78,171 research outputs found

    Proof Nets and the Complexity of Processing Center-Embedded Constructions

    Full text link
    This paper shows how proof nets can be used to formalize the notion of ``incomplete dependency'' used in psycholinguistic theories of the unacceptability of center-embedded constructions. Such theories of human language processing can usually be restated in terms of geometrical constraints on proof nets. The paper ends with a discussion of the relationship between these constraints and incremental semantic interpretation.Comment: To appear in Proceedings of LACL 95; uses epic.sty, eepic.sty, rotate.st

    Constraint Logic Programming for Natural Language Processing

    Full text link
    This paper proposes an evaluation of the adequacy of the constraint logic programming paradigm for natural language processing. Theoretical aspects of this question have been discussed in several works. We adopt here a pragmatic point of view and our argumentation relies on concrete solutions. Using actual contraints (in the CLP sense) is neither easy nor direct. However, CLP can improve parsing techniques in several aspects such as concision, control, efficiency or direct representation of linguistic formalism. This discussion is illustrated by several examples and the presentation of an HPSG parser.Comment: 15 pages, uuencoded and compressed postscript to appear in Proceedings of the 5th Int. Workshop on Natural Language Understanding and Logic Programming. Lisbon, Portugal. 199

    TDL : a type description language for HPSG. - Part 1: Overview

    Get PDF
    Unification-based grammar formalisms have become the predominant paradigm in natural language processing NLP and computational linguistics CL. Their success stems from the fact that they can be seen as high-level declarative programming languages for linguists, which allow them to express linguistic knowledge in a monotonic fashion. More over, such formalisms can be given a precise set theoretical semantics. This paper presents mathcal{TDL}, a typed featurebased language and inference system, which is specically designed to support highly lexicalized grammar theories like HPSG, FUG, or CUG. mathcal{TDL} allows the user to define possibly recursive hierarchically ordered types consisting of type constraints and feature constraints over the boolean connectives wedge, vee, and neg. mathcal{TDL} distinguishes between avm types (open-world reasoning), sort types (closed-world reasoning), built-in types and atoms, and allows the declaration of partitions and incompatible types. Working with partially as well as with fully expanded types is possible, both at definition time and at run time. mathcal{TDL} is incremental, i.e., it allows the redefinition of types and the use of undefined types. Efficient reasoning is accomplished through four specialized reasoners

    Scaling Construction Grammar up to Production Systems: the SCIM

    Get PDF
    While a great effort has concerned the development of fully integrated modular understanding systems, few researches have focused on the problem of unifying existing linguistic formalisms with cognitive processing models. The Situated Constructional Interpretation Model is one of these attempts. In this model, the notion of "construction" has been adapted in order to be able to mimic the behavior of Production Systems. The Construction Grammar approach establishes a model of the relations between linguistic forms and meaning, by the mean of constructions. The latter can be considered as pairings from a topologically structured space to an unstructured space, in some way a special kind of production rules

    Cognitive constraints and island effects

    Get PDF
    Competence-based theories of island effects play a central role in generative grammar, yet the graded nature of many syntactic islands has never been properly accounted for. Categorical syntactic accounts of island effects have persisted in spite of a wealth of data suggesting that island effects are not categorical in nature and that nonstructural manipulations that leave island structures intact can radically alter judgments of island violations. We argue here, building on work by Paul Deane, Robert Kluender, and others, that processing factors have the potential to account for this otherwise unexplained variation in acceptability judgments. We report the results of self-paced reading experiments and controlled acceptability studies that explore the relationship between processing costs and judgments of acceptability. In each of the three self-paced reading studies, the data indicate that the processing cost of different types of island violations can be significantly reduced to a degree comparable to that of nonisland filler-gap constructions by manipulating a single nonstructural factor. Moreover, this reduction in processing cost is accompanied by significant improvements in acceptability. This evidence favors the hypothesis that island-violating constructions involve numerous processing pressures that aggregate to drive processing difficulty above a threshold, resulting in unacceptability. We examine the implications of these findings for the grammar of filler-gap dependencies

    Connectionist natural language parsing

    Get PDF
    The key developments of two decades of connectionist parsing are reviewed. Connectionist parsers are assessed according to their ability to learn to represent syntactic structures from examples automatically, without being presented with symbolic grammar rules. This review also considers the extent to which connectionist parsers offer computational models of human sentence processing and provide plausible accounts of psycholinguistic data. In considering these issues, special attention is paid to the level of realism, the nature of the modularity, and the type of processing that is to be found in a wide range of parsers

    The Mechanics of Embodiment: A Dialogue on Embodiment and Computational Modeling

    Get PDF
    Embodied theories are increasingly challenging traditional views of cognition by arguing that conceptual representations that constitute our knowledge are grounded in sensory and motor experiences, and processed at this sensorimotor level, rather than being represented and processed abstractly in an amodal conceptual system. Given the established empirical foundation, and the relatively underspecified theories to date, many researchers are extremely interested in embodied cognition but are clamouring for more mechanistic implementations. What is needed at this stage is a push toward explicit computational models that implement sensory-motor grounding as intrinsic to cognitive processes. In this article, six authors from varying backgrounds and approaches address issues concerning the construction of embodied computational models, and illustrate what they view as the critical current and next steps toward mechanistic theories of embodiment. The first part has the form of a dialogue between two fictional characters: Ernest, the �experimenter�, and Mary, the �computational modeller�. The dialogue consists of an interactive sequence of questions, requests for clarification, challenges, and (tentative) answers, and touches the most important aspects of grounded theories that should inform computational modeling and, conversely, the impact that computational modeling could have on embodied theories. The second part of the article discusses the most important open challenges for embodied computational modelling
    corecore