the 

blended drug formulation, with some profiles being more sluggish than others to reach 

the desired final value. Suggested in their study, optimization of the cooling profile could 

produce a faster result in the blending process, decreasing the amount of wasted product. 

Benyahia et al. [20]  performed a much larger dynamic flowsheet simulation. A CPM 

pilot plant was simulated using a sophisticated dynamic model, totaling 104 differential 
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equations and 2 × 103 algebraic equations. The simulated plant produced drugs directly 

from scratch; taking in raw reactant material at the entrance, and producing coated tablets 

at the exit. The effect of changing raw material, excipient, and equipment parameters 

upon the final product purity was experimented with via simulation. Impurities emanating 

from the first reactor in their flowsheet were found to have a significant impact on the 

performance of the entire process. Ward et al. [91] have developed a plant-wide control 

approach for a combined process consisting of reaction in a CSTR, MSMPR 

crystallization, and then filtration with liquid recycle back to the CSTR. While not 

explicitly applied to pharmaceutical processes, the scenario is general enough to warrant 

discussion here. Despite being able to find well-performing control structures for the 

process, some would require real-time monitoring of CSD (or average size) as well as 

supersaturation, with no measurement error or time delay. While various monitoring 

setups have been demonstrated in the literature for measuring supersaturation and CSD, 

this is generally not the case in industry. Finally, a different problem was solved 

altogether by Levis and Papageorgeiou [33]. In that work, the investigators formulated a 

large mixed-integer linear programming (MILP) problem for large-scale optimization of 

an entire pharmaceutical enterprise. The problem was to optimize over a choice of 

possible products, how the geographically-distributed manufacturing network would be 

set up, what sales goals would need to be met, and how much inventory to hold on hand, 

subject to a large number of constraints, for a time span of 13 years (3 years of clinical 

trials, 10 years of profitability). This work demonstrates the combinatorial nature of 

decision-making pharmaceutical manufacturing management. It is interesting to note that 

the time required to scale-up a process is explicitly incorporated into the problem 



40 

 

formulation. The work also demonstrates how much the geographical distribution of 

operations complicates decision-making in the drug industry, and suggests how much 

easier it would be if drugs could be processed entirely in a single location. 

 

 

 

2.2.12 Uses of Simulation 

As mentioned previously, an important issue in the design of CPM processes is 

understanding how different unit operations interact with each other, either regarding the 

change in location of the steady-state with various parameters, or transient interactions in 

their dynamics. Simulation is of great usage in the study of chemical processing plants. 

Related to pharmaceutical manufacture, even slight variations in an upstream process (or 

more likely, a feedstock), could propagate in a highly counter-intuitive fashion 

downstream, rendering the final drug product ineffective or unsafe. Dynamic models 

permit analysis of transient responses, allowing one to see how long the process requires 

to reach steady state [1]. This is especially important in drug manufacture, as API is often 

expensive to waste, and precise quality is required [5]. Programs such as gPROMS and 

PARSIVAL have been used in the literature for such simulation work, along with 

custom-written programs [53], [94]. In this work, we have opted to write our own 

software in MATLAB for simulating and optimizing the crystallization process. 

 

To summarize our thoughts on continuous pharmaceutical manufacturing (CPM), a 

variety of technologies are being researched in this field. By using process systems 
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engineering concepts for planning the process combined with real-time monitoring and 

control, variability in the final product can be greatly reduced or eliminated altogether. 

Quality-by-Design (QbD) is a manner of designing the process as such that all variability 

is minimized, eliminated, monitored, and controlled. Batch crystallization is a barrier to 

implementation of QbD, since batch processes impart uncontrollable variability into the 

final product. A variety of new analytical sensors are being designed in order to enabled 

noninvasive, continuous on-line and in-line process monitoring. Multivariate statistical 

methodologies are also being applied as “soft sensors”, where knowledge of model 

equations and a known set of observations can be used to refine the current state estimate. 

Population balances, finite element methods, and discrete element methods have been 

applied to the difficult matter of modeling solids processing operations, such as wet/dry 

granulation, tablet pressing, tablet coating, and of course, crystallization. Plant-wide 

control and multi-unit modeling and optimization have been applied to pharmaceutical 

processes. 

 

 

 

2.3 The Basic Science of Crystallization 

Crystallization can affect important physical properties of drug products, such as 

enantiomeric excess, polymorphic composition, and CSD (see Shekunov and York [21]). 

These variables are directly related to either the dissolution rate, or in the case of 

enantiomeric excess, whether the drug is therapeutic or outright toxic. Table 3 below 

discusses the type of impact that crystallization can have on the final drug properties, as 
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well as the current degree of control capability. The table also shows how certain 

properties may impact the process heavily, but not the curative properties of the drug, and 

vice versa. This is especially true of enantiomeric form, which has virtually no impact on 

the process, but can mean the difference between producing an effective drug or a deadly 

toxin. 

 

A short tutorial on crystallization can be found in [38], and the review article by Chen [24] 

discusses matters specific to pharmaceuticals. Work by Jones [40] and Tavare [51] focus 

more on engineering aspects. The science of crystallization is discussed at length in the 

review article by Dirksen and Ring [95], as well as books by Desiraju et al. [96] and 

Davey and Garside [97]. The basic principle behind crystallization is to alter the ambient 

conditions of the liquid solution (such as by cooling, evaporation, or drowning out) so as 

to create a solution which is holding more solute than the solubility limit would prescribe. 

Such a liquid is known as a supersaturated solution, and supersaturation is the driving 

force for the nucleation and growth of crystals. Figure 2.5 below depicts the solubility 

curves for antisolvent and cooling crystallization. Before discussion antisolvent and 

cooling crystallization in detail, we make general remarks true about any solubility phase 

diagram. 



4
3
 

 

43 

 

T
ab

le
 3

 T
h
e 

im
p
ac

t 
o
f 

cr
y
st

al
li

za
ti

o
n
 o

n
 i

m
p
o
rt

an
t 

d
ru

g
 p

ro
p

er
ti

es
, 
an

d
 t

h
e 

cu
rr

en
t 

ca
p
ab

il
it

y
 o

f 
co

n
tr

o
l.

 

P
ro
p
e
rt
y
 

B
io
lo
g
ic
a
l 
Im
p
a
ct
 

P
ro
ce
ss
 I
m
p
a
c
t 

C
o
n
tr
o
ll
a
b
il
it
y
 

C
S
D

 s
h
a
p
e 

• 
D

is
so

lu
ti

o
n
 k

in
et

ic
s.

 
• 

F
o
r 

m
u
lt

iv
ar

ia
te

 C
S

D
, 

b
ec

o
m

es
 

co
n
fl

at
ed

 w
it

h
 c

ry
st

al
 s

h
ap

e.
 

• 
S

h
ap

e 
af

fe
ct

s 
ta

b
le

ti
n

g
 s

tr
en

g
th

. 
• 

F
in

es
 m

o
re

 d
if

fi
cu

lt
 t

o
 s

ep
ar

at
e.

 
• 

A
ff

ec
ts

 w
as

h
in

g
 a

n
d
 d

ry
in

g
 p

ro
ce

ss
es

.  
• 

A
ff

ec
ts

 f
lo

w
ab

il
it

y
. 

M
o
d
er

at
el

y
 g

o
o
d

 

P
o
ly

m
o
rp

h
ic

 

fo
rm

 

• 
D

is
so

lu
ti

o
n
 k

in
et

ic
s.

 
• 

S
o
lu

b
il

it
y
. 

• 
B

io
av

ai
la

b
il

it
y
. 

• 
S

h
el

f-
li

fe
 s

ta
b
il

it
y
 o

f 
d

ru
g
. 

• 
E

ff
ec

t 
is

 c
o
n

fl
at

ed
 w

it
h
 c

ry
st

al
 s

h
ap

e.
 

• 
A

ff
ec

ts
 h

y
g
ro

sc
o
p
ic

it
y
. 

P
o
o
r 

C
ry

st
a
l 

sh
a
p
e 

• 
N

o
t 

m
u
ch

 i
m

p
ac

t 
- 

u
n
le

ss
 c

o
n
fl

at
ed

 
w

it
h
 a

 d
if

fe
re

n
t 

p
o
ly

m
o
rp

h
ic

 f
o
rm

. 

• 
N

ee
d
le

s 
ca

u
se

 f
il

te
ri

n
g
 p

ro
b
le

m
s.

 
• 

A
ff

ec
ts

 s
u
sp

en
si

o
n
 r

h
eo

lo
g

y
. 

• 
A

ff
ec

ts
 f

lo
w

ab
il

it
y
 a

n
d
 b

u
lk

 d
en

si
ty

. 
P

o
o
r 

E
n
a
n
ti

o
m

er
ic

 

fo
rm

 

• 
W

ro
n
g
 e

n
an

ti
o
m

er
ic

 f
o

rm
 c

an
 e

it
h
er

 
b
e 

n
o
n
-c

u
ra

ti
v
e,

 o
r 

h
ar

m
fu

l 
to

 t
h
e 

p
at

ie
n
t.

 

• 
V

ir
tu

al
ly

 n
o
n
e.

 E
n
an

ti
o

m
er

ic
 c

ry
st

al
s 

ar
e,

 b
y
 d

ef
in

it
io

n
, 
m

ir
ro

r 
im

ag
es

 o
f 

ea
ch

 
o
th

er
. 

V
ar

ie
s 

A
m

o
rp

h
o
u
s 

ch
a
ra

ct
er

 

• 
D

is
so

lu
ti

o
n
 r

at
e 

in
cr

ea
se

s 
w

it
h
 

in
cr

ea
si

n
g
 a

m
o
rp

h
o
u
s 

ch
ar

ac
te

r.
 

• 
A

ff
ec

ts
 s

h
el

f-
li

fe
 s

ta
b
il

it
y
. 

• 
A

m
o
rp

h
o
u
s 

fo
rm

 i
s 

u
n
st

ab
le

; 
m

ay
 b

e 
d
if

fi
cu

lt
 t

o
 m

an
u
fa

ct
u
re

. 
P

o
o
r 

P
u
ri

ty
 

• 
S

af
et

y
 a

n
d
 c

u
ra

ti
v
e 

p
ro

p
er

ti
es

 o
f 

d
ru

g
. 

• 
G

en
er

al
ly

, 
sm

al
l 

p
u
ri

ty
 d

ev
ia

ti
o
n
s 

w
il

l 
ca

u
se

 l
it

tl
e 

im
p
ac

t.
 

D
if

fi
cu

lt
 f

o
r 

v
er

y
 l

o
w

 
im

p
u
ri

ty
 l

ev
el

s 



44 
 

 

 

 

Figure 2.5 Antisolvent addition and cooling crystallization methods, and illustration of 
the solubility curve. The metastable zone is the supersaturation limit at which primary 
nucleation occurs. The black points are supersaturated solutions, and the gray points are 
undersaturated. 
 

 

 

• Below the solubility curve, dissolution occurs. The solution is undersaturated. 

• On the curve, the crystals are in equilibrium with the liquid phase. The liquid phase is 

said to be saturated. 

• Above the solubility curve lies the metastable zone, where crystal nucleation and 

growth occur. Here the liquid phase is said to be supersaturated, and the distance 

above the solubility curve is known as the supersaturation. Nucleation occurs here 

after a period of time known as the induction time. 
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• Above the metastable region lies the limit of the metastable zone (also known as the 

labile region). In this region, nucleation is triggered immediately. 

Supersaturations above the metastable boundary can result in amorphous solids and oils 

[43]. While gas-phase crystallization is possible, industrial practice is typically confined 

to a liquid phase, especially concerning pharmaceuticals [98]. Crystals are produced by 

creating a supersaturation ( ) within the API solution. A variety of phenomena can be 

employed to create a supersaturation. Here we introduce the two most-common methods 

of crystallization: antisolvent and cooling. 

 

 

 

2.3.1 Antisolvent Crystallization 

Antisolvent crystallization (left in Figure 2.5) is performed by adding a second liquid to a 

saturated solution in which the solute is much less soluble. Addition of this this second 

liquid, termed the antisolvent (also termed the co-solvent or diluent), gradually reduces 

the solubility of the mixture, generating a supersaturation. Manipulation of pH can also 

work in this fashion [99]. The ordinate of this solubility curve is the solute concentration, 

and the abscissa is usually either the mass fraction or volume fraction of antisolvent in 

the mixture. The upper and lower bounds on possible antisolvent mass fractions, of 

course, are @+A = 0 to @+A = 1. 
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2.3.2 Cooling Crystallization 

Cooling crystallization (right in Figure 2.5) exploits the temperature-dependence of 

solubility. In this method, a saturated hot solution is rapidly cooled, which decreases 

solubility, and hence generates a supersaturation. The lower and upper bounds on 

temperature are the freezing point of the solution ($�"##)# ), and the decomposition 

temperature of the API molecules ($%#&�'( ). If $%#&�'(   is very low, then cooling 

crystallization becomes impractical, which motivates the use of the antisolvent method. 

While the discussion of additives and impurities is beyond the scope of this work, it is 

worth mentioning that solubility curves can be sensitive to impurities even down to the 

ppm level [40]. We also note that cooling and antisolvent crystallization can be done 

simultaneously. 

 

 

 

2.3.3 Other Methods 

Antisolvent, cooling, and vacuum crystallization represent the overwhelming majority of 

industrial crystallization methods in practice, but there are some more rare methods used 

or encountered in nature. An arcane example is high pressure crystallization. This method 

has been used specifically for the separation of mixtures of cresols by using high 

pressures to manipulate the melting points of the individual cresol species in the mixture 

[51], [100]. Evaporation is another crystallization method. Under moderate heating, the 

liquid phase can be driven off by evaporation, which causes a rise in solute concentration 

due to loss of liquid volume. An evaporative salt pond is an example of such a 
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“crystallizer.” A combination of evaporation and cooling can be done in tandem with 

vacuum crystallization, which applies suction to the system to more rapidly remove 

vaporized solvent. A much rarer example is reverse osmosis. Reverse osmosis can also be 

used to generate a supersaturation by the expulsion of the solvent across a semipermeable 

membrane. While almost never used for practical crystallizations, reverse osmosis 

crystallization is known to precipitate kidney stones and gallstones in the human body 

[51]. More recently discovered methods of generating supersaturation utilize bubbles 

from dissolved gases, electric fields, and lasers. Rungsimanon reports the use of focused 

lasers to crystallize γ-glycine, with subsequent dissolution upon deactivation of the laser 

[101], [102]. Similar results are reported by Yuyama for L-phenylalanine [103]. The 

references in Llinas and Goodman [99] discuss laser nucleation in greater depth. Aber et 

al. report the use of strong electric fields to trigger nucleation of γ-glycine in aqueous 

solution [104]. Knott et al. report a variety of results related to their work on triggering 

crystal nucleation of aqueous glycine by shaking dissolved argon gas bubbles out of the 

solution [105]. Ultrasound-induced crystallization [99]. While the mechanism is still 

unknown, it is conjectured that the collapse of cavitation bubbles causes a large local 

increase in temperature. This creates a great increase solubility, followed by subsequent 

cooling from contact with the bulk solution, generating a large supersaturation. Narducci 

et al. [106] have experimented the use of ultrasonic waves for shape control of adipic acid 

particles. In both continuous and batch mode, smaller, rougher, spherical crystals were 

produced than other methods – such as wet milling. The authors suggest improved 

mixing from the ultrasound as the mechanism for the shape changes. 



48 
 

 

2.4 Kinetic Processes in Crystallization 

 
Figure 2.6 Basic kinetic phenomena in crystallization processes. 

 

 

 

An understanding of the basic kinetic processes is essential to understanding 

crystallization. The diagram in Figure 2.6 above summarizes the important kinetic 

phenomena in crystallization processes. More detailed discussion of crystallization 

kinetics can be found in [97], [107]–[109]. Supersaturation provides the driving force for 

nucleation and growth; the greater the supersaturation, the higher the rates of nucleation 

and growth. Supersaturation is some measure of the quantity   in Figure 2.5. However, 

supersaturation goes by a variety of monikers. The most commonly encountered 

measures of supersaturation encountered in the literature are: 
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Supersaturation difference, or commonly “the supersaturation” is given by: 

 ∆� = � − ���� (2.1) 

Where � is the solute concentration (kg/m3 or kg/kg solution), and ���� is the solubility 

concentration (the dark curve in Figure 2.5). 

The dimensionless “supersaturation ratio”: 

  = �/���� (2.2) 

Or lastly the “relative supersaturation” 

  "#� = (� − ����)/���� (2.3) 

As we shall see in the further sections, greater supersaturation leads to faster rates of 

nucleation and growth. 

 

 

 

2.4.1 Nucleation 

Nucleation is a fundamental process in crystallization. In nucleation, new crystals are 

formed due to a supersaturation. Nucleation can occur in a variety of ways, such as 

primary, homogeneous, hetereogeneous, and secondary modes. The exact mechanisms 

for growth and nucleation are currently not well understood [24], [47]. The most common 

theory is that of nuclei or classical nucleation theory. Upon reaching a certain critical 

radius, incipient crystals (termed “embryos”) no longer dissolve back into solution, but 

continue to grow and form a crystal lattice. Nucleation rate increases not only with the 

supersaturation, but the absolute solubility as well. This is due to the fact that the rate of 
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cluster formation depends on the probability of solute molecule collisions, which increase 

monotonically with increasing solubility. Hence, a lower supersaturation is required to 

achieve a given nucleation rate at a higher solubility [110]. Furthermore, nucleation rate 

is dependent on liquid viscosity, since greater viscosities impart greater diffusional 

resistance from solute particles interacting with a cluster [110]. 

 

Primary nucleation is any nucleation process in which no crystals are initially present. In 

any supersaturated solution is a large collection of liquid-phase molecular arrangements 

with the potential to become crystals, termed embryos. The transition from embryo to 

crystal requires passage over a free energy barrier. The energy barrier to crystal formation 

is formed by two opposing thermodynamic processes. First is the unfavorable process of 

increasing the surface area of a new phase (e.g. the crystal). Secondly is the favorable 

process of a solute molecule transitioning from the liquid phase and integrating into a 

new solid phase. Once an embryo reaches a critical radius, c&, the free energy barrier 

rolls downhill. Once this occurs, crystal formation becomes spontaneous, and a new 

crystal pops into existence. The theory of primary nucleation is explained in more detail 

elsewhere ([40], [97], [109], [111]). 

 

Homogeneous nucleation occurs when crystals nucleate directly within the bulk phase of 

the solution, away from interfaces such as vessel walls and suspended impurities. 

Homogeneous nucleation is only achievable under highly contrived experimental 

conditions, and is almost never observed in nature. It also requires very high 

supersaturation levels to observe, showing that the barrier to homogeneous nucleation is 
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large. Small droplets dispersed within a two-phase immiscible flow are one such way to 

experimentally observe homogeneous nucleation [110]. Large volumes ( > 100 µl [110]) 

are typically incapable of homogeneous nucleation, since impurity contamination is too 

difficult to control. 

 

More commonly encountered is heterogeneous nucleation, where nuclei form on external 

surfaces in contact with the liquid phase. Foreign particles and vessel walls are typical 

nucleation sites. When no seeds are present in the solution, no extra surfaces are available 

for nucleation. This leads to a nucleation law of the form: 

 � = 89 9 
(2.4) 

Where � is the nucleation rate (#/m3
∙s), 89 is the nucleation rate constant (#/m3

∙s),   is 

the supersaturation ratio (dimensionless), and S is the nucleation order (dimensionless). 

