

Large-Scale Connectionist Natural

Language Parsing Using Lexical Semantic

and Syntactic Knowledge

Dianabasi Edet Nkantah

A thesis submitted in partial fulfilment

of the requirements of

Nottingham Trent University

for the degree of

Doctor of Philosophy

October 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham Trent Institutional Repository (IRep)

https://core.ac.uk/display/30624416?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This work is the intellectual property of the author, and may also be owned by the

research sponsor(s) and/or Nottingham Trent University. You may copy up to 5% of

this work for private study, or personal, non-commercial research. Any re-use of

the information contained within this document should be fully referenced, quoting

the author, title, university, degree level and pagination. Queries or requests for

any other use, or if a more substantial copy is required, should be directed in the

first instance to the author.

 i

ABSTRACT

Syntactic parsing plays a pivotal role in most automatic natural language

processing systems.

The research project presented in this dissertation has focused on two main

characteristics of connectionist models for natural language processing: their

adaptability to different tagging conventions, and their ability to use multiple

linguistic constraints in parallel during sentence processing. In focusing on these

key characteristics, an existing hybrid connectionist, shift-reduce corpus-based

parsing model has been modified.

This parser, which had earlier been trained to acquire linguistic knowledge from the

Lancaster Parsed Corpus, has been adapted to learn linguistic knowledge from the

Wall Street Journal Corpus. This adaptation is a novel demonstration that this

connectionist parser, and by extension, other similar connectionist models, is able

to adapt to more than one syntactic tagging convention; this implies their ability to

adapt to the underlying linguistic theories used to annotate these corpora.

The parser has also been adapted to integrate shallow lexical semantic information

with syntactic information for full syntactic parsing. This approach was used to

investigate the effect of shallow lexical semantic information on full syntactic

parsing.

In pursuing the aims of this project, a novel algorithm for semantic tagging of

nouns in the Wall Street Journal Corpus has been developed. The lexical semantic

information used in this semantic annotation algorithm was extracted from

WordNet, an online lexical resource.

Using only syntactic information in making parsing decisions, this parsing model

was tested on test sets of sentences that were not used during training. The parser

generalised to parse these test sentences with an F-measure of 72.5% and 59.5%

on sentences from the Lancaster Parsed Corpus and Wall Street Journal Corpus,

respectively. On the integration of shallow lexical semantic information with

syntactic information in its input representation, the parser generalised to parse

test sentences from the Wall Street Journal Corpus with an F-measure of 56.75%.

Although this integration did not seem to improve the parser’s overall

training/generalisation performance, given its present configuration, it did appear

to improve the parser’s decision making concerning preposition phrase attachment.

 ii

Acknowledgements

My deep appreciation goes to my supervisors, Jon Tepper, Heather Powell, and

Nasser Sherkat for their immense contribution towards the success of my PhD

programme. Your understanding, encouragement, guidance and patience have

been invaluable to me. Special thanks also to Tony Allen for his kind words of

advice and encouragement.

Many thanks to Doreen Corlett, Julie Bradshaw, Mel Borland and Collette Jackson

for the splendid administrative support received from you during the course of my

PhD programme.

I would like to thank my father, Obong Edet Nkantah, mother-in-law, Mrs Comfort

Inyang and my entire family for words of encouragement, advice and prayers.

I would also like to thank my friends and colleagues at Nottingham Trent

University, Life at the Centre and Oakdene, who showed concern and encouraged

me in various ways. Special thanks go to Christine Roach for her support and

encouragement.

I appreciate the great friendship, support and encouragement given to me and my

family by Boniface, Tikha, Steve and Anapiri. Thanks also to Akan Obot for

encouraging me to embark on this project.

I am very grateful to my wife, Idorenyin, and our sons, Akanimo and Enobong, for

the constant support, encouragement, and love you have showered on me. You

have always shared my concerns and anxiety. You have been my inspiration.

