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ABSTRACT

The fifth-generation (5G) and beyond wireless cellular networks promise
the native support to, among other use cases, the so-called Internet of
Things (IoT). Different from human-based cellular services, IoT networks
implement a novel vision where ordinary machines possess the ability to
autonomously sense, actuate, compute, and communicate throughout the
Internet. However, as the number of connected devices grows larger, an
urgent demand for energy-efficient communication technologies arises. A key
challenge related to IoT devices is that their very small form factor allows
them to carry just a tiny battery that might not be even possible to replace
due to installation conditions, or too costly in terms of maintenance because
of the massiveness of the network. This issue limits the lifetime of the network
and compromises its reliability.
Wireless energy transfer (WET) has emerged as a potential candidate

to replenish sensors’ batteries or to sustain the operation of battery-free
devices, as it provides a controllable source of energy over-the-air. Therefore,
WET eliminates the need for regular maintenance, allows sensors’ form
factor reduction, and reduces the battery disposal that contributes to the
environment pollution.
In this thesis, we review some WET-enabled scenarios and state-of-the-

art techniques for implementing WET in IoT networks. In particular, we
focus our attention on the deployment optimization of the so-called power
beacons (PBs), which are the energy transmitters for charging a massive IoT
deployment subject to a network-wide probabilistic energy outage constraint.
We assume that IoT sensors’ positions are unknown at the PBs, and hence
we maximize the average incident power on the worst network location. We
propose a linear-time complexity algorithm for optimizing the PBs’ positions
that outperforms benchmark methods in terms of minimum average incident
power and computation time. Then, we also present some insights on the
maximum coverage area under certain propagation conditions.

Keywords: deployment optimization algorithm, massive IoT, minimum
incident power, power beacons, wireless energy transfer.
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1 INTRODUCTION

The Internet of Things (IoT) defines a novel paradigm that brings connectivity to an
increasing number of physical objects for sensing and interacting with the surrounding
environment. IoT technologies impact all spheres of society and life creating new
business opportunities, collecting a huge amount of data to help decisions, and improving
healthcare systems just to mention a few. By 2030, tens of billions of deployed devices are
foreseen to serve a variety of use cases—e.g. environmental monitoring, home automation,
smart agriculture, remote health care and industry 4.0—with heterogeneous quality-of-
service (QoS) requirements and hardware implementations [1]. Key enablers for boosting
IoT are the fifth generation (5G) and beyond cellular networks that promise the native
support to ultra-reliable and low-latency communications, extreme mobile broadband
and massive machine-type communications. The way each of these services will impact
IoT networks depends on the particular application.
Among others, a big challenge in IoT networks is that devices are usually of small

form-factor and can carry just a tiny battery, thus the energy availability is limited
and compromises devices’ lifetime. Besides, battery replacements and manual charging
are often impractical if not forbidden due to the hard-to-reach installation conditions
or the massive number of sensors. Imagine thousands of low-power devices with
heterogeneous energy demands running out of battery, it may cause constant service
interruptions plus the unaffordable cost/time of maintenance. Moreover, inappropriate
battery recycling and fossil fuel electricity generation contribute to water and air pollution
as their toxic chemical residuals are released into the environment. Therefore, energy
efficiency solutions promote environmentally-friendly products and services and make
the telecommunications sector a more profitable business since energy costs constitute
almost half of the operating expenses [2]. Hence, we need green technologies to sustain
future IoT networks with minimum energy consumption and waste generation, and to
increase customer satisfaction due to prolonged battery life. Current wireless networks
lack of consistent infrastructure for enabling green technologies [3]; however, there are
already some energy-efficient wireless standards available in the market, such as ZigBee
[4], Bluetooth low energy (BLU) [5], IPv6 over low-power wireless personal area networks
(6LoWPAN) [6], IEEE 802.15.6 [7], and Message Queuing Telemetry Transport (MQTT)
[8].

1.1 Energy-efficient communications

The concept of sustainable IoT encompasses five domains: radio optimization, data
reduction, sleep/wake-up schemes, energy-efficient routing algorithms, and battery
repletion [9], [3]. Since the radio interface is the most power-hungry module, its
optimization can significantly alleviate the battery drain issue. One thing to consider
is that IoT traffic is mostly sporadic with long periods of inactivity; hence, duty-
cycling techniques can reduce the idle-listening periods which maximize the network
lifetime. But, targeting very low duty cycles may increase significantly the end-to-
end message delay in multihop networks, plus the usual non-deterministic delay due
to the different communication paths. Designers must also consider that reducing
the transmission/reception windows potentially increases the collision rate and adds



extra control traffic overhead for synchronization [10]. Another way to reduce energy
consumption during idle-listening periods is with a low-power wake-up radio (WUR). A
WUR monitors the channel searching for pre-assigned wake-up commands to activate
the main transceiver. State-of-the-art WUR can achieve -71 dBm of sensitivity with
7.6 nW of total consumption [11]. The design of WUR raises a trade-off among the
sensitivity level, communication range, robustness against interference while keeping
the power consumption negligible in comparison with the main components. Moreover,
modulation optimization aims to find the optimal constellation considering the trade-
off between constellation size, information rate, transmission time, link distance, and
noise/interference levels.
Meanwhile, note that significant performance gains may come from using directional

antennas. Directional antennas do not just increase the coverage but also improve the
energy-efficiency of the network. Different from the omnidirectional implementation,
directional antennas focus the energy towards the devices, which reduces the level of
interference and improves the signal-to-noise ratio (SNR), and therefore, directional
antennas can improve reliability and reduce the number of retransmissions. Similarly,
base stations (BSs) equipped with multiple antennas can steer sharp beams towards
multiple devices at the same time, allowing the separation of multiple streams.
However, optimal beamforming strategies require accurate channel state information
(CSI) acquisition which consumes an important portion of the devices’ energy budget
[12].
On the other hand, heterogeneous QoS specifications and hardware design cause

different power consumption profiles within an IoT network. In such scenarios, adaptive
power allocation strategies allow each sensor to adjust its transmit power according to
the battery state, level of interference, data rate, just to mention a few [13]. Power
allocation algorithms can be either centralized at the BSs or distributed [14]. In the
former, the BS computes the appropriate sensors’ transmit power and forward the
resource allocation decisions to the devices, saving a computation overhead at each low-
cost device. In the case of distributed algorithms, each device computes the optimal
power allocation strategy based on the CSI provided by neighbouring devices. Hence,
distributed algorithms offer a more practical approach as the number of devices increases,
since estimating the CSI at the BS could be unattainable. Cooperation is another
energy-efficient solution since sensors with the best channel conditions can forward its
neighbour’s packets to the final destination [15]. It saves energy in the far away sensors
in addition to extending the coverage area. Nevertheless, cooperation can increase the
end-to-end delay as the number of intermediate steps increases. Energy-aware routing
protocols consider the remaining energy at each sensor in the network to discover
feasible communication paths (e.g. the energy-efficient ad-hoc on-demand distance vector
protocol) [16]. These protocols input multiple entries in the routing tables pointing
to the same destination, which reduces the recovery time against faults. Moving BS,
such as unmanned aerial vehicles (UAVs), reduces the link distance and avoid multi-hop
transmissions; hence they are suitable candidates for many coming IoT use cases.
Additionally, note that the energy consumption of the radio interface is an increasing

function of the size and number of packets. Instead of sending raw measurements, a
sensor can extract some statistics or compress the information before transmit it to
reduce the time-on-air [17]. For instance, we may be interested in the number of times
an event has happened, the average temperature in a room, or the maximum humidity



level in a warehouse, instead of all measurements, thus instantaneous measure reporting
could be avoided. The reader must keep in mind that these techniques reduce the
accuracy of the data and demand more computational effort from the sensor devices.
Moreover, continuous sensing operations also consumes energy, while an efficient sensing
approach may take into account that measurements are often time-correlated. Hence,
compressing the sensing itself would not only reduce the size of the transmitted data
but also prolong the network lifetime [18]. In other scenarios, the sensors’ positions
generate spatial correlation in the received data at the sink. This redundancy can be
eliminated by turning off the redundant sensors or adapting its sampling rate [19]. In
multi-hop networks, sending individual packets from the BS increases unnecessarily the
number of transmissions. Instead, by using linear network coding the BS can send a
linear combination of the packets for each end-user to decode its information by solving
a system of linear equations [20].
Finally, energy harvesting (EH) is a promising candidate for recharging sensors’

batteries without human intervention. It allows the sensors to turn alternative sources
of energy into electricity for supporting their operation and extend the network lifetime.
Meanwhile, wireless energy transfer (WET) utilizes dedicated energy transmitters to
replenish the sensor’s batteries or to support zero-battery IoT networks. In the following
sections, we discuss more these approaches.

1.2 Energy harvesting from ambient sources

In our surroundings, there are numerous renewable sources of energy that may be suitable
for supporting the operation of IoT networks. For instance, photovoltaic cells turn the
sunlight into electricity thanks to the photovoltaic effect. The transformation takes place
when a semiconductor is exposed to the sunlight and the absorbed photons cause the
electrons to cross the p-n junction, which then produces an electric current. However,
the sunlight intensity depends on the atmospheric conditions and the geographic place,
which makes the energy arrival process almost unpredictable. The output power of a
photovoltaic cell is also a function of its temperature and the characteristics of the load;
hence, solar-powered systems utilize maximum power point tracking techniques (although
it applies for other sources, this technique is more frequently used with solar panels)
to ensure maximum transfer efficiency to the load [21]. Alternatively, it is possible to
exploit artificial lights within indoor environments to sustain the operation of the sensors.
Nevertheless, artificial lights are weaker than the sunlight; their availability is restricted
to the offices’ schedule.
On the other hand, thermoelectric generators are solid-state devices capable of

producing electricity from thermal energy. The gradients of temperature near to the
dissimilar thermoelectric materials cause an output voltage due to the thermoelectric
effects, and on the contrary, when a voltage is applied it creates a temperature
difference [22]. The reliable design of thermoelectric generators (e.g., non-moving parts,
orientation independent installation/operation) makes them suitable for applications in
severe environments where regular maintenance is impossible. Typical applications range
from powering sensors inside the moving parts of hydroelectric turbines [23], monitor the
temperature of walls and pipes in dark chambers in absence of airflow [24], and aerospace
industry.