Any of the other definitions of supersaturation described in section 2.4 are also valid with 

(2.4). 

 

When crystals are already present in the system (a “seeded” solution), the extant crystals 

provide extra sources of nucleation. During secondary nucleation, the extra surface area 

provided by the extant crystals possesses more nucleation sites than the solution by itself. 

Furthermore, processes such as shear-induced crystallization and crystal-crystal contact 

can trigger additional nucleation as well. The number of nucleation sites scales upward 

with the content of crystals in the slurry, and thus expressions for secondary nucleation 

include an intensive quantity term for total crystal content. This leads to secondary 

nucleation, with a rate law of the form: 
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 � = 89GI! 9 
(2.5) 

Where GI is the 8�J moment of the crystal size distribution. Often,  ≈ 1, and 8 = 2 or 3. 

The moments are directly related to the quantity of crystals in the solution, so this 

expression intuitively makes sense (see [111] for a discussion of crystal moments). The 

more crystals there are in the solution, the more secondary nucleation we would expect. 

The units of 89  depend on the values of 8  and  , but the units of �  are still #/m3
∙s. 

Typical bounds on �  are given on page 60 of Tavare [51] as 10e − 10He  #/kg∙s for 

primary nucleation, and 10f − 10H�  #/kg∙s for secondary nucleation. Nucleation order 

tends to be 0 < S < 5. 

 

 

 

2.4.2 Growth 

While some nucleation is required in an unseeded solution to “get the ball rolling”, 

nucleation is generally undesirable in crystallization processes. Crystal growth is the 

main phenomenon we wish to encourage in our crystallization. More growth means 

larger crystals, and larger crystals are generally better. During crystal growth, solute 

molecules integrate, layer by layer, into the crystal lattice. Typically, growth is generally 

bottlenecked by the surface integration step, where incoming solute molecules must 

possess a particular intramolecular configuration to be able to bind properly to the crystal 

lattice. Growth may be diffusion limited as well. While other expressions do exist, as 

given by [112], the most common form of the growth rate encountered in the literature is: 
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 P = 87 7 
(2.6) 

Where P is the growth rate (µm/s),   is the supersaturation ratio, 87 is the growth rate 

constant, and T is the growth order. Typical bounds on P are given by Tavare [51] as 

0.001 < iPi < i1 µm/s, and typical bounds on the kinetic constants are 0.001 < i87 < 1 

µm/s, and 0 < T < 3. For size dependent growth, a common expression is [113]: 

 P = 87 7(1 + ��)( 
(2.7) 

 

A common feature (and manufacturing difficulty) of pharmaceutical drugs is their very 

slow growth rates and poor water solubility (~100-101 µg solute/g H2O) [114]. 

Pharmaceutical API’s are typically complicated organic molecules with many internal 

degrees of freedom [22], which creates a high entropic barrier to surface integration, even 

when enthalpy change is highly favorable. Growth rate dispersion is the phenomena 

observed where crystals of the same size, under the same ambient conditions, display two 

different growth rates. The root cause of this phenomena is the intrinsic stochasticity of 

crystal growth. The stochastic nature of crystallization is apparent at low liquid volumes, 

where it is possible to observe nucleation in one small volume of liquid, but not in 

another. Likewise, growth rate dispersion is also a stochastic process (or can be modeled 

as such) as solute molecules have a chance associated with themselves at any instant of 

time to choose to integrate into the crystal lattice of a given crystals in the slurry. 

 

Chemical additives can stunt growth along certain directions, leading to a preferred 

crystal habit [47]. The addition of chemical additives (or, “process control agents”) to the 



54 
 

 

crystallizing solution can have a variety of helpful benefits. Typically, one uses additives 

with a similar structure to the subject molecule. The presence of even small amounts of 

additive can change the relative growth rates between various crystal faces, altering the 

crystal’s shape. Additives can also improve the tableting process [21]. The use of 

additives is unexplored territory concerning our work. In this thesis, we have only 

exploited supersaturation as a control, while a more sophisticated scheme for controlling 

crystal shape could use additive concentration as a control as well. 

 

 

 

2.4.3 Dissolution 

The dissolution rate of pharmaceuticals strongly impacts their bioavailability. When an 

oral dosage form is ingested, the excipient binder is digested away in the stomach, and 

eventually discharged to the small intestine. In the small intestine, drug uptake is 

achieved and the drug finally enters the blood stream. However, the degree of uptake is 

dependent on the drug’s concentration at the tissue surface. This of course, depends on 

how well the drug dissolves in aqueous solution. Most pharmaceutical drugs are poorly 

soluble in water, on the order of a few micrograms per gram. The poor solubility and 

dissolution rates have led to many engineering approaches to increase dissolution rate, 

including mechanical micronization, and the production of small crystals and 

nanocrystals, and amorphous forms. Amorphous solid forms are of interest, since they are 

less stable than crystalline forms, and as such exhibit faster dissolution. 
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The gray points in Figure 2.5 on page 44 indicate a solution that is below solubility. 

When concentration is below the solubility concentration, the solution is said to be 

undersaturated, which leads to the dissolution of crystals. During dissolution, crystallized 

solute molecules break of and dissolve back into the solution. This causes the solute 

concentration to rise to the solubility curve and attain equilibrium.  Dissolution is 

typically much faster than growth, since there is no surface integration step. Some 

expressions for dissolution from the literature include [113], [115]: 

 O = 8%(1 −  )%
�k  (2.8) 

The exponent of the dissolution law is usually 1, which makes for much faster “reverse 

growth.” Typically also 8% ≫ 87 . Furthermore, small crystals typically dissolve much 

faster due to the Gibbs-Thomson effect  [116]. CHAPTER 6 incorporates dissolution into 

the framework, in an effort to exploit the phenomena to eliminate fine crystals. 

 

 

 

2.4.4 Agglomeration and Breakage 

Agglomeration and breakage do not consume supersaturation, but affect the CSD in other 

ways. Breakage is typically cause by a moving surface, such as the impeller. 

Agglomeration is caused by high surface energy. Both agglomeration and breakage 

greatly complicate the solution of population balance equations, since these phenomena 

are mathematically expressed as an integral. Further discussion of agglomeration and 
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breakage are beyond the scope of this work. A detailed discussion of agglomeration and 

breakage are beyond the scope of this work. 

 

 

 

2.5 Polymorphic Form and Chiral Form 

While this thesis is concerned with the control of crystal size, polymorphism is a critical 

quality attribute for pharmaceutical manufacture. We give a brief overview of 

polymorphism in this section, as well as recent developments in observation and control 

of solid forms. Polymorphism has substantial impact on drug discovery, manufacture, and 

efficacy [22], [96], [43], [117]. Some polymorphic forms of an API are more preferable 

for pharmaceutical use, due to faster dissolution rates and higher bioavailability. The 

proclivity of a substance to take on different polymorphic forms during crystallization 

complicates the development, patenting, and manufacture of pharmaceuticals. Desiraju et 

al. [96] discusses several industry case studies that led to lawsuits, recalls, and product 

failure – namely the anti-ulcer drug Ranitidine (Zantac), and  the AIDS drug Ritonavir. 

Generally, the thermodynamically most-stable form is preferred to remove the possibility 

of a phase change on-the-shelf, but a more bio-active, kinetically-trapped form may be 

preferable. 
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2.5.1 General Background and Properties of Polymorphs 

Solid-phase forms fall into four types: polymorphs, solvates, desolvated solvates, and 

amorphous compounds [21]. While these each have their own nuances that are important 

to product and process development, for brevity we focus only on true polymorphs. Two 

or more different polymorphic forms of a substance possess the same chemical formula, 

but have different molecular packing arrangements that generate the lattice [22], [96]. 

Complicated organic molecules, such as pharmaceuticals, are typically bedeviled by 

several polymorphic forms due to many internal and external degrees of freedom for 

arrangement [99]. While aspirin only has one known form, carbamazepine has four, and 

olanzapine has six [99]. Polymorphism affects a variety of macroscopic properties, such 

as color, density, crystal habit, melting point  [22], [96], [43], [99]. Internal transport 

properties, such as thermal and electrical conductivity, can also substantially differ. 

Furthermore, the surface exposure of certain chemical moieties and crystal faces can 

impart increased chemical reactivity, dissolution rate, and solubility in one form 

compared to another [22], [99], [118]. This is especially true of amorphous solid forms. 

Dissolution rate and solubility directly impact the potency of oral tablets, the most 

popular dosage form [22]. Many common pharmaceutical unit operations (e.g. 

crystallization, freeze-drying, milling) can alter the solid form in difficult-to-predict ways 

[21]. Milling and other size-reduction operations are known to induce polymorphic 

changes in fed crystals [21]. Maintaining target solid-form and while maintaining other 

process variables is also difficult. Reutzel-Edens mentions a study in which the filtration 

and drying produced the desired solid-form of the API, but that solvent removal 

dramatically altered the crystal size distribution [22]. 
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2.5.2 Polymorph observation and control 

While critical to product safety and quality, monitoring and control of polymorphic 

crystallizations is still poorly understood. Both observation and control of polymorphic 

form are major challenges in crystallization [119]. More work is listed therein pertaining 

to other process variables, such as concentration and crystal shape. Raman spectroscopy, 

near-IR, and mid-IR have been used for observation of solid form previously. Indirect 

approaches to polymorph observation and control have been applied [22]. One study 

mentioned in [22] successfully prepared one form of an enantiotropic compound by 

seeding the process with the desired polymorph, and keeping the temperature below the 

intersection temperature on the two solubility curves. Another study inferred 

polymorphic form by the investigators noticing that, for their particular API, the 

formation of an undesired solvate also formed a quasi-emulsion. Studies using particle 

vision measurements (PVM) allowed the research team to identify correct operating 

conditions to avoid the emulsion formation, as well as generating the desired non-solvate 

form. Solid-form can be ascertained by X-ray powder diffraction (XRD), differential 

scanning calorimetry (DSC), relative humidity measurement (%RH), and Laue 

diffraction [21]. Such methods however, are not readily amenable to continuous 

monitoring. Continuous, quantitative control and monitoring of solid-phase form is a 

major research challenge. Some methods for altering the solid-phase form is 

manipulation of the solvent used for crystallization. The solvent used can strongly impact 

the crystallized polymorph [118]. Supersaturation is theoretically useful as a control, 

however, this is only for the production of amorphous forms, and can only be done at 

very high supersaturation [21].  Rungisimanon et al. have demonstrated an interesting 
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new method for direct and selective crystallization of certain polymorphs using laser 

radiation [101], [102]. 

 

 

 

2.5.3 Chiral Form 

The enantiomeric form of the molecules composing a given crystal, while practically 

irrelevant to the manufacturing process, can be critical to the final product quality and 

safety [120]. 

 

About 50% of sold drugs are chiral [21]. Chiral crystallization is often difficult and 

expensive to do, rendering many drugs infeasible to produce. A variety of methods are 

possible for controlling enantiomeric form, depending upon what level of separation 

resolution is required. Direct crystallization into two chiral forms (also referred to as 

“preferential crystallization”) can be done by cycling between optically-pure seed crystals 

of each stereoisomer, while avoiding nucleation. Often this method is not possible, since 

crystallization into a solid racemate is often thermodynamically favorable [21]. Other 

methods are also possible for more difficult cases, such as performing the crystallization 

in a chiral compound, or reacting the racemate of the API to create a new substance for 

which preferential crystallization is possible [21]. Selectivity in chiral form can be 

achieved by seeding with the desired chiral form [121], as well as polymorphic form 

[118]. 
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2.6 The Quantitative Framework of Crystal Size Distributions 

During crystallization within solution, imperfect mixing causes spatial gradients in 

supersaturation. These localized gradients, along with the stochastic nature of growth and 

nucleation processes, produces crystals of non-uniform size and shape. To 

mathematically describe these variations in crystal size, one uses the concept of a crystal 

size distribution (CSD). The framework is discussed in exhaustive detail in the books by 

Jones, Garside and Davey, and Randolph and Larson [40], [97], [111]. We present here 

the most crucial aspects for understanding this work. 

 

A characteristic length is a chord piercing through a crystal along an arbitrary direction in 

�� . A chord is any line joining two faces of the crystal polytope. For an irregularly 

shaped, nonspherical crystal, (Figure 2.7a) there is no unique chord with which we can 

measure the length of a given crystal. A perfectly spherical crystal (Figure 2.7b) is the 

only crystal which can be uniquely defined with the single characteristic chord length. 

Crystal shape can be described in this way by using multiple length measurements for 

each crystal, yielding a multidimensional CSD [111]. Additional lengths provide more 

information about the crystal size population, at the cost of increasing complexity. The 

distribution of characteristic lengths in a collection of crystals defines the crystal size 

distribution, a critical quantity in assessing the performance of crystallization processes 

and drug manufacture. 
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(a) (b) 

Figure 2.7 (a) An irregularly shaped crystal has an infinite number of possible 
characteristic lengths one can arbitrarily choose for measuring its size. (b) The only shape 
possessing a unique direction is a perfectly spherical crystal, for which all of the possible 
characteristic lengths (passing through the sphere’s center) are exactly the same. 
 

 

 

2.6.1 Crystal Size Distributions and General Mathematical Properties. 

 

Figure 2.8 Crystal size distribution and the attendant cumulative summation. 
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The CSD is synonymous with the number density, :(�) , (#/µm4), where �  is the 

characteristic length. This quantity gives the number of crystals between size �  and 

�i + i/� , per unit control volume. CSD is a critical variable in measuring the 

performance of a crystallization process and the final drug product. Figure 2.8 above 

illustrates a typical CSD, its cumulative summation/integral, and several other quantities. 

Several possible representations of a crystal size distribution are possible. All crystal size 

distributions possess a mean (GH,�  in the diagram) and a standard deviation (<). On 

physical grounds, the number density must be greater than zero everywhere, since we 

cannot have negative quantities of crystals. Furthermore, we cannot have negative crystal 

sizes, and so we only consider distributions defined for � > 0. Since we would very 

much like to share this universe with the crystals, we note that limB→r :(�) = 0. 

 Integration over the entire domain will always give the total number of crystals, per unit 

control volume, in the control volume. A very similar quantity is termed the number 

fraction distribution, 1 (m-1
crystals): 

1(�) = :(�)
s :(�)/�r
�

 
(2.9) 

 

Where 1 is the fraction of the total crystal population with a size between � and � + /�. 

It is easy to show that s 1/�r
� = 1 . We note that the integrals of any fractional 

distribution must have dimensionless units, as 1  is analogous to a probability density 

function. 
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2.6.2 Volume Size Distributions 

Many analytical instruments do not measure number density, but instead measure volume 

density, :; (m3
crystals/m

3
external∙mcrystals), given by: 

 :;(�) = 86��:(�) (2.10) 

 

Where 86 is a dimensionless shape factor (t 6v  for spheres), and :; is the volume of the 

crystals of size � to � + /�. The total volume of all the crystals, per unit of control 

volume, is given by ������ = s :;/�r
� . Analogous to the number fraction distribution is 

the volume fraction distribution, 1;: 

 1;(�) = :(�)��
s :(�)��/�r
�

 
(2.11) 

Just like the number fraction distribution, s 1;/�r
� = 1. A variety of other distributions 

can be defined, such as mass and area fraction. Area fraction is especially important when 

studying chemical reactions on the surfaces of particles, as the exposed area is where the 

chemical reaction occurs (either for a direct reaction with the particle surface or a 

heterogeneous catalytic reaction). 

 

 

 

2.6.3 The Impact of Crystal Size Distribution and Crystal Properties 

The CSD is known to impact the efficiency of further downstream processing steps (e.g. 

filtering and washing), as well the mechanical strength of pressed tablets for oral dosage 
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forms [24], [37]. It also strongly affects the dissolution kinetics within the human body, 

which impact final product quality and safety [21], [37], [122]. There are a variety of 

benefits from producing a proper CSD in the produced crystals, such as high 

bioavailability and improved tablet stability [21], [37], [49]. Furthermore, good control of 

CSD can abrogate the need for various size-reduction processes, such as milling, that are 

commonly used in drug manufacture [24], [37], [49]. Generally in crystallization, one 

desires the largest crystals possible. Large crystals make downstream processing 

operations, such as washing and filtering [97], much easier. For some applications, 

extremely small crystals are preferred. The use of nano-sized crystals in drug products is 

a possible work-around to the poor solubility of many of today’s drug APIs [123], as well 

as for the production of inhalable powders and injectable suspensions [21]. In both cases 

however, a narrow CSD is often preferred. More generally than the CSD, a variety of 

other crystal properties affect drug performance as well. Table 3 on page 43 summarizes 

these properties, the motivation for wanting to control them, and how much 

controllability exists in the current state-of-the-art [21], [24], [38], [40], [86], [89], [96], 

[97], [43], [124], [125]. 

 

 

 

2.7 Population Balances 

Most chemical engineers are familiar with the four main balance equations in chemical 

engineering: mass, energy, momentum, and entropy balance. We shall not state these 
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individually, and instead direct the reader to any of the textbooks ([126]–[128]) for an 

exhaustive treatment. However, we will state the general form of each equation in words: 

 

/
/� w quantityiofiΨiinitheicontrolivolume�

= w rateiofiΨienteringtheicontrolivolume� − w rateiofiΨileavingtheicontrolivolume�

+ w rateiofiΨigeneratedinsideitheicontrolivolume�

− w rateiofiΨiconsumedinsideitheicontrolivolume� 

(2.12) 

Where Ψ  is any of the four quantities previously discussed. However, the two main 

equations of mass and energy balance are not sufficient to model particulate processes. 

The main reason for this is due to an infinite number of populations that can close the 

same mass balance. Figure 2.9 illustrates the problem geometrically. In the diagram, a 

given mass of raw material is operated upon by a process, producing a product. In (a), 

both the raw material and product are monolithic. However, in (b) the raw material and 

product are discrete particles of different sizes, which have the same total mass as the 

original blocks in (a). If individual sizes are important variables, mass and energy 

balances alone are not capable of modeling this phenomena; any number of chopped-up 

versions of the original blocks in (a) would close those two equations. 
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Figure 2.9 Depiction of equal mass closures for two different populations of particles. 
 