To God be the glory. His grace and favour have seen me through this journey.

 i

TABLE OF CONTENTS

ABSTRACT ...I

ACKNOWLEDGEMENTS .. II

TABLE OF CONTENTS ..I

LIST OF FIGURES .. V

LIST OF TABLES...VIII

1. INTRODUCTION.. 1

1.1 BACKGROUND ...1

1.2 AIMS AND OBJECTIVES OF RESEARCH ...3

1.3 STRUCTURE OF THE THESIS ...5

2. LITERATURE SURVEY... 6

2.1 INTRODUCTION ...6

2.2 SYNTACTIC PARSING ...7

2.2.1 Introduction .. 7

2.2.2 Role of parsing in Natural Language Understanding .. 14

2.2.3 Parsing Methods... 15

2.2.4 Connectionist Parsing .. 17

2.3 LOCALIST PARSING MODELS ...18

2.4 DISTRIBUTED PARSING MODELS ..18

2.5 HYBRID AND MODULAR PARSING MODELS ...20

2.6 SEMANTIC ANNOTATION SCHEMES ..21

2.7 SUMMARY..23

3. PRELIMINARY ANALYSIS OF THE EXISTING CONNECTIONIST PARSING

MODEL .. 25

3.1 INTRODUCTION ..25

3.2 THE EXISTING PARSING MODEL ..26

3.2.1 The Lancaster Parsed Corpus (LPC) ... 27

Table of Contents

 ii

3.2.2 Tag Representation... 28

3.2.3 Parsing Architecture and Algorithm .. 29

3.2.3.1 The Architecture ..29

3.2.3.2 Phrase Delimitation...30

3.2.3.3 Phrase Structure Recognition ...31

3.2.3.4 Symbolic Parse Organisation ..32

3.2.3.5 The Algorithm ...32

3.3 REDUCING SATURATION ..34

3.4 OPTIMAL LEARNING RATE/MOMENTUM CONSTANT..37

3.5 OPTIMAL NETWORK SIZE...41

3.6 USING CROSS-VALIDATION FOR AUTOMATIC EARLY STOPPING ..44

3.7 SENTENCE PARSE PERFORMANCE ..46

4. THE CORPUS-BASED PARSING MODEL: ADAPTED TO THE WALL STREET

JOURNAL CORPUS ... 48

4.1 INTRODUCTION ...48

4.2 THE BLLIP 1987-89 WALL STREET JOURNAL CORPUS ..49

4.2.1 Corpus Content .. 49

4.2.2 Tagging Convention.. 50

4.2.2.1 The Penn Treebank II Convention ..50

4.2.2.2 Exceptions to the Penn Treebank II Convention ...51

4.2.3 The BLLIP 1987-89 WSJ Corpus Vs The Lancaster Parsed Corpus 51

4.3 TAG REPRESENTATIONS ..54

4.4 A PARSING EXAMPLE ..56

4.5 TRAINING, VALIDATION AND TEST SAMPLES ..67

4.6 PHRASE SEGMENTATION PERFORMANCE ...78

4.7 PHRASE RECOGNITION PERFORMANCE..82

4.8 SENTENCE LEVEL PERFORMANCE ...84

4.9 DISCUSSION ...85

5. THE CORPUS-BASED PARSING MODEL: INTRODUCING LEXICAL

SEMANTIC INFORMATION FOR NOUNS.. 87

5.1 INTRODUCTION ..87

5.2 WORDNET ...89

5.3 SEMANTIC ANNOTATION OF NOUNS IN THE BLLIP WSJ CORPUS ..93

Table of Contents

 iii

5.4 TAG REPRESENTATION...98

5.4.1 Semantic Tag Representation... 98

5.4.2 Integrating Syntactic and Semantic Representation 100

5.5 PHRASE SEGMENTATION PERFORMANCE...102

5.6 EFFECT OF INTEGRATING LEXICAL SEMANTIC AND SYNTACTIC REPRESENTATION ON

PHRASE SEGMENTATION PERFORMANCE ..111

5.7 PHRASE RECOGNITION PERFORMANCE ..117

5.8 SENTENCE LEVEL PERFORMANCE ...121

5.9 COMPARISON WITH OTHER WSJ PARSERS...123

5.10 DISCUSSION ...125

6. SENTENCE LEVEL EVALUATION ... 128

6.1 INTRODUCTION ..128

6.2 PARSER WITH SYNTACTIC-ONLY INPUT REPRESENTATION ...128

6.3 PARSER WITH A COMBINATION OF LEXICAL SEMANTIC AND SYNTACTIC INPUT

REPRESENTATION ...141

6.4 SUMMARY ...152

7. CONCLUSIONS ... 153

7.1 INTRODUCTION ..153

7.2 CONTRIBUTIONS ..155

7.2.1 Adaptation of Parsing Model to the BLLIP WSJ Corpus 155

7.2.2 Semantic Annotation of Nouns in the BLLIP Corpus................................. 156

7.2.3 Integration of Shallow Lexical Semantic Information with Syntactic

Information in Full Syntactic Parsing .. 157

7.3 FUTURE WORK ..158

APPENDIX A: THE PENN TREEBANK II WORD TAGS... 161

APPENDIX B: THE PENN TREEBANK II CONSTITUENT TAGS 163