Piezoelectric-based energy harvesters generate electricity after being exposed to
mechanical strain-stress, vibration or the motion of the human activity thanks to the so-
called piezoelectric effect. However, the electrical signal at the output of the generator
has a high-peak voltage and a very low current which reduce conversion efficiency of
the regulation circuit. Similarly, electrostatic-based EH uses the mechanical motion
and vibration to change the plate separation of a capacitor against an electric field
to generate electricity; but, to operate they require a polarization source or a special
dielectric material which complicates the design. These devices can be utilized to power
wearable electronics, in vibrating structures such as roads, and to power tracking sensor
for monitoring the animal activity [25].
Wind-based EH systems can sustain wireless networks in remote zones with lack of

power grid infrastructure. The wind turbines convert the kinetic energy of the wind
into electricity whose power is proportional to the cube of the wind speed. The wind
speed can be statistically characterized with the Weibull distribution, which provides
useful insights for estimating the probability of outage in wind-powered wireless networks
[26]. Nevertheless, wind-based EH is not suitable to be incorporated in the IoT devices
themselves, but on the BSs or access points (APs). Also, different from large-scale wind
systems, small-scale designs for IoT devices exhibit a low efficiency due to very low flow
rates and fluctuations in the wind speed [27].
In the cities, EH from ambient radio-frequency (RF) stands out from renewable

harvesting solutions provided the availability of RF signals coming from TV transmitters,
WiFi APs, cellular networks, radio broadcast stations, among others. RF-based EH
recycles the energy coming from human-made transmitters by using a rectifier circuit
[28], which reduces the size and complexity of the IoT devices compared with other
ambient EH implementations. However, the energy density values available at the RF-
EH receivers are typically too low, thus limiting the amount of harvestable energy.
The authors in [29] surveyed London to find potential sources for RF-EH. They

were interested in the power density nearby: digital TV (DTV) transmitters; GSM900,
GSM1800, and 3G BSs; and WiFi APs. They found that the DTV signals strength
heavily depends on line-of-sight (LoS) and changes rapidly according to atmospheric
conditions, whereas the user traffic conditions WiFi signal level stability. Moreover,
vertically polarized antennas at the cellular BSs constrain the orientation of the IoT
sensors. Similarly, the authors in [30] recorded values of -30 to -15 dBm of peak power at
a few hundred meters from UHF DTV towers in Tokyo, Japan. Measurements campaigns
in Calgary, Canada, in cellular bands (824-960 MHz, 1710-2170 MHz) and the unlicensed
industrial, scientific, and medical band, reported power peak values of -30 to -20 dBm
[31].
Ambient RF-EH is considered extremely challenging as RF power density varies with

time, frequency and distance to the transmitter within the range of 0.0002 ∼ 1 µW/cm2

[30]. Some researches have proposed different alternatives to boost the harvested energy.
For instance, in [32] the authors proposed a packet injection algorithm for artificial
traffic generation in WiFi networks to reduce the silent periods of the WiFi APs. Such
mechanism allowed reaching a receive power in the range of -23 to -5 dBm with a
separation from the router of 50 cm and almost with full efficiency of the EH circuit.
In [33], the authors designed a multiband RF-EH system to combine the signals coming
from multiple wireless systems. The designed EH circuit operates when the input power is
between -25 to -5 dBm and with a maximum efficiency of 33 % at 2100 MHz. This solution



Table 1. Comparison of EH techniques [34–36]

Source EH technology Power density Main shortcomings
Sunlight Photovoltaic cells 100 mW/cm2 sensitive to blockage
Indoor light Photovoltaic cells 83 µW/cm2 sensitive to blockage and

very low conversion efficiency
Thermal Termoelectric 1 mW/cm2 low conversion efficiency, costly,

generators and heavy
Kinetic Piezoelectric 0.3 mW/cm3 brittle, rigid, and

effect non-flexible to design
Electrostatic 80 µW/cm3 limited applicability, outputs

less energy than other
kinetic harvesters, needs a
polarization source

Acoustic Acoustic harvester 1 mW/mm2 medium-specific efficiency;
highly sensitive to diffraction,
attenuation, and reflection
losses; generates heat

Biomass Microbial fuel cells 3.5 mW/cm2 challenging design
Ambient RF Rectenna 1 µW/cm2 too low energy density

not only increases the total harvested energy but also the opportunities of harvesting from
different ambient RF energy sources.
Table 1 compares different EH sources. Notice that the numerical values depend on

particular implementations and are just presented for the sake of comparison.
Finally, multiple-source EH systems in a single device can overcome the

unpredictability of energy arrival. This technique increases the chance of harvesting at
least from one of the sources but at the cost of increasing form factor and the hardware
complexity of the circuits and power management unit [37].

1.3 Electromagnetic-based WET

The energy arrival from ambient EH sources per time unit depends on the particular
source and its availability. This may cause an excessive accumulation of data packets in
the sensors’ queues until enough energy is available for transmission. Additionally, EH
from ambient RF transmissions restricts the deployment of IoT networks in rural areas,
where the network infrastructure is scarce or nonexistent, and its applicability is limited
to ultra-low power consumption devices. Hence, powering the variety of coming IoT
applications with only these solutions makes difficult to meet stringent QoS requirements
(e.g., low delay, moderate to high data rate, high reliability, etc).
Meanwhile, electromagnetic-based WET constitutes a promising technology for

wirelessly charging next-generation devices. It can be classified into near-field
(nonradiative region) and far-field (radiative region) techniques. Near-field techniques
have already gained popularity in the electronic industry, for charging mobile phones,
tablets, smartwatches, and other electronic appliances [28]. As an example, the inductive
coupling technology transfers energy between coils throughout magnetic fields just as



in the conventional AC transformers. The transmission occurs within the range of a
few centimetres, and with better efficiency as the frequency increases. Usually, both
transmitter and receiver coils are designed with different resonant frequencies. The main
problem with inductive coupling is that the alignment of the coils highly conditions
the amount of received energy. On the other hand, a magnetic resonator transfers
energy using high-quality resonant circuits tuned at the same frequency. Although
this technique achieves lower efficiencies in short distances compared with its inductive
coupling counterpart, it does extend the transmission range to tens of centimetres.
On the other hand, far-field WET technologies allow overcoming larger distances

using laser power beaming or microwave-based WET. Laser power beaming technology
transfers energy by steering laser beams towards specialized photovoltaic cells over long
distances. However, laser-based WET works on LoS links with precise alignment between
transmitter and receiver; and its efficiency hinge on the atmospheric absorption and
scattering by clouds, fog, and rain [38]. Besides, laser radiation causes harm even at
low-power applications either by pointing directly the beam or by reflections.
Meanwhile, microwave-based WET or simply RF-WET relies on energy transmitters

called power beacons (PBs) that radiate microwave signals to power the devices. RF-
WET is considered a potential enabler for wirelessly charging massive IoT deployments
[3]. The three canonical network models for RF-WET are: i) pure WET, ii) wireless
powered communication network (WPCN), and iii) simultaneous wireless information
and power transfer (SWIPT). In the first case, the energy transmitter sustains the devices’
operation without exchanging any data. In WPCN, the sensors harvest energy from
downlink transmissions from the energy transmitter(s) and then use it to upload sensing
information to an information AP. Finally, SWIPT aims to efficiently use the spectrum
resources by embedding both information and energy in the same waveform.
RF-WET is subject to channel impairments such as distant-dependent loss,

shadowing and multipath fading, since they convey RF signals. Besides, international
telecommunication organizations regulate the maximum transmit power to avoid
interference with existing networks or to not cause any harm to human health. These
facts, together with the relative low sensitivity of the energy receivers, limit considerably
the operating range of RF-WET. Herein, we present some of the state-of-the-art
techniques for making RF-WET a viable solution wirelessly powering many the coming
IoT use cases.

1.4 Thesis contribution

This thesis targets the deployment optimization of PBs for powering a massive IoT
network subject to a probabilistic energy outage requirement. Our main contributions
are:

i) we present WET-enabled network models and some RF-WET techniques for
powering the coming IoT use cases;

ii) we discuss the role of EH from ambient sources to sustain IoT networks;

iii) we discuss some health concerns about RF-WET and the magnitudes for
characterizing the impact of the RF radiation on human beings;



iv) we propose an algorithm for minimizing the number of PBs required to meet a
network-wide energy QoS requirement;

v) we evaluate several methods for optimizing the PBs’ positions to power a massive
number of IoT sensors;

vi) based on our analytical approximations, we find that in a scenario with up to two
PBs, the optimal strategy is to place a single PB at the circle center with radius
R, assuming the same total power. Meanwhile, in case of three and four PBs, they
should be deployed on a concentric circumference approximately of radius R

2 and
R
√

2
2 , respectively, for optimum performance. For the rest of the cases, the optimal

positions depend strictly on R and the path loss exponent;

vii) numerical results show that the number of PBs deployed improves more the
minimum incident RF power than the number of antennas per PB, even though
both help to overcome the energy outage.

1.5 Thesis outline

The remainder of the thesis is organized as follows. In Chapter 2, we present a review
of the state-of-the-art techniques for implementing RF-WET, as well as typical WET-
enabled network architectures. In Chapter 3, we introduce the system model and propose
an algorithm for finding the optimal PBs’ positions, and compare it with other benchmark
strategies. In Chapter 4, we present numerical examples on the optimal deployment of
PBs, and some insights on the impact of multi-antenna PBs-assisted WET and the
maximum coverage area. Finally, Chapter 5 concludes the thesis.
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2 RF WIRELESS ENERGY TRANSFER

In contrast to EH from ambient energy sources, RF-EH from dedicated PBs provides a
predictable energy source for wirelessly powering the network with minimum impact
to current IoT devices’ design. The operation range of RF-WET depends on the
antenna gains, transmit power, operating frequency, channel conditions and receiver
sensitivity, and extends over much larger distances compared to its near-field technology
counterparts. Besides, RF-WET promises support to scenarios with non-LoS (NLoS)
conditions, energy broadcast to power multiple devices simultaneously, and mobile
users. Table 2 compares RF-WET with other electromagnetic-based WET technologies.
Hereafter, we use WET to refer exclusively to RF-based WET.
Figure 1 depicts a block diagram of an EH receiver. The rectenna is the core module

for RF EH since it rectifies the microwave signals to power the IoT devices’ circuits or
to recharge their battery remotely. The rectenna components are:

i) receive antenna(s), whose design is optimized for the operating frequency range of
the RF energy source. Note that in ambient RF-EH scenarios, the RF energy
density varies significantly with frequency, thus receive antennas are typically
designed for broadband/multi-band operation instead of a single frequency [3];

ii) the matching network, which guarantees impedance matching at the designed
frequency, and hence maximum power transfer from the antenna to the rectifier
circuit. Besides, it prevents energy reflection from the rectifier to the environment,
which would reduce the available power for rectification. Matching networks
can be implemented with Pi, T, or L sections of reactive lumped components
or transmission lines depending on the operating frequency. To obtain a
broadband/multi-band matching network, we can connect in cascade/parallel many
of these sections, but in practice the loss increases with the number of components
[39]. Alternatively, in [40] the authors proposed an impedance-tunable microstrip
antenna to match with the input impedance of the rectifier circuit to get rid of the
complex impedance matching network;

iii) the rectifying circuit, which converts the received RF signal into the needed DC
voltage to sustain the operation of most of the functional blocks in IoT sensors. A
typical choice for rectifying devices are the Schottky diodes due to their low forward
voltage drop, low power consumption and very high switching speed [41]. However,
since the output of the rectifying circuit is quite low to drive a device directly, it is
common the use of a DC-DC multiplier to boost the DC voltage level;

iv) low-pass filter, which aims to provide a ripple-free signal to charge the energy
storage element that can be a conventional battery or a supercapacitor.

Different from EH systems relying on ambient energy sources, WET-enabled networks
allow the optimization of the end-to-end efficiency. The end-to-end efficiency of a WET
system comprises three components:

i) DC-RF conversion efficiency at the PB. The power amplifier architecture (i.e. class
A, B, C, etc.) at the PB determines the DC-RF conversion efficiency. Although
power amplifiers are non-linear devices they can operate in the linear region but it
entails high power dissipation at active devices and low conversion efficiency.



16

Table 2. Comparison among WET technologies [38]

WET Operating Main Characteristics
Technology frequency transducer
Inductive coupling tens Hz - wire coil very high efficiency over units,

hundreds MHz of cm, relatively small form-
factor, highly sensitive to
tx/rx misalignment.