 

 

 This is not a problem that can be approximated away or swept under the rug. Particle 

phases are widely encountered in engineering processes, and the properties of the 

collective population of particles is often critical to ease of processing, and final product 

quality [47]. Ignoring the momentum and entropy balances, a third balance equation is 

required in addition to the mass and energy balance. This third balance is important to 

pharmaceutical manufacture, since particulate phases are so common in pharmaceutical 

production. The operations of crystallization, granulation, tableting, etc., produce crystals, 

granules, and tablets – all involve discrete particles. The population balance gives a third 

conservation law for describing the internal property distribution of populations of 

entities. A population balance model (PBM) neatly summarizes all of the operations 

occurring in a system that affects the number of particles with a particular set of 

characteristics residing within the control volume, such as birth, death, agglomeration, 

compression, expansion, and a host of different breakage processes [129], [130]. This 

ProcessRaw Material Product

Process

(a)

(b)
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framework has been used to model all sorts of interesting phenomena involving discrete 

particles, such as biological cells, sterilization processes [47], [131], aerosols, solid rocket 

engines [111], and polymerizations [47], [131], [132], pharmaceutical granules, purity of 

pharmaceutical crystals, and enantiomeric excess of pharmaceutical crystals. The 

equation is given by: 

i �:
�� + E#>� ∙ (�:) + E�0� ∙ (Z:) + � + O = 0 

(2.13) 

Where : is the number density (#/m4), t is the time, � is a vector of external velocities, Z 

is a vector of internal velocities (crystal growth rates), �  is the birth function (e.g. 

nucleation, breakage), and O is the death function (e.g. breakage, agglomeration). Both � 

and O have units of #/m4
∙s. The two gradients are taken with respect to either the external 

coordinates (@, V, and W), or the internal coordinates (�H, �H, …, �' for and crystals with 

m characteristic lengths). The general population balance equation is a partial differential 

equation [111], and solution is generally difficult. Solving this equation coupled with the 

other balance equations yields the correct CSD. The equation was first proposed in 

Hulburt and Katz [133]. Good introductions to the formulation and solution of these 

models are found in the books by Randolph and Larson [111], Jones [40], Garside and 

Davey [97], and Ramkrishna [132], as well as the paper by Rawlings [47]. While the 

mass balance equation is typically an ordinary differential equation (ODE), PBMs are 

partial differential equations (PDE), which are significantly more burdensome to solve. 

Solution of crystallization systems is generally difficult for several reasons –the large 

number of variables, vast differences in time and length scales, and the inherent 

discontinuity of the system due to the phenomena of nucleation, breakage, and 
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agglomeration [37], [134]. To solve these equations, we discuss two important methods 

used in this work. 

 

 

 

2.7.1 The Method of Moments (MOM) and Finite Volume Method 

Due to the mathematical structure of PBMs, it is possible to reduce them to a system of 

ODEs by an integral transformation known as the “method of moments.” This is a widely 

used method for solving PBM equations, and is popular due to the rapidity of solution. 

The 8�J moment of the crystal size distribution is given by: 

i GI = � :�I/�r
�

 
(2.14) 

The moment form of the population balance equation is formulated by taking the 8�J 

moment of the equation, which expresses the original PBE solely in terms of GI [111]. 

Instead of a partial differential equation, 8 + 1 ordinary differential equations need to be 

solved (the extra equation is the mass balance). This problem is significantly easier to 

solve than the original. We discuss this method in greater detail in section 4.4.2. 

 

While easier to solve, the MOM loses the CSD in its entirety, making prediction of the 

full CSD impossible. Such information is needed for applications such as matching a 

target CSD. Furthermore, depending on the phenomena being modeled, the method of 

moments may lead to the “closure problem”, where the 8�J  moment equation is 

expressed in terms of moments greater than 8, for any 8 [133], [134]. This motivates the 
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use of a variety of other integration methods for solving moment equations, such as the 

quadrature method of moments. Accurate solution is done by decomposition to a large 

system of ODEs, using the method of weighted residuals or the finite volume method. 

The finite volume method has been applied to the modeling of a multi-segment plug flow 

crystallizer previously by Alvarez and Myerson [135]. Number density may itself be a 

function of external position, motivating the use of combined CFD-PBM models. The 

approach has been used to model impinging jet and antisolvent crystallizers [136]–[138]. 

 

 

 

2.7.2 More Sophisticated Population Balance Modeling Approaches 

There has been much work done with computational fluid dynamics (CFD) simulations 

using special software packages, to clearly examine what the flow patterns are within the 

crystallizers. These models involve not only the population balance equation, but the 

fluid transport equations as well. The k-ε model has been used to investigate turbulent 

effects [40]. While these simulations do provide useful data in the form of shear profiles, 

temperature profiles, and the location of solids in the crystallizer [44], they are time-

consuming to run, and the countermeasures one can take on scale up are still limited. 

Furthermore, if prediction of changes to the CSD is desired, a combined CFD-PBM 

simulation is required, to account for spatial variation in particle number density. Such 

simulations are even more time-complicated than the original CFD simulations [45]. 
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Essentially all phenomena in crystallization are random in some way. Nucleation, 

breakage, growth, and agglomeration are all based on some chance encounter between 

either two particles, or a particle and a molecule for growth, or an ensemble of molecules 

for nucleation [139]–[141]. Monte-Carlo methods are based on using computer-generated 

random numbers to simulate physical random (or presumptively random) phenomena. 

Braatz has discussed several papers which utilized stochastic PBM models and were 

solved with MC methods [37]. MC methods are able to model this type of phenomena in 

fine detail, but are computationally burdensome. We note that MC is a general tool, and 

has been applied to crystallization in other ways to crystallization other than solving the 

PBM equation. Jones has described the use of MC to explicitly account for a residence-

time distribution in an MSMPR crystallizer [40]. 

 

 

 

2.7.3 Current Challenges in Continuous Crystallization and Population Balance 

Modeling 

Challenges abound in the application of process systems engineering knowledge to 

pharmaceuticals. This thesis fills an important literature gap by addressing the need for an 

integrated modeling, optimization, and design framework for the identification of optimal 

crystallizer designs. This framework can be applied to many other crystallization systems 

which have not been rigorously modeled, such as some of the crystallizers described in 

CHAPTER 3. 
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Currently, general solution of the population balance equation is not known, and 

numerical methods tend to exhibit significant tradeoffs in speed and accuracy [134]. 

Speed is required for utilizing the model for model-predictive control, and accuracy is 

required to make the benefits of optimal control worthwhile. 

 

Related to the issue of robustness is the issue of dynamic stability. Due to the high 

nonlinearity present in crystallization systems, the effect of time usually requires 

numerical solution to observe on the CSD. In MSMPRs, oscillations in the CSD are a 

known and undesirable phenomena. Dynamics in general have been studied for the 

conventional batch and MSMPR crystallizers, as well as networks of MSMPRs. However, 

newer crystallizer designs, such as the MSMA-PFC, have not had such analyses done for 

them. Furthermore, in newer crystallizer designs (such as the MSMA-PFC), it is 

unknown what type of dynamic behavior may be present, e.g. limit cycling or chaos. 

Bifurcation analysis of such systems is nearly impossible to do analytically. Rigorous 

computational studies are one method addressing this literature gap. 

 

Another challenge, separate from the mathematical difficulties, is the issue of parameter 

estimation. The full description of the process requires a great deal of information [40], 

including solubility data, crystal density, liquid transport properties, crystal growth rate(s), 

and nucleation rate [40]. Accurate estimation of kinetic parameters for growth, nucleation, 

and dissolution is one of the most difficult hurdles to surmount in constructing an 

accurate crystallization PBM [37], [47]. As pointed out by Rawlings [47], the results 

produced by model-based optimizations rely upon estimated parameters, and as such, will 
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be sensitive to experimental error. Without very accurate parameter estimates, all of the 

effort expended upon optimizing the crystallization equipment and process operation may 

be for naught, with virtually no benefit realized. This goes not only for continuous 

crystallization, but the entire CPM flowsheet. Model complexity becomes even more 

acute when phenomena such as size-dependent growth, non-uniform residence-time 

distributions, agglomeration and breakage, and growth-rate dispersion are added to the 

model [47]. The complicated nature of such models has motivated the use of Monte-

Carlo methods for their solution [40]. 

 

 

 

2.8 Multiobjective Optimization in Crystallization Design and Research 

We have utilized multiobjective optimization extensively in our work in CHAPTER 4. In 

preparation for this chapter, we provide the reader with useful background information on 

multiobjective optimization. Multiobjective optimization is a generalization of scalar 

optimization which accounts for the common situation when the decision maker has 

multiple conflicting objectives he wishes to optimize over. In general, global 

optimization of each function at the same time is unattainable [142]–[144], thus 

motivating the concepts of Pareto optimality, trade-off, and non-dominated solutions. 

This framework has been applied to batch crystallization by several workers [120], [145]. 

Such a framework appears quite applicable to analysis of PFCs, since it provides detailed 

information on what CSDs are attainable. Bhat and Huang [120] applied the approach to 

enantioselective crystallization by incorporating enantiomeric excess into one the 
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objectives for maximization, in addition to maximizing size, while minimizing �� and 

batch time. Sarkar et al. [146] simultaneously extremized several quantities, and supplied 

Pareto frontiers. 

 

Typically in crystallization control, one desires larger crystals with compact shape, since 

these have superior filtering and dry properties. However, sometimes smaller crystals, 

which dissolve faster, are preferable. The purpose of this section is to give the reader a 

brief background on the subject of multiobjective optimization (MOO) and discuss 

several important issues related to the practical solution of MOO problems. This section 

draws heavily from the books by Deb [147], Gen and Cheng [148], and Chambers [148], 

which give in-depth discussions of evolutionary algorithms applied to multi-objective 

problems in engineering. 

 

 

 

2.8.1 Basic Problem Formulation 

The standard formulation for an MOO problem is: 

i

��:3 �1H(3) 1f(3) ⋯ 1'(3)�� 

Subject to: 

\(3) ≤ �
](3) = �3BC ≤ 3 ≤ 3DC

 

(2.15) 
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Multiobjective optimization is a natural consequence of the fact that real problems, 

especially in engineering, often cannot be characterized in terms of a single objective. 

Frequently, we must optimize over a variety of objectives, such as capital cost, operating 

cost, volume, weight, energy consumption, and other objectives specific to a particular 

problem. No single design can simultaneously optimize all objectives in the vector.  

2.8.2 Pareto Optimality and the Pareto Frontier 

The Pareto-optimal (or also, “non-dominated”) set of solutions to an MOO problem is the 

MOO analog of the global minimum for a single-objective problem. Due to multiple 

objectives though, the solution is expressed as a set of points instead of a single point. 

These points describe a curve, called the Pareto frontier, for which a tradeoff exists 

between any two points on the curve. When a point lies on the Pareto frontier, moving in 

any direction leads to a desirable reduction in one objective and a concomitant, 

undesirable increase in another objective. In mathematical terms, the globally-optimal 

Pareto frontier satisfies the property that: 

i 1�∗(3) ≤ 1�(3) (2.16) 

for all feasible 3 and for all 1, 2, . . . , � objectives. That is, there is no point that can 

improve any at least one of the objectives while leaving the others unchanged. 

 

 

 

2.8.3 Use of the Genetic Algorithm 

Many methods exist for solution of problem (2.15), which depend on the difficulty of the 

problem. We do not discuss gradient-based approaches in this work, as these approaches 
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are of little use in crystallization problems. The most direct method for solving an MOO 

problem is by stochastic optimization. Many such schemes exist, such as simulated 

annealing, bacterial foraging, ant-colony, and particle-swarm optimization. In this work, 

we have used the genetic algorithm (GA), which mimics the Darwinian process of natural 

selection to generate the Pareto frontier. In the GA, a pool of solutions are first generated, 

and the objective function is evaluated for each of them. The “fittest” solutions are 

allowed to pass on to the next generation. Then a variety of mutation, transposition, and 

selection operators create a new set of “child” solutions created from the “genes” of the 

parent solutions. This helps preserve the good qualities of the prior solutions, but offers a 

chance to improve the solution further by moving elsewhere in the search space. Unlike 

gradient-based approaches, the GA is robust against local minima. 
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CHAPTER 3. CURRENT LITERATURE ON CONTINUOUS 
CRYSTALLIZATION TECHNOLOGIES 

We present in this chapter a more specific literature review focusing solely on continuous 

crystallization designs that have been proposed and tested in the literature. The purpose 

of this chapter is to expose the reader to the breadth of the continuous crystallization 

literature. It also helps place our work in the greater context, as we have investigated in 

this work solely the MSMA-PFC. A handy table at the end of this chapter summarizes the 

key findings and experimental attributes of many studies in the field of continuous 

crystallization. 

 

 

 

3.1 The MSMPR, MSMPR Cascade, and CoFlore™ Crystallizers 

The mixed-suspension, mixed-product removal (MSMPR) crystallizer is the workhorse 

of large-scale chemical manufacture, used for productions of ~1-50 tons/day [47]. It is 

the crystallization analog of a continuous stirred-tank reactor (CSTR). Large, scaled-up 

examples of such devices can be seen in Larsen et al. [38]. Aside from large-scale use, 

the MSMPR (as well as batch crystallizers) is used often in the laboratory for 

experimentally determining growth and nucleation rates, and also for detecting size-

dependent growth [47], [51]. 
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Mascia et al. utilized MSMPRs for their crystallizations in their study of a continuous 

tablet manufacturing pilot plant [23].Quon et al. [149], Zhang et al. [150], and Alvarez et 

al. [151] demonstrate the use of multiple MSMPR’s in series for cooling and antisolvent 

crystallization of pharmaceuticals. Newer MSMPR technologies have explored novel 

new mixing methods to allow for better process control. A highly intensified version of 

the MSMPR cascade is the CoFlore™ reactor, which has been recently applied to the 

continuous reactive crystallization of N-iodomorphlonium salt by Browne et al. [152]. 

Originally developed for chemical reactions, the CoFlore™ reactor utilizes several 

agitated compartments, along with bulk agitation with a linear oscillator, to keep solids 

suspended while crystallization is taking place [152]. A major problem with continuous 

crystallizers of all kinds is the issue of plugging and fouling, and high shear mixing is one 

method of forestalling buildup. Unlike larger MSMPRs, the smaller Coflore™ 

crystallizer offers superior mixing characteristics, enabling swift mass transfer and 

avoiding the problems with solid suspension discussed in section 2.1.4. Narducci et al. 

[153] used power ultrasound as well the conventional stirrer. 

 

 

 

3.2 Plug-Flow Crystallizers 

The plug-flow crystallizer (PFC) is analogous to the plug-flow reactor (PFR). It can be 

shown analytically that the MSMPR cascade, in the limit of infinitely small CSTRs, 

asymptotically converges to the PFC [154]. Cascades generally converge to a PFC within 

about 5 units. For fast crystallizations, PFCs can be practical, while slow crystallizations 
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require too great of a residence time (and thus too slow of flow velocity) to be useful. A 

common feature of plug-flow crystallizers (and other types discussed in §3.3) in the 

recent literature on pharmaceutical crystallization is the exploration of various mixing 

methods. Among others, we observe vortex mixers (“Roughton” type [155]), impinging 

jets [136], [137], [156], and static mixers (e.g. the Kenics mixer [135]). Such mixers have 

been investigated for flow-dependent reaction syntheses previously, and more recently 

for use in crystallization research. The topic of static mixers is discussed at length in the 

review by Thakur et al. [157]. Generally, such mixers are found to be significantly more 

efficient than active mixers, and, with proper design, can rapidly achieve plug flow. 

Typically, good mixing can be achieved using vortex mixers, or static helical mixers. 

Simulations by Woo et al. [136] show that vortex mixers possess mixing times well 

below the induction time of crystallization, which ensures that there are no confounding 

effects from supersaturation gradients. Eder et al. [158], [159] have investigated a stage-

wise cooling PFC for continuous aspirin crystallization. Their PFC consists of a flexible 

coiled tube, which permits a long residence time, but occupies little space.  Control over 

the supersaturation trajectory is achieved by chilling separate coiled sections. This 

permits the creation of a clearly-defined temperature profile along the length of the PFC. 

For the case of antisolvent crystallization, The plug flow crystallizer is often not a 

practical tool for pharmaceutical crystallization, since residence times must be so long to 

achieve a larger crystal size. This leads to very low flow rates and low velocities, which 

leads to settling of the crystals and fouling of the inner surfaces with API. Very low flow 

velocities also lead to self-contradiction if the “plug-flow” crystallizer is operated in the 

laminar flow regime. Lawton et al. [160], used a PFC augmented with baffles and a 
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pulsating “thumper” to drive flow continually back and forth, while maintaining a net 

positive forward flow. The logic in using these baffles is to obtain better turbulent mixing 

along the length of the crystallizer, while avoiding high flow rates which would normally 

be necessary to produce it. High velocity is achieved without shortening residence time. 

FBRM was used for observation of crystal size via chord-length distribution. Their 

results showed vast reduction in production time. 

 

 

 

3.2.1 Multi-Segmented Plug-Flow Crystallizers 

A feature of this thesis is investigation into using multiple crystallizer segments in series. 

This allows for spatial control over supersaturation in on dimension, which is not possible 

in a stirred tank (batch or continuous) crystallizer. Variation of supersaturation with 

length allows for improved control over growth and nucleation, which leads to a better 

final crystal product. Prior work in this area has been done by Alvarez on antisolvent 

crystallization, Majumder and Nagy on the modeling of cooling crystallization, and 

Ridder et al. on modeling antisolvent crystallization. Alvarez and Myerson have 

investigated a multi-segment PFC, with separate antisolvent injections into each stage 

[135]. Their segmented PFC system was modeled with a set of PBM equations and a 

mass balance equation, and compared to experimental results. The kinetic and solubility 

parameters of ketoconazole, flufenamic acid, and L-glutamic acid were determined 

experimentally for use in the model. FBRM was used for measuring CSD, and comparing 

to model prediction, though no feedback control was used. In that work, a Kenics screw-
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type static mixer was used to ensure good homogenization of the liquor and antisolvent 

streams, but other approaches have been used as well. Majumder and Nagy investigated 

the use of in-situ dissolution in plug-flow cooling crystallization in order to eliminate fine 

crystals [113]. Ridder et al. investigated the crystallization of flufenamic acid via a 

simulation and optimization-based study [161], [162]. The sensitivity to kinetic 

crystallization parameters was investigated as well. 

 

 

 

3.3  Other Types of Continuous Crystallizers 

Nguyen et al. [163] have investigated the use of this crystallizer. In a CT crystallizer, 

liquor flows into the hollow gap between a cylindrical shell and a concentrically-located 

spinning cylinder. When rotated at high speed, the fluid eventually exhibits Couette-

Taylor flow, where the fluid segregates into an “accordion” of concentric toruses, with 

fluid rotating concentrically about the axes of the individual toruses rather than about the 

axis of the spinning cylinder. Unlike the COBC, which directly compartmentalizes 

various elements of fluid, each torus might be considered its own “compartment”, and 

mixing occurs within toruses as well as between them. These toruses can be modeled as 

separate compartments in a compartment flow model. The CT crystallizer allows for high 

slurry velocity, which improves mixing and avoids the problems of settling and fouling at 

low velocity. However, residence time can be controlled purely by inlet flow. Thus a 

decoupling can be achieved between flow velocity and residence time for the continuous 

CT crystallizer. 
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A type of spray-drying crystallization using electrically-stimulated liquid jets has been 

investigated by Wang et al. [123] for the production of carbamazepine nanocrystals. 

Similar to spray-drying, an electrospray device generates fine jets of liquid by applying 

electric potential to a saturated liquid solution. The charged fine droplets naturally repel 

each other in flight, until they land on a grounded surface. Rapid evaporation leads to 

amorphous crystals. This approach is interesting, in that it provides a continuous 

production route to a particular (though, in this case, unstable) solid-form, in the nano-

sized regime. Significantly more work could be done in terms of modeling of this system, 

such as population balance modeling of the generated droplet cloud.  

