8,169 research outputs found

    Developments in nanoparticles for use in biosensors to assess food safety and quality

    Get PDF
    The following will provide an overview on how advances in nanoparticle technology have contributed towards developing biosensors to screen for safety and quality markers associated with foods. The novel properties of nanoparticles will be described and how such characteristics have been exploited in sensor design will be provided. All the biosensor formats were initially developed for the health care sector to meet the demand for point-of-care diagnostics. As a consequence, research has been directed towards miniaturization thereby reducing the sample volume to nanolitres. However, the needs of the food sector are very different which may ultimately limit commercial application of nanoparticle based nanosensors. © 2014 Elsevier Ltd

    Advanced Magnetic Nanocomposites

    Get PDF
    This book is a collection of research articles and review articles, which was published in the Special Issue "Advanced Magnetic Nanocomposites: Structural, Physical Properties and Application". This book ‘‘Advanced Magnetic Nanocomposites: Structural, Physical Properties and Application’’ discussed recent development on advanced magnetic nanoparticles and nanocomposites with detailed explanation of structural and physical characteristics, and further possible potential application

    Aerospace Medicine and Biology: A continuing bibliography with indexes

    Get PDF
    This bibliography lists 253 reports, articles, and other documents introduced into the NASA scientific and technical information system in October 1975

    Development of a microbial fuel cell for energy recovery from wastewater

    Get PDF
    A key engineering challenge is a transition to cleaner sustainable energy supply that is derived from renewable resources. Furthermore, affordable access to this modern sustainable energy services for communities in particular poor rural and urban communities is crucial. Microbial fuel cell (MFCs) is an emerging renewable alternative technology with potential to be self-sustaining that could alleviate the energy crisis and reduce environmental pollution. The use of the MFC as a dual system for electricity generation and wastewater treatment is been well reported in literature. Manganese dioxide (MnO2) is an effective electro-catalyst that have been used for alkaline fuel cells and battery application. MnO2 have a high conductivity and high structural porosity for ion and gas transport. In addition, MnO2 have a favourable crystal morphology, which makes it particularly useful for improving oxygen reduction reaction in the fuel cell. Graphene (GO) will be loaded on MnO2 surface as an effective support material. GO is a material good for electrical conductivity and their mechanical strength is applicable in electro-catalytic activities and is cost effective. In this work, a constructed dual chamber MFC configuration with graphite rod electrodes, MnO2-GO electrocatalyst and proton exchange membrane (PEM) using municipal sewage wastewater to generate electricity. The MnO2 as an alternative electro catalyst used for oxygen reduction reaction (ORR) in the MFC while using reduced graphene (rGO) as a support to enhance electrode surface area. Also addressing the effect of graphene material loading on MnOx catalyst for electrochemistry. The characterization of the MnO2-GO electrocatalyst have been analysed using X-Ray diffraction (XRD), Brunau-Emmett-Teller (BET) surface area and Fourier transform infrared spectroscopy (FTIR) for structural properties. Electrochemical techniques such as cyclic voltammetry (CV) for MnO2-GO electrocatalyst. Thermal gravimetric analysis (TGA) for the thermal properties, and the morphological properties probed by Scanning Electron Microscopy (SEM). The dual chamber MFC design functioned successfully and tested for energy generation from municipality sewage wastewater. The maximum voltage of 586 mV reached during MFC operation with various sewage municipal wastewater COD of 100-300mg/L. The maximum power density of 248 mW/m2 with resistance of 16.98 Ω and highest current density of 1.72mA/m2 was observed at the first cycle as compare to other cycle. The lowest value of 0.002159 mA/m2 obtained at the end of 10 days. The content of municipality sewage wastewater is capable of generating electricity. The physico-chemical properties of α-MnO2 exhibits excellent cycling stability on the electrochemical. This excellent cycling stability of α-MnO2 as a super capacitor electrode material. In addition, the graphene material loading on α-MnO2 has improved the electro catalytic activity, which influences the kinetics of the reduction reaction. The α-MnO2 synthesized BET analysis specific surface area of 134.61m2 g-1 reported. MFC technology has the potential to finds its own niche in the energy industry as it is becoming more and more sustainable due to the lower cost of electro catalyst materials. Power densities of 248 mW/m2 using wastewater with COD of 291mg/l were much higher than those previously obtained using low strength wastewater. These results have opened doors for further investigation of improving electro catalysis, utilized high concentration wastewater with high COD and improved MFC design including electrode materials.Civil and Chemical EngineeringM. Tech. (Chemical Engineering