Magnetic
resonant coupling

hundreds kHz - tuned wired high efficiency over tens of
tens GHz coil cm, large form-factor,

multi-user support.
Laser power hundreds THz laser and high energy delivery up to km,
beaming photoreceiver laser radiation can damage

biological tissues, sensitive
to LoS blockage and
atmospheric conditions

RF-WET hundreds MHz - rectenna low efficiencies over tens of m,
hundreds GHz very small form-factor,

support mobile users,
potential NLoS support.

ii) RF-RF transmission efficiency, which is a function of the channel conditions
and improves with highly directional antennas and energy beamforming, which
focus sharp energy beams towards the IoT devices. These strategies increase the
incident power thus, mitigating the degenerative path loss, and avoiding energy
transmissions toward device-free spatial directions. The antenna polarization also
plays a role improving the RF-RF efficiency. Circular polarization reduces the
mismatch losses caused by other forms of polarization, thus is usually preferred for
WET [42].

iii) RF-DC conversion efficiency at the EH receiver, that depends on the rectifying
device, the rectifier topology, and the output load. Besides, the design of the
receiver antenna and rectifier circuit must be optimized to the operating frequency
for EH. Among the rectifier architectures, the ones with the minimum number
of rectifying devices exhibit the best RF-DC conversion efficiency in low-power
scenarios, along with a simpler circuit layout [43]. In [43], the authors proposed
a method based on harmonic balance simulation subject to a minimum RF-DC
conversion efficiency to optimize the rectenna design.

Energy waveform optimization requires a closer look at the transfer function of the
EH receiver. The output current of a rectifier circuit is a non-linear function of the
input RF power; however, for sufficiently low power levels it can be approximated with
a linear function. In such a case, concentrating all the power on a single frequency
would suffice as the optimum transmit waveform [44]. This model has been widely
applied in many scientific papers provided its mathematical simplicity, e.g., [45–48].
As the input RF power increases, the waveform spectrum impacts more the RF-DC
conversion efficiency since the non-linearity dominates in the circuit behaviour. The
authors in [38] demonstrated that under the non-linear model, the optimum waveform
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Figure 1. Block diagram of a rectenna.

Table 3. Operational features of some state-of-the-art rectenna modules.

Reference ξ0 (dBm) ξsat (dBm) ηmax (%) Frequency
[49] −10 20 50 5.8 GHz
[50] −15 15 89 915 MHz
[51] −15 15 90.6 915 MHz
[52] −20 10 60 1.7 ∼ 2.7 GHz
[53] −20 15 72.8 2.4 GHz
[54] −10 20 63.38(65.4) 2.4(5.2) GHz

strategy points to allocating the transmit power over multiple sinewaves, whose additional
contribution scales up linearly with the number of tones in flat fading channels. Moreover,
in frequency-selective channels, the optimum waveform allocates more power to the
frequencies with the higher channel gains.
In general, the non-linear model of the EH circuit distinguishes three regions:

i) zero-output power, in which the input RF power level is below the sensitivity of
the circuit;

ii) input power-dependent region, where the output DC power is a non-linear function
of the input RF power level;

iii) saturation region, where the output DC power becomes nearly constant and
independent of the input RF level.

Table 3 lists typical values the sensitivity (ξ0) and saturation (ξsat) levels, maximum
RF-DC conversion efficiency (ηmax) and operating frequency of some state-of-the-art
rectennas.
To capture this non-linearity in a mathematical model, in [55], the authors proposed

the sigmoid function to describe the transfer characteristic of the EH circuit as

f(ξRF) =
ξmax

1−e−c1(ξRF−c2) − ξmaxΩ
1− Ω , (1)
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where ξmax is the maximum output power, Ω = 1
1+ec1c2 is a constant to guarantee zero-

input/zero-output response, and the constants c1 and c2 are obtained from standard
curve fitting. In [56], a rational transfer function is obtained by standard curve fitting
considering the dependence of the RF-DC efficiency on the input power. Under this
model, the harvested power is

f(ξRF) = c1ξ
RF + c2

ξRF + c3
− c2

c3
, (2)

which has zero-input/zero-output response, and f(ξRf) → c1 − c2
c3

as ξRf → +∞.
However, increasing the accuracy of the EH circuit’s model also makes the analysis more
intricate, even in a very simple scenario. A simpler, but yet effective, approach assumes
that the input power-dependent region follows a linear function while considering the
sensitivity and saturation phenomena [57]-[58]. The input-output relationship in this
case is modelled with a piecewise function as

f(ξRF) =


0, ξRF < ξ0,

ηξRF, ξ0 ≤ ξRF < ξsat,

ηξsat, ξRf ≥ ξsat.

(3)

Similarly, in [59] the non-linear region is approximated with a series of line segments
which improves the modeling accuracy but increases the complexity as it includes more
segments.

2.1 Multi-antenna WET scenarios

The integration of the energy receiver into the existing IoT hardware follows two
main trends. On one hand, rectennas can share the same antennas with the existing
information decoding (ID) circuits, which implies that the design must undergo significant
hardware modifications. Indeed, sharing the same antennas entails the use of an
additional block that switches between ID and EH, and requires the use of the same
frequency band for both receivers. On the other hand, the implementation of independent
energy receivers with dedicated antennas eases its integration into the existing designs,
and allows independent and concurrent operations.
In case of scenarios with multi-antenna energy receivers, one may need to figure

out what is more appropriate: combining the DC signal coming after the rectification
process or combining the received signal at the RF stage [60]. As an example, Figure 2
illustrates these cases in a multiple-input and multiple-output (MIMO) point-to-point
WET scenario. In the former strategy, as Figure 2a depicts, each antenna feeds a single
energy rectifier and the output results as the combination of individual DC signals. In the
latter, a frequency-dependent analogue combiner drives the input of the energy rectifier;
thus, improving the RF-DC efficiency since now it can operate in high RF power input
regime (Figure 2b). Although both strategies boost the output power as the number
of antennas increases, the RF combining method exhibits the best performance by far.
However, and besides the passive RF combiners design challenges, both transmit and
receive ends require accurate CSI for jointly optimizing transmit beamforming and RF
combining, in contrast with DC combining that only requires CSI at the PB. Multi-
antenna energy receivers come with another advantage: they could ease the design of EH
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Figure 2. Examples of WET receiver architectures in a MIMO point-to-point scenario:
a) DC combining; b) RF combining.

circuits with a broad dynamic range. Instead of designing a complex rectenna, we can
use multiple rectifiers with different sensitivity and saturation levels that optimize the
connection to the receive antennas according to the incident RF power [61].
WET implementations also distinguish from architectures with co-located and

distributed antennas (DAS) at the PBs; while co-located antennas perform energy
beamforming to extend the WET range, the DAS strategy can overcome the effects
of the large-scale fading. In [62], the authors compared two WPCN setups: one served
by a PB equipped with a uniform linear array, and other with distributed single antenna
PBs. They showed that devices under the former deployment strategy achieve higher
incident power levels when maximizing the minimum incident RF power, but most of
the service area remains energy-silent. On the contrary, the distributed system powers
uniformly the service area with higher minimum power levels due to the reduced distance
between PBs and sensors.

2.1.1 On the CSI estimation for WET

Different from conventional wireless communications, in WET scenarios the energy
receiver doesn’t require CSI for proper operation in general. However, optimal energy
beamforming and waveform power allocation under frequency-selective channels require
accurate CSI at the transmitter. State-of-the-art literature describes three algorithms
for estimating the CSI for WET purposes [62]:

i) forward-link training with CSI feedback, where the PB sends pilots to the IoT
devices, which after performing the computation feedback the estimated CSI to the
PB using a different channel (Figure 3.a). The main problem with this strategy is
that the training overhead scales up with the number of antennas which requires
extra processing from the low-cost device;
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Figure 3. Algorithms for estimating the CSI: a) forward-link training with CSI feedback;
b) reverse-link training; power-probing with energy feedback.

ii) reverse-link training, the IoT devices send pilots to the PB for further estimation,
assuming that channel reciprocity holds (Figure 3.b). This method reduces
the processing overhead at the IoT device, and the time/energy consumption is
independent of the number of antennas;

iii) power-probing with energy feedback. While the previous algorithms apply only
for the shared-antennas architecture, the power-probing with energy feedback is
suitable for the separated-antennas architecture. As Figure 3.c depicts, the PB
sends energy probing signals and the IoT device feedbacks the amount of harvested
energy during each interval. This technique reduces the processing overhead at the
IoT devices and keeps running the EH. However, the complexity of this algorithm
also increases with the number of antennas.

2.2 Wireless powered communication networks

WPCNs represent a self-sustainable paradigm within traditional wireless sensor networks
by using WET-enabled technologies for extending the lifetime of the sensors. WPCNs
are environmental-friendly in the sense of reducing frequent battery replacements which
generate chemical waste. In a WPCN, WET using dedicated resources, e.g., time,
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Figure 4. WPCN scenarios: a) separated information and energy transmitters; b)
terrestrial HAP-assisted WPCN ; c) flying HAP-assisted WPCN.

frequency, occurs in the downlink while the wireless information transfer (WIT) happens
in the uplink. Figure 4 depicts some WPCN scenarios.
In Figure 4a, a PB powers S1 and S2 devices, which then aim to upload their

data to a traditional BS, exemplifying the integration of WET into the current
wireless infrastructure. Although this model corresponds to a separated implementation
of both information and energy transmitters, these functionalities can be combined
into a hybrid AP (HAP) as Figure 4b and Figure 4c depict. Compared with the
separated implementation, a HAP facilitates the coordination between information and
energy transmissions and reduces the costs provided that both functions share common
hardware.
In practice, the difference between information and energy sensitivity at an IoT device

challenges the implementation of WPCN. While traditional ID circuits can operate with
an input power usually greater than −60 dBm, state-of-the-art rectennas requires at least
−10 dBm, thus making the range for WET and WIT quite different. Hence, a HAP-
enabled WPCN raises the so-called doubly-near-far problem, where the most distant
sensors harvest less energy but require more energy for uplink transmissions. For instance,
S3 is most likely to empty first its battery compared with S4 which is located nearest
to the HAP in Figure 4b. This unfair condition questions the combination of WET and
WIT in a single AP.
Nevertheless, the use of an unmanned aerial vehicle (UAV) as a HAP in Figure 4c

can eliminate the doubly-near-far problem. UAVs are attractive candidates in WPCN
as they can act as a flying BS in places without telecommunication infrastructure or
where is too risky for human intervention. The 3D mobility of the UAVs also helps to
avoid obstacles, improves WET efficiency, and reduces the installation/operational costs
in large areas. Typical applications range from smart agriculture [63], water monitoring,
smart cities, etc. Despite the flexibility of a UAV-based HAP, yet there are challenges
associated with 3D optimal trajectory planning, energy-efficient UAVs’ designs, strong
air-to-ground interference due to the high-probability LoS channels, and the need for
lightweight and compact communication hardware design [64].
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Dynamic allocation of time-frequency resources for WET/WIT rounds can help
to mitigate the doubly-near-far problem. Based on the CSI, battery state, and
communication demands, the network can adaptively schedule more time slots for
WET/WIT or allocate the best frequency channels for WET to serve the far-away
devices. However, in scenarios with high mobility, where the channel conditions vary
rapidly with time, dynamic resource allocation can be very challenging. On the other
hand, in the spatial domain, the PBs and BSs can prioritize some devices by performing
energy and information beamforming. Besides, multi-antenna technology allows the BSs
to decode packets that arrive simultaneously from the sensors, which boosts the network
throughput over multiple time-frequency blocks.