 

Another design is the electrospray crystallizer. This type of device, originally developed 

for plastic injection molding, utilizes two opposing streams of high-velocity liquid 

sprayed at an intersecting point. The region where these two streams collide creates a 

zone of intense mixing, avoiding the aforementioned trouble with supersaturation 

gradients. Details about the design of this crystallizer can be found in the original patent 

[156]. The Braatz group at MIT has done extensive work on the modeling, simulation, 

and optimization of this type of crystallizer [136], [137] for the case of the drug lovastatin 

and L-histidine. Woo [136] performed combined CFD-PBM-micromixing simulations of 

the impinging jet crystallizer within the mixing chamber. Their results show that, given a 

sufficiently high Reynolds number, thorough mixing is achieved before fluid exits the 

mixing chamber. The results of that study were further used in [137], where the obtained 

crystal size distributions from the previous modeling were used as decision variables in 

an optimization problem. By utilizing a repertoire of known CSDs for given jet velocities, 



82 
 

 

a series of quadratic programming and nonlinear least squares optimizations were solved 

to identify the optimal control strategy for seed input into a CSTR. By adjusting jet 

velocity as a function of time, a variety of peculiar CSDs were obtained. Their numerical 

results show that, theoretically, significant control over the target CSD exists. 

 

 

 

3.3.1 Continuous Microcrystallizers 

Borrowing from the field of chemical reaction engineering, is the concept of the 

microcrystallizer [164]–[166]. Due to the aforementioned problems with crystallizer 

scale-up, an alternative approach is to use multiple, smaller continuous flow devices in 

parallel. Once a single microreactor has been design and tested thoroughly, the process of 

scale-up to a larger mass flow rate is greatly simplified, as multiple units can be used in 

parallel instead of enlarged. This is termed “number up”, as opposed to “scale-up.” 

However, the technical problems of fluid distribution and lack of flexibility in inputs 

leaves “number up” can still be challenging for proper scale-up [167]. Microcrystallizers 

have pharmaceutical use as high-throughput screening platforms for drug discovery and 

development, and lab-scale process optimization [167].  Currently, they are not usable for 

drug production, due to plugging and fouling of the vessel interior [167]. Microfluidic 

crystallization is mainly used for high-throughput screening of optimal experimental 

procedures for protein crystallization. However, use has been demonstrated for high-

throughput screening of pharmaceutical salt forms and polymorphs. Llinas and Goodman 
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cite a case where over 2000 screening experiments were performed for polymorph 

identification using only 2 grams of API [99].  

3.4 Table of Continuous Crystallization Technologies 

Table 3 below summarizes a wide variety of studies encompassing these crystallizer 

designs. 
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CHAPTER 4. MULTIOBJECTIVE OPTIMIZATION AND ROBUSTNESS 
ANALYSIS OF THE MULTI-SEGMENT, MULTI-ADDITION PLUG-FLOW 

ANTISOLVENT CRYSTALLIZER (MSMA-PFC) 

4.1 Abstract 

In this chapter, we present optimization and simulation results related to a new type of 

crystallizer for the production of pharmaceutical APIs. We develop the population 

balance and mass balance model framework, as well as the multiobjective optimization 

framework for investigating the design of the crystallizer. The governing model equations 

are derived and presented. Landscape plots of mass-mean size (���) and coefficient of 

variation (��) indicate great sensitivity to flowrate and nonconvexity, necessitating the 

use of stochastic optimization via the genetic algorithm. Using multi-objective 

optimization, we calculated optimal designs for this crystallizer in terms of maximizing 

��� and minimizing ��. A tradeoff exists between these two quantities. Mean size was 

improved over prior literature results while maintaining similar spread. The optimal 

solution was sensitive to uncertainty in the kinetic parameters of nucleation (89) and 

growth (87). Lastly, we have investigated the sensitivity to flowrate for the MSMA-PFC 

using a simple Monte-Carlo technique. The greatest sensitivity is observed in the first and 

third segments, while the second and fourth have little process impact. This work is 

substantially composed of work from the paper [161]. Adapted with permission from B. J. 

Ridder, A. Majumder, and Z. K. Nagy, “Population Balance Model-Based Multiobjective 
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Optimization of a Multisegment Multiaddition (MSMA) Continuous Plug-Flow 

Antisolvent Crystallizer,” Ind. Eng. Chem. Res., vol. 53, no. 11, pp. 4387–4397, Feb. 

2014. Copyright 2014 American Chemical Society. It also contains work substantially 

composed of from the conference paper [162]. Adapted with permission from B. J. 

Ridder, A. Majumder, and Z. K. Nagy, “Population balance model based multi-objective 

optimization and robustness analysis of a continuous plug flow antisolvent crystallizer,” 

American Control Conference (ACC), 2014, pp. 3530–3535, Jun. 2014. Copyright 2014 

IEEE. 

 

 

 

4.2 Introduction 

As discussed in CHAPTER 1, financial pressures have caused the pharmaceutical 

industry to express interest in the development of new manufacturing technologies [3], 

[7], [15]. These problems translate into high manufacturing costs, though little attention 

has been historically paid to the problem. One such technology branch that is being 

researched is advanced crystallization processes. Crystallization is a major separation unit 

operation in fine chemical and pharmaceutical manufacture. The overwhelming majority 

of drugs are organic molecules crystallized from solution [24], [113], [169]. 

Predominantly, pharmaceutical crystallization is done batch-wise, despite clear evidence 

of the economic advantages of continuous manufacturing – such as steady-state operation, 

lower material hold-up, and superior control over the state of the final drug product [5], 

[24], [160]. 
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An optimization problem has been indirectly suggested in the literature by Alvarez and 

Myerson [169]. Alvarez had attempted to improve the crystal output properties by 

manipulation of injection configuration and/or antisolvent flowrates in an MSMA-PFC. 

In previous work on batch crystallization, the goal was to manipulate supersaturation as a 

function of time to achieve an optimal set of crystal properties at the conclusion of the 

batch [145], [146], [170], [171]. Analogously in this work, we have manipulated the 

supersaturation profile in order to optimize the crystal properties at the outlet. The 

difference is that the supersaturation profile in the batch case is with respect to time, 

while here it is with respect to length into the crystallizer. 

 

We have optimized an MSMA-PFC for the production of flufenamic acid, an anti-

inflammatory drug [169], [172]. By altering the antisolvent flowrates in the various 

sections, the supersaturation can be controlled along the length of the crystallizer. The 

supersaturation within a segment strongly affects the nucleation and growth kinetics 

therein and thus gives us a method for manipulating the product CSD at the outlet. The 

process is modeled using a steady-state population balance model (PBM), and is solved 

using the method of moments as well as a high-resolution finite volume scheme [113], 

[173], [174]. A similar work has been performed by Vetter et al. [17] In that work, the 

authors investigated the attainable product regions of crystal size for a given residence 

time in continuous crystallizers. Such studies are helpful in estimating the performance 

and flexibility of such systems for practical use, with the impact on the final product in 

mind. 
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4.3 Methodology 

To investigate this continuous flow system, we utilize a multi-objective optimization 

(MOO, also known as “vector optimization”) framework. Such a framework is useful for 

fully investigating the capabilities of particular design. The solution of MOO problems is 

cast in terms of finding the non-dominated set of possible solutions, e.g., the solutions for 

which it is impossible to improve one objective without degrading another. This non-

dominated set is referred to as the “Pareto frontier.” Such a framework is highly 

amenable to crystallization problems, which often have a multitude of conflicting 

objectives in the problem definition. MOO has been applied previously to batch 

crystallization processes [145], [146]. We explore the multi-objective optimization (MOO) 

of the MSMA-PFC, with the objectives of maximizing the mass-mean size (���) and 

minimizing the coefficient of variation (��). We show in this work that nonconvexities 

are encountered in the search landscape, making a stochastic optimization algorithm more 

appropriate. A widely-used solver for finding the Pareto front is the non-dominated 

sorting genetic algorithm (NSGA-II), which can efficiently identify the non-dominated 

set, and handle constraints[175], [176]. We also investigated the sensitivity of the Pareto 

front to uncertainty in the kinetic parameters. The simultaneous design and control 

framework for the MSMA-PFC is evaluated and it is shown that with appropriated 

crystallizer design, that takes the possibility of improved control into account, can 

improve product quality significantly. 
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4.4 Model Diagram, and Governing Equations 

 

Figure 4.1 Model of segmented plug flow crystallizer system. 
 

 

 

The idea behind the MSMA-PFC is to distribute antisolvent along the length of the 

crystallizer, which allows for the control of supersaturation in one dimension. The 

MSMA-PFC is based on the setup in Alvarez and Myerson [169]. It is modeled as a 

series of ideal plug flow elements, and antisolvent is added at the beginning of each 

segment (see). Each of the � segments is a separate PFC. �� is the antisolvent flow rate 

added to the ��Jisegment. The inlet at the far left is the feed flow rate (��##%), with an 

initial concentration of solute (��) and a seed crystal size distribution (CSD), :�. The 

population and mass balance equations are solved for each segment, and the output of 

one segment becomes the input to the next segment. The CSD (:) and concentration (�) 
are adjusted for the dilution induced by the addition of antisolvent. The final CSD, :�, is 

used for formulating the multi-objective optimization problem. The optimization problem 

is solved by manipulating the antisolvent flow rates in each segment (��). It is assumed 

that each of the �  segments is a separate PFC, running in steady-state, isothermal 
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operation. The solvent and antisolvent streams are assumed to mix together perfectly, and 

attain plug flow. In this work, we consider only the unseeded case (:� = 0); however the 

same framework can be applied for seeded operation. The population and mass balance 

equations are solved for each segment, and the output of one segment becomes the input 

to the next segment. Isothermal operation abrogates the need for solution of the equation 

of energy. 

 

 

 

4.4.1 Model Equations 

The model equations for the crystallizer design explained above consist of a set of 

population balance equations (PBEs) describing the evolution of the CSD along the array 

of plug flow crystallizers, coupled with mass balance equations that take into account the 

depletion of solute concentration in the solution due to crystal growth and nucleation. 

Population balances are a key tool in the model-based control of crystallizers [40], [51], 

[70], [97], [124], [177]. In this work, our seed distribution at the inlet is zero; the process 

is unseeded. Number density changes along the tube length since birth and growth 

processes depend on the supersaturation ( ). The model equations for the steady-state 

system are discussed below. The PBE for a PFC is derived by crossing off the irrelevant 

terms in the general equation given in (2.13):  

i �0
�� + �

�> (=>:) + �
�? �=?:� + �

�) (=):) + �
�B (P:) − � + O = 0 (4.1) 
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Since we are using the average velocity, �=> �@v = 0. If one-dimension flow is assumed, 

then the other two velocity components are zero. We assume size independent growth, 

e.g. �P ��v = 0. Regarding the birth function, only nucleation occurs, which means only 

crystals of size ��  enter the system. This is modeled using a Dirac delta function as 

� = ��F(� − ��), whereiF(� − ��) has units of m-1. There is no death function here, e.g. 

no agglomeration and breakage. Post-cancellation, the steady-state PBE for the MSMA-

PFC is: 

=>(!) �:
(!)

�@ + P(!) �:(!)�� = ��(!)F(� − ��) (4.2) 
 

 where the superscript  denotes the �J segment of the MSMA-PFC, =>(!) is the average 

velocity of the fluid, :(!) is the number density, and @ is the length along the crystallizer. 

The average velocity is computed by adding up the total volumetric flow rates of solvent 

and antisolvent in the particular PFC segment, and dividing by the cross-sectional area of 

the PFC. In the PBM literature, � is referred to as the “internal coordinate”, while @ is 

referred to as the “external coordinate.” Our boundary conditions are [111]: 

:(!)(0, @) = ��(!) P(!)v  
(4.3) 

 

:(!)��, @!,�0� = �!:(!�H)��, @!�H,���� (4.4) 
 

and :(H)(�, 0) = 0 (e.g. the process is unseeded). Furthermore, ��(!) is the nucleation rate, 

P(!) is the  crystal growth rate and �! is the dilution factor.  At the entrance of each PFC 

segment, the CSD and solute concentration were adjusted by multiplying with a factor 

which corrects for the dilution: 
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�! =i��##% +� ��!�H���
��##% + � ��!���

. (4.5) 
 

This factor is derived by performing a mass balance around all PFC segments and mixing 

points up to and including the �Ji PFC segment (�� = 0, and  = 1ifor the first PFC 

segment). Equation (4.2) tracks the CSD as solution passes through the PFC array. In 

addition to eq. (4.2) the solute mass must be tracked. We do this by simultaneously 

solving the mass balance equation: 

=>(!) /�
(!)

/@ = −3K&86P(!)� �f:(!)i/�
r

�
, (4.6) 

 

wherei�(!)  is the concentration of dissolved solute in the liquid phase, K&  is the solid 

crystal density, and 86  is the crystal shape factor. � decreases along the length of the 

array via not only the processes of growth and nucleation, but also by addition of fresh 

antisolvent. Thus, the mass balance boundary condition is �(@ = 0) = i�� and 

�(!)�@!,�0� = �!�(!�H)�@!�H,���� (4.7) 
 

Equation (4.6) accounts for the depletion of dissolved solute from the supersaturated 

liquid phase by the layer-by-layer areal deposition of solute matter upon the exterior 

surfaces of nucleated crystals. Other ancillary equations are, the growth and nucleation 

rate equations: 

P(!)( ) = 87( (!))7,      ��( ) = 89( (!))9, (4.8) 
 

and the percent antisolvent ratio, supersaturation, and solubility curve: 
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*+%(!) = 100 � +��� �¡¢
� +��� �¡¢ i£i¤¢  ,     (!) = �(!) − ����(!)

 ,   ����(!) = ����¥@^(−����*+%(!)), (4.9) 
 

Where   is the supersaturation, 87 , T , 89 , and S  are growth and nucleation rate law 

parameters, *+% is the antisolvent volume percentage, ���� is the solubility concentration, 

and ���� and ���� are fitted parameters for the solubility curve. The solubility and kinetic 

parameters used in this work are those regressed by Alvarez and Myerson for flufenamic 

acid [169]. Numerical values for the parameters discussed here are given in Table 5 

below. Prior to the first injection, no antisolvent is in the feed stream. 
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Table 5 Parameters for crystallization optimization from Alvarez and Myerson [169]. 
Copyright 2014 IEEE. 

Parameter Value 

Inner diameter, m 1.27i × i10�� 

Initial concentration, ��, mg/m3 1.24i × i10¨ 

Solubility parameter, ����, mg/m3 3.36i × i10© 

Solubility parameter, ����, dimensionless 0.108 

Shape factor, 86, dimensionless t/6i(≈ i0.524) 
Crystal density,iK&, mg/m3 1.47i × i10« 

Mother liquor flowrate, ��, ml/min 100 

Segment length, m 0.6 

Growth rate constant 87, m/s 9.9i ×i10�¨ 

Growth law exponent, T, dimensionless 1.1 

Nucleation rate constant 89, #/(m3·s) 1.5i × i10© 

Nucleation law exponent, S, dimensionless 2.1 

Antisolvent concentration in initial solution (mg/m3) 0 

 

 

4.4.2 Solution of Model Equations 

Depending on the application or desired information, some solution methods are more 

appropriate than others. Typically various method of moments (MOM) are used to solve 

the population balance equations (PBEs), when only moments of the CSD are required, 

e.g., standard method of moments (MOM) [133] and quadrature method of moments 
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(QMOM) [134], [178]–[180]. The importance of moments lies in the convenient 

simplifications they impart to the solution of crystallizer modeling equations [40], [111], 

[181]. In the method of moments, progressively higher moments of (2.13) are taken, 

reducing the complicated, coupled, ODE-PDE system to a system of � + 1 ODE’s; the 

� moment equations, plus the mass balance in (4.6). The 8�J  moment of the CSD is 

given by: 

GI(!) = � �I:(!)(�, @)/�r
�

 (4.10) 
 

The physical meaning of the moments is straightforward: G�  is the total number of 

crystals, GH their total length, Gf their total surface area, and G� their total volume – all 

per unit of control volume [111], [181].To obtain the moment form of the PBE, first take 

the 8�J moment of the entire equation: 

� =>(!) �:
(!)

�@ + P(!) �:(!)�� ® �I/�r
�

= � ��(!)F(� − ��)�I/�
r
�

 (4.11) 
 

We can take the derivative out of the integral on the leftmost term on the lefthand side: 

=>(!) /GI
(!)

/@ + P(!)� �:(!)
�� �I/�r

�
= ��(!)��I  (4.12) 

 

The term s �:(!) ��v �I/�r
�  can be integrated using integration by parts to finally obtain 

the 8�J-moment equation: 

/GI(!)/@ = 8P(!)GI�H(!) + ��(!)��I
=>(!)  (4.13) 

 

The full system of MOM equations is given by plugging in 8 = 0,1, … ,5 into (4.13): 

/G�(!) /@v = ��(!) =>(!)°  (4.14) 
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/GH(!) /@v = wP(!)G�(!) + ��(!)��� =>(!)°  

/Gf(!) /@v = w2P(!)GH(!) + ��(!)��f� =>(!)°  

/G�(!) /@v = w3P(!)Gf(!) + ��(!)���� =>(!)°  

/G�(!) /@v = w4P(!)G�(!) + ��(!)���� =>(!)°  

/G±(!) /@v = w5P(!)G�(!) + ��(!)��±� =>(!)°  

/�(!) /@v = −3K&86P(!)Gf(!) =>(!)°  

This set of equations provides the steady state moment model of the MSMA-PFC. This 

technique permits rapid solution in terms of moments, but loses the full CSD. The MOM 

requires computationally much cheaper function evaluations, making it more efficient in 

the optimization which requires multiple iterations within the genetic algorithm. These 

seven equations solve for two important average quantities at the exit of the MSMA-PFC. 

The exit ( = �) mass-mean crystal size is given by: 

���� = G�(�) G�(�)°  (4.15) 
 

and the exit mass-mean coefficient of variation is given by: 

��� = ²G±(�)G�(�) (G�(�))f° − 1 (4.16) 
 

The first six moments (0 through 5) were solved for, since these are required to fully 

calculate (4.15) and (4.16). 

 

The main drawback to this approach is that knowledge of the full CSD is lost during the 

transformation. Theoretically, one can reconstruct a CSD by solution of a Q × Q linear 
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system, where Q is the number of bins in the reconstructed CSD. There can be substantial 

numerical difficulty in calculating moments of very high order, since the calculation 

requires the number of moment equations to be equal to (Q − 1). Figure 2 in McGraw 

[178] shows increasing deviation from the exact solution for increasing 8, for the case of 

GH through G±. Also, this Q × Q system is typically ill-conditioned, meaning that even 

slight changes in the matrix elements can dramatically change the uncovered CSD [111]. 

The method also cannot be used when the lower moments are functions of higher ones - 

solution becomes impossible since closure of the equations is never attained. This 

“closure problem” occurs when more complicated terms are used for the modeling of 

growth, breakage, and agglomeration [182]. For this reason, simplistic terms for growth, 

such as constant or linear size-dependence, are commonly used in the literature – and also 

why breakage and agglomeration are typically neglected. 