APPENDIX C: THE WORD TAGS USED IN THE LPC ... 165

APPENDIX D: THE CONSTITUENT TAGS USED IN THE LPC 170

Table of Contents

 iv

APPENDIX E: PARSE FAILURES MADE ON THE WSJ CORPUS TRAINING

SET (USING SYNTACTIC INFORMATION ONLY) .. 173

APPENDIX F: A SAMPLE OF PARSE FAILURES MADE ON THE WSJ CORPUS

TRAINING SET (USING LEXICAL SEMANTIC AND SYNTACTIC

INFORMATION) 207

APPENDIX G: A SAMPLE OF MATCHING PARSES FROM THE WSJ CORPUS

TEST SET (USING SYNTACTIC INFORMATION ONLY).. 254

APPENDIX H: A SAMPLE OF MATCHING PARSES FROM THE WSJ CORPUS

TEST SET (USING LEXICAL SEMANTIC AND SYNTACTIC INFORMATION) ... 259

APPENDIX I: A SAMPLE OF MISMATCHING PARSES FROM THE WSJ

CORPUS TEST SET (USING SYNTACTIC INFORMATION ONLY) 265

APPENDIX J: A SAMPLE OF MISMATCHING PARSES FROM THE WSJ

CORPUS TEST SET (USING LEXICAL SEMANTIC AND SYNTACTIC

INFORMATION) 271

REFERENCES ... 277

 v

List of Figures

Figure 3.1: Word tag and constituent representation.. 29

Figure 3.2: The TASRN architecture used for the LRD and RLD modules 30

Figure 3.3: Plot of RMSE Against Number of Epochs (LRD) .. 36

Figure 3.4: Plot of RMSE Against Number of Epochs (RLD) .. 36

Figure 3.5: Training/Generalisation performance for different RLD network sizes.......... 43

Figure 3.6: Training/Generalisation performance for different LRD network sizes.......... 43

Figure 4.1: Word tag and constituent tag representation ... 56

Figure 4.2: Parse tree denoting an example parse from the WSJC 66

Figure 4.3: RLD RMSE for Combinations of Balanced and Unbalanced Data Sets 75

Figure 4.4: LRD RMSE for Combinations of Balanced and Unbalanced Data Sets 77

Figure 4.5: Plot of RMSE Against Number of Epochs for the LRD (WSJ Data) 80

Figure 4.6: Plot of RMSE Against Number of Epochs for the RLD (WSJ Data) 82

Figure 4.7: Plot of RMSE Against Number of Epochs for the PSR (WSJ Data) 83

Figure 5.1: A flow-chart depicting the semantic annotation process for nouns from the

BLLIP WSJ Corpus, using WordNet.. 94

Figure 5.2: Bit Space Allocation to WordNet Senses ... 98

Figure 5.3: Plot of RMSE Against Number of Epochs for the LRD (WSJ Data) 104

Figure 5.4: RLD Generalisation Performance for Different Number of Hidden Nodes and

Training Times (WSJ Data) ... 104

Figure 5.5: Plot of RMSE Against Number of Epochs for the RLD (WSJ Data) 108

Figure 5.6: RLD Generalisation Performance for Different Number of Hidden Nodes .. 108

Figure 5.7: Plot Comparison of Training Performance for the LRD, Given Syntactic-Only

and Semantic + Syntactic Information.. 114

Figure 5.8: Plot Comparison of Training Performance for the RLD, Given Syntactic-Only

and Semantic + Syntactic Information.. 116

Figure 5.9: Plot of RMSE Against Number of Epochs for the PSR (WSJ Data) 118

Figure 5.10: PSR Generalisation Performance for Different Number of Hidden Nodes . 119

Figure 5.11: Plot Comparison of Training Performance for the PSR, Given Syntactic-Only

and Semantic + Syntactic Information.. 120

Figure 6.1: Matching parse tree for the sentence, Amatek is an instrument maker. (Using

only syntactic information) .. 135

Figure 6.2: Matching parse tree for the sentence, Many small investors remain cautious.

(Using only syntactic information) .. 136

Figure 6.3: Matching parse tree for the sentence, A metric ton equals 2,204.62 pounds.

(Using only syntactic information) .. 136

List of Figures

 vi

Figure 6.4: Matching parse tree for the sentence, The rest of the world was an afterthought.