2.2.1 Cooperative WPCNs

Cooperation also alleviates the degradation caused by the doubly-near-far problem. The
IoT sensors closer to the HAP can relay the information of the far-away sensors, in
addition to broadcast to them part of its harvested energy [65]. A typical cooperative
strategy includes three phases: in the first time slot, the HAP performs WET to power
the network; during the second time slot, the far-away sensors transmit its data to
the relay sensor; and finally, the relay forwards all the information to the HAP. The
relay sensor can either amplify-and-forward (AF) the incoming packets or decode-and-
forward (DF) them to the HAP. While AF is simpler and faster, the DF protocol invests
time and computational resources in decoding the incoming information, while it jointly
encodes it with the relay’s data to reduce the time-on-air. An interesting scenario
consisting of a relay-assisted WPCN that operates in full-duplex mode is studied in
[66]. The benefits of a full-duplex-enabled relay are two-fold: i) it ensures concurrent
WIT and EH at the relay; and ii) it enables an energy-efficient solution called self-energy
recycling since the relay also harvests energy from self-transmissions in the WIT rounds.
Significant throughput improvements are attainable compared to the conventional time-
switching based relay strategy. In [67], the authors used geodesic geometry to design a
joint downlink-uplink beamforming strategy in a MIMO relay-assisted network. They
developed an uplink/downlink protocol for the MIMO relay channel that consists in
four stages: i) first, an AP sends data to the relay; ii) during the second period, the
relay forward the data to the end-user, and simultaneously performs EH and self-energy
recycling; iii) in the third slot, the end-user uploads data to the relay; and finally iv)
the relay forwards the end-user data to the AP while performing EH and self-energy
recycling from it. Self-energy recycling potentially reduces the energy drawn from the
power grid to the BSs. In [68], the authors maximized the energy efficiency at the BS,
defined as the ratio of the throughput and the energy consumption from the power grid,
that serves one downlink and one uplink single-antenna device. They demonstrated the
benefit of self-energy recycling vanishes for high uplink traffic since the BS must turn on
the self-interference cancellation circuit most of the time.
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2.2.2 Power control protocols in WPCNs

At this point, the reader may be wondering how WPCNs schedule WET/WIT rounds.
To begin with, a harvest-then-transmit protocol (HTT) allows wireless devices to first
harvest sufficient energy before initiating information transmissions [69]. It assumes
no energy accumulation between transmission rounds; hence, devices can perform WIT
exhausting all the power available in their batteries or supercapacitors. In multi-user
WPCNs, the protocol allocates WIT timeslots for each user according to the target data
rate. The HTT protocol’s schedule for WIT/WET has an impact in the trade-off between
the amount of harvestable energy and the achievable data rate, which defines the rate-
energy region. On one hand, if the WET phase is too short (or the channel behaves poorly
during WET), the transmit power decreases affecting the receive SNR, and thus the
achievable rate. On the other hand, if the network schedules short periods for WIT, the
transmission time decreases, which also affects the rate. The fixed threshold transmission
(FTT) protocol proposed in [70] allows the sensors to transmit their data as long as the
required power is below a predefined threshold, otherwise, they save the energy for future
transmissions. However, the authors of [70] assumed large block lengths and battery
capacity. In an attempt to fill this gap, the authors of [71] proposed alternative strategies
namely finite block-FTT (FB-FTT) and finite blocklength fixed threshold uninterrupted
transmission (FB-FTUT). In the former, the sensors target an error probability and only
transmit if the energy available in the battery is sufficient, otherwise they save it for
the next round. On the other hand, the FB-FTUT protocol allows transmitting with
maximum power when it is not possible to achieve the target probability of error. Both
strategies outperform the benchmark scenario using the HTT protocol, which highlights
the significance of energy accumulation between transmission rounds.

2.2.3 Ambient EH-assisted WPCNs

EH from ambient sources can be a fundamental component in WPCN. Indeed, the
IoT sensors can harvest energy from renewable energy sources and RF transmitters, in
addition to the pre-scheduled downlink WET rounds. In [45], the authors determined an
activation rule for WET to maximize the weighted sum-rate of the network. Based on the
battery state at the beginning of the transmission block, the hardware specifications of the
sensors and the CSI, the HAP estimates if the sensor’s battery suffices for successful WIT.
Moreover, numerical experiments show that as the distance from the HAP increases, the
nodes rely more upon the ambient sources whereas WET is no longer needed. This
approach not only improves the throughput and reliability of the WPCN but also saves
part of the energy budget at the HAP. This is a desirable outcome in 5G and beyond
wireless networks, where the BSs (and probably the HAP/PB) support massive MIMO
and convey more traffic than 4G cellular networks. Currently, the telecommunication
sector stands for approximately 7% of the total global electricity; but, by 2030 this
contribution will represent a 51% with a carbon footprint of 23% provided the network
densification [72]. For that reason, EH at the BSs will alleviate the carbon emission since
BSs account for most of the energy consumption of the wireless networks. As an example,
EH at a HAP has been considered in [73], where the authors jointly optimized WET/WIT
to maximize the network sum-rate considering the energy arrival rate. Different from
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IoT sensors, BSs are bigger and more complex; hence, they could integrate bigger solar
panels or eolic turbines, which increases the harvested energy. Meanwhile, PBs/HAPs
can properly control the power and/or use beamforming to wirelessly power the sensors
that are harvesting insufficient renewable energy.

2.3 Simultaneous wireless information and power transfer

Within WET-enabled networks, SWIPT opens up new opportunities as it targets WIT
and WET simultaneously using the same channel resources. The main challenge in
SWIPT is given by the different nature of WET/WIT. While high to moderate SNR
values suffices for ID, the energy receiver, on the other hand, requires significant
incident power. SWIPT implementations expand through different domains such as
time, power, antenna, and space as shown in Figure 5 [74], [75]. The time switching (TS)
technique divides the time for WET and WIT (Figure 5a). In this way, the transmitter
could perform separated energy and information beamforming (or other transmission
or resource allocation strategies) at each corresponding time. Although TS receiver
implementations are simple they require accurate time synchronization. The parameter
α establishes how information and energy are scheduled; but, depending on the battery
state of the IoT sensor, the system could dynamically adjust energy/information rounds
to optimize the performance. As Figure 5b shows, the power splitting (PS) architecture
divides the power of the received signal between EH and ID. Different from TS, PS
strictly does achieve SWIPT, at the cost of the high complexity of the PS circuit, since
the received signal is used for both ID and EH. Hence, PS is suitable for time-critical
applications with information/energy or delay constraints and performs close to the
information theoretical optimum. By varying the splitting ratio ρ, the system achieves
different points in the energy-rate region. A more general model, the so-called dynamic
power splitting (DPS), is described in [76]. Here, the power splitting ratio changes over
time according to the CSI, and the ID circuit alternates between on-off periods to save
battery. The reader can notice that TS and PS are special cases of this model. If the
power splitting ratio takes on 0 or 1 within the transmission interval it operates in TS
mode. In PS mode, the ID remains on and the power splitting ratio is fixed over time.
Finally, in on-off mode, the first symbols are dedicated to EH, and for the remaining
time, the circuit splits the power between ID and EH. On the other hand, the antenna
switching (AS) architecture performs SWIPT in the antenna domain by grouping the
receive antennas for ID and EH (Figure 5c). For a particular channel realization, the
system computes the optimum antenna assignment for each receiver. The main issue
with AS is that the computational complexity increases exponentially with the number
of antennas. The authors in [77] proposed a polynomial-time complexity algorithm by
transforming a single-input multiple-output (SIMO) channel into an equivalent single-
input single-output (SISO) with a single virtual antenna. Numerical results in this work
show that the sub-optimal strategy approaches the optimum SIMO PS results for a large
number of antennas. In [78], the authors proposed a low-complexity AS strategy for
a MIMO relay channel using generalized selection combining circuits at the input of
the ID and the energy harvester. The best antenna channels are assigned dynamically
according to the QoS requirements and the fading state. Finally, SWIPT can also exploit
the degrees of freedom of the MIMO channel in the spatial domain as Figure 5d depicts.
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Figure 5. SWIPT receiver architectures examples: a) time switching; b) power splitting;
c) antenna switching; d) space switching; e) integrated receiver.

Indeed, the singular value decomposition shows that the MIMO channel matrix contains
independent streams or eigenchannels that can carry either information or energy. The
optimal eigenchannel assignment is a complex combinatorial problem, and the authors
in [79] have addressed this problem under limited CSI. They proposed a polynomial-time
complexity algorithm that minimizes the sum transmit power while meeting energy and
ID constraints.
So far, we have presented architectures with separated energy and ID circuits at

the IoT receivers. However, the traditional RF chain of the ID circuits consumes a
significant portion of the energy budget to perform baseband conversion, and decoding
the information directly from the energy-carrying signal is yet challenging. This is why
the authors in [76] proposed a novel receiver architecture that integrates both ID and
EH substituting the conventional baseband converter with the rectifier of the EH circuit
(Figure 5e). The advantages of this architecture are three-fold:

i) reduces the net energy consumption (nearly zero) since eliminates most of the active
elements;

ii) allows continuous WIT without degrading the WET efficiency;
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iii) delivers high SNR signal at the input of the ID at moderate distances.

Moreover, the authors proposed a new energy modulation scheme where the information
signal modulates the amplitude of the energy-carrying signal. Numerical results
evidence that this proposal achieves better energy-rate performance compared to the
separated architecture within moderate distances. Beyond a certain point, the separated
architecture with DPS outperforms such implementation.
In general, accurate CSI at the transmitter (CSIT) helps to improve the achievable

rate-energy performance at the receiver for both DPS and TS schemes. Moreover, as
compared to TS, DPS achieves substantially improved rate-energy trade-offs towards the
performance upper bound. The authors in [77] concluded that:

i) when CSIT is available and channel condition is poor, the optimal strategy is
to terminate the transmission and save energy in both receivers. Meanwhile, in
moderate fading states, the transmitter performs water filling and the IoT sensors
allocate all the received power for ID, i.e., α = 0 for TS and ρ(t) = 0 for DPS.
Finally, when the channel is in a good state, the optimal strategy is to transmit
with maximum power and: i) dedicate the receive power for the EH circuit in the
TS scheme (α = 1), or ii) allocate constant amounts of power for both ID and EH
in the DPS scheme.

ii) without CSI and in poor fading conditions, the optimal strategy at both receiver
schemes, is to allocate all the resources for ID. Meanwhile, when the channel is in a
good state, the TS strategy allocates all the received power for ID while DPS splits
the receive power for both ID and EH using a constant PS ratio.

Although interference is a well-known adversary for traditional wireless
communications, it can be used wisely to boost the EH in energy receivers [80].
Indeed, the energy receiver cannot distinguish from the information-carrying signal and
the actual interference, which opens up the doors for opportunistic EH in spectrum
sharing scenarios. A simple rule is stated in [81]: activate the ID in high signal-
to-interference-plus-noise ratio (SINR) regime and a weak received signal, otherwise
perform EH. Intentional interference/noise can be also beneficial for EH. For instance,
one strategy at the physical layer is to add artificial noise, known by the authorized
user, to the actual signal, to make difficult the job of the eavesdropper. This strategy
not only improves the communication secrecy but also the artificial noise contributes to
the EH efficiency.