 

However, other methods can circumvent this problem and allow us to solve for the full 

CSD. Various solution approaches are available to solve the PBEs for the full CSD, such 

as the high resolution finite volume (FV) technique [113], [173], [174], weighted 

essentially nonoscillatory (WENO) [183], [184], finite element method (FEM) [185], 

[186], method of characteristics (MOCH) [183], [187], Lattice-Boltzmann method (LBM) 

[188], [189], and Monte Carlo method[190], [191]. In this work the PBEs were solved 

using a high resolution FV technique, which is the combination of the semi-discrete FV 

technique with the van Leer flux limiter, for its efficiency and ease of implementation 

[113], [173], [174]. The method discretizes (2.13) into Q ordinary differential equations, 

where Q  is the number of crystal size bins. The discretization started at 2 µm, and 
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progressed upward in 4 µm increments, for 249 additional increments, up to the 

maximum bin size of 998 µm, for a total of 250 bins. Just as in the MOM case, the mass 

balance equation (4.6) is also solved. This technique can capture the sharp front without 

numerical oscillations and provides at least second-order accuracy where the solution is 

smooth. 

 

To summarize the two solution methods, the MOM method entails solving 7 

simultaneous ODE’s, while the FV method requires solving 251 .  The greater speed 

(about 1/16th the wall-clock time of the FV method) of the MOM method makes it more 

appropriate for solving the optimization problems. The moment-transformed equations 

were solved using MATLAB’s ‘ode23’ solver, while the FV equations were solved using 

Runge-Kutta numerical integration (‘ode45’ in MATLAB). In our approach we used the 

fast MOM method with the genetic algorithm to decrease the computation time for 

finding the optimal antisolvent profiles and crystallizer design, and then used the FV 

method to observe the full CSD for selected antisolvent profiles. 

 

 

 

4.4.3 Multi-Objective Optimization Problem Formulation 

The multiobjective problem formulation follows that given in section 2.8.1. With regards 

to our system, ��� and �� are strong functions of the antisolvent flowrate vector, X, and 

manipulating Xiwill change Y. While there are some instances in which small crystals are 

desired (e.g. inhalable powders and injectable drugs[21]), we generally desire a narrow 
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CSD (low ��) with a large mean size (highi���). To solve the MOO problem, we used 

MATLAB’s implementation of the non-dominated sorting genetic algorithm (NSGA-II), 

‘gamultiobj’, to search over X for the non-dominated set, since it is found to work well 

for solving similar type of optimization problems[146], [192]. For eachiX, the model 

equations discussed in the previous section were solved. The final result from the last 

crystallizer segment was used to calculate the objective function values. ��� and �� for 

:(�, @#0%) were calculated using:  

Y = ³1/����ii���´� , (4.17) 

where 1/����i is used because `gamultiobj’ seeks to minimize functions. The actual 

decision variables used in the optimization were fractions of a required total antisolvent 

flowrate: 

�! = =!������ i, (4.18) 
 

where =�  is the decision variable manipulated by the genetic algorithm for the j
th 

crystallizer segment, and ������  is the total required antisolvent flowrate. An equality 

constraint forced these percentages to sum to 1: 

µ=! i
!

= 1 
(4.19) 

 

Each individual decision variable was also bounded between 0 and 1: 

0 ≤ =! ≤ 1 (4.20) 
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4.5 Results and Discussion 

4.5.1 Nonconvexity of ��� and CV Landscapes 

For the solution of the optimization problem both gradient-based and stochastic (GA) 

algorithms were investigated. Derivative-based algorithms generally offer much faster 

convergence when the objective function is smooth and convex or with relatively small 

number of local optima. When this is not the case however, stochastic methods are more 

appropriate, since such methods are more robust to poor initial guesses. A numerical 

analysis was performed to investigate the nature of the optimization problem to 

understand why the GA appeared to be more appropriate. To do this, we performed brute-

force evaluation over the antisolvent profiles of ���i  and ��  for two injections, and 

plotted the responses. The crystallizer modeled using this approach used all the same 

parameters as in Alvarez and Myerson[169].  Missing sections of these plots denote an 

infeasible crystallization due to a negative supersaturation. 



104 
 

 

 

Figure 4.2 L43 and �� response surfaces for two injections. The landscapes (a) and (b) 
present nonconvexity that makes gradient optimization difficult. Great sensitivity to 
antisolvent flowrate is observed. The contour plots (c) and (d) are zoomed closer to the 
extrema for clarity. 
 

 

 

Figure 4.2 shows the response surface for two injections. The nonconvexity we believe is 

due to the system, taken as a whole, alternating between nucleation-dominant and 
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growth-dominant regimes along the length of the array. We further remark that the 

objective landscape appears highly sensitive around some of the extreme points. The 

maximum ���i (80.2 µm, black arrow, Figure 4.2c), rests at the crest of a tall, knife-like 

ridge. This indicates that the optimal ��� is highly sensitive to model or implementation 

uncertainties. Small deviation in flow rate A2 would greatly reduce the mean size of the 

actually obtained CSD. Furthermore, deviations in the crystallization kinetic parameters 

from the nominal values are also likely to lead to large deviations from the theoretically 

optimal performance. An analogous problem exists in the �� landscape, where we can 

see that global minimum and global maximum are in close proximity. The �� global 

minimum (0.195, white text, Figure 4.2d) lies in a narrow valley behind the sharp crest 

containing the �� global maximum (0.351, black arrow, Figure 4.2d). Any error in A2 

will fail to realize the global minimum ��. 

 

 

 

 

4.5.2 Multi-Objective Optimization Results 

In this section, different sets of kinetic parameters are used to generate the Pareto 

frontiers calculated by the NSGA-II algorithm. The motivation for analyzing this 

sensitivity lies in the fact that there can be appreciable uncertainty involved in the 

estimation of the kinetic parameters and as such it is a good idea to investigate the impact 

of these uncertainties on the crystallizer performance. These results are for a four-

injection PFC array, with the same dimensions and flowrates as given by Alvarez and 

Myerson[169]. The total antisolvent flow rate was constrained to be 200 ml/min. The 
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obtained results are shown in Figure 4, where the default case is for �9 = �7 = 1 . 

Altering the kinetic parameters (89 and 87) by ±50% affected the position of the Pareto 

front. The results indicate small sensitivity in the realized CV, though ��� shows higher 

sensitivity. The genetic algorithm used a population size of 100, and was permitted to run 

for a maximum of 500 generations, though on average finished after about 165 

generations. In summary, for about 50% error in the kinetic parameters manipulated, little 

change can be observed in ��, and ���i varies by about ±2.5 µm, which is also relatively 

small, indicating that the conclusions of the approach are relatively robust to variations in 

the model parameters. We wish to emphasize here that the parameters were manipulated 

prior to optimization, and thus these results indicate the sensitivity of the optimization to 

shifts in the kinetic parameters. 
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Figure 4.3 Pareto frontier plots for four injections (��  vs. L43) and different sets of 

kinetic rate parameters, kb and kg. The �’s in the legend correspond to multipliers of the 
base case, e.g. γb = kb’/ kb. The base case corresponds to γb = 1 and γg = 1, with kb = 1.3 x 

10
8 #/(m3·s), and kg = 9.9 x 10

-7 m/s. We observe that there is some sensitivity with 
respect to these parameters on the Pareto frontier, but mainly the effect appears in L43. 
Little shift is seen in the realized coefficients of variation. For clarity, only the final 25 

generations of each parameter set are plotted. The black arrow (L43 = 89.98 µm, �� =0.20) is a representative point that is referred to in Figure 4.4, Figure 4.5, and Figure 4.6. 
 

 

 

4.5.3 Investigation Into the Sensitivity to Kinetic Parameters 

In the reverse case, we have chosen a representative point from Figure 4.3 (the black 

arrow), and varied the kinetic parameters by ±50%  after the optimization has been 

performed (Figure 4.4). This gives us an idea of how sensitive the solutions themselves 

are to error in the kinetic parameters. As expected, ��� increases with the increase of 87 

and decreases with the increase of 89. Counter-intuitively, we see that �� decreases as 

89increases. We expected higher nucleation produce more fine crystals, thus increasing 

��. To determine why this is, the finite-volume solver was used to plot the volume 
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fraction distributions of crystals at the three numerical labels in Figure 4.4b. These 

distributions are shown in Figure 4.5. It is observed that the mean size does indeed 

decrease with increasing 89. However, �� slightly decreases due to the elimination of the 

second mode (the smaller hump in the blue curve in Figure 4.5). It appears that a higher 

89 reduces the ability of growth processes to spread out the distribution. This is because a 

total antisolvent of 200 ml/min was used, thus “locking in” the total available 

supersaturation. Higher nucleation consumes more of this available supersaturation, 

leaving less available for growth. Thus we see a narrowing of the distribution due to 

having a tighter group of fines created during the crystallization. 

 

 

 

  

(a) (b) 

Figure 4.4: Variation in L43 and CV for the representative chosen point. Significant 
sensitivity is observed with respect to kg. Copyright 2014 IEEE. 
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Figure 4.5: Volume size distributions of crystals as a function of nucleation rate constant, 
kb. It is observed that increasing kb decreases the mean size (approximately the mode), but 
shape-wise the peaks are isomorphic. The second mode in the blue curve is eliminated 
with increasing nucleation rate. 
 

 

 

4.5.4 Comparison between Heuristic Antisolvent Profiles and Rigorous Optimization 

Alvarez and Myerson [169] experimented with splitting 200 ml/min antisolvent equally 

over 1, 2, 3, and 4 injection points in the PFC array, and observed the effect on the 

volume size distribution. We show that rigorous optimization of antisolvent profile 

predicts a better result. Referring to the black arrow in Figure 4.3, we have selected a 

representative point from the Pareto front of the nominal case (��� = 89.98 µm, �� = 

0.20), which uses the original set of kinetic parameters (89 = 1.3 × 10© #/(m3·s), and 

87 = 9.9 ×i10�¨ m/s). Numerical values of the antisolvent flowrates for each of these 
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cases are given in Table 6. Plugging these profiles into the finite-volume solver generates 

the volume size distributions shown in Figure 4.6. 

 

 

 

 

Figure 4.6: Volume fraction distributions of crystals for 1, 2, 3, and 4 equal-flow 
injections, and the optimal 4-injection profile of the antisolvent. In the 1, 2, 3, and 4 
injection plots, 200 ml/min of antisolvent is split equally a corresponding number of ways 
among the injections. The optimal result uses the flows taken from the representative 
point (Figure 4.2, black arrow). 
 

 

 

The corresponding antisolvent profiles are listed in Table 2. The optimization has left CV 

essentially the same, but has substantially increased ���. The optimal profile is different 

from equal apportionment of antisolvent. The optimal antisolvent addition profile is such 
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that at the first segment about 30% of the total antisolvent is added which generates 

enough supersaturation so that nucleation occurs. At the second segment almost no 

antisolvent is added so that the crystals from the first segment can grow in moderate 

supersaturation without further nucleation. In the subsequent two segments the remaining 

30% and 40% of the total antisolvent is added to facilitate the further growth of the 

crystals. 

 

 

 

Table 6 Antisolvent flow profiles used to generate the crystal volume size distributions 
shown in Figure 4.6 and the corresponding performance index. 

Cases 

Flow in injection port (ml/min) 

Performance 

index 

1 2 3 4 

·¸¹ 
(µm) 

CV 

1 200 × × × 64.47 0.21 

2 100 100 × × 70.8 0.21 

3 66.7 66.7 66.7 × 83.25 0.21 

4 50 50 50 50 70.35 0.21 

Optimal 59.9 1.22 57.72 81.02 92.05 0.21 
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It is interesting to note that the 4 equal injections case in Figure 4.6 is inferior to the 3 

equal injections case, which disrupts the trend demonstrated from the ��� sizes produced 

from the preceding three cases. To understand the cause of this, observe the plot of 

concentration versus external length in Figure 4.7. It can be seen that in the 4-injection 

case, the operating point after the first injection is in the first segment is below the 

solubility curve, and thus the antisolvent addition generates no supersaturation, hence the 

first segment having no contribution to the crystallization process. In the second segment 

the crystallization is operated in the metastable zone, but without the first segment the 

total residence time available for the crystal growth after crystals can form is shorter than 

in the other cases, therefore crystals cannot grow to larger sizes. Since during antisolvent 

addition, the concentration in the system decreases due to the dilution effect 

simultaneously with the decrease in solubility, this dilution effect has to be taken into 

account to make sure that enough antisolvent is added in the system to reach 

supersaturation. In the case of the 3 equal injections, the first PFC segment already 

operates in the metastable zone, yielding nucleation and then growth in the rest of the 

length of the PFC. In the optimal case, it appears the best procedure is to generate a 

moderate supersaturation initially, and then quickly reduce it to a lower level. The likely 

interpretation of this result is that initially supersaturation is desired to be relatively high, 

encouraging nucleation as soon as possible so that there will be enough residence time for 

growth. Once sufficient crystals have been generated, lower supersaturation would then 

foster growth. The single addition generates very high supersaturation immediately 

promoting excessive nucleation in the system, whereas the two equal injection generates 

higher supersaturation than what is achieved in the second segment of the four additions 
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case, following a relatively similar operating curve in the phase diagram. This is in 

correlation with the results in Figure 4.6, which show that the final CSDs are similar for 

the 2 and 4 equal injection cases, with more pronounced nucleation in the latter case. 

 

 

 

 

Figure 4.7 Concentration vs. external length plot for equal splits of total antisolvent 
across one, two, three, or four sections. The optimal result from the representative point is 
the "Optimal" line. Dotted lines are the concentration in the crystallizer. Solid lines are 
solubility concentrations. 
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4.5.5 Investigation of Design Robustness with Regards to Antisolvent Flowrate Error 

In optimization and control practice optimal solutions are often sensitive to parametric 

and/or control variable uncertainty. It is important to know the robustness limits 

especially for equipment with the production of pharmaceuticals in mind, as designs with 

high variability are counterproductive to implementing QbD. In this section, we have 

investigated the sensitivity of the previous optimal profile to uncertainty in the 

antisolvent flow profile. We are especially interested in flow profile robustness, since the 

results in Figure 4.2 suggest there is great sensitivity to error in antisolvent flowrates. 

Error was simulated in the process by a simple Monte-Carlo simulation. Using the same 

optimal flow profile from Table II, random samples were taken from the nominal values 

over a range of ±50%. These ranges are listed in Table 7 below. 

 

 

 

Table 7 Flowrate Uncertainty Bounds For Robustness Analysis 

Segment 

Nominal 

(ml/min) 

Low 

(-50%) 

High 

(+50%) 

1 59.90 29.95 89.85 

2 1.22 0.61 1.83 

3 57.72 28.86 86.58 

4 81.02 40.51 121.53 
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The first robustness simulation only permitted error in a single segment in the entire 

apparatus. 104 trials each were done for each of the four flowrates. After a random flow 

vector was chosen, the MOM solver was used to solve for ��� and ��, and the results 

presented as scatterplots. The results for varying a single flowrate are shown in Figure 4.8 

below. The red dot corresponds to the nominal (zero-error) case. Figure 4.8 clearly shows 

that uncertainty of flow in the first stage has the most impact on the process. The 

scatterplot has traced out a wide envelope of points that resemble a continuous curve. The 

uncertainty in subsequent flows is ineffectual, as the scatter plot of points have all hardly 

budged from the nominal point. 
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Figure 4.8 Robustness analyses with respect to flowrate by varying a single flowrate. The 
Roman numerals correspond to the particular MSMA-PFC segment for which random 
antisolvent flows are being sampled by the simulation. The red dot is the result for the 
nominal (zero-error) case. Copyright 2014 IEEE. 
 

 

 

We further examined the effect of error in multiple simultaneous stages, by permitting the 

same level of variation, but also varying the stages cumulatively. Figure 4.9 below shows 

these results for 104 trials in each case. 
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Figure 4.9 Robustness analyses for multiple varying flowrates. The Roman numerals 
refer to which stage, and all others preceding it, are being sampled by the simulation. The 
red dot is the result for the nominal (zero-error) case. Copyright 2014 IEEE. 
 

 

 

Stage II imparts only mild change in the response, which is likely due to the small 

flowrate. However, significant variation is observed when stage III is reached, and many 

new points are reachable that are not present in Figure 4.8. Figure 4.9 suggests that the 

first stage, where primary nucleation occurs, is by far the most sensitive segment. 

Furthermore, the increase in nucleation in stage III also makes the process sensitive to the 

flowrate into that segment.  
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4.6 Summary and Conclusions Regarding Flufenamic Acid Optimization Work 

The chapter describes a multi-segment multi-addition continuous plug flow antisolvent 

crystallization (MSMA-PFC) setup. We utilized an integrated simulation and 

optimization framework to analyze the performance and robustness of the MSMA-PFC. 

The population balance model of the MSMA-PFC was introduced, which was solved, 

depending on circumstance, with either the method of moments, or the finite-volume 

method. The model was used in a model-based multi-objective optimization framework 

to design optimal antisolvent addition policies that maximize mean size and minimize 

coefficient of variation, using a genetic algorithm for global optimization and to compute 

the Pareto frontiers, which were also analyzed in the case of uncertainties in the model 

parameters. Concerning the robustness analysis of the antisolvent flowrates, it appears the 

proper control of nucleation will have significant process impact, and that uncertainty in 

antisolvent flowrate will drastically affect performance wherever nucleation 

predominates over crystal growth. We also conclude that error is best treated by 

considering the flow profile as a whole, since there appears to be significant interaction 

between how the upstream stage impacts the downstream performance – a known issue in 

the subject of continuous pharmaceutical manufacture and process design in general. 
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CHAPTER 5. SIMULTANEOUS DESIGN AND CONTROL OF THE MSMA-PFC 

5.1 Abstract 

We have investigated the simultaneous design and control (SDC) of the MSMA-PFC. 

The SDC framework allows us to optimize not only over flowrates, but over the 

crystallizer geometry as well. By use of rigorous modeling and optimization, we solve a 

combined design and control problem to find superior crystallizer designs with 

corresponding optimal operating conditions for the MSMA-PFC. The procedure works 

by optimizing the MSMA-PFC crystallizer for various 2-tuples of total length and 

number of injections. In the first part of this study, we revisit the flufenamic acid 

optimization discussed in CHAPTER 4. The results indicate greater mean crystal sizes 

are attainable using the SDC approach. We then repeat this same analysis, but now also 

have feed flowrate and total antisolvent flowrate as decision variables. For both cases we 

examine the results derived by either maximizing the mass-mean crystal size, or 

minimizing the coefficient of variation. The results are plotted as landscapes with the 

number of injections and the total length as the independent variables. When feed and 

total antisolvent flowrate are used as decision variables, generally higher feed flowrates 

are observed when minimizing ��. There is little difference between the landscapes of 

total antisolvent addition. The residence time landscapes show that the optimal residence 

time is (roughly) a linear function of total length, and is independent of the number of 
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injections. Plots of the crystal size distributions show that minimization of �� leads to a 

much smoother crystal size distribution, albeit with much lower mean size. We 

investigated in greater depth the maximum case of 25 injections. Here, maximization of 

���  leads to more complicated multimodal distributions. This is likely due to the 

calculation of ��� being heavily biased towards larger crystal sizes. When total flowrates 

are used as decision variables, the antisolvent addition profiles for the two cases do not 

exhibit any distinct patterns or cycling action as was seen previously when they were not 

used as decision variables. Antisolvent addition is always widely distributed across the 

length of the crystallizer, indicating that better results are obtained by lengthwise-

distribution versus using a single addition at the beginning of a single tube. Adjustment 

of total length does not reveal any patterns in the antisolvent addition profiles. The 

growth and nucleation rate profiles show that most of the growth and nucleation take 

place in the first half of the crystallizer, and that nucleation and growth rates decline 

toward the end. There is significant differences between the growth and nucleation rate 

profiles obtained for different tube lengths. 