(Using only syntactic information) .. 137

Figure 6.5: Matching parse tree for the sentence, SUIT SEEKS equal insurance benefits for

manic depression. (Using only syntactic information).. 137

Figure 6.6: Matching parse tree for the sentence, Mr. Gray wants Mr. Penn to provide an

example for others. (Using only syntactic information).. 138

Figure 6.7: Matching parse tree for the sentence, The yen’s slide has been helping Japanese

companies improve export profits. (Using only syntactic information)........................ 138

Figure 6.8: Matching parse tree for the sentence, Donald Leach, a retired court clerk,

suspects workmen and tourists. (Using only syntactic information) 139

Figure 6.9: Matching parse tree for the sentence, The bulk of the Hispanics in the U.S. are

of Mexican origin. (Using only syntactic information)... 139

Figure 6.10: Matching parse tree for the sentence, In November 1985, the company

suspended the payout. (Using only syntactic information) ... 140

Figure 6.11: Matching parse tree for the sentence, Near the distant farmhouse, a wisp of

smoke rises from burning stubble. (Using only syntactic information) 140

Figure 6.12: Matching parse tree for the sentence, In Namibia, a black nationalist leader

Sam Nujoma arrived in Windhoek, *-7 ending three decades in exile. 141

Figure 6.13: Matching Parse tree for the sentence, It is fruitless. (Using combined linguistic

information)... 144

Figure 6.14: Mismatching parse tree for the sentence, It is fruitless. (Using only syntactic

information)... 144

Figure 6.15: Matching Parse tree for the sentence, “They’re such fine boys. (Using

combined linguistic information)... 145

Figure 6.16: Mismatching parse tree for the sentence, “They’re such fine boys. (Using only

syntactic information)... 145

Figure 6.17: Matching Parse tree for the sentence, U.S. officials confirmed these reports

too. (Using combined linguistic information).. 146

Figure 6.18: Mismatching parse tree for the sentence, U.S. officials confirmed these

reports too. (Using only syntactic information).. 146

Figure 6.19: Matching Parse tree for the sentence, The authorisation expires July 31, 1990.

(Using combined linguistic information)... 146

Figure 6.20: Mismatching parse tree for the sentence, The authorisation expires July 31,

1990. (Using only syntactic information) .. 147

Figure 6.21: Matching Parse tree for the sentence, Conventional chips only process one

instruction at a time. (Using combined linguistic information).................................... 147

List of Figures

 vii

Figure 6.22: Mismatching parse tree for the sentence, Conventional chips only process one

instruction at a time. (Using only syntactic information) ... 147

Figure 6.23: Matching Parse tree for the sentence, Mr. Upton is associate finance

spokesman for the National Party. (Using combined linguistic information) 148

Figure 6.24: Mismatching parse tree for the sentence, Mr. Upton is associate finance

spokeman for the National Party. (Using only syntactic information)......................... 148

Figure 6.25: Matching Parse tree for the sentence, Mr. Muravchik is a resident scholar at

the American Enterprise Institute. (Using combined linguistic information) 148

Figure 6.26: Mismatching parse tree for the sentence, Mr. Muravchik is a resident scholar

at the American Enterprise Institute. (Using only syntactic information) 149

Figure 6.27: Matching Parse tree for the sentence, Marshall N. Norton, 44, was elected *-1

a senior vice president, with responsibilities in finance and data processing. (Using

combined linguistic information)... 149

Figure 6.28: Mismatching parse tree for the sentence, Marshall N. Norton, 44, was elected

*-1 a senior vice president, with responsibilities in finance and data processing. (Using

only syntactic information) .. 150

Figure 6.29: Mismatching parse tree for the sentence, SUIT SEEKS equal insurance

benefits for manic depression., using combined linguistic information (see fig. 6.5 for

matching parse)... 150

Figure 6.30: Mismatching parse tree for the sentence, The rest of the world was an

afterthought., using combined linguistic information (see fig. 6.4 for matching parse)

.. 151

 viii

List of Tables

Table 3.1: Training performance for combinations of learning rate /momentum term 39

Table 3.2: Generalisation performance for combinations of learning rate/momentum term

.. 40

Table 3.3: Module-level performance for refined parser .. 46

Table 3.4: Sentence-level performance for refined parser .. 47

Table 4.1: Elimination of lexically recoverable distinctions in verbs................................... 53

