501 research outputs found

    NASA/MSFC FY88 Global Scale Atmospheric Processes Research Program Review

    Get PDF
    Interest in environmental issues and the magnitude of the environmental changes continues. One way to gain more understanding of the atmosphere is to make measurements on a global scale from space. The Earth Observation System is a series of new sensors to measure globally atmospheric parameters. Analysis of satellite data by developing algorithms to interpret the radiance information improves the understanding and also defines requirements for these sensors. One measure of knowledge of the atmosphere lies in the ability to predict its behavior. Use of numerical and experimental models provides a better understanding of these processes. These efforts are described in the context of satellite data analysis and fundamental studies of atmospheric dynamics which examine selected processes important to the global circulation

    Transfer across the air-sea interface

    Full text link
    The efficiency of transfer of gases and particles across the air-sea interface is controlled by several physical, biological and chemical processes in the atmosphere and water which are described here (including waves, large- and small-scale turbulence, bubbles, sea spray, rain and surface films). For a deeper understanding of relevant transport mechanisms, several models have been developed, ranging from conceptual models to numerical models. Most frequently the transfer is described by various functional dependencies of the wind speed, but more detailed descriptions need additional information. The study of gas transfer mechanisms uses a variety of experimental methods ranging from laboratory studies to carbon budgets, mass balance methods, micrometeorological techniques and thermographic techniques. Different methods resolve the transfer at different scales of time and space; this is important to take into account when comparing different results. Air-sea transfer is relevant in a wide range of applications, for example, local and regional fluxes, global models, remote sensing and computations of global inventories. The sensitivity of global models to the description of transfer velocity is limited; it is however likely that the formulations are more important when the resolution increases and other processes in models are improved. For global flux estimates using inventories or remote sensing products the accuracy of the transfer formulation as well as the accuracy of the wind field is crucial

    Numerical Solution of the Radiation Transport Equation at an Air-Water Interface for a Stratified Medium

    Get PDF
    This paper is a continuation of previous work that analytically examined the strength of radiation leaving an air-water interface. The approach here is to numerically integrate the radiation transport equation in order to capture the non-linear features of the problem, and also to include more realistic models for the thermal boundary layer. The radiation intensity of the photons emitted from the interface, relative to that of thermal radiation at the temperature of the interface, is defined here as the signal. This signal was computed for constant surface temperature and constant heat flux boundary conditions. As expected, the numerical computations show that the signal increased as the air-water temperature difference increased. The results are shown to form a hierarchy of signal strengths based on the chosen thermal stratification model. However, for both boundary conditions, the numerical results for a linear temperature profile compared very favorably with the simplified analytical linearized model over the thermal wavebands of 3–5 and 8–14 microns. In addition, the linearized model compared favorably with the most realistic models of thermal stratification

    Sea surface temperature signatures of oceanic internal waves in low winds

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C06014, doi:10.1029/2006JC003947.In aerial surveys conducted during the Tropical Ocean–Global Atmosphere Coupled Ocean-Atmosphere Response Experiment and the low-wind component of the Coupled Boundary Layer Air-Sea Transfer (CBLAST-Low) oceanographic field programs, sea surface temperature (SST) variability at relatively short spatial scales (O(50 m) to O(1 km)) was observed to increase with decreasing wind speed. A unique set of coincident surface and subsurface oceanic temperature measurements from CBLAST-Low is used to investigate the subsurface expression of this spatially organized SST variability, and the SST variability is linked to internal waves. The data are used to test two previously hypothesized mechanisms for SST signatures of oceanic internal waves: a modulation of the cool-skin effect and a modulation of vertical mixing within the diurnal warm layer. Under conditions of weak winds and strong insolation (which favor formation of a diurnal warm layer), the data reveal a link between the spatially periodic SST fluctuations and subsurface temperature and velocity fluctuations associated with oceanic internal waves, suggesting that some mechanism involving the diurnal warm layer is responsible for the observed signal. Internal-wave signals in skin temperature very closely resemble temperature signals measured at a depth of about 20 cm, indicating that the observed internal-wave SST signal is not a result of modulation of the cool-skin effect. Numerical experiments using a one-dimensional upper ocean model support the notion that internal-wave heaving of the warm-layer base can produce alternating bands of relatively warm and cool SST through the combined effects of surface heating and modulation of wind-driven vertical shear.We gratefully acknowledge funding for this research from the Office of Naval Research through the CBLAST Departmental Research Initiative (grants N00014-01-1-0029, N00014-05-10090, N00014-01-1-0081, N00014-04-1-0110, N00014-05-1-0036, N00014-01-1-0080) and the Secretary of the Navy/Chief of Naval Operations Chair (grant N00014-99-1-0090)