 

 

 

5.2 Simultaneous Design and Control (SDC) Framework for the MSMA-PFC with 

Static Feed Flowrate and Static Total Antisolvent Flowrate  

We examined a new type of optimization problem for the MSMA-PFC, in terms of not 

only the antisolvent profile, but the number of injections and the total crystallizer length 

as well. This problem is a simultaneous design and optimal control (SDC) formulation 
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that aims to provide the best MSMA-PFC design which can provide the overall best 

performance under optimal operating conditions. This problem leads to a more 

complicated mixed-integer nonlinear programming problem (MINLP) [193], [194], since 

the decision variables consist of a set of discrete variables (total length and number of 

injections), as well as a set of continuous variables (the individual antisolvent flowrates). 

The complexity of the SDC problem necessitates a single-objective approach. Figure 5.1 

presents a flowchart that explains the method used, with the following steps:  

1. To optimize the PFC array, an initial total length was assumed, @�����. 
2. As shown in (4.4), this length is cut into progressively smaller fractional sub-

segments of equal length. Antisolvent is injected at the beginning of each 

segment, just like in (4.4). 

3. For each of these injection sub-cases, the single-objective genetic algorithm 

manipulates the antisolvent flowrates into each segment in order to either 

maximize the ��� crystal size at the exit, or minimize �� at exit. 

4. After a maximum number of injections are iterated over (15 in this case), @º»º¼½ 
is increased, and the process begins anew. 

5. The loop continues until the last injection the final @�����  is reached. The 

outputs of these optimizations generate landscapes of ���, ��, and yield. 

 

Yield was calculated according to the equation: 

R = ��0��##% − (��##% + � ������ )���0����0�� . (5.1) 
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  The MOM was used to speed up the solution of the model equations called by the 

genetic algorithm. Total antisolvent flow was constrained to be equal to 200 ml/min (the 

original value from CHAPTER 4), and the decision variables used by the GA were 

percentages of this amount (constrained to sum to 100%). The feed flowrate was kept 

static at 100 ml/min (again, the same value used in CHAPTER 4). An initial population 

of percentages was used for each start of the genetic algorithm, drawn randomly and 

made to satisfy this constraint. The population size scaled up with the problem size 

according to 100 + 25 , where   is the number of injections for the current problem 

being solved by the GA. A maximum of 200 generations was used. All other solubility 

and kinetic parameters were kept the same as in Alvarez and Myerson[169]. At the 

conclusion of the optimization, the ���icrystal size, ��, and yield were calculated and 

stored for later plotting. The total length began at 10 meters, and was increased in 10 

meter increments to 50 meters. The number of injections began at 2, and was increased in 

the inner loop to 15 maximum injections. 
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Figure 5.1 Flowchart for the simultaneous design and control (SDC) optimization of the 
MSMA-PFC array. The algorithm proceeds by cutting a PFC array of a given total length 
into progressively smaller subunits. Genetic algorithm optimization is performed on each 
case. 
 

 

 

5.3 Results for Simultaneous Design and Control (SDC) Optimization with Feed 

Flowrate and Antisolvent Flowrate Kept Static 

5.3.1 Landscape Plots of Total Length vs. Number of Injections 

Figure 5.2 shows the results for the simultaneous design and control (SDC) optimization 

of the entire MSMA-PFC array. Generally, as expected we observe larger crystal sizes 

with increasing total crystallizer length, due to longer residence time. The number of 

injections does not appear to make much difference in ���  past about 5 injections. 

However, in Figure 5.2b, increasing the number of injections tends to reduce �� further. 

Figure 5.2c confirms that the yield is virtually identical in all cases, always achieving a 

Injections = 2

Injections = 3

...

x
segment

 = x
total

/2

x
segment

 = x
total

/3

x
segment

 = x
total

/n

Minimize objective 
using genetic 

algorithm for each 
injection case

Increase x
total

x
total

 > x
final

?

NO

YES

START

Terminate



124 
 

 

value of about 93%. This result stems from the fact that the total flow of antisolvent is 

fixed for all cases, inferentially controlling the overall yield of the MSMA-PFC. 

 

 

 

 

(a) (b) (c) 

Figure 5.2: Results of the simultaneous design and control (SDC) optimization 
framework for the MSMA-PFC array over length, number of injections, and antisolvent 
profile, showing (a) the L43 crystal size, (b) coefficient of variation (CV), and (c) the solid 
crystal yield computed via equation (5.1). 
 

 

 

5.3.2 Further Investigation of the Maximum Obtained L43 and Minimum Obtained CV 

The maximum obtained ��� size was 135 µm at @����� = i50 meters and 11 injections. 

The �� for that point was 0.24. The minimum �� was 0.207, obtained at @����� = i20 

meters and 14 injections. The ��� for that point was 114 µm. These points are explored in 
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greater detail in Figure 5.3. Figure 5.3a shows the volume CSD’s for these two points. 

We can see the multimodal nature in the ���'�> distribution, which is indicative of some 

cyclic behavior in the process. This behavior is not present in the ��'�0  volume 

distribution. The explanation for this is seen in Figure 5.3b, which shows the antisolvent 

profiles. We can see the optimal profile for maximizing ���  produces a cyclic-type 

“bursting” of antisolvent. Physically, we interpret this as the optimization seeking to 

avoid unnecessary nucleation, and focus on growing a smaller number of crystals that 

were nucleated near the beginnings. On the other hand, the ��'�0  antisolvent profile 

indicates that most of the antisolvent is added in the second half to minimize variation in 

the size. In the former case the operation is characterized by a more aggressive nucleation 

generation in the initial part of the crystallizer to favor the formation of crystals as soon 

as possible maximizing the residence time available for growth, whereas in the latter the 

minimization of the ��  requires more gentle nucleation control at the beginning to 

minimize the multi-modal nature of the CSD, and then gradual increase of the 

supersaturation. The results indicate that for optimal performance equipment should be 

designed to allow the implementation of the appropriate optimal control strategy 

depending on the objectives. Future continuous crystallizers therefore need to be 

designed to be flexible, reconfigurable and adaptable to allow optimal operation. This can 

be achieved by adopting the proposed SDC framework. 
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(a) (b) 

Figure 5.3: Results for SDC over total length, number of injections, and antisolvent 
profile. We have chosen two points from the surfaces in Figure 5.2 for examination – one 
point corresponding to the maximum obtained L43, and the other corresponding to the 

minimum obtained ��. (a) shows the volume CSD’s for these two points. The antisolvent 
profiles that produced these distributions are shown in (b). 
 

 

 

5.4 Problem Formulation for Case When Total Flowrates are Used as Decision 

Variables 

In the prior results discussed in section 5.3, we used a fixed total antisolvent flowrate and 

a fixed feed volumetric flowrate. In the results in this section, these strictures have been 

removed and total antisolvent (������, ml/min) and feed flowrate (��##%, ml/min) have 

become bounded decision variables. Much like in section 5.3, we have investigated how 

the results change whether the objective is to maximize ���  or the minimize �� . 

Landscapes were generated for various quantities of interest by iterating over total 
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MSMA-PFC length and the number of injections. The model equations, parameters, and 

solution methods are identical to those in CHAPTER 4. The two optimization problems 

solved independently (not multi-objective) were: 

i �.@ ���.! , ��##%, ������  
(5.2) 

and 

i ��: ��.! , ��##%, ������  
(5.3) 

Both of which were subject to: 

i

10 ≤ ��##% ≤ 1000
10 ≤ ������ ≤ 10000 ≤ .! ≤ 1  

µ.!
�

��H
= 1 

���0�� − 1.05���0����� ≤ 0 

−���0�� + ���0����� ≤ 0 

(5.4) 

The prior SDC results did not require a yield constraint, as using a fixed quantity of 200 

ml/min antisolvent with 100 ml/min of feed would “lock-in” the final yield. However, 

with ��##% and ������ now free decision variables, a constraint on yield is now require to 

remove economically infeasible designs from consideration. 
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5.5 Results and Discussion for Case When Antisolvent Flowrate and Feed Flowrate are 

Decision Variables 

5.5.1 Landscapes for Feed Flowrate 

  

(a) (b) 

Figure 5.4 Optimized landscapes of feed volumetric flowrates (Vfeed) against total length 
of PFC array and number of PFC injections. In (a) the objective was to maximize L43. In 

(b) the objective was to minimize ��. 
 

 

 

The results in Figure 5.4 are the optimal values of ��##% for various ordered pairs of total 

length and numbers of injections. In this section and all of the succeeding sections in this 

chapter, all data corresponding to the maximization of L�� is presented in red, and all data 

corresponding to the minimization of CV  is presented in blue. While these data are 

somewhat noisy due to the use of the GA, some trends can be noticed. First, we observe 

that the optimal values of ��##%  in both cases are generally higher than 100 ml/min, 
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suggesting longer arrays with more injections can handle a higher mass throughput. We 

furthermore see that the flowrates tend to be higher when minimizing ��.  

 

 

 

5.5.2 Landscapes for Total Antisolvent Flowrate 

  

(a) (b) 

Figure 5.5 Optimized landscapes of total antisolvent volumetric flowrates (Atotal) against 
total length of PFC array and number of PFC injections. In (a) the objective was to 

maximize L43. In (b) the objective was to minimize ��. 
 

 

 

Figure 5.5 shows the optimal values of ������ for the two optimization problems. These 

results however, are much closer to one another than the previous plot. A general trend 

we observe is that longer arrays tend to use more antisolvent than shorter ones. The 
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similarity in shape may be due to the fact that both optimizations are subjected to the 

same yield constraint. Thus, a higher feed flowrate would demand a higher antisolvent 

flowrate in order to deplete the supersaturation to within feasibility. This suggests that the 

distribution of the antisolvent impacts the process more subtly, though importantly. 

 

 

 

5.5.3 Landscapes for Residence Time 

  

(a) (b) 

Figure 5.6 Optimized landscapes of residence time (�) against total length of PFC array 
and number of PFC injections. In (a) the objective was to maximize L43. In (b) the 

objective was to minimize ��. 
 

 

 

Figure 5.6 shows the residence time landscapes. We can conclude than that optimal 

residence times follows a roughly linear trend with increasing total length, and is 
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independent of the number of injections. The similarity between the two plots suggests 

that total residence time is not precisely what differentiates the two control strategies 

arrived at by the optimization, and that the individual flowrates are much more important. 

The relative independence of residence time with the number of injections suggests that 

the optimal residence time is determined more by the yield constraint and tube geometry, 

rather than the individual flowrates of antisolvent or the feed flowrate. 

 

 

 

5.5.4 Landscapes for Mass-Mean Crystal Size and Coefficient of Variation 

  

(a) (b) 

Figure 5.7 Optimized landscapes of mass-mean crystal size (L43) against total length of 
PFC array and number of PFC injections. In (a) the objective was to maximize L43. In (b) 

the objective was to minimize ��. 
 

Figure 5.7 shows the landscapes for mass-mean crystal size. Clearly, maximizing ��� 

leads to much larger crystals than when minimizing ��. These results are in agreement 
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with the Pareto frontier results from section 4.5.2, which show that there is a significant 

tradeoff between these two quantities during optimization. We furthermore note that there 

is not much increase in the maximum obtained crystal size (about 140 µm) compared to 

the 135 µm in Figure 5.3. The landscapes for coefficient of variation are shown in Figure 

5.8 below are somewhat puzzling in that the results in Figure 5.8a show generally lower 

��  than those in Figure 5.8b. This may be due to the greater complexity of the �� 

objective function causing improper convergence, as evidence by the landscape plot in 

section 4.5.1. However, certain points do show significantly higher ��  when solely 

attempting to minimize ���, suggesting again that a more aggressive crystallization leads 

to more growth, but also more nucleation. 
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(a) (b) 

Figure 5.8 Optimized landscapes of coefficient of variation (��) against total length of 
PFC array and number of PFC injections. In (a) the objective was to maximize L43. In (b) 

the objective was to minimize ��. 
 

 

 

5.5.5 Number Fraction Distributions for the Case of 25 Injections 

Figure 5.9 shows the final exit distributions calculate using the finite-volume method for 

the case of 25 injections for the crystallizer lengths of 1 meter and 50 meters. The two 

distributions in each graph correspond to either attempting to maximize ���, or minimize 

��. We can see in Figure 5.9 two main features that stand out from this data. Maximizing 

��� tends to lead to a multimodal distribution (Figure 5.9a red curve). This is because the 

objective was to maximize ��� , and ���  the calculation of ���  is dominated by larger 

crystal sizes. The distributions generated from minimizing �� are much smoother, and do 
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not tend to be multi-modal. We observe though the longest tube length of 50 meters, the 

multiple modes in the red curve die out. 

 

 

 

(a) (b) 

Figure 5.9 Number fraction distributions for the case of 25 injections. Each plot 
corresponds to a different total length. (a) 1 meter and (b) 50 meters. 
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5.5.6 Antisolvent Profiles for the Case of 25 Injections 

(a) (b) 

Figure 5.10 Antisolvent fraction profiles for the case of 25 injections. Each plot 
corresponds to a different total length. (a) 1 meter, (b) 50 meters. 
 

 

 

Figure 5.10 above shows the antisolvent fraction profiles for the two optimization cases. 

Generally, it is difficult to discern noticeable features from these profiles, indicating that 

optimal or near-optimal solutions are not intuitive. Nearly all addition used less than 10% 

of the total antisolvent. The profiles are different from each other, agreeing with intuition 

that total length is a significant design variable that directly impacts the optimal possible 

performance, and also affects what the antisolvent addition profile should be. 
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5.5.7 Growth and Nucleation Profiles for the Case of 25-Injections 

Figure 5.11 shows growth and nucleation rate profiles for the case of 1 meter and 50 

meters total length when maximizing the mean crystal size. Figure 5.12 likewise shows 

the same type of figures for those same lengths, but for the case of minimizing the 

coefficient of variation. 

 

 

 

(a) (b) 

Figure 5.11 Growth and nucleation rate profiles for the case of maximizing mass-mean 
crystal size. (a) 1 m total length, (b) 50 m total length. 
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(a) (b) 

Figure 5.12 Growth and nucleation rate profiles for the case of minimizing coefficient of 
variation. (a) 1 m total length, (b) 50 m total length. Note the change of x-scale in (b). 
 

 

 

For the case of maximizing mean size, generally, the optimization seeks to raise the 

growth and nucleation rates in a pulsing fashion. However, two of the plots show 

exception to this rule. Figure 5.12a shows a distinct “jagged hill” type profile which is 

not seen in any of the other plots. It is also worth noting that this profile scored a much 

lower �� than was typical (about 0.08) in Figure 5.8b. This suggests that many small 

segments are required to exert effective control over the fast-acting process of nucleation. 

Figure 5.12b shows that virtually all of the growth and nucleation occur in the first stage 

as a crash crystallization. Intuitively, growth and nucleation decline toward the end of the 

crystallizer. This is partly in order to satisfy the yield constraint, but also because 

available supersaturation is being consumed by growth and nucleation. 
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5.6 Summary and Conclusions 

A simultaneous design and control (SDC) framework is proposed based on the complete 

optimization of the entire PFC array over total length, number of injections, feed flowrate, 

total antisolvent flowrate, and antisolvent profile. It is shown that, for the case of static 

feed and antisolvent flowrates, the typical optimal antisolvent addition protocol leads to a 

cyclic operation which promotes shifts between growth-dominated and nucleation-

dominated regimes in the different PFC segments. This periodic operation yields to a 

strongly nonconvex search landscape motivating the use of genetic algorithm for the 

optimization. We have also investigated the performance of the MSMA-PFC when feed 

flowrate and total antisolvent flowrate are used as decision variables as well. The results 

indicate that there is little increase in maximum ��� crystal size compared to the results in 

CHAPTER 4, though significantly lower CV’s can be obtained. However, higher 

flowrates are obtained by the optimization, indicating a higher mass flowrate can be used 

without reducing the mean size. The flow profiles have no discernible pattern, but do 

indicate that there is benefit to distributing antisolvent across the length of the crystallizer. 

The growth and nucleation rate profile plots indicate, for both optimizations, a general 

pattern of high supersaturation at the beginning of the crystallizer, with supersaturation 

being “pulsed” down the remainder of the length of the crystallizer. The SDC framework 

can be used to design flexible, reconfigurable and adaptive continuous crystallization 

systems that can achieve optimal performance by allowing the implementation of the best 

control strategy needed for a particular objective and under certain operating constraints.
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CHAPTER 6. PARAMETRIC STUDY OF THE FEASIBILITY OF IN-SITU FINES 
DISSOLUTION IN THE MSMA-PFC 

6.1 Abstract 

We have investigated the use of an antisolvent MSMA-PFC , which can grow and keep 

extant large crystals while dissolving fines in-situ. By applying and extending the 

framework discussed in CHAPTER 5, we have shown that dissolution is rejected by the 

optimization and that dissolution is suboptimal. A reduced orthogonal array experimental 

design was used to avoid a high computation time. The results of the main-factor analysis 

show that nucleation rate imparts the greatest process sensitivity, followed by growth rate. 

High nucleation overwhelms the MSMA-PFC. The MSMA-PFC performs best under 

kinetic crystallization conditions in which a single PFC also works sufficiently well, 

indicating little benefit.  

 

 

 

6.2 Introduction 

While purification is the main motive behind crystallization, the crystal size distribution 

(CSD) affects downstream operations and the ameliorative properties of the final dosage 

form. Downstream processes affected by CSD shape include filtering, washing, and 

drying [53]. The presence of fine crystals encumbers these operations. 
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The curative properties of the final dosage form are dependent on the dissolution rate and 

bioavailability, which are strongly affected by the CSD and other particle properties 

[110], [195]. The typical method of removing fines is to classify the product crystals, re-

dissolve the fines, separate the antisolvent when feasible, and recycle the mixture back to 

the crystallization system. However, this method is problematic. Classification, recycle, 

and stream separation require further process equipment, increasing capital and operating 

costs. Classification combined with recycle has been mathematically deduced (and 

subsequently observed) to impart oscillatory dynamics to the CSD. These oscillations 

make it difficult to obtain a consistent product. Furthermore, from a risk analysis 

viewpoint, extra equipment is generally “more things that can go wrong”, and present 

another route by which microbes could contaminate the manufacturing process. Ideally, it 

would be good if we could eliminate fines altogether by an in-situ approach. 

 

 

 

6.3 Prior Work on In-Situ Fines Removal 

Previous work by Abu Bakar et al. [195] and Majumder and Nagy [113] explored the 

concept of “in-situ” fines removal, where the operation of the crystallizer actively 

eliminates fine crystals during the crystallization by means of dissolution. With this 

approach, classification, re-dissolving, and stream separation become (in theory) 

unnecessary. The work by Majumder and Nagy [113] most closely follows our work here. 