2.4 Health concerns about WET

The use of massive MIMO to narrow the beams, and smaller cells to bring connectivity
close to the end-users in 5G and beyond cellular networks, raise concerns about the
possible impact of electromagnetic radiation fields (EMF) levels on the human health,
especially above 6 GHz where the radiation absorption increases. These concerns extend
to WET-enabled technologies, as it also implies the transmission of RF signals. In order
to get some insights, we discuss about fundamentals quantities to measure the intensity
and effect of the EMF, as the specific absorption rate (SAR) and plane-wave equivalent
power density (PD). While PD is the power flux density of a plane wave, SAR measures
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the energy absorbed per body mass when exposed to EMF. A study in [82] analyzes
the maximum possible exposure that causes downlink 5G beamforming and compares
it with previous cellular technologies. The authors highlighted the effectiveness of SAR
when describing the impact of wireless communications on humans since it describes
more accurately the amount of absorbed energy than PD. Finally, they also showed that
SAR in 5G networks can exceed the guidelines provided by the Federal Communications
Commission or the International Commission (FCC) (near-field SAR up to 1.6 W/kg)
on International Commission on NonIonizing Radiation Protection (ICNIRP) (near-field
SAR up to 2 W/kg) when human users are located close to the BSs. In [83], extensive
simulations using a layered model of the human skin show a correlation between PD
and the peak temperature elevation in tissue. Taking into account such concerns, the
authors in [84] proposed a protocol for associating the end-users with the BS such that the
latter complies with the PD restriction of maximum 10 W/m2 (established by the FCC
and the ICNIRP). Besides, they studied the effectiveness of the aforementioned metrics
when describing the effect of the EMF at high frequencies (> 28 GHz) on human health,
where highly directional beams are more usual since WET faces a severe attenuation and
penetration loss due to the high frequency. In this direction, the authors in [3] discussed
the use of a DAS, together with real-time human presence detection to avoid steering
energy towards the human body. Despite all these facts, far more evidence is needed to
ensure the potential WET health impact under real-life conditions [85]-[86].

2.5 Optimization deployment of energy and information transmitters

The development of algorithms for optimizing the deployment of energy and information
transmitters have taken the attention of the research community as they constitute
potential enablers towards meeting stringent QoS requirements. For example, the authors
in [87] minimized the cost of deploying PBs with directional antennas to guarantee a
minimum incident power at the sensors. They proposed an algorithm for placing the
PBs assuming that each candidate position has a certain cost associated to installation,
maintenance, and energy supply from the power grid. Similarly, in [87] the authors
proposed algorithms for minimizing the placing cost of either separated PBs and BSs or
HAPs such that the sensors’ battery level always exceeds a certain value. Such algorithms
divide the network into non-overlapping clusters relying on the CSI and the sensors’
positions; hence, under lack of this information, the solutions could be not optimal.
In [88], the authors considered directional antennas to optimize the placement of PBs.
Therein, they maximized the overall average harvested energy using a piecewise linear
EH model. Authors in [89] proposed a method for placing directional PBs to power a
sensor network with arbitrary obstacles. They maximized the weighted sum of harvested
energy considering that all devices have different hardware properties. Field experiments
with TX91501 wireless power transmitters and rechargeable sensor nodes equipped with
P2110 energy receiver (both from Powercast1) showed the feasibility of the proposal. A
Daubechies wavelet-based algorithm is proposed in [90] to minimize the number of PBs
that guarantees full coverage. Starting from random positions, the algorithm first places
the chargers using Daubechies wavelet, then it moves the redundant chargers to serve the
uncovered sensors. In [91], the authors proposed a framework to minimize the number of

1For more information about Powercast devices visit https://www.powercastco.com/.
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PBs such that the network meets an area spectrum efficiency requirement, defined as the
sum rate per unit bandwidth per unit area, and a minimum harvested energy per sensors.
The sensors perform device-to-device information transmissions using millimeter waves
(mmWave) channels. The authors in [92] optimized the deployment of directional PBs
with limited mobility to maximize the network-wide harvested energy. For powering the
network, the algorithm moves and rotates each PBs within a circle during the charging
time according to the network conditions. They conducted field experiments to test the
proposal performance against benchmark strategies. In [93], the authors proposed an
algorithm to maximize the weighted sum harvested energy by scheduling the charging
time and the PBs’ orientations. The proposed framework computes online the optimum
charging strategy assuming that each PB can rotate while remaining in a fixed position.
In [94], a non-uniform PB deployment is proposed to charge the sensors in a WPCN
served by a HAP. To tackle the doubly-near-far problem, the authors proposed that PBs
should assist the far away sensors unreachable by the HAP. Therein, they minimized the
total energy consumption subject to a coverage probability threshold and compare it with
the case where a BS is used instead of a HAP. In [95], the authors considered the optimal
placement of sensors and PBs using the electric field intensity of the WET wave. This
framework describes WET technologies from the perspective of constructive/destructive
interference of the electric field intensity vectors which seems more accurate for some
scenarios. Taking this into consideration, authors of [96] addressed the problem of
adjusting the phase shift at each antenna to maximize the overall received power at
selected points of the network.
The concerns about the impact of high EMF levels in human health have become part

of the strategies for implementing WET techniques. For example, in [97] the authors
considered a PB-assisted network that charges wearable devices of mobile users. They
proposed a min-max transmission control strategy to ensure safe levels of EMF in the
whole network. Similarly, the authors in [98] proposed a framework for optimizing the
position and height of a DAS, where each antenna is connected via underground lines
to a PB in order to serve a circular area. The authors maximized the average end-to-
end efficiency assuming that CSI is unavailable at the PB and constraining the transmit
power for safety reasons. The simulations that were carried out showed that the DAS
outperforms the co-located antenna strategy in the considered system model. Similarly,
in [99] is designed a charge scheduling algorithm that maximizes the overall average
harvested energy in an IoT network subject to a probabilistic EMF constraint.
Most of the aforementioned works rely on the knowledge of CSI at the PBs. However,

accurate CSI acquisition is costly and its benefits diminish as the number of sensors
increases as evidenced by the authors of [57] for a setup where a multi-antenna PB
serves a massive sensor deployment. They studied the statistics of the harvested energy
under sensitivity and saturation phenomena for CSI-based/CSI-free strategies. Similarly,
the performance of CSI-free strategies considering the phase shift among the antenna
elements is investigated in [100], and authors compared it with the assumption of
independent signals transmitted by each antenna, and the strategy where each transmit
antenna owns a time slot for WET (the so-called switching antennas). They concluded
that:

i) sensors that operate near their sensitivity benefit more from the switching antenna
strategies, whereas the ones that operate near to the saturation benefit more from
all antennas transmitting independent signals;
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ii) when all antennas transmit the same signal the optimal strategy is to shift the
signal phase by π radians over consecutive antennas;

iii) channel correlation under poor LoS conditions is beneficial under the all antennas
transmitting the same signal strategy.

Moreover, in [101] authors studied a WPCN served by a HAP that has dedicated sets of
antennas for WET and WIT. Therein, they found that the close optimal beamforming
strategy is maximum ratio transmission when the incident RF power at the worst sensor is
considerably poor compared with other devices. Numerical experiments showed that the
benefits of CSI-based schemes vanish rapidly as the energy consumption for estimating
the CSI increases. To overcome the cost of relying on instantaneous CSI, the authors in
[101] proposed a low-complexity energy beamforming strategy that utilizes only the first-
order statistics of the channel. At each iteration, the proposed algorithm solves a system
of linear equations whose complexity is independent of the number of antennas. This low-
complexity strategy performs close to the full CSI-based ideal scheme under moderate-to-
high LoS conditions. Considering that CSI is only available at the receivers, the authors
in [102] designed a SWIPT novel strategy using the so-called random beamforming which
generates artificial channel fading. According to the channel state, each receiver performs
opportunistic ID or EH. The authors showed that even when a single beam is used, the
low-complexity algorithm becomes asymptotically optimum in the high incident power
regime.
In an attempt to overcome the necessity for accurate CSI, the authors in [103] optimized

the position and speed of a mobile PB without knowing the sensors’ positions. They
assumed that a fence protects the network and the PB can just move in the contour
of the service area. The proposed algorithm minimizes the overall charging time while
improving the instantaneous minimum incident power, which changes as the PB moves.
In contrast to the aforementioned works, herein, we focus on the optimal deployment

of PBs for powering a massive IoT network, in order to satisfy an energy outage QoS
requirement. We assume that instantaneous CSI estimation is not practical due to the
massive number of sensors, and sensors’ positions are unknown at the PBs. Therefore, we
optimize the PBs’ deployment for maximizing the minimum average RF energy available
in the service area, which guarantees for each sensor to most likely meet its corresponding
energy outage requirement. Our proposed algorithm is independent of both the hardware
heterogeneity and the mobility of the sensors.
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3 PBS DEPLOYMENT FOR MASSIVE WET

In this chapter, we study the optimal PBs deployment problem for wirelessly charging a
massive IoT network. We discuss several techniques for finding the optimal PBs positions,
and finally propose an algorithm for this purpose.

3.1 System model

Consider the sensor network in Figure 6 where a set B = {PBb|b = 1, 2, . . . , |B|} of
PBs wirelessly power a massive deployment of IoT sensors denoted by the set S =
{Ss|s = 1, 2, . . . , |S|}, where |B| and |S| account for the size of each set respectively. The
sensor network lies within a circumference of radius R and each PB transmits at power
level P using an omnidirectional antenna. We also assumed quasi-static channels with
independent and identically distributed (i.i.d) Rician fading with factor κ.
We denote the channel coefficient of the link PBb → Ss as hs,b ∈ C, and hs,b =

α + jβ with independent real and imaginary parts α, β ∼ N (
√

κ
2(1+κ) ,

1
2(1+κ)). There is

no knowledge about sensors’ positions, and PBs are not able to estimate the CSI due to
the large number of them. Finally, we denote the energy-carrying signal coming from
the PBb as xb, and consider that independent signals are transmitted from different PBs.
Then, the incident RF power at the sth sensor is

ξRF
s = Ex

[ |B|∑
b=1

%s,bhs,bxbx
∗
bh
∗
s,b

]
,

(a)=
|B|∑
b=1

%s,bEx[|hs,bxb|2],

(b)=
|B|∑
b=1

%s,b|hs,b|2Ex[|xb|2],

(c)= P
|B|∑
b=1

%s,b|hs,b|2, (4)

where %s,b = Kd−γs,b comprises the path loss, which depends on the distance ds,b of the
link PBb → Ss, path loss exponent γ, and K, which accounts for other factors as
the carrier frequency and antenna gain [104]. Notice that the statistical independence
between the energy carrying-signals {xb} together with the definition of absolute value
for complex numbers allow us to take the step (a). Meanwhile, (b) follows from the fact
that the expectation operator only applies to the variables {xb}. Observe that in step
(c), E[|xb|2] = P , ∀b ∈ B, where P is normalized in the time domain which allows us to
indistinctly use the terms energy and power for referring the same quantity. Finally, we
consider normalized channel power gain, e.g., Eh[|hs,b|2] = 1.
For the case of a single PB serving the network, the incident RF power at the sth

sensor is a scaled non-central chi-squared random variable with non-centrality parameter
2κ and 2 degrees of freedom, i.e.,

ξRF
s ∼ %s,b

2(1 + κ)χ
2(2, 2κ). (5)
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Figure 6. The system model comprises a set of PBs, each equipped with an
omnidirectional antenna, deployed to charge wirelessly an IoT sensor network [105].

Hence, when the network comprises |B| PBs, (5) extends to

ξRF
s ∼

|B|∑
b=1

%s,b
2(1 + κ)χ

2(2, 2κ), (6)

which is a linear combination of non-central chi-squared random variables. Herein, (6)
follows a generalized chi-square distribution, whose probability density function is often
computed by numerical algorithms due to its analytical intractability [106].