Table 4.2: A parsing example .. 57

Table 4.3: RLD, LRD and PSR data generation.. 68

Table 4.4: Optimising LRD Look-back and Look-ahead Symbols 71

Table 4.5: Optimising RLD Look-Back Symbols... 72

Table 4.6: Optimising RLD Training Data Set (Balanced and Unbalanced Sets

Combination)... 74

Table 4.7: Optimising LRD Training Data Set (Balanced and Unbalanced Sets

Combination)... 76

Table 4.8: Training Results for the LRD and RLD ... 79

Table 4.9: Training Results (for sequences of different lengths) for the LRD 79

Table 4.10: Training Results (for sequences of different lengths) for the RLD 81

Table 4.11: Sentence Level Results for the WSJ Corpus .. 84

Table 5.1: Unique Beginners for Nouns in WordNet... 92

Table 5.2: Semantic Tags Used to Represent WordNet Unique Beginners 97

Table 5.3: Semantic Representation Values ... 99

Table 5.4: Training Results (for sequences of different lengths) for the LRD 105

Table 5.5: Training Times for the LRD Network .. 106

Table 5.6: Training Results (for sequences of different lengths) for the RLD 109

Table 5.7: Training Results for the LRD and RLD ... 110

Table 5.8: Training Times for the RLD Network .. 110

Table 5.9: Comparison – Training Results for the Delimiter Networks for Input

Representations with Syntactic-only and a Combination of Semantic and Syntactic

Information.. 112

Table 5.10: Comparison – LRD Training Results (for sequences of different lengths) for

the Delimiter Networks for Input Representations with Syntactic-only and a

Combination of Semantic and Syntactic Information ... 113

List of Tables

 ix

Table 5.11: Comparison – RLD Training Results (for sequences of different lengths) for

the Delimiter Networks for Input Representations with Syntactic-only and a

Combination of Semantic and Syntactic Information ... 115

Table 5.12: Comparison – Generalisation Performance for the Delimiter Networks for

Input Representations with Syntactic-only and a Combination of Semantic and

Syntactic Information... 117

Table 5.13: Comparison – Generalisation Performance for the PSR Network for Input

Representations with Syntactic-only and a Combination of Semantic and Syntactic

Information.. 120

Table 5.14: Sentence Level Results for the WSJ Corpus (Lexical Semantic + Syntactic

Input Representations) ... 121

Table 5.15: Sentence Level Comparison for the WSJ Corpus (Syntactic-Only Vs Lexical

Semantic + Syntactic Input Representations) .. 123

Table 5.16: Comparison of Syntactic Parser Results on the WSJ Corpus 124

Table 6.1: Training Results for the LRD and RLD Data Generated from Failed Sentences

.. 131

Table 6.2: Training Results for the LRD and RLD Data Generated from Matching

Sentences.. 131

Table 6.3: Training Results for the LRD and RLD Data Generated from Mismatching

Sentences.. 131

Table 6.4: Training Results (for sequences of different lengths) for the LRD Data

Generated from Failed Sentences.. 132

Table 6.5: Training Results (for sequences of different lengths) for the LRD Data

Generated from Matching Sentences .. 132

Table 6.6: Training Results (for sequences of different lengths) for the LRD Data

Generated from Mismatching Sentences .. 132

Table 6.7: Trained Results (for sequences of different lengths) for the RLD Data

Generated from Failed Sentences.. 133

Table 6.8: Training Results (for sequences of different lengths) for the RLD data

Generated from Matching Sentences .. 133

Table 6.9: Training Results (for sequences of different lengths) for the RLD data

Generated from Mismatching Sentences .. 133

 1

1. Introduction

1.1 Background

Automatic natural language understanding systems are built with the purpose of

getting them to generate and/or interpret natural language. They have been used

in language tasks such as machine translation, information retrieval, human-

machine interfaces, text analysis, corpora analyses and knowledge acquisition. At

the centre of most, if not all, of such systems is syntactic analysis [1, 2], or parsing

[3, 4]. Syntactic parsing is the process of identifying and representing the

structural relationships between words with respect to phrases, clauses and

sentences. It is an integral part of accurately interpreting a sentence. Given the

complex, ambiguous and potentially unbounded nature of natural language, the

ability to parse realistic subsets of unconstrained natural language is a significant

problem for practical natural language-based systems and progress has been

limited. Other than in automatic natural language understanding systems, parsers

have also been employed in simpler and more constrained problem domains such

as compiler construction, database interfaces, document preparation and

conversion, typesetting chemical formulae and chromosome recognition, to mention

but a few.