    Drift and mixing under the ocean surface : a coherent one-dimensional description with application to unstratified conditions

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): C03016, doi:10.1029/2005JC003004.Waves have many effects on near-surface dynamics: Breaking waves enhance mixing, waves are associated with a Lagrangian mean drift (the Stokes drift), waves act on the mean flow by creating Langmuir circulations and a return flow opposite to the Stokes drift, and, last but not least, waves modify the atmospheric surface roughness. A realistic ocean model is proposed to embrace all these aspects, focusing on near-surface mixing and surface drift associated with the wind and generated waves. The model is based on the generalized Lagrangian mean that separates the momentum into a wave pseudomomentum and a quasi-Eulerian momentum. A wave spectrum with a reasonably high frequency range is used to compute the Stokes drift. A turbulent closure scheme based on a single evolution equation for the turbulent kinetic energy includes the mixing due to breaking wave effects and wave-turbulence interactions. The roughness length of the closure scheme is adjusted using observations of turbulent kinetic energy near the surface. The model is applied to unstratified and horizontally uniform conditions, showing good agreement with observations of strongly mixed quasi-Eulerian currents near the surface when waves are developed. Model results suggest that a strong surface shear persists in the drift current because of the Stokes drift contribution. In the present model the surface drift only reaches 1.5% of the wind speed. It is argued that stratification and the properties of drifting objects may lead to a supplementary drift as large as 1% of the wind speed

    Severe Storms Branch research report (April 1984 April 1985)

    Get PDF
    The Mesoscale Atmospheric Processes Research Program is a program of integrated studies which are to achieve an improved understanding of the basic behavior of the atmosphere through the use of remotely sensed data and space technology. The program consist of four elements: (1) special observations and analysis of mesoscale systems; (20 the development of quanitative algorithms to use remotely sensed observations; (3) the development of new observing systems; and (4) numerical modeling. The Severe Storms Branch objectives are the improvement of the understanding, diagnosis, and prediction of a wide range of atmospheric storms, which includes severe thunderstorms, tornadoes, flash floods, tropical cyclones, and winter snowstorms. The research often shed light upon various aspects of local weather, such as fog, sea breezes, air pollution, showers, and other products of nonsevere cumulus cloud clusters. The part of the program devoted to boundary layer processes, gust front interactions, and soil moisture detection from satellites gives insights into storm growth and behavior

    Direct Numerical Simulations of Interfacial Turbulence at Low Froude and Weber Numbers