3.2 Problem formulation

Consider that the PBs charge a massive sensor deployment within a circular service area.
Herein, we aim to minimize the number of PBs that need to be deployed in order to
satisfy an energy outage probability constraint with threshold ζ. Therefore, the ultimate
incident RF energy ξRFs must be above the sensors’ sensitivity ξ0 with probability 1− ζ,
∀s ∈ S. The optimization problem can be formulated as follows

P1 : minimize |B| (7a)
subject to P(ξRF

s ≤ ξ0) ≤ ζ, ∀s ∈ S, (7b)

P ≤ PT
|B|

. (7c)

The reader can notice that P1 is a mixed-integer programming problem since the
objective function |B| ∈ N. In general, the algorithms for solving those problems take
non-deterministic polynomial time due to its combinatorial nature [107]. Besides, the
constraint (7b) hinders the computation of the outage probability, hence we utilize Monte
Carlo simulations when evaluating the distribution of ξRF

s . Finally, the constraint (7c)
refers to the per-PB maximum transmit power given the maximum power budget PT .
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Figure 7. IoT sensor deployments for R = 100 m: i) |S| = 50 (left); ii) |S| = 100 (center);
iii) |S| = 150 (right).

3.3 On the optimal PBs’ positions

For solving the optimization problem P1 we must count on the optimal positions of
PBs given certain channel conditions. Thus, let us fix |B| to first find the optimal PBs
positions. Without loss of generality, we discretize the circular region where sensors
are massively located, hence, mimicking its deployment. As Figure 7 depicts, we create
evenly spaced circumferences with a discrete number of points proportional to its radius
for mimicking a uniform-like sensor deployment.
The reader can notice that as we increase |S|, the points’ deployment resembles more

the continuous circular area. Let us,nb ∈ R2×1 denote coordinate vectors for the locations
of Ss and PBb, respectively. We can state the average RF energy available at the sth

sensor, as a function of the distance to each PB as

Eh[ξRF
s ] = PK

|B|∑
b=1

d−γs,b ,

Eh[ξRF
s ] = PK

|B|∑
b=1
‖us − nb‖−γ2 . (8)

Notice that, in order to meet the system constraints, it is sufficient that the sensor with
the minimum incident RF power meets the energy outage requirement. Hence, we can
formulate the optimization problem for solving the PBs as

P2 : arg max
{nb}

min
s

Eh[ξRF
s ], ∀s ∈ S, (9a)

subject to ‖nb‖2 −R ≤ 0, ∀b ∈ B, (9b)

which maximizes the average received energy at the worst sensor through the optimal
deployment of PBs within the coverage area.

3.3.1 Equally-far-from-Center approach (EC)

Considering the radial symmetry of the service area, we first consider a strategy that
deploys the PBs equally-far-from the circle center at a distance ‖nb‖2 = r ≤ R, ∀b ∈ B,
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Figure 8. Exemplary deployment of EC for |B| = 3 [105].

while the angle θ determined by any two adjacent PBs and vertex at the circle center
must obey

θ = arccos nb · nb′
‖nb‖2 · ‖nb′‖2

= 2π/|B|, ∀b, b′ ∈ B, b 6= b′. (10)

For this deployment, the worst position in terms of average RF incident power is either
at the circumference of the circle or at the circle center, which can be shown using only
a small set of PBs and then extend the result for more PBs by symmetry. For the case
of |B| = 3 as depicted in Figure 8, the average incident power at the sth sensor on the
region’s edge using polar coordinates is

Eh[ξRF
s ] = PK

|B|∑
b=1

[
r2+R2−2rR cos

(
θ(b−1)−ϕ

)]− γ2
, (11)

where ϕ is the angle of the sensor located on the edge. The critical points of (11) are the
values of ϕ within the function domain that satisfy ∂Eh[ξRFs ]

∂ϕ
= 0 or where the derivative

doesn’t exist. Taking derivatives in (11) gives

∂Eh[ξRFs ]
∂ϕ

= PK
|B|∑
b=1

γrR sin (θ(b− 1)− ϕ)[
r2+R2−2rR cos

(
θ(b−1)−ϕ

)] γ2 . (12)

For the sake of simplicity, let us neglect the contribution of PB3 which is reasonable
considering that the signals {xb} are independent and the superposition principle holds.
Hence, we obtain

−
[
r2 +R2 − 2rR cos (θ − ϕ)

] γ
2 +1

sinϕ+
[
r2 +R2 − 2rR cosϕ

] γ
2 +1

sin (θ − ϕ)[
r2 +R2 − 2rR cos (θ − ϕ)

] γ
2 +1[

r2 +R2 − 2rR cosϕ
] γ

2 +1 = 0,

(13)
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Figure 9. Average incident RF power at the edge vs ϕ for |B| ∈ {3, 4, 5, 6} [105].

which has solution whenever the roots of the numerator exist within the domain of the
expression. After reorganizing terms in the numerator we obtain

[
r2 +R2 − 2rR cos (θ − ϕ)
r2 +R2 − 2rR cosϕ

]− γ2−1
= sinϕ

sin
(
θ + ϕ

) , (14)

which has a trivial solution at ϕ1,2 = {θ/2, θ/2 + π} within [0, 2π] when
[
r2 +R2 − 2rR cos (θ − ϕ)
r2 +R2 − 2rR cosϕ

]
= sinϕ

sin
(
θ + ϕ

) = 1. (15)

These solutions correspond to the most distant sensors, equally-far each, from two
adjacent PBs. Besides, since Eh[ξRFs ] is a decreasing function of the distance with local
maxima at (R, 0) and (R, θ) on the circle edge, the solutions {(R,ϕ1), (R,ϕ2)} correspond
to local minima. Once we consider the contribution of PB3, the point (R,ϕ2) receives
maximum power possible in the edge, provided it is the closest sensor to PB3, while
(R,ϕ1) remains as a minimum. In the general case |B| ≥ 3, for |B| odd, (R,ϕ2) is a
local maximum provided the contribution of the PB located at (r, θ/2 + π), otherwise is
local minimum with the same average received power as (R,ϕ1). Figure 9 depicts the
alternate pattern of equally-spaced |B| local minima and |B| local maxima at the circle
edge. Therefore, we adopt (R,ϕ1) for finding the value of r that maximizes the minimum
average receive power. Then, let us plug this result into (11) to get the optimum position
r by solving

− 2PK(2r −R)
(r2 − rR +R2)−γ/2−1 −

PK

(r +R)−γ−1 = 0. (16)

The second fractional term in (16) corresponds to the contribution of PB3, and can
be neglected as the path loss exponent increases, which gives a nearly optimal r ≈ R

2 .
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Figure 10. Average incident RF power at both the edge (R,ϕ1) and the center vs |B| for
γ ∈ {3, 5}.

Following the same procedure we can arrive to a general analytical approximation r ≈
R cos θ

2 , which suggests that for the case of |B| ∈ {1, 2}, the placement should be at
the center, whereas for |B| = 4 the placement is r ≈ R

√
2

2 roughly independent of the
propagation conditions. It also guarantees that the minimum contribution will be at the
circle’s edge rather than at the center. For the general case |B| ≥ 5, the position sensor
with the minimum average received power depends on the path loss coefficient %s,b. For
example, Figure 10 depicts the average received power at both the circle center (0, 0) and
(R,ϕ1). Notice that for γ = 5 the sensor at (0, 0) receives the minimum power possible
on average. Therefore, this approach doesn’t guarantee the best result for an arbitrary
B, and solving for the case when the optimum kind of deployment is not known a priori
is mathematically intractable. Our proposal is to solve the EC approach algorithmically
for two topologies: i) as in Figure 8 here called EC; ii) with one PB, the last one, located
at the center, thus ‖n|B|‖2= 0, here called EC with one centered PB. Figure 10 depicts
the latter topology where ‖nb‖2= r, ∀b ∈ B, b 6= |B|, and the angular separation between
them is θ = 2π/(|B| − 1). According to Figure 11, the average received power for the
node with s∗ = arg min

s
Eh[ξRF

s ] is

Eh[ξRF
s∗ ] = min

(
Eh[ξRF

s′ ], Eh[ξRF
s ]

)
, (17)

where Eh[ξRF
s ] is the contribution at the worst sensor on the edge with ϕ = ϕ1, thus given

by (11), and Eh[ξRF
s′ ] = |B|PKr−γ is the contribution at the center. Meanwhile, for the

deployment in Figure 11 we have that

Eh[ξRF
s∗ ] = min

(
Eh[ξRF

s′′ ], Eh[ξRF
s ]

)
, (18)

where

Eh[ξRF
s′′ ] = PK

x−γ +
|B|−1∑
b=1

[
x2 + r2 − 2xr cos

(
θ
(
b− 3

2

))]− γ2  , (19)
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Figure 11. Example of an EC with one centered PB for |B| = 4 [105].

represents the contribution in a sensor equidistant to the center and two adjacent PBs
at a distance x = r/(2 cos θ

2) and ϕ = ϕ1. Additionally,

Eh[ξRF
s ] = PK

R−γ +
|B|−1∑
b=1

[
R2 + r2 − 2rR cos

(
θ
(
b− 3

2

))]− γ2  , (20)

is the average power received at the worst sensor on the edge with ϕ = ϕ1. Finally,
the optimal positions correspond to the constellation that maximizes Eh[ξRF

s∗ ] against the
minimum average contribution when the network has one PB radiating from the circle
center, with total power PT = |B|P , i.e.

r∗ = arg max
r

(
Eh[ξRF

s∗ ], |B|PKR−γ
)
. (21)

Herein, Eh[ξRFs∗ ] is defined as a parametric function using both (17) and (18), thus
determined by the chosen topology. The procedure for efficiently determining r∗ is
detailed in the Optimal DEployment of POwer BEaconS (Ode-PoBes) algorithm1. Notice
that ∆r denotes the step size of the iterative search.
In general the approximation r ≈ R cos θ

2 holds up to |B| = 5 for γ = 3, and |B| = 4
for γ = 5, without an important degradation of the network performance, as Figure 12
depicts. As both |B| and γ increase, the performance gap also increases, because the
analytical approximation favors more the sensors in the circle’s edge at the cost of
degrading the contribution at the center. Moreover, the EC with one centered PB
becomes better than EC without PB at the center as |B| increases, having a prompt
transition when γ = 5.
We now provide a worst-case complexity analysis for the proposed algorithm. First,

for a given ∆r the required number of iterations is b R∆rc+ 1 and the maximum solution
1MatLab scripts with the implementation of Ode-PoBes algorithm are publicly available at https:

//github.com/Osmel-dev/Optimization_of_power_beacons
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Algorithm 1 Ode-PoBes
1: Input: B, γ, R, P,∆r
2: Set ξ∗ = |B|PKR−γ
3: Set r∗ = 0
4: repeat
5: Compute Eh[ξRF

s∗ ] using both (17) and (18)
6: θ∗ ← arg max

θ∈{ 2π
|B| ,

2π
(|B|−1)}

(
Eh[ξRF

s∗ ]
)

7: if ξ∗ < max
(
Eh[ξRF

s∗ ]
)
then

8: ξ∗ ← max
(
Eh[ξRF

s∗ ]
)

9: r∗ ← r
10: end if
11: r ← r + ∆r
12: until r ≥ R

error is ∆r
2 . Notice that the argument Eh[ξRF

s ] determines the computational cost of
(17), and (11) proportionally scales up with |B|. Similarly, each argument in (18) has
a cost proportional to |B|. Then, the most costly step in Ode-PoBes, step 5, requires
O(|B|) operations, which in turn constitutes the computational cost of each iteration of
the Ode-PoBes algorithm.