To date, traditional statistical parsing models [5, 6, 7, 121] continue to represent

the state-of-the-art for broad coverage natural language parsing, achieving, at

best, an accuracy rate of 90% for sentences of 40 words or less. They implement

the parsing process by estimating parse probabilities from pre-parsed corpora. The

level and quality of improvements reported for such methods are decreasing every

year [5, 6, 7, 121]. Besides, these models lack an in-built ability to combine

multiple types of linguistic information (semantics, pragmatics, discourse, etc) in

syntactic analysis, due to inherent coupling with symbolic representation of

linguistic information. This reduces their usefulness for practical language

Chapter 1 – Introduction

 2

applications, such as information extraction and knowledge–base inferencing via

query/answering interfaces, which require semantically-aided processing. In

contrast to statistical models, the connectionist (also known as the artificial neural

network-based, parallel distributed processing, or subsymbolic) approach [8, 9,

122] offers inherent robust representations that are able to naturally combine, inter

alia, syntactic and semantic information.

It is widely accepted that semantic information is needed to resolve common

syntactic ambiguities [120]. However, a lot of parsing models do not attempt to

incorporate this information into initial syntactic parsing. They typically adopt the

two-stage ‘Fodorian’ approach [10, 11, 12] whereby semantic information is

considered along with other linguistic information during a second independent

post-processing stage. The first stage of the process considers syntactic information

alone.

A growing body of research, however, refutes the two-stage model and advocates a

multiple constraint-based approach. These researchers argue that the human

sentence processor (HSP) does not only use syntactic information during sentence

processing, but is a multiple constraint-satisfaction process that allows syntactic,

semantic, pragmatic and discourse information to simultaneously interact (to

varying degrees) during on-line processing [13, 14, 15, 16, 22].

It is, therefore, necessary to determine the effect of integrating additional word-

level (or lexical) semantic information with syntactic information on the

performance of full syntactic parsers.

Chapter 1 – Introduction

 3

1.2 Aims and Objectives of Research

This research is based on an existing modular/hybrid, shift-reduce, connectionist

parser [18, 19, 111], which integrates three connectionist modules (two temporal

sequence processing modules and a phrase structure recognition module) with

three symbolic modules to automatically learn syntactic structure from a subset of

the Lancaster Parsed Corpus [20]. The parser has shown good learning ability by

achieving an average parsing accuracy of 73% on a test set of sentences that were

not used during its training. Considering its connectionist nature, the method is

adaptable to other corpora and for other syntactic and semantic annotations

without its architecture being changed. In order to improve the natural language

acquisition capability of this parser, and other connectionist parsers, a number of

research questions must be addressed:

a) Can this parser’s (and by extension, other similar connectionist models’)

ability to acquire linguistic knowledge from more than one corpus (with

different tagging conventions) be demonstrated?

b) What level of lexical semantic information will provide improvement to full

syntactic parsing?

c) What lexical resources are available for the extraction of lexical semantic

information?

d) How will the lexical semantic information be extracted and how will this

information be integrated with syntactic information in the process of full

syntactic parsing?

e) What is the effect of the integration of shallow lexical semantic information

with syntactic information on the performance and behaviour of the parser?

Including lexical semantic information during syntactic parsing could help to resolve

common syntactic ambiguities and preposition phrase attachment cases in

sentences such as:

Chapter 1 – Introduction

 4

i. The boy ate the pasta with the sauce.

ii. The boy ate the pasta with the fork.

The aim of this dissertation is to investigate whether additional word-level semantic

information can improve decisions in full syntactic parsing (involving syntactic

ambiguity resolution). The investigation will determine the level of semantic

abstraction necessary for improvement to occur. The sensitivity of the system to

the type of input representation used would also be determined. This project also

aims to investigate the re-usability and adaptability of this parser to other corpora.

In pursuing the aims of this research, investigations designed to specifically

improve the performance of the temporal sequence processing modules of the

existing parser were carried out. These modules form the bedrock of the parser as

they tackle the most challenging aspects of natural language processing: the

sequential nature of language and the existence of dependencies (sometimes, long-

distance) between words in sentences. The re-usability and adaptability of this

connectionist parser was investigated by adapting it for the internationally accepted

benchmark corpus, The Wall Street Journal Corpus [101].

In further pursuing the aims of this research, there was the need to develop an

algorithm for abstract word sense tagging of nouns. The implementation of this

algorithm resulted in the extraction of lexical semantic information for

nouns/pronouns from the online lexical resource, WordNet [17]. While maintaining

the neural network and corpus-based nature of the parsing model, the lexical

semantic representation realised from the algorithm was integrated into the

existing syntactic representation already developed for sentences in the Wall Street

Journal Corpus. That is, rather than expecting the parser to learn syntactic

structure from sequences of part-of-speech (POS) word tags (e.g. noun, verb), the

Chapter 1 – Introduction

 5

parser will be expected to deduce syntactic structure from sequences of

linguistically richer word tags containing syntactic and semantic information. This

demonstrates the inherent ability of the parser to combine multiple types of

linguistic information. It also helps determine to what extent non-syntactic

information plays a role during the syntactic parsing process.

