969 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Towards fog-driven IoT eHealth:Promises and challenges of IoT in medicine and healthcare

    Get PDF
    Internet of Things (IoT) offers a seamless platform to connect people and objects to one another for enriching and making our lives easier. This vision carries us from compute-based centralized schemes to a more distributed environment offering a vast amount of applications such as smart wearables, smart home, smart mobility, and smart cities. In this paper we discuss applicability of IoT in healthcare and medicine by presenting a holistic architecture of IoT eHealth ecosystem. Healthcare is becoming increasingly difficult to manage due to insufficient and less effective healthcare services to meet the increasing demands of rising aging population with chronic diseases. We propose that this requires a transition from the clinic-centric treatment to patient-centric healthcare where each agent such as hospital, patient, and services are seamlessly connected to each other. This patient-centric IoT eHealth ecosystem needs a multi-layer architecture: (1) device, (2) fog computing and (3) cloud to empower handling of complex data in terms of its variety, speed, and latency. This fog-driven IoT architecture is followed by various case examples of services and applications that are implemented on those layers. Those examples range from mobile health, assisted living, e-medicine, implants, early warning systems, to population monitoring in smart cities. We then finally address the challenges of IoT eHealth such as data management, scalability, regulations, interoperability, device–network–human interfaces, security, and privacy

    Internet of Things: Architecture and Services for Healthcare

    Full text link
    Internet of Things (IoT) is a recent prominent collaboration of various technologies that enables spatially distributed devices (“things”) to sense, communicate and share information, thus generating a variety of applications and services in Healthcare. IoT is implemented in multiple domains like Smart city, energy and smart grid, Smart home, weather forecasting, Agriculture, Market and Transportation, Manufacturing and testing industries, Healthcare and many more. IoT serves the purpose of making tasks more efficient and productive and at the same time ensuring quality and reliability. IoT technologies provide an enabling framework for inter-connecting devices, systems, and services that go beyond Machine-to-Machine scenarios within today’s internet infrastructure. Healthcare industry is among the fastest fields to embrace IoT for numerous health services. IoT technologies will enable doctors / physicians / caretakers to be in touch with patients all the time. Various physiological parameters and markers can be monitored on a real-time basis for early detection of serious health symptoms that could endanger the life of patients. Diagnosis of diseases can be more accurate and in time for early treatment which will significantly improve recovery time. Diagnostic medical devices, sensors, and imaging devices that are integrated within the network for building an efficient and real-time system. The market for IoT in the healthcare sector is expected to grow rapidly in terms of connecting hospitals with patients for remote monitoring, emergency care services and remote surgery through augmented virtual reality. This thesis explores advances in IoT- based technologies in the healthcare environment. The thesis presents an architecture that defines a possible reference platform for seamless inter-connectivity between devices and software systems to enable new services. The architecture has multiple layers each of which performs specific functions to enable the realization of novel healthcare services. The thesis provides a comprehensive comparison between different Short range communication technologies, Mobile communication and Low Power Wide Area (LPWA) technologies. Based upon different scenarios of IoT healthcare services implementation, data computation capabilities provided by various cloud computing models and edge computing models are also discussed. The thesis provides a survey on various healthcare services that are implemented inside (and outside) hospital premises, e.g., remote health monitoring, Ambient Assisted Living among others. The impact of two prominent key technologies: Network Functions Virtualization (NFV) and Software Defined Networks (SDN) has been discussed and showed the benefits of implementing control and management function-especially at the edge network- utilizing SDN/NFV. This provides a flexible approach for deployment of healthcare services in close proximity to computing resources and improves communication control. IoT acknowledges a reliable and secure data exchange in real-time and oriented to improve Quality of Life (QoL). Internet of Things (IoT) serves the purpose of the advance concatenation of devices, systems, and services that go beyond the Machine-to-Machine scenario within today’s internet infrastructure with extended benefits

    Power Beacon’s deployment optimization for wirelessly powering massive Internet of Things networks

    Get PDF
    Abstract. The fifth-generation (5G) and beyond wireless cellular networks promise the native support to, among other use cases, the so-called Internet of Things (IoT). Different from human-based cellular services, IoT networks implement a novel vision where ordinary machines possess the ability to autonomously sense, actuate, compute, and communicate throughout the Internet. However, as the number of connected devices grows larger, an urgent demand for energy-efficient communication technologies arises. A key challenge related to IoT devices is that their very small form factor allows them to carry just a tiny battery that might not be even possible to replace due to installation conditions, or too costly in terms of maintenance because of the massiveness of the network. This issue limits the lifetime of the network and compromises its reliability. Wireless energy transfer (WET) has emerged as a potential candidate to replenish sensors’ batteries or to sustain the operation of battery-free devices, as it provides a controllable source of energy over-the-air. Therefore, WET eliminates the need for regular maintenance, allows sensors’ form factor reduction, and reduces the battery disposal that contributes to the environment pollution. In this thesis, we review some WET-enabled scenarios and state-of-the-art techniques for implementing WET in IoT networks. In particular, we focus our attention on the deployment optimization of the so-called power beacons (PBs), which are the energy transmitters for charging a massive IoT deployment subject to a network-wide probabilistic energy outage constraint. We assume that IoT sensors’ positions are unknown at the PBs, and hence we maximize the average incident power on the worst network location. We propose a linear-time complexity algorithm for optimizing the PBs’ positions that outperforms benchmark methods in terms of minimum average incident power and computation time. Then, we also present some insights on the maximum coverage area under certain propagation conditions

    A smart home environment to support safety and risk monitoring for the elderly living independently