3.3.2 Interior Point Method approach (IPM)

Interior-point methods provide a framework for solving optimization problems as a
sequence of equality constrained problems. The term interior means that the algorithm
attempts starting at a feasible point and then move along the central path composed
by strictly feasible points [108]. To compute the search step, IPM solves a system of
gradient-based equations which demands that differentiable objective and constraints
functions [109]. However, since (9a) is non-convex and highly non-linear we resort to the
generalized mean approximation as an estimate of the min function [110]:

min
s

Eh[ξRF
s ] ≈

( 1
|S|

|S|∑
s=1

ξks

) 1
k

, (22)

where ξs = Eh[ξRF
s ] is the average incident RF power at the sth sensor. The approximation

improves when k → −∞ but at expense of increasing the computational cost. As
alternatives, gradient-based learning algorithms utilize the softmax, min

s
Eh[ξRF

s ] ≈∑|S|
s=1 ξse

kξs∑|S|
s=1 e

kξs
[111, eq.(7)], and the quasimax, min

s
Eh[ξRF

s ] ≈ 1
k

log
(∑|S|

s=1 e
kξs

)
[111, eq.(8)],

as differentiable approximations. Here k is a real constant that determines whether the
approximation tends to the minimum function (k < 0) or to the maximum one (k > 0).
All these approximations perform alike, but since the gradient of the objective must be
provided to the IPM algorithm, we adopt (22) whose derivative is more tractable.
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Figure 12. Performance comparison between Ode-PoBes and approximate solution vs |B|
for γ ∈ {3, 5}. The shaded region denotes the transition to the EC with one PB centered
solution using Ode-PoBes solutions [105].

To turn (9b) into a set of equality constraints, we introduce a slack variable tb such
that

‖nb‖2 −R + tb = 0, ∀b ∈ B, (23)
where tb ≥ 0, ∀b ∈ B. Finally, we rewrite the objective function in (9a) to include the
inequality constraints of the slack variable

−
( 1
|S|

|S|∑
s=1

ξks

) 1
k

+
B∑
b=1

I[tb] (24)

where I[·] is an indicator function that takes on 0 when tb ≤ 0 and +∞ otherwise,
penalizing the violation of the constraint. However, this choice makes the new objective
function non-differentiable due to the indicator function. Two popular differentiable
approximations of the indicator function are i) the inverse barrier function, I[tb] ≈ − 1

tb

and ii) the logarithmic barrier barrier function, I[tb] ≈ −µ ln (−tb). Herein, we adopt the
logarithmic barrier which is the one that comes with the IPM’s implementation in the
MatLab Global Optimization Toolbox. Finally, we re-cast P2 as an equality constrained
optimization problem

P2.1 : minimize
{nb},{tb}

−
( 1
|S|

|S|∑
s=1

ξks

) 1
k

− µ
|B|∑
b=1

ln(−tb), (25a)

subject to ‖nb‖2 −R + tb = 0, ∀b ∈ B, (25b)
where µ > 0 must be chosen small enough to ensure accuracy of the barrier method.
Next, we must solve a system of equations derived from the Karush-Kuhn-Tucker (KKT)
conditions [109]

∇L({nb}, {tb},λ) = 0, ∀b ∈ B, (26)
‖nb‖2 −R + tb = 0, ∀b ∈ B, (27)
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where L(·) denotes the Lagrangian of P2.1 given by

L({nb}, {tb},λ) = −
( 1
|S|

|S|∑
s=1

ξks

) 1
k

− µ
|B|∑
b=1

ln(−tb) +
|B|∑
b=1

λb
(
‖nb‖2 −R + tb

)
(28)

and each entry of λ = {λb} corresponds to the Lagrange multiplier associated with the
bth equality constraint. The partial derivatives of the Lagrangian in (26) are given by

∂L
∂nb

=
( 1
|S|

|S|∑
s=1

ξks

) 1−k
k 1
|S|

|S|∑
s=1

ξk−1
s

∂ξs
∂nb

+ 2λbnb, (29)

∂L
∂tb

= µ

tb
+ λb, (30)

where
∂ξs
∂nb

= γPK‖us − nb‖−γ−2
2 (us − nb). (31)

Finally, IPM solves the KKT system of equations at each iteration using either
Newton’s method [112], or the conjugate gradient method2 [113] which gives the next
step towards the optimum solution. Besides, the reader must keep in mind that this
method utilizes convex approximations of the objective and the constraint functions.
Figure 13 illustrates the convergence of the IPM vs k for |B| ∈ {3, 9, 15} using

normalized values. That is, we normalize the points of each curve with respect to
max
k

E[ξRFs∗ ] for given γ and |B|.
The reader can notice that the approximation (22) improves steadily as k decreases,

except for the case |B| = 15 in Figure 13b that takes more effort. For the rest of the
simulations we adopt k = −25, since for k = −30 IPM becomes unstable for large values
of the path-loss exponent, therefore compromising the reliability of the solution.
A worst-case complexity analysis for the IPM cannot be presented here. In this

approach, we use the fmincon function of the Global Optimization Toolbox for which
the worst-case complexity analysis has not been formally established. However, we do
acknowledge that derivative-based methods require effort and they must deal with the
existence of the derivative as the algorithm converges towards the solution. In Chapter
4 we include a time complexity plot to compare the IPM’s behaviour to other methods.

3.3.3 Nature-inspired meta-heuristic approaches

Nature-inspired meta-heuristic approaches are stochastic gradient-based algorithms, with
the capacity of dealing with non-convex, non-continuous, and non-smooth optimization
problems. They find inspiration in the laws that describe our environment and distinguish
from four main categories i) evolution-based, motivated by the laws of natural evolution;
ii) physics-based, influenced by physical rules of natural processes; iii) swarm-based,
that mimic the social behaviour of groups of animals; iv) human-based, inspired by the
social behaviour of the human beings [114]. Different from gradient-based deterministic
approaches such as IPMs, nature-inspired meta-heuristic algorithms provide probabilistic
guarantees of finding the optimal solution, which improves as the computational time

2In fact, it only attempts the conjugate gradient if the Newton’s method is not feasible.
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Figure 13. Normalized values of Eh[ξRFs ] vs k for R = 100 m and: i) γ = 3 (top); ii)
γ = 5 (bottom).

grows larger. However, they can achieve approximate or even the optimum solution
in acceptable time when tackling black box problems, extremely ill behave objective
functions or large scale problems, where deterministic methods are prompt to fail (or
take unreasonable time) due to combinatorial nature of these problems [115].
In particular, genetic algorithms (GAs) belong to the class of evolution-based

techniques inspired by Charles Darwin’s theory of natural evolution of living species [116].
Starting from an initial randomly-deployed population, GAs generate new individuals
throughout selection, crossover, and mutation. At each iteration, the algorithm tests
the individuals against the objective function to create the offsprings for the next
population. Each individual represents a candidate solution within the solution space
of the optimization problem. Some of the candidates with the highest objective function
values pass directly to the next generation with the identifier of elite individuals. The
individuals are also selected and combined randomly which guarantees searching the
global optimum with a very low probability of getting trapped in a local optimum. The
crossover fraction parameter determines the portion of the population generated either
by combining or mutating the individuals in the previous generation. For instance, a
crossover fraction of 0.6 means that 60% of the current population came from combining
the parents in the previous generation, whereas 40 % is the result of mutation. In our
particular problem, each individual contains the |B| 2D-coordinates corresponding to a
particular solution. This approach allows us to solve P2 directly without resorting to



41

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-55.3

-55.2

-55.1

-55

-54.9

-54.8

-54.7

-54.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-46

-45.5

-45

-44.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-43.5

-43

-42.5

-42

-41.5

-41

-40.5

Figure 14. Mean of the objective function in P2 using GA with a population size of 300,
γ = 3, and for: i) |B| = 3 (top); ii) |B| = 9 (middle); and iii) |B| = 15 (bottom). Note
that the confidence intervals (± the standard deviation) are also illustrated

an approximation. Figure 14 depicts the optimal objective function values versus the
crossover fraction for different number of PBs.
Notice that for |B| = 3, a crossover fraction of 0.5 maximizes the objective function

on average, whereas for the rest of the cases the appropriate choice is 0.8. Besides, the
deviation in the optimum values for a given crossover fraction becomes more relevant as
|B| increases. Hence, since the optimization results are quite similar for |B| = 3 in the
selected interval, we adopt a crossover fraction of 0.8 for the rest of the simulations.
On the other hand, particle swarm optimization (PSO) is a swarm-based algorithm

that mimics the behaviour of fish schooling and birds flocking [117], [118]. In PSO, a
group of agent particles search for the global solution while moving in a quasi-stochastic
manner inside the problem domain. For instance, consider that for the problem P2 we
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initialize the positions and velocity of a set Q of agent particles. Then, at ith iteration
the position of the bth PB at the q ∈ Q particle is {zq,i,b ∈ R2×1|∀b ∈ B}. Therefore,
each particle’s position comprises a candidate solution in P2. Let us define the objective
function as

fPSO({zq,i,b|∀b ∈ B}) = min
s

E[ξRFs ]− ε
|B|∑
b=1

1
‖zq,i,b‖2 −R

, (32)

where E[ξRFs ] is computed according with (8) but replacing nb for zq,i,b, and the second
term corresponds to the approximation of the indicator function

I
(
‖zq,i,b‖2 −R

)
≈ − 1
‖zq,i,b‖2 −R

, ∀b ∈ B, (33)

whose impact on the problem solution is limited by making ε → 0. Herein, we choose
this approximation since it exhibits better results compared with the logarithmic barrier
function when using PSO. At the iteration i′, the particles update their position and
velocity considering their initial values, local best position pbest(q, i′), and the global
best position gbest(q) [118], where

pbest(q, i′) = arg min
i=1,2,...,i′

fPSO({zq,i,b|∀b ∈ B}), ∀q ∈ Q

gbest(q) = arg min
i=1,2,...,i′
∀q∈Q

fPSO({zq,i,b|∀b ∈ B}),

to find the best of all local solutions until the objective no longer improves. In this case,
we keep the default parameter values of the algorithm since the optimization results don’t
change significantly as we tune them.
Despite the advantages, a rigorous mathematical analysis for metaheuristic algorithms

remains as an open problem and due to its stochastic nature, the complexity may
vary even for the same problem [119], [120]. Moreover, in the majority of nature-
inspired metaheuristic algorithms, the complexity doesn’t necessarily scale with the size
of the optimization problem. Hence, the analysis of convergence and efficiency becomes
challenging. For these reasons, in Chapter 4 we present a time-convergence analysis
concerning the number of PBs in the network, which gives us an idea of how each
algorithm scales with the size of the problem.

3.4 Algorithm for optimal deployment and practical considerations

Once P2 is solved, one needs to minimize the number of deployed PBs that satisfies
the energy outage probability requirement in (7b). Algorithm 2 shows the iterative
procedure for finding the minimum |B|. At each iteration, P2 is solved until the energy
outage condition is guaranteed. Remember that the distribution of ξRF

s obeys (6). In the
next chapter, we present optimal deployment results under different network conditions.
In practice, the performance of the algorithm for finding the PBs’ positions depends on

how well the path loss model fits the actual conditions. For instance, recent measurement
campaigns in wireless sensor networks corroborate the dependence of the path loss
exponent on the environment’s characteristics [121]. Hence, different sub-regions of the
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Algorithm 2 Computation of the minimum |B|
1: Input: γ,R, PT ,∆r, ξ0, ζ
2: Set |B| = 1
3: while P[ξRF

s ≤ ξ0] > ζ do
4: |B| ← |B|+ 1
5: P ← PT

|B|
6: Solve P2
7: end while

network might require different path loss models. Moreover, the inherent properties of
IoT networks (e.g. small antenna heights, low transmission power, and stationary nodes)
limit the applicability of traditional propagation models [122]. Similarly, the proposed
algorithm framework guarantees meeting the energy outage requirement provided the
channel fading distribution is accurately known beforehand.
Therefore, opportunistically selecting appropriate channel models, at both large (path-

loss) and small scale (fading distribution), is essential. Machine learning methods are
potential candidates for such a task, that must also provide confidence when a large set
of measurements is available [123]. The risk of channel modeling/prediction errors must
be taken into account in the optimization framework as well. Finally, we can utilize the
solutions from Ode-PoBes as a good initial guess for any of the metaheuristic algorithms
before treated, which can improve the performance of the final deployment.
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4 NUMERICAL RESULTS

In this chapter, we present optimal PBs deployments that satisfy a certain energy outage
constraint under different channel state conditions. Moreover, we compare the proposed
methods for optimizing the PBs’ positions in terms of minimum average incident RF
power as well as the required computational time. Finally, we provide insights on the
maximum coverage area that can be served by a certain number of PBs and the impact
of having multiple antennas at the PBs. By default, we use the simulation parameters
listed in Table 4.