1.3 Structure of the Thesis

Chapter 2 of this dissertation presents a literature survey of the field of syntactic

parsing. Different types of connectionist parsing models are reviewed in this

chapter. Chapter 3 reports the aims, process and outcome of investigations carried

out to optimise the temporal sequence processing modules of the original parser. In

chapter 4, the processes and results of adapting the original parser to the Wall

Street Journal Corpus are presented. Chapter 5 looks at the processes and results

involved in combining lexical semantic representation with the syntactic

representation of the parsing model. The sentence level performance of the parser

on the Wall Street Journal Corpus is looked at in detail in chapter 6. This chapter

also presents the effects of integrating lexical semantic representation into the

syntactic representation of the parsing model. In chapter 7, the dissertation is

concluded with a presentation of the key contributions of this research and further

work that have arisen from it.

 6

2. Literature Survey

2.1 Introduction

Natural language, such as English, French, Russian and Japanese, is fundamental to

human cognition and culture. It serves as the main medium by which humans

communicate and record information. Used as text or speech, it wields enormous

power and influence in our lives. Getting computers to automatically process and

understand natural language enables them to capture, to some extent, this power

and influence.

Natural language understanding systems are built with the aim of making them

generate and/or interpret natural language. Such systems have been employed in

tasks such as machine translation, information retrieval, human-machine

interfaces, text analysis, and knowledge acquisition. Language analysis is an

important aspect of these systems. This could take the form of sentence analysis,

which involves the processing of individual sentences, or discourse and dialog

structure analysis, which involves the processing of a group of sentences. Analysing

discourse structure would still require sentence analysis. A crucial component of

sentence analysis is syntactic parsing.

This chapter presents syntactic parsing and its role in natural language

understanding in section 2.2. Different parsing methods and the different

approaches by which these methods are implemented are also treated in this

section. Localist, distributed, and hybrid and modular parsing models are reviewed

in sections 2.3, 2.4, and 2.5 respectively. In reviewing these models, a critical look

is taken at the complexity of language structure they can handle, their ability to

automatically learn, and their scalability to realistic language subsets. Attention is

also paid to their representational capacity and their ability to combine other types

Chapter 2 - Literature Survey

 7

of linguistic information (like semantic constraints) into parsing. Various semantic

annotation schemes are reviewed in section 2.6.

2.2 Syntactic Parsing

2.2.1 Introduction

Syntactic analysis or parsing [3] is the process of producing the structural

description of a sentence. This is done with a view to recognising the structural

relationships between words with respect to phrases, clauses and sentences. It

plays a major role in accurately interpreting a sentence and is at the centre of most

automatic language processing systems [1].

Automatic natural language processing systems need to represent language and

often look to hypothesised representations of the brain. The mental representation

of language and how it translates to text and speech therefore becomes an issue.

The question of how much prior knowledge should be built into parsing (and other

NLP) systems comes to the fore. In this respect, two main approaches have

dominated in recent years. These are the rationalist and empiricist approaches

[21].

The rationalist approach to language processing has dominated the field largely due

to the work of Noam Chomsky [23, 24, 25, 26, 27]. It places the focus of analysis

of natural language on the intuition of the native speaker. It is of the view that a

major part of the knowledge in the human mind is fixed early in life, possibly at

birth, and not derived by the sense organs. This view of the knowledge in the

human mind extends to natural language and suggests that significant parts of

language are fixed in the brain at birth. This suggestion by Chomsky stems from

the difficulty he finds in envisioning how children can learn natural language,

Chapter 2 - Literature Survey

 8

considering its complexity, from the limited input that their senses pick up during

their early years; the problem of the “poverty of the stimulus” [27].

The rationalist approach, also known as generative (or Chomskyan) linguistics [2,

21] therefore seeks to study the abstract mental structures that form a basis for

linguistic ability (referred to by Chomsky [27] as I-language – “internal” language)

while not considering actual mental processes (referred to by Chomsky [27] as E-

language – “external” language) such as text or recording of utterances. In

championing this approach, Chomsky [26] distinguishes between linguistic

competence and linguistic performance. Linguistic competence is an abstract

characterisation of the knowledge of language structure that is assumed to be in

the native speaker’s mind while linguistic performance refers to the processes that

actually determine what a language user will say (or write) or how he will

understand an utterance (or text) given a particular context.