    Get PDF
    The elderly prefer to live independently despite vulnerability to age-related challenges. Constant monitoring is required in cases where the elderly are living alone. The home environment can be a dangerous environment for the elderly living independently due to adverse events that can occur at any time. The potential risks for the elderly living independently can be categorised as injury in the home, home environmental risks and inactivity due to unconsciousness. The main research objective was to develop a Smart Home Environment (SHE) that can support risk and safety monitoring for the elderly living independently. An unobtrusive and low cost SHE solution that uses a Raspberry Pi 3 model B, a Microsoft Kinect Sensor and an Aeotec 4-in-1 Multisensor was implemented. The Aeotec Multisensor was used to measure temperature, motion, lighting, and humidity in the home. Data from the multisensor was collected using OpenHAB as the Smart Home Operating System. The information was processed using the Raspberry Pi 3 and push notifications were sent when risk situations were detected. An experimental evaluation was conducted to determine the accuracy with which the prototype SHE detected abnormal events. Evaluation scripts were each evaluated five times. The results show that the prototype has an average accuracy, sensitivity and specificity of 94%, 96.92% and 88.93% respectively. The sensitivity shows that the chance of the prototype missing a risk situation is 3.08%, and the specificity shows that the chance of incorrectly classifying a non-risk situation is 11.07%. The prototype does not require any interaction on the part of the elderly. Relatives and caregivers can remotely monitor the elderly person living independently via the mobile application or a web portal. The total cost of the equipment used was below R3000

    Seven HCI Grand Challenges

    Get PDF
    This article aims to investigate the Grand Challenges which arise in the current and emerging landscape of rapid technological evolution towards more intelligent interactive technologies, coupled with increased and widened societal needs, as well as individual and collective expectations that HCI, as a discipline, is called upon to address. A perspective oriented to humane and social values is adopted, formulating the challenges in terms of the impact of emerging intelligent interactive technologies on human life both at the individual and societal levels. Seven Grand Challenges are identified and presented in this article: Human-Technology Symbiosis; Human-Environment Interactions; Ethics, Privacy and Security; Well-being, Health and Eudaimonia; Accessibility and Universal Access; Learning and Creativity; and Social Organization and Democracy. Although not exhaustive, they summarize the views and research priorities of an international interdisciplinary group of experts, reflecting different scientific perspectives, methodological approaches and application domains. Each identified Grand Challenge is analyzed in terms of: concept and problem definition; main research issues involved and state of the art; and associated emerging requirements

    Low-power techniques for wireless gas sensing network applications: pulsed light excitation with data extraction strategies

    Get PDF
    Aquesta tesi està enfocada en dues línies d'investigació. La primera aborda el desenvolupament d'una metodologia basada en llum polsada per modulació de sensors químic-resistius per a l'extracció d'informació del senyal transitòri, i la segona planteja la implementació d'una xarxa sense fils de sensors (WSN) basada en tecnologia LoRa per al monitoratge de la qualitat de l'aire (AQM) i la detecció d'esdeveniments de fuita de gasos. Aquest document està estructurat en quatre capítols organitzats de la següent manera: el Capítol 1 presenta l'estat de l'art, una introducció als mecanismes de millora de l'comportament dels sensors químic-resistius, així com una introducció a la implementació de xarxes sense fils de sensors per a la monitorització de la qualitat de l'aire; el Capítol 2 està compost pels dos articles publicats relacionats amb la metodologia basada en la modulació utilitzant llum polsada per a l'extracció d'informació del senyal transitòria de sensors químic-resistius; el Capítol 3 presenta l'article publicat relacionat amb la implementació d'una WSN per a AQM; el Capítol 4 presenta les conclusions derivades dels resultats obtinguts durant el desenvolupament de el projecte de tesi i les recomanacions per al treball futur associat a la continuïtat dels principals resultats d'aquesta tesiLa presente tesis está enfocada en dos líneas de investigación, La primera aborda el desarrollo de una metodología basada en luz pulsada para modulación de sensores químico-resistivos para la extracción de información de la señal transitoria; y la segunda plantea la implementación de una red inalámbrica de sensores (WSN) basada en tecnología LoRa para la monitorización de la calidad del aire (AQM) y la detección de eventos de fuga de gases. Este documento está estructurado en cuatro capítulos organizados de la siguiente forma: el Capítulo 1 presenta el estado del arte, una introducción a los mecanismos de mejora del comportamiento de los sensores químico-resistivos, así como una introducción a la implementación de redes inalámbricas de sensores para la monitorización de la calidad del aire; el Capítulo 2 está compuesto por los dos artículos publicados relacionados con la metodología basada en la modulación utilizando luz pulsada para la extracción de información de la señal transitoria de sensores químico-resistivos; el Capítulo 3 presenta el artículo publicado relacionado con la implementación de una WSN para AQM; el Capítulo 4 presenta las conclusiones derivadas de los resultados obtenidos durante el desarrollo de el proyecto de tesis y las recomendaciones para el trabajo futuro asociado a la continuidad de los principales resultados de esta tesis.The present thesis project is focused in two different yet related research lines. The first one addresses the development of a pulsed light-based chemiresistive sensor modulation methodology for transient information extraction. The second research line developed deals with the implementation of a LoRa-based portable, scalable, low-cost, and low power Wireless Sensor Network (WSN) for Air Quality Monitoring (AQM) and gas leakage events detection. This document is structured in four Chapters organized as follows: Chapter 1 presents the state of the art, an introduction to sensing performance enhancement and transient data extraction methods, as well as an introduction to the implementation of WSN for AQM; Chapter 2 is composed of the two published paper related to the pulsed light modulation methodology for transient information extraction; Chapter 3 presents the published paper related to the implementation of a LoRa-based WSN for AQM; Chapter 4 states the conclusions derived from the results obtained during this thesis project and the recommendations for the future work associated to the continuity of this thesis findings
    corecore