In that work, a constrained nonlinear optimization problem was solved to identify 

operating curves that would match a target distribution in a least-squares sense by 
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removing fine crystals. Majumder and Nagy [113] previously investigated 

computationally the use of multisegment cooling crystallization for in-situ fines 

dissolution. In that work, the decision variables were the jacket temperatures in each 

segment, which allowed the particular segment to go above or below solubility as 

necessary to dissolve the fine crystals and grow large ones. Ridder et al. [161], [162] have 

modeled and optimized a multi-segment antisolvent crystallizer for drug crystal 

production, but that work did not allow for dissolution to occur. This work is an 

extension of the previous works by Ridder et al. and Majumder and Nagy, as we are now 

using an antisolvent crystallization with the capability to dissolve crystals when below 

solubility. Figure 6.1 below depicts the path of information flow for a cooling PFC 

crystallization process, and an antisolvent PFC crystallization process. For an antisolvent 

crystallization, the decision variables are the flowrates of antisolvent into each segment. 

The cooling crystallization has no coupling between residence time and the control 

(jacket temperature), and residence time is constant within each segment. None of this is 

true in antisolvent crystallization, since the addition of antisolvent simultaneously affects 

the current concentration via dilution, and reduces the current residence time due to a 

mass balance argument. This coupling dramatically increases the difficulty in optimizing 

the process. 
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(a) (b) 

Figure 6.1 Information flow diagrams in a multisegment crystallizer for (a) cooling 
crystallization and (b) antisolvent crystallization.  
 

 

 

6.4 Parametric Study via Optimization of the Antisolvent Crystallizer 

In this work, we present results for the steady-state operation of a multi-segment, multi-

addition, plug-flow crystallizer  MSMA-PFC which utilizes dissolution to eliminate fine 

crystals. We have explored the geometric design parameters of the crystallizer, as well as 

the kinetic parameters of crystallization. To reiterate, this work is an extension of that by 

Majumder and Nagy [113], but for the case of antisolvent crystallization as opposed to a 

cooling crystallization.  
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6.5 Model Framework 

 

Figure 6.2 Diagram of the MSMA-PFC. Seeded liquid solvent, with solute concentration 
C0 flows in from the left into a mixing chamber (gray box). The dilution correction factor, 
γj, is applied to the exit stream around each mixing point (red dashed boxes). The 
combined streams then flow into a plug-flow segment (blue rectangle). Antisolvent 
reduces solubility, triggering nucleation and growth. Streams of pure solvent are utilized 
to push the solution below solubility when necessary. 
 

 

 

The model presented here is similar to that discussed in CHAPTER 4 and CHAPTER 5. 

Some important differences we mention immediately are: 

• The greatest difference is that the model now accepts pure solvent additions in 

addition to antisolvent. The addition of pure solvent can permit the crystallization 

to go below solubility, thus inducing dissolution of the crystals. The idea is to 

dissolve the smallest crystals, while keeping the large ones relatively intact. 

• Before, ethanol was the solvent and water the antisolvent. In this chapter, water is 

the solvent and ethanol is the antisolvent. 

• Flufenamic acid was the solute in the first model, whereas here we have no drug 

in particular as the solute; this is a parametric study. 
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• In the prior model, concentration and number density were expressed on a volume 

of solution basis. In this chapter, concentration and number density are based on a 

mass of solution basis. 

• The prior model was unseeded, with primary nucleation present. Here we are 

using a seeded process with secondary nucleation present. 

The MSMA-PFC is based on the setup in Alvarez and Myerson [135]. It is modeled as a 

series of ideal plug flow elements, of equal length, and antisolvent is added at the 

beginning of each segment (Figure 6.2 above). Each of the N segments is a separate PFC, 

running in steady-state, isothermal operation. The inlet stream (far left) feeds saturated 

mother liquor at flowrate ��##% (ml/min), with an initial concentration of solute, �� (kg 

API/kg solution), and a seed CSD, :� (# of crystals/kg of solution∙m). At each mixing 

point (gray boxes in Figure 6.2), antisolvent flowing at flowrate �! (ml/min), and pure 

solvent at flowrate  ! (ml/min), for  = 1,2, … ,�. We reiterate that we are using mass-

intensive units for our state variables, : (#/kg solution) and � (kg API/kg solution). After 

mixing with the solvent and antisolvent streams, the mixture then flows into the �J PFC 

segment, where nucleation and growth occur. We assume the streams mix on a time scale 

well below the induction time, and also attain plug-flow. At the exit of the segment, a 

new size distribution, :(�, @!#0%) , and a reduced solute concentration, �(@!#0%) , are 

obtained. We will abbreviate these quantities as :!#0% and �!#0%. We clarify to the reader 

that this is not the same as �!£H or :!£H; these quantities are created when the next solvent 

and antisolvent streams are added; the pattern of indexing is made clear in Figure 6.2 

above. This process continues recursively until the product stream leaves the final, 
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��Ji segment (product stream). The final crystal size distribution, :�#0% , is used for 

solving the least-squares optimization problem. Both :�#0% and ��#0% are used to calculate 

several constraints. Summation indices always use the letter � as a dummy index. The 

letter  always refers to “for the �J  PFC segment.” When an index refers to a mixing 

point,  always refers to the mixing point immediately preceeding the �J PFC segment 

(e.g. thei = 1 mixing point is the very first mixing point on the left hand side in Figure 

6.2 above). 

 

The addition of streams �!  and  !  to the process causes a decrease in �  and :  in the 

oncoming feed stream due to the effect of dilution. Concentration and number density are 

reduced is because the solute mass (and crystal mass) has remained the same, but total 

volume has increased. There is a double meaning of this term in the literature, as some 

authors refer to antisolvent crystallization as “dilution” [51]. We reiterate that in this 

paper, we refer to dilution as being the reduction in solute concentration due to the 

addition of liquid. To account for this effect, the number density of the �J  outgoing 

stream, :!  (# of crystals/kg of solution∙m) about the jth mixing point is multiplied by: 

 γ! =iK!�������0�!�������0K!£H�������0�!£H�������0 
(6.1) 

 

Where K!�������0 is the density of the solution, and �! is the volumetric flow rate of the 

entire stream. �! can be determined by dividing the total solution mass flow rate by the 

total solution density: 
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 �!£H�������0 =iKÁÂÃ���##% + �  �!��H � + KÄ�ÃÁ � ��!��H i
K!£H�������0  (6.2) 

Where KÁÂÃ  and KÄ�ÃÁ  are the densities of water and ethanol (997 kg/m3 and 785.22 

kg/m3, respectively). The total solution density, K!£H�������0  (kg/m3), is calculated 

numerically from a curve fit of the density of an ethanol-water mixture in terms of 

ethanol mass fraction. These expressions are derived by performing progressively wider 

mass balances about the mixing points and PFC segments. The method is more easily 

explained with a diagram (Figure 6.3 below). The colored boxes demonstrate the pattern 

one follows to ultimately derive (6.1) and (6.2). 

 

 

 

 

Figure 6.3 Mass balance envelopes that are used to derive γ dilution correction factor. 
Incoming streams are positive; outgoing are negative. 
 

 

 

6.6 Crystal Population and Solute Mass Balance Equations 

In order to properly model the crystallization, two equations need to be solved 

simultaneously: the population balance equation, and the mass balance equation. 
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The population balance equation is the same as (4.2). The mass balance on dissolved drug 

is given by: 

 
/�!/@ = −K&86=>,! (3PGf,! + ��,!���) (6.3) 

The term Gf  is the second moment of the crystal size distribution (m2 of crystals/kg 

solution). � is the solute concentration in the liquid phase (kg API/kg solution), K& is the 

density of crystalline API (assumed to be 1490 kg/m3), �� is the minimum detectable 

crystal size (m), �� is the nucleation rate (# of nucleated crystals/kg solution∙s), and 86 is 

the dimensionless crystal shape factor (t/6 for spheres) [196]. The units of the derivative 

reduce to (kg of crystals/kg solution∙m external coordinate). In a pure mathematical 

treatment, �� would simply be set to zero; however, all instrumentation used in practice 

for experimentation and process control will have limits to observability. When the 

crystallization is below solubility, the mass balance becomes: 

 
/�!/@ = 3K&86OGf,!=>,!  

(6.4) 

Where O is the dissolution rate, explained in the section 0. 
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6.6.1 Boundary Conditions 

For the first segment ( = 1), the boundary conditions for these equations are: 

 

:H(�, @ = 0) = γH:� 

:H(� = 0, @) = ��,H PHv  

�H(@ = 0) = γH�� 

(6.5) 

Where :� is the seed crystal size distribution, �� is the nucleation rate (#/kg of solution∙s), 

and �� is the initial solute concentration. In subsequent segments ( ≥ 2), the boundary 

conditions become: 

 

:!(�, @ = 0) = γ!:!�H#0% 

:!(� = 0, @) = ��,! P!v  

�!(@ = 0) = γ!�!�H#0% 

(6.6) 

A Gaussian bell curve was used for :� (#/kg of solution∙m) in all cases, with mean F�##% 

(meters) and standard deviation L�##% (meters) (we would normally use the Greek letters 

G and Æ for the mean and standard deviation, but these letters already correspond in this 

work to the moments of the crystal size distribution and the supersaturation): 

 :�(�) = ������
L�##%Ç2t exp−

(� − F�##%)f2L�##%f ® (6.7) 

Where ������  is the total number density (# of crystals/kg solution). ������  can be 

interpreted in (6.7) as a constant that forces the seed distribution to agree with the 

specified seed mass loading, _  (%, dimensionless). The mass balance on the seed 

distribution is closed by solving the algebraic equation for ������ such that: 

 _�� − K&86G�,� = 0 (6.8) 
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Where G�,�  is the third moment of the seed distribution. Equation (6.8) is closed by 

manipulating ������, which is embedded in the integral term G�,�: 

 G�,� = � :���/�
r
�

 (6.9) 

 

 

 

6.6.2 Growth, Nucleation, and Dissolution Rate Laws 

The growth and nucleation laws are given by the equations (again, alli subscripts refer to 

the �J segment): 

 

P!� !� = 87 !7 

��,!� !� = 89Gf !9 

O!� !� = −`87(1 −  !)% 

 ! = �!(@)/����,! 

(6.10) 

Where   is the supersaturation ratio, 87 is the growth rate constant, T is the growth rate 

order, 89  is the nucleation rate constant, S is the nucleation order, O is the dissolution 

rate, /  is the dissolution order, and ����  is the solubility concentration (kg API/kg 

solution). P is replaced by O in (6.3) for  < i1, and / = 1 always in this work. We use a 

modified version of the growth law for the dissolution rate law. The dissolution rate can 

be approximated by multiplying the modified version of the growth law by a constant 

` > 1, which adjusts for the fact that dissolution is typically much faster than growth. 

The calculation of ���� is discussed in section 6.6.3. A summary of all fixed parameters 
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related to equations (4.2) and (6.3) are given in Table 8 below. These variables were all 

kept fixed during the optimization; decision variables are delineated further ahead. 

 

 

 

Table 8 Physical and chemical property data table used for modeling the antisolvent 
crystallization. 

Parameter Value 

Initial concentration, �� [kg API/kg solution, 
always saturated] 

0.030935 

Shape factor, [-] π/6 

Solid API density, [kg/m3] 1490 

Dissolution acceleration, φ [-] 250 

Number of segments, � [-] 50 

Seed crystal mean size, F�##% [µm] 50 

Seed crystal standard deviation, L�##% [µm] 10 

 

 

 

6.6.3 Calculation of API Solubility 

The solubility of the API in a water-ethanol (solvent-antisolvent) mixture was taken from 

the experimental data plot provided in Figure 2 of Luo et al. [196] for the case of the drug 

biapenem. Data points were extracted from the curve using the DataToGraph utility, and 

are given in Table 9 below [197]. Comparison with various curve fitting methods in 

MATLAB showed that linear interpolation provided the best fit. The data correspond to a 

minimum solubility in ethanol as 2.464 mg/ml, and a maximum solubility in water as 

30.935 mg/ml. 
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Table 9 Solubility data for biapenem-water-ethanol system. 

Water Mass Fraction, Xw Csat x 10
3
 (kg solute/kg solution) 

0.199 2.464 

0.299 2.831 

0.398 3.497 

0.500 4.463 

0.599 6.103 

0.699 9.615 

0.799 15.299 

0.898 21.956 

1.000 30.935 

 

 

 

The water mass fraction in the �J PFC is computed by: 

 *ÁÂÃ
! = KÁÂÃ��##% + KÁÂÃ �  �!��H

KÁÂÃ��##% + KÁÂÃ �  �!��H + KÄ�ÃÁ � ��!��H
 (6.11) 

Plugging *ÁÂÃ
!

 into the curve fit object created in MATLAB yields the solubility 

concentration of biapenem in segment , ����,!. 
 

 

 

6.7 Solution of Model Equations 

A typical method used for solving equations (4.2)  and (6.3)  is to apply the method of 

moments (MOM), which reduces system to a set of coupled ordinary differential 

equations for the moments of the crystal size distribution. However, this method is 

useless here, since we need the full CSD to be able to match the target distribution. To 
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solve these equations, we have utilized a high-resolution finite volume (FV) technique, 

which is the combination of the semi-discrete FV technique with the van Leer flux limiter 

[113], [173]. This method provides Ê(ℎf) accuracy where the solution is smooth, without 

the oscillations found in other methods. Details on the finite volume method are given in 

Majumder and Nagy [113]. 

 

 

 

6.8 Optimization Problem Formulation 

Our goal is to eliminate the production of fine crystals by utilizing dissolution. The 

quality of the elimination is ascertained by measuring how closely the attained number 

fraction distribution leaving the ��J PFC (1�,#0%) matches a theoretically-best growth-

only crystal size distribution, 1��"7#�. The target distribution is generated by simulating 

the crystallization with only one segment, with nucleation arbitrarily set to zero. With no 

nucleation, all solute depletion is solely due to crystal growth on the seeds, and no fine 

crystals are ever created. Thus, the target distribution is a hypothetical best-case scenario 

of pure growth achieved without nucleation. The closeness of matching can be expressed 

in a least-squares sense. By manipulation of the antisolvent and solvent flowrates in each 

segment (and other decision variables), we can make the fit between the model and the 

target distribution tighter. The population and mass balance equations are solved for each 

segment, and the output of one segment recursively becomes the input to the next 

segment. The procedure begins anew, with fresh antisolvent flowing into the main flow 
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stream. Population density and solute concentration are adjusted for the dilution induced 

by addition of antisolvent at each mixing point. 

 

 

 

6.8.1 Least-Squares Objective Function 

The final number fraction distribution, 1� , is used for formulating the least-squares 

problem: 

 
��: µ�16,�,#0%� − 16,��"7#�� �f

Ë

��H[
 (6.12) 

Where [ is the vector of decision variables (listed in Table 10), and 16,�,#0% is the volume 

fraction size distribution at the exit of the crystallizer. It is computed by: 

 1�,#0% = :�#0%
s :�#0%r
� /� (6.13) 

The index � in (6.12) refers to a particular crystal size bin, with Q total bins. Note that : 

integrates to :����� (the total number of crystals in the solution), while 1 integrates to 1. 

We use the number fraction distribution instead of the number density, since the addition 

of extra solvent and antisolvent causes dilution. In the previous work on cooling 

crystallization by Majumder and Nagy [113], the least-squares function was formulated 

in terms of volume density, :6. In that work, there is no dilution effect, whereas in this 

work the effect of dilution reduces :6 monotonically with each liquid addition. If :6 were 

used to compute (6.12), it would be an “apples to oranges” comparison since total 



154 
 

 

volumetric flow rates are not the same. Using the volume fraction distribution, 16 , 

however, abrogates this difficulty. 

 

 

 

6.8.2 List of Decision Variables and Bound Constraints 

All 2� + 5 decision variables in these optimizations had bound constraints. Table 10 

below summarizes the decision variables and their lower/upper bounds.  
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Table 10 Decision variables and bound constraints for in-situ fines dissolution 
optimization. 

Decision 

Variable 

Title Units 

Lower 

Bound 

Upper 

Bound 

��##% 
Feed flowrate of saturated 

solvent 
[ml/min] 0 300 

������ Total flowrate of antisolvent [ml/min] 0 300 

 ����� Total flowrate of pure solvent [ml/min] 0 150 

/�00#" 

Inner diameter of crystallizer 

tube 
[m] 10 × 10�� 25 × 10�� 

_ Seed mass loading [%, -] 2% 7% 

.H, .f, … , .� 

Antisolvent distribution 

fractions 
[-] 0 1 

<H, <f, … , <� 

Pure solvent distribution 

fractions 
[-] 0 1 

 

 

 

The optimization of the MSMA-PFC is known to be highly non-convex, as shown by the 

landscape plots in Ridder et al. [161]. Such problems are not amenable to gradient search, 

and so we have opted for a stochastic approach to circumvent the nonconvexity. The 

genetic algorithm is a popular tool for solving optimization problems with this difficulty. 

To make the GA operate more smoothly, our decision variables were fractions of the total 
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antisolvent and total pure solvent. The flowrate into a segment   is the �J  fractional 

distribution variable multiplied by total flow allotment. 

 

�! = .!������ 

 ! = <! ����� 
(6.14) 

 

 

 

6.8.3 Linear and Nonlinear Constraints 

There were no linear inequalities in this study. The only linear constraints in this work are 

two equalities, which require the apportionments of total liquid flows must each sum to 

unity. The remaining six constraints are nonlinear inequalities. Table 11 below 

summarizes these constraints. 
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Table 11 Linear and nonlinear constraints for in-situ fines dissolution optimization. 

Name Constraint Description Type 

ÌH 

µ.�
�

!�H
= 1 

 Total fractions of added liquid flows must 

sum to unity. 
Linear 

Ìf 

µ<�
�

!�H
= 1 

 

Ì� Æ�#0% − 1.05 ≤ 0 Final supersaturation is bracketed between 

0.85 and 1.05. 

Nonlinear 

Ì� 0.85 − Æ�#0% ≤ 0 

Ì± ������ − 3600 ≤ 0 

 

Total residence time under 3600 seconds (1 

hour). 

Ìe 0.30 − R ≤ 0 

Minimum required crystal mass yield of 

30%. 

 

 

 

We require residence times of under 1 hour. In the multiple-cooling segment PFC array, 

residence time is constant, since flowrate of liquor into each segment is always the same. 
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However, the addition of antisolvent and pure solvent to the liquor flow changes 

residence time into a nonlinear function: 

 

������ = µ�!
�

!�H

= t/�00#"f (@�����/�)4 µ 1
��##% + ������ � .�!��H +  ����� � <�!��H

�

!�H
 

(6.15) 

Where @�����/�iis the length of a single segment. The �J  summand in (6.15) is the 

residence time for the �J segment, which is the segment’s volume divided by the total 

flow rate through that segment. The total residence time is found by summing over all  
individual residence times. Since each PFC volume is the same, it is taken out of the 

summation distributively. 