    Get PDF
    Sea surface temperature accessible through use of remote sensing techniques (IR imaging, etc.) suggests abundant flow and thermal field information at the ocean surface that is closely related to subsurface turbulent activities. The suggested information includes wind stress, surface dissipation, underneath velocity and vorticity, and heat and gas transportation. Due to the constantly outgoing interfacial latent and sensible heat flux, the very surface of the ocean is often cooler than the bulk. This so called ‘cool skin layer’ below the very surface is greatly involved in the underlying interfacial turbulence and is the primary support of using sea surface temperature imaging to detect the subsurface activities. In addition, studies have shown that for this detection method the effects of ubiquitous surfactants (surface free agents) to the subsurface turbulence should also be considered. In the case when the wind stress at the surface is far less significant than the buoyancy force in the water phase, the cool skin layer accumulates and triggers free convection. A series of numerical simulations is conducted to reproduce such a free convection flow to obtain detailed statistics and structural features in order to investigate the correlation between the surface temperature and the subsurface activities of the flow. The simulations are also aimed at the quantitative evaluation of the surfactant effects on the flow. The results of the simulations demonstrate that the surface temperature is statistically and structurally correlated to the subsurface activities in various patterns, and that surfactant has a certain influence to the subsurface turbulence with an overall effect of reducing the average surface temperature. Based upon the framework of the controlled flux method, a novel approach to actively determine the interfacial gas transfer velocity at the free convection surface is proposed and numerically investigated. The proposed and simulated approach employs a temporal volumetric heating source to suppress the free convection. The heating source is defined and parameterized with respect to the physical properties of radiation absorption in water phase. Observation and interpretation of the surface temperature evolution and the flow features during and after the heating suggest the effective suppression of the free convection, the onset of the Rayleigh instability and the re-establishment of the free convection. Based on that, an analytical conduction model is formulated to obtain the heat transfer velocity at the free surface from the surface temperature. The gas transfer velocity is then inferred through similarity

    Innovation: Key to the future

    Get PDF
    The NASA Marshall Space Flight Center Annual Report is presented. A description of research and development projects is included. Topics covered include: space science; space systems; transportation systems; astronomy and astrophysics; earth sciences; solar terrestrial physics; microgravity science; diagnostic and inspection system; information, electronic, and optical systems; materials and manufacturing; propulsion; and structures and dynamics

    Models and data analysis tools for the Solar Orbiter mission

    Get PDF
    Context. The Solar Orbiter spacecraft will be equipped with a wide range of remote-sensing (RS) and in situ (IS) instruments to record novel and unprecedented measurements of the solar atmosphere and the inner heliosphere. To take full advantage of these new datasets, tools and techniques must be developed to ease multi-instrument and multi-spacecraft studies. In particular the currently inaccessible low solar corona below two solar radii can only be observed remotely. Furthermore techniques must be used to retrieve coronal plasma properties in time and in three dimensional (3D) space. Solar Orbiter will run complex observation campaigns that provide interesting opportunities to maximise the likelihood of linking IS data to their source region near the Sun. Several RS instruments can be directed to specific targets situated on the solar disk just days before data acquisition. To compare IS and RS, data we must improve our understanding of how heliospheric probes magnetically connect to the solar disk.Aims. The aim of the present paper is to briefly review how the current modelling of the Sun and its atmosphere can support Solar Orbiter science. We describe the results of a community-led effort by European Space Agency's Modelling and Data Analysis Working Group (MADAWG) to develop different models, tools, and techniques deemed necessary to test different theories for the physical processes that may occur in the solar plasma. The focus here is on the large scales and little is described with regards to kinetic processes. To exploit future IS and RS data fully, many techniques have been adapted to model the evolving 3D solar magneto-plasma from the solar interior to the solar wind. A particular focus in the paper is placed on techniques that can estimate how Solar Orbiter will connect magnetically through the complex coronal magnetic fields to various photospheric and coronal features in support of spacecraft operations and future scientific studies.Methods. Recent missions such as STEREO, provided great opportunities for RS, IS, and multi-spacecraft studies. We summarise the achievements and highlight the challenges faced during these investigations, many of which motivated the Solar Orbiter mission. We present the new tools and techniques developed by the MADAWG to support the science operations and the analysis of the data from the many instruments on Solar Orbiter.Results. This article reviews current modelling and tool developments that ease the comparison of model results with RS and IS data made available by current and upcoming missions. It also describes the modelling strategy to support the science operations and subsequent exploitation of Solar Orbiter data in order to maximise the scientific output of the mission.Conclusions. The on-going community effort presented in this paper has provided new models and tools necessary to support mission operations as well as the science exploitation of the Solar Orbiter data. The tools and techniques will no doubt evolve significantly as we refine our procedure and methodology during the first year of operations of this highly promising mission.Peer reviewe
    corecore