    New Battery Technology Concepts Based on Semi-Solid Electrodes

    Get PDF
    El objetivo general de esta Tesis es desarrollar soluciones de baterías innovadoras basadas en electrodos semi-sólidos y demostrar su viabilidad en diferentes aplicaciones. En particular, las propiedades únicas de los electrodos semisólidos se explotan en diversas tecnologías: baterías de ion litio, baterías Zn - MnO2, baterías Zn - aire y “Electrochemical Ion Pumping”. Comprender la naturaleza de los electrodos semisólidos es de suma importancia para esta tesis. Al evaluar la viscosidad de los electrodos, se demostró su naturaleza tixotrópica. Esto hace posible inyectar esto electrodos dentro de una celda preensamblada. Además, las propiedades iónicas y eléctricas de diferentes formulaciones de electrodos semisólidos se investigan a través de espectroscopía de impedancia electroquímica, demostrando la posibilidad de ajustar las propiedades cambiando su composición: contenido de carbón, electrolito y aditivos. La batería inyectable, en la que los materiales de los electrodos positivo y negativo no están fijados en un colector de corriente, se propone por primera vez como un concepto innovador para facilitar el proceso de reciclaje, permitiendo la reutilización de las celdas de la batería completa. La prueba de concepto se muestra para baterías inyectables acuosas, así como su viabilidad en baterías inyectables no acuosas. En este trabajo, se explora la posibilidad de lograr baterías de alta densidad energética basadas en electrodos semisólidos de Zn-MnO2. Como solución para investigar electrodos semi-sólidos de MnO2, un innovador sistema híbrido que combina flujo (lado negativo) y electrodo inyectable (lado positivo) permite ampliar la vida útil de la batería. Adicionalmente, se investigan los cambios de pH que ocurren dentro del electrolito y que afectan al funcionamiento de la batería. La reacción espontánea entre zinc metálico y el electrolito conduce a la evolución de iones de Zn e hidrógeno, desplazando el pH del electrolito hacia condiciones alcalinas, lo que a su vez dificulta las reacciones electroquímicas reversibles en los electrodos positivo y negativo. La reacción de evolución de oxígeno (OER) en el electrodo positivo se propone como una estrategia simple para restaurar el pH inicial con un protocolo de carga. Curiosamente, el Mn2+ disuelto en el electrolito como aditivo, juega un papel importante en la corrección del pH. Usando un indicador de pH disuelto en el electrolito, el efecto del voltaje flotante se evalúa in operando, lo que permite optimizar su valor para que el pH se mantenga estable. En esta Tesis, se proponen electrodos semi-sólidos de Zn para revivir el concepto de una batería alcalina de Zn-aire mecánicamente recargable, en la que los electrodos negativos gastados se sustituyen al final del proceso de descarga. En este estudio, se alcanzan elevadas densidades de energía con una tasa de utilización del material del 85 %. De esta manera, los electrodos semisólidos de Zn se convierten en un tipo de portador de energía verde, ya que pueden generarse en otros lugares utilizando fuentes renovables, almacenarse, transportarse y usarse fácilmente para producir electricidad. La última tecnología en la que se implementan electrodos semi-sólidos es el denominado “Electrochemical Ion Pumping Cell” (EIPC) para la extracción de Li. Se propone por primera vez un nuevo concepto de EIPC basado en el uso de electrodos semisólidos, permitiendo una regeneración sencilla y económica después de llegar a su fin de vida. Siguiendo esta idea, se realiza una prueba de concepto de una regeneración efectiva del sistema mediante el simple reemplazo del electrodo semisólido. Los resultados muestran que EIPC demostró un buen desempeño electroquímico junto con una separación de iones competitiva, incluso para una solución que emula las salmueras típicas de Atacama.Energy Storage Systems have become essential element in our modern society as power source for number for applications ranging from power electronics to buffering energy for implementing energy generated from intermittent renewable sources. Among the various energy storage systems, batteries are attracting increasing attention since they offer a good compromise of energy efficiency, energy density and cost. Thus, a variety of battery technologies have been developed over the last decades with the aim of improving their key performance indicators (KPIs). Despite the great efforts devoted to this field, many challenges remain in terms of sustainability, energy and power density, eco-friendliness, recyclability, etc. The overall aim of this Thesis is to develop innovative battery solutions based on semisolid electrodes and demonstrate their feasibility in different applications. In particular, the unique properties of semi-solid electrodes are exploited in various technologies, i.e. lithium-ion batteries, zinc – manganese dioxide batteries, zinc – air batteries and electrochemical ion pumping system. These properties are easily tunable by changing the formulation of different semi-solid electrodes (rheology, ionic conductivity, and electrical conductivity), and the design of new battery cells prototypes

    Internet of Harvester Nano Things: A Future Prospects

    Full text link
    The advancements in nanotechnology, material science, and electrical engineering have shrunk the sizes of electronic devices down to the micro/nanoscale. This brings the opportunity of developing the Internet of Nano Things (IoNT), an extension of the Internet of Things (IoT). With nanodevices, numerous new possibilities emerge in the biomedical, military fields, and industrial products. However, a continuous energy supply is needed for these devices to work. At the micro/nanoscale, batteries cannot supply this demand due to size limitations and the limited energy contained in the batteries. Internet of Harvester Nano Things (IoHNT), a concept of Energy Harvesting (EH), which converts the existing different energy sources, which otherwise would be dissipated to waste, into electrical energy via electrical generators. Sources for EH are abundant, from sunlight, sound, water, and airflow to living organisms. IoHNT methods are significant assets to ensure the proper operation of the IoNT; thus, in this review, we comprehensively investigate the most useful energy sources and IoHNT principles to power the nano/micro-scaled electronic devices with the scope of IoNT. We discuss the IoHNT principles, material selections, challenges, and state-of-the-art applications of each energy source for both in-vivo and in vitro applications. Finally, we present the latest challenges of EH along with future research directions to solve the problems regarding constructing continuous IoNT containing various self-powered nanodevices. Therefore, IoHNT represents a significant shift in nanodevice power supply, leading us towards a future where wireless technology is widespread. Hence, it will motivate researchers to envision and contribute to the advancement of the following power revolution in IoNT, providing unmatched simplicity and efficiency

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 183

    Get PDF
    This bibliography lists 273 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1978
    corecore