 

Drug API products are typically expensive, making wasted API a serious expense. We 

require a crystal yield of at least 30% to trim unwise crystallization strategies from 

consideration. Yield is calculated in the following manner: 

 R = ��##%KÁÂÃ�� − (��##%KÁÂÃ +  �����KÁÂÃ + ������KÄ�ÃÁ)��#0%��##%KÁÂÃ��  (6.16) 

If ��#0% = 0 , then all of the solute has been crystallized, and thus R = 1 . If no 

crystallization has occurred, the numerator will be zero, and thus R = 0. If seed crystals 

have been dissolved due to excessive dissolution, then R becomes negative. 

6.9 Solution of Least-Squares Problem by the Genetic Algorithm 

The GA is less efficient compared to gradient-based methods, such as sequential 

quadratic programming (SQP). However, algorithms like SQP are not robust to initial 
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guess, and can become trapped in a sub-optimal local minimum [198], [199]. This is true 

when the objective function and/or constraints are non-convex. Stochastic methods, such 

as the GA or simulated annealing, are appropriate for nonconvex optimization. The 

problem was solved by manipulating the 2� + 5  decision variables with the genetic 

algorithm (GA). Each set of kinetic parameters and crystallizer lengths listed in Table 13 

were optimized over to minimize the sum of the squares in (6.12). The GA initial 

population was created by randomly sampling over the bounds given in Table 10 above. 

The number of injections could not be used as a decision variable, as MATLAB’s genetic 

algorithm cannot solve mixed-integer nonlinear programming (MINLP) problems that 

have any type of equality constraint. The number of injections used was 50, which gave a 

good tradeoff between curve fit and computation time. The population size was 750, 

repeated for 25 generations. The MATLAB integrator, depending on the particular run, 

was chosen for the quickest solution time. Either ode45, ode15s, or ode23 were used. 

 

 

 

6.10 Results and Discussion 

6.10.1 Experimental Design Array 

To investigate the crystallizer’s performance for various kinetic parameters, a reduced 

orthogonal array experimental design was used, with five factors, four levels, and 16 total 

runs. The five factors are the nucleation and growth parameters, and the total crystallizer 

length. The five factors and the four levels used are shown in Table 12 below. 
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Table 12 Table of the five factors and four levels used for examining parameter space. 

Level 

Nucleation rate 

constant, ÍÎ [#/m2
∙s] 

Nucleation 

order, Î [nd] 

Growth 

rate 

constant 

Í\ 

[µm/s] 

Growth 

order \ 
[nd] 

Total length 

of 

crystallizer, 

3ÏÐÏÑÒ [m] 

1 1 × 10e 1 1 × 10�¨ 1 5 

2 1 × 10¨ 2 5 × 10�¨ 1.333 10 

3 1 × 10© 3 1 × 10�e 1.667 15 

4 1 × 10« 4 5 × 10�e 2 20 

 

 

 

A reduced design was used, since exhaustive search over 45 = 1024 different 

optimizations was computationally prohibitive. This experimental table is given in Table 

13 below. The orthogonal array table allows for a good sampling of the search space with 

only 16 samples instead of 1024. 
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Table 13 Experimental design table of factors and levels for the curve fit optimizations 
conducted. The numbers correspond to the level column in Table 12. The sum of the 
squares of the errors (SSE) and total amount of pure solvent added (Stotal) are given for 
each run. 

Run # ÍÎ Î Í\ \ 3ÏÐÏÑÒ SSE ÓÏÐÏÑÒ 
1 1 1 1 1 1 

2.67E+07 80 

2 1 2 2 2 2 
4.71E+06 0 

3 1 3 3 3 3 
1.25E+07 1 

4 1 4 4 4 4 
7.58E+05 1 

5 2 1 2 3 4 
5.62E+08 3 

6 2 2 1 4 3 
7.42E+08 0 

7 2 3 4 1 2 
2.25E+07 2 

8 2 4 3 2 1 
6.93E+07 0 

9 3 1 3 4 2 
2.22E+09 8 

10 3 2 4 3 1 
2.10E+08 2 

11 3 3 1 2 4 
6.08E+09 0 

12 3 4 2 1 3 
3.10E+09 9 

13 4 1 4 2 3 
3.41E+09 11 

14 4 2 3 1 4 
7.82E+09 24 

15 4 3 2 4 1 
8.28E+09 25 

16 4 4 1 3 2 
1.27E+10 16 
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Table 13 shows the experimental design matrix, as well as the resulting sum of the 

squared errors for each curve fit to the zero-nucleation target distribution. 

 

 

 

6.10.2 Volume Fraction Distributions for Optimized Cases 

The data in Table 13 show that run #1 gave the tightest curve fit (Figure 6.4). The reason 

for this tight curve fit is due to the system exhibiting low nucleation (the 89 level is at the 

lowest level). Also in Figure 6.4 we show the performance of a single segment with 

nucleation turned back on (�� > 0). We can see there is little improvement observed 

between MSMA-PFC and using a single segment. 

 

 

 

 

Figure 6.4 Volume-fraction distribution for run #1. 
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Increasing values of 89  rapidly degrade the curve fit due to overwhelming nucleation. 

Run #11 is representative of runs which are nucleation-dominated. As shown in Figure 

6.5, there is a large amount of fines created, and the optimal result fails to hit the target 

distribution. While we have improved the volume fraction distribution over the single-

segment case by producing less fines at the exit, there is still a great deal of fines 

produced. The nucleation rate constant has the greatest effect upon the performance of 

the crystallizer, indicating significant sensitivity to nucleation rate. 

 

 

 

 

Figure 6.5 Volume-fraction distribution for run #11, a nucleation-dominated case. 
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6.10.3 Main-Factor Analysis 

The results in section 6.10.2 suggest to us that the best results, intuitively, are obtained 

when the system is growth-dominated. Main-factor analysis of the experimental matrix 

confirms this suspicion. Main-factor analysis is done by taking the average of all SSE for 

a given factor at the same level. For example, the average for the factor 89 at level 2 

would take the average SSE of runs 5, 6, 7, and 8. This process is repeated for all five 

factors and all four levels, which generates Table 14 below.  

 

 

 

 

Table 14 Level-wise averages of SSE for each corresponding level and factor pair. 

SSE ÍÎ Î Í\ \ 3ÏÐÏÑÒ 
L1 1.12E+07 1.56E+09 4.89E+09 2.74E+09 2.15E+09 

L2 3.49E+08 2.20E+09 2.99E+09 2.39E+09 3.74E+09 

L3 2.90E+09 3.60E+09 2.53E+09 3.38E+09 1.82E+09 

L4 8.06E+09 3.97E+09 9.11E+08 2.81E+09 3.62E+09 

 

 

 

This analysis reveals to us what the most sensitive parameters are, and also what 

combination of levels will theoretically provide the best curve fit – which we 

hypothesized would be the growth-dominated case. We can see in Table 14 that the factor 

89 spans the widest range of SSE values over the level averages. We thus conclude that 

89  is the most sensitive parameter. Following the same line of reasoning, the second-
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most sensitive parameter is 87. The optimal curve fit is projected to be the set of levels 

for which SSE is a minimum for each corresponding factor. These values are shown in 

boldface in Table 14 (they are the minimum values within each column). The main-factor 

analysis projects that the tightest curve fit will be observed at a 89 of level 1, a S of level 

1, a 87 of level 4, a T of level 2, and ani@����� of level 3. We term this the “projected 

optimum.” Note that this set of factors and levels is not present in Table 13. Solving the 

optimization problem with this new set of parameters generates the volume fraction 

distributions in Figure 6.6, which had an SSE of 4.83 × 10± , which is less than the 

minimum of 7.58 × 10± in Table 13. 

 

 

 

 

Figure 6.6 Optimal fit predicted by analysis of the orthogonal array design. 
 

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6
x 10

4

Crystal Size, L [µµµµm]

V
o
lu
m
e 
F
ra
ct
io
n
, 
f v
 [
m
-1
]

 

 

Seed

Target w/ B0 = 0

Target w/ B0 > 0

Optimized



166 
 

 

This result matches our intuition that the best result is obtained when nucleation is slow 

and growth is fast. However, this has the effect of “cancelling out” the benefits of using 

multiple injections, as we obtain a very tight fit to the curve anyways when using a single 

injection for this set of kinetic parameters. There was no discernible trend observed with 

respect to the optimized tube diameter. However, seed loading was typically between 

5.0%-6.5%. 

 

 

6.10.4 No Dissolution is Used to Control Fines 

It is interesting (even if a bit disappointing) to observe that the optimization does not 

want to use dissolution to get rid of fine crystals. The total amount of pure solvent added 

during each optimization is given as the rightmost column in Table 13. Observe that little 

to no pure solvent is ever added to the system for the optimal curve fits (observe in Table 

10 that  �����is bounded on the left by zero). The supersaturation profiles (  vs. @ plots) 

show barely any dissolution occurring. The supersaturation profile for the “project 

optimum” is representative (Figure 6.7). 
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Figure 6.7 Supersaturation profile for project optimum, representative of the other 
supersaturation profiles. 

 

 

 

Note how the supersaturation does not significantly (or at all) go below 1 anywhere in 

Figure 6.7. This indicates to us that the situations in which the curve fit is superior to the 

single-segment case (Figure 6.4 and Figure 6.5) is more likely due to the better control 

offered by using multiple segments (and thus having finer control over supersaturation), 

rather than making use of fines dissolution. The reason the optimization refuses to add 

pure solvent in significant amounts is due to the fact that adding pure solvent reduces the 

concentration (via dilution) and reduces available residence time (via equation (6.15)). 

Reduced concentration reduces the available supersaturation, and reducing the residence 

time reduces the time available for growth inside the MSMA-PFC. Thus, despite the 

potential for dissolving fines, the benefit of adding pure solvent does not counterbalance 

the other two negative phenomena. 
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6.11 Summary and Conclusions 

We have investigated the use of the MSMA-PFC, run in antisolvent mode, for the 

growing of crystals while dissolving fines in-situ. The model equations solved were the 

partial differential population balance equation and the integro-differential mass balance 

equation. The solution method used was the finite volume method, since the entire CSD 

was required to calculate the sum of the squared errors for the curve fit. The final CSD 

was compared to a target CSD generated by arbitrarily setting nucleation to zero. A 

reduced orthogonal array experimental design was used to examine the effect of several 

kinetic parameters and total crystallizer length. The genetic algorithm was used to 

optimize over the decision variables, with the parameters from the experimental design 

held constant. The results indicate that 89 is the most sensitive parameter, followed by 87. 

As 89  increases, the curve fit degrades rapidly due to becoming overwhelmed by 

nucleation. Examination of the supersaturation profiles shows that dissolution is not 

occurring appreciably for any of the optimizations performed. The MSMA-PFC performs 

best under kinetic crystallization conditions in which a single PFC also works sufficiently 

well. There are situations where using multiple additions does improve the curve fit 

versus the single-segment case, but excessive fines still exist. The reason the optimization 

does not add any pure solvent is likely due to the addition of pure solvent causing a 

simultaneous decrease in concentration and decrease in residence time. Both of these 

cause the optimization to take “one step forward and two steps back”, thus adding pure 

solvent is judged to be sub-optimal. 
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CHAPTER 7. SUMMARY, CONCLUSIONS, AND FUTURE DIRECTIONS 

7.1 Summary and Conclusions 

The aim of this research was to investigate a new methods of producing pharmaceutical 

drugs using computational methods. The drug industry is undergoing a major shift in the 

way it thinks about manufacturing. Prior batch methods of manufacturing are expensive 

and wasteful, while continuous methods are much more efficient. This motivates the 

study of novel crystallizers. As an example, we have investigated the optimal operation 

and optimal design of a new type of crystallizer, the multi-segment, multi-addition plug 

flow crystallizer, or MSMA-PFC. 

 

The literature review began our work. We started with a general overview of current 

problems in drug manufacture, and new technologies being investigated to address these 

problems. We discussed many of the interesting new technologies being pursued in the 

areas of synthesis, purification, and formulation of pharmaceuticals. 

 

An especially important unit operation is crystallization, from which the vast majority of 

drugs are separated and purified. As discussed in CHAPTER 3, many new technologies 
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for continuous crystallization are being investigated for application toward 

pharmaceutical purification. 

 

In CHAPTER 4, we discuss one such technology in great detail. This crystallizer uses 

multiple plug-flow elements in series, which allows for finer control of supersaturation in 

one dimension. We have investigated the use of a multi-segment, multi-addition plug 

flow crystallizer (MSMA-PFC) for the production of pharmaceutical API crystals via 

computational methods. We have also shown that the optimization is nonconvex, and is 

not amenable to gradient search methods. Instead, we have utilized the genetic algorithm 

to optimize the decision variables. A multiobjective optimization problem was solved to 

investigate the performance of the crystallizer. The crystallization system was simulated 

by solving the population balance and mass balance equations using, depending on 

circumstance, either the method-of-moments or the finite-volume method. The system is 

run exclusively at steady-state as an antisolvent crystallization. The decision variables 

(among others) are the flowrates of antisolvent (and if applicable, pure solvent) into each 

distinct segment. In this simplified case, we have examined the tradeoff between mass-

mean crystal size and coefficient of variation – though a variety of other objective 

functions could be used to extend the framework further. Our results showed that 

rigorous optimization was able to generate superior designs to what was shown in prior 

literature. Using the Monte-Carlo method, we examined in greater detail the robustness of 

the crystallizer with respect to error in kinetic parameters and antisolvent flowrate. The 

results indicate that there is significant sensitivity to kinetic parameters, though the 

relationship to the nucleation rate constant is somewhat counterintuitive. We furthermore 
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find significant sensitivity with respect to antisolvent flowrate. Error is magnified when 

multiple stages are in error simultaneously. 

 

In CHAPTER 5 We have introduced in this work a new framework for optimizing plug 

flow crystallization systems, which was lacking previously in the literature. Specifically, 

we have developed a combined model and optimization framework for identifying 

optimal designs of the MSMA-PFC. The methodology worked by splitting the MSMA-

PFC into progressively greater numbers of segments, and optimizing mass-mean crystal 

size (or coefficient of variation) over the antisolvent profile. Our first study in this 

chapter used the same total flowrates as in CHAPTER 4 Results show that multiple 

modes in the distribution are observed when maximizing ��� , but generally a much 

smoother distribution is obtained when minimizing ��. This behavior persists when feed 

flowrate and total antisolvent are incorporated as decision variables as well. For the 

second part of our study, we permitted total antisolvent flowrate and feed flowrate to be 

decision variables. Under these circumstances, residence time tends to be independent of 

optimization objective. Using the finite volume method, the crystal size distributions 

show multiple modes are present when maximizing ���, but typically unimodal when 

minimizing ��. Greatest control (tending toward larger crystal size) was observed when 

using 25 injections, as agrees with intuition. Antisolvent distribution is different when 

maximizing either ��� or ��, though in both cases antisolvent sends to be distributed in a 

wide manner across the injections, with almost no injections receiving > 10% of the total 

antisolvent. 
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In CHAPTER 6, we examined the use of the MSMA-PFC for the production crystals 

while dissolving fine crystals in-situ. The results show that the optimization actually does 

not want to dissolve the fine crystals in order to match the CSD. Optimization results 

routinely set pure solvent flow to either zero or small values compared to the feed 

flowrate and total antisolvent flowrate. We have used an orthogonal array experimental 

design to sample the parameter space over the nucleation and growth rate parameters, as 

well as the total crystallizer length. Single-factor analysis of the orthogonal array 

predicted the intuitive result that the best performance would be observed for the case of 

slow nucleation and fast growth. Using the parameters predicted from the single-factor 

analysis, we find that the best results are obtained for smallest values of 89  (low 

nucleation) and highest values of the growth constant, 87. The most sensitive parameter 

is 89, followed by 87. The problem with this situation, is that when compared to using a 

single segment, there is virtually no improvement in performance, e.g. the system was 

already well-behaved to begin with. The best use of in-situ fines dissolution would be for 

the crystallization of low-nucleation systems. For moderate nucleation cases, the MSMA-

PFC results do show improvement over the nucleating case, but still exhibit large 

amounts of fine crystals. At higher levels of nucleation, the systems becomes 

overwhelmed with fines. Examination of the supersaturation profiles reveals that the 

optimization does not make use of dissolution in any of the cases for fines removal. This 

is in contrast to the work by Majumder and Nagy [113] on in-situ fines dissolution using 

a cooling crystallization, which clearly showed the dissolution of fine crystals. The 

reason we believe that antisolvent crystallization fails to make use of dissolution by the 

addition of pure solvent is because the addition of pure solvent causes too much loss of 
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supersaturation due to the effect of dilution. Furthermore, the addition of pure solvent 

simultaneously decreases the available residence time for crystallization. Thus, the 

addition of pure solvent causes us to “take one step forward and two steps back.” 

 

 

 

7.2 Future Directions 

A variety of extensions of this work are possible. An important next step would be 

experimental verification of the optimal result found in CHAPTER 4 using a lab-scale 

plug flow crystallization system. Another possible direction is robust optimization of the 

flufenamic acid crystallization using a minimax framework. The idea here is to attempt to 

maximize the mean crystal size, but also to simultaneously minimize the mean size by 

manipulating experimental parameters over their uncertainty bounds. The results of this 

study would indicate how robust the crystallization process is to parametric uncertainty. 

Unsteady-state simulation and optimization of the plug flow crystallizer. In this study, 

time-optimal control could be used to optimize a variety of objectives for optimizing the 

startup of the PFC, e.g. minimizing the mass of wasted API. Dynamical analysis of the 

unsteady state MSMA-PFC is another future direction. In this study, variations in 

important parameters could reveal the presence of dynamical anomalies and bifurcations, 

or even chaotic behavior. Residence time effects are also of great importance. Our 

simulations always assumed plug flow, but incorporating a residence time distribution 

model into the framework would allow for better predictive capabilities. Chemical 

fouling is a known problem in the operation of plug flow crystallizers. This is when API 
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begins to crystallize and accumulate on the vessel walls. This interferes with heat transfer, 

and over the long term can reduce residence time by reducing total volume. A strategy is 

needed for the removal of fouling areas once they begin to accumulate, or for a way to 

operate the crystallization such that fouling does not occur. Economic analysis of a plant 

using an MSMA-PFC array is another future direction. A comparison between 

conventional batch technology and MSMPR modes would clearly show which 

technology was more economically viable. Such analysis for the case of MSMPR 

crystallization has already been done by Schaber et al. [5]. In this work, we have 

investigated solely antisolvent crystallization, but it is possible to utilize cooling and 

antisolvent crystallization simultaneously. Instead of a solubility curve, we now have a 

solubility surface with respect to temperature and antisolvent ratio. This allows for a new, 

independent actuator for the control of supersaturation. Polymorphism and chirality are of 

serious concern in drug crystallization. Synthesis of the incorrect solid or optical form 

will, in the best case scenario, lead to an inactive medication. In the worst case scenario, 

the resulting compound will be a deadly toxin. The extension of the framework in this 

work for the optimization of polymorphic form content and of optical form are another 

possible future direction. Significant interaction is known to exist between upstream and 

downstream processes in pharmaceutical manufacture. Another possible future direction 

would be to integrate other unit operations into the crystallization, such as filtration, 

washing, and drying. The final goal would be to optimize the properties of the final dry 

crystals produced at the exit of the crystallization section. Crystal shape is also of great 

importance in drug manufacture. In this work, we have only used a 1-dimension 
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population balance. However, two-dimensional population balances are becoming more 

commonly applied to shape control. 
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