4.1 On the optimal PBs’ positions

Figure 15 shows the optimal PBs’ positions after solving P2 for different number of PBs
using IPM; while the heat map represents the average power levels along the circular
area.
The reader can notice that the optimal PBs’ positions form concentric circumferences

with more rings as the number of PB increases. This supports our intuition when using
the EC strategies in Ode-PoBes algorithm. Besides, the average power distribution
gets more homogeneous as more PBs are deployed, which means that the dimensions
of the regions with very weak incident power decrease. Moreover, observe from Figure 16
that the average incident power at the worst sensor E[ξRFs∗ ] improves when |B| increases
according to the optimization methods proposed in Chapter 3. Here, as a benchmark, we
also present the case of a centered PB radiating with total power PT , which is equivalent
to place all |B| PBs at the center, each transmitting with power PT

|B| .
For |B| ≥ 3 all optimization methods outperform the benchmark centered PB, while

the performance gap increases as we optimally distribute more PBs. The special case
|B| = 2 is equivalent to place a single PB at the circle center, with twice the transmit
power as evidenced by the optimization output of all the methods. In particular, Ode-
PoBes and IPM stand out over the others in terms of convergence stability towards the
final solution. Notice that for γ = 5 the curve bends at |B| = 7, which means that all
methods agree with the transition to the EC with one PB centered deployment. Herein,
we limit the optimization to 15 PBs due to the poor convergence of GAs compared with

Table 4. Default simulation parameters.

Parameter Value
R 100 m
PT 10 W
ξ0 −22 dBm
K 1
|S| 1000 sensors
γ 3
κ 3
ε 0.2
k −25
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Figure 15. Heat map of the available average power in the circle area for |B| ∈
{1, 3, 5, 9, 13, 15} and PT = 1. The black crosses represent the optimal PBs’ positions.

the IPM approach when the number of PBs increases above 15. In this case, the classical
GAs approach doesn’t converge steadily towards the desired solution as the complexity
of the problem increases. In contrast, PSO offers a more stable outcome compared with
IPM as a reference.
With Ode-PoBes, we obtain topologies that follow the general trend of the ones with

the IPM but with less computational cost. In fact, as Ode-PoBes searches for the
optimum positioning, it doesn’t require the computation of partial derivative or solving
large systems of linear equations. Figure 17 depicts the normalized average convergence
time for all methods with respect to the time required for Ode-PoBes. Notice that
the Ode-PoBes algorithm is superior by four order of magnitude since it reduces the
dimension of the optimization variable. For instance, assume that |B| = 15. Then,
while GAs/PSO deals with individuals/particles of size 15×2, and IPM must find 15 2D
coordinates plus 15 slack variables and 15 Lagrange multipliers, Ode-PoBes just solves
the optimum pair of scalars (r∗, θ∗). However, this fact impacts less the nature-inspired
meta-heuristic algorithms, showing the gain of the stochastic gradient optimization over
the IPM. Indeed, the stochastic gradient method updates all optimization variables by
estimating the gradient over a randomly selected subset of individuals/particles at each
iteration. However, the average time gap decreases as |B| increases, i.e. as the number
of possible constellations increases. Finally, for |B| ≥ 7 the nature-inspired algorithms
approaches exhibit a close performance.

4.2 On the optimal solutions of P1

Let us consider a wireless charging service scenario where each PB takes the power from
an external wired source for charging the IoT sensors. In order to obtain profits, the
service provider chooses to distribute a fixed power budget of PT = 10 W among the
individual PBs according to (7c). Figure 18 depicts the energy outage probability vs |B|,
when solving the problem P2 with IPM and Ode-PoBes algorithms. Hereinafter, IPM
will be our benchmark strategy provided its accuracy over GA and PSO. The monotonic
decrease of the energy outage probability for both approaches proves the effectiveness of
the distributed PBs approach when improving the network reliability.
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Figure 16. Available average power at the worst position for optimal PB placement,
P = 1, and: γ = 3 (top), γ = 5 (bottom) [105].

For this setup, we also present the solutions of P1 in Figure 19 as a function of ζ and
R. Figure 19 (left) depicts a stable increment in the number of PBs needed to meet the
target QoS constraint as the network gets larger; whereas Figure 19 (right) shows that
tight QoS agreements demand the deployment of more PBs. In general, the fluctuations
in the number of PBs indicate that the distance-dependent loss has a dominant impact on
the optimal solutions of P1. Notice that Ode-PoBes outperforms IPM’s solutions when
serving larger areas with tight probabilistic energy outage requirements. For instance,
Ode-PoBes finds an optimal deployment with 4 PBs less than IPM when R = 100 m.
The difference between Ode-PoBes and IPM with respect to the required PBs is

a consequence of the numerical approximations that affect the symmetry of the final
solution. In fact, IPM solves |B| individual positions within the space of possible
constellations, which doesn’t guarantee symmetric layers with respect to the origin.
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Figure 17. Normalized average convergence time vs |B| [105].

Meanwhile, Ode-PoBes finds (r∗, θ∗) that maximizes the E[ξRF
s∗ ] using EC symmetric

constellations. Based of these observations, we conclude that the symmetry of the
deployments determines, over the number of PBs, the ultimate performance of the worst-
positioned IoT sensor.

4.3 On the maximum coverage area

Now, consider the same scenario as in the previous section but let us focus on the
maximum coverage area with respect to E[ξRFs∗ ] using the minimum average incident RF
power obtained with Ode-PoBes. As illustrated in Fig. 20, a the distributed deployment
allows serving larger areas than the centered PB approach, and the performance gap
increases with the number of PBs and the path-loss exponent. Notice that bringing the
PBs closer to the worst-positioned sensors impacts stronger on the average incident RF
power than increasing the power in a centered PB. In fact, ξRF

s is a linear function of
the transmit power P , but depends exponentially on the distance ds,b. Besides, as the
sensitivity ξ0 of the harvesting circuitry increases, not just the coverage area but the gap
among different PBs’ topologies diminish. That is, as we distribute the power budget
among an increasing number of PBs, the received power at reference distance of 1 m
decreases by a factor of |B| with respect to the centered PB approach, and thus the
incident power at the worst position. An interesting result is that our proposal allows
extending the coverage area without increasing the level of RF-EMF in the proximity
of the PBs. For the sake of clarity, we have highlighted some points (|B| ∈ {3, 7, 10})
in Figure 20 (top), so that the readers can check the correspondence with the results in
Figure 20 (bottom), both when ξ0 = −22 dBm.
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Figure 18. Energy outage probability vs |B|, for R ∈ {50, 100} m [105].
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Figure 19. Solutions of P1 using Ode-PoBes and IPM [105]: i) min |B| vs R for ζ ∈
{10−3, 10−5} (left); ii) min |B| network reliability ζ for R ∈ {50, 100} m (right).

4.4 On CSI-free multi-antenna WET

The authors in [57] analyzed the performance of multiple-antenna strategies for powering
a massive number of EH devices using

i) one antenna (OA), in which the PB transmits with full power using a single antenna
out of the whole array to charge the sensors. If the CSI is available, the PB uses
the antenna that maximizes the EH;

ii) all antennas at once (AA), in which the PB transmits with all antennas
simultaneously. If the CSI is available, the optimal strategy is to perform energy
beamforming, otherwise the PB splits equally the power among the antennas;

iii) switching antennas (SA) schemes, in which the PB transmits with full power by
one antenna at the time, in a way that the whole array is utilized within a channel
coherence block;
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Figure 20. Maximum coverage area results [105]: i) Normalized to the maximum coverage
area with a centered PB vs |B| for γ ∈ {3, 5} (top); ii) Coverage area vs ξ0 for |B| ∈
{1, 3, 7, 10} (bottom).

Herein, we only focus on the CSI-free SA scheme given that OA can be seen as an
special case when only a single antenna is used. On the other hand, the performance
claimed for the CSI-free AA in [57] is valid only for equal mean phases along the transmit
antennas, which is difficult to hold in practice. Besides, SA preserves the harvested energy
as in the case of single-antenna PBs (although boosting the energy diversity), while the
variance is a function of the spatial correlation among the antennas.
For this setup, let us consider that each PB is equipped with A antennas. The use of

SA scheme, as Figure 21 depicts, improves the system performance in terms of reducing
the outage probability at the worst sensor as the number of antennas increases. As
an example, we constraint the system to ζ = 10−4, and it can be observed that the
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Figure 21. Energy outage probability versus number of antennas, for |B| ∈ {1, 2, 3, 4}
[105].

number of PBs have a greater impact on the system performance than the number of
antennas. In fact, the outage probability does not improve significantly as the number
of antennas increases when |B| = 1, but once more PBs are distributed in the network,
the performance impact of the number of antennas grows significantly. The reader can
observe that doubling the number of antennas per PB can be roughly equivalent to keep
the same number of antennas per-PB but deploying an additional PB.
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5 CONCLUSIONS

In this thesis, we reviewed the most common WET-enabled networks models, and some
of the techniques that may realize WET as an efficient technology for wirelessly powering
the coming green IoT networks. Besides, we discussed the role of EH from ambient sources
to sustain sensors’ networks. Moreover, we studied the optimal deployment of PBs to
meet a probabilistic energy outage constraint when powering massive IoT network. We
considered scenarios where PBs couldn’t afford CSI acquisition and the sensors’ positions
were unknown. We provided analytical insights on the optimal PBs’ positions by placing
them equally-far-from-center; and further, we proposed a linear-time algorithm for solving
this problem. For comparison, we used an interior-point method based on the logarithmic
barrier function and nature-inspired meta-heuristic algorithms to compute the optimal
PBs’s positions. In the former approach we took advantage of the generalized mean as a
differentiable approximation of objective function, whereas for the others, we solved the
optimization problem directly. Finally, we discussed the practicalities for implementing
the proposed algorithm in different scenarios.
Numerical experiments demonstrated that our algorithm converges faster than the

benchmark methods, and meets the energy outage requirement with a smaller number
of PBs to be deployed. We also showed that optimally distributed PBs can serve wider
areas than the naive centered PB approach using the same total transmit power. Besides,
we demonstrated that the optimal PB deployment depends mostly on the distance-
dependent loss, and more PBs are required as the radius of the area or the energy
outage requirements increase. The comparison among the optimization methods showed
the strong impact of the deployment symmetry on the average incident power at the
worst-positioned sensor. At the end, we presented results using multi-antenna PBs
that exploit a CSI-free WET scheme. We found that although an increasing number
of antennas per PB reduces the probability of energy outage, the number of deployed
PBs impacts stronger the system performance. For instance, considering the same total
power, the performance obtained when doubling the number of antennas at the PBs
can be alternatively attained by properly deploying an additional PB which reduces the
hardware complexity. Our results provide valuable insights for designing practical WET
setups by answering how many PBs are needed, and their corresponding locations, for
powering certain area with a certain average RF power availability or energy outage QoS
constraints.
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