The empiricist approach to language processing (also known as structural linguistics

[2]) bases linguistic analysis on the observation of language behaviour. While

agreeing with the rationalist approach on the presence of some initial knowledge

structure in the human brain at birth, this approach, however, disagrees with the

level of knowledge present. It assumes that the structure of knowledge available in

the human mind at birth is of a general form, catering for activities such as pattern

recognition, generalisation and association, rather than being of a detailed form, as

espoused by proponents of the rationalist approach. This approach further suggests

that the detailed structure of natural language is learnt by children when they

combine the general structure of knowledge with the sensory input they are

exposed to. The empiricist approach therefore subscribes to the description of the

actual use of language (E-language) in linguistic studies. This is done with the use

of a collected corpus of naturally occurring text (or utterance). These corpora are

assumed to be representative of language in a real world context.

Chapter 2 - Literature Survey

 9

In order to understand the problem of syntactic parsing, a brief review of the basic

concepts of formal language theory and phrase-structure grammar [24] is

necessary.

A language is a set of sentences. This set could be finite or infinite depending on

the language. Natural languages have infinite sets. A sentence is a string of one or

more symbols (words) from the vocabulary of the language. A grammar is a finite

and formal specification of a language. A widely adopted method to specify formal

and natural languages is the use of the phrase-structure grammar (also known as

production grammar [28]).

A phrase-structure grammar is described by four parts: a set of non-terminal

symbols (the non-terminal vocabulary consisting of syntactic category labels and

used in specifying the grammar); a set of terminal symbols (the terminal

vocabulary of the language being defined); a special member of the set of non-

terminal symbols designated as the start symbol of the grammar; and the

production set of the grammar (set of re-write rules). The re-write rules are used

for the basic operation of a phrase-structure grammar which involves rewriting a

string of symbols as another.

Mathematically, a phrase-structure grammar, G, is an ordered quadruple of the

form:

G = (VN, VT, S, P)

Where

 VN = non-terminal vocabulary of G

 VT = terminal vocabulary of G

 S = Starting symbol of G

 P = Production set of G

Chapter 2 - Literature Survey

 10

Phrase-structure grammars may be classified according to their descriptive power.

This considers the variety of languages a grammar can be used to define. More

powerful grammars can be used to define and describe a wider variety of languages

than weaker ones. This descriptive power (level of language that can be described

by a particular grammar type) corresponds to the type of automata that can

process it. Automata are abstract mathematical models of machines that perform

computations on an input by moving through a series of states or configurations.

For a parser to process a particular type of language, it must therefore simulate or

adopt the computational properties of the appropriate type of automata.

The conventional classification scheme for phrase-structure grammars is the

Chomsky hierarchy [23, 25]. This scheme identifies four types of phrase-structure

grammar in order of their descriptive power. They are: unrestricted (type 0),

context-sensitive (type 1), context-free (type 2) and finite-state or regular

grammars (type 3). Higher numbered types are less powerful (more constrained)

than lower numbered types; type 0 is the most powerful type, and type 3 is the

weakest.

Type 0 grammars describe languages that are recursively enumerable. This is a

type of language for which a program could be written to list out the sentences of

the language one after the other. They have productions of the form:

 α β

where α and β denote strings of terminals and non-terminals

There are no restrictions on their productions.

Type 0 grammars have equivalent computational power to Turing machines (TM)

[29]. A Turing machine is an abstract machine (or, computer) introduced by Alan

Turing to give a mathematically precise definition of algorithm or mechanical

Chapter 2 - Literature Survey

 11

procedure. It is the most general automaton that assumes an infinite memory

capacity.

Type 1 grammars describe context-sensitive languages and have their production

sets constrained such that the right hand side (RHS) of each re-write rule has, at

least, the same number of symbols as its left hand side (LHS). Each rule specifies

the replacement of only one non-terminal in its LHS. Re-writing symbols depend on

context as different rules may re-write a particular non-terminal symbol to different

values depending on its surrounding symbols. Their productions are of the form:

 α1Aα2 α1βα2

 where A is a non-terminal

 and α1, α2, and β are strings of terminals and non-terminals

This type of grammars has equivalent computational power to linear bounded

automata (LBA). An LBA is a restricted form (in terms of tape length or memory) of

a Turing machine; it consists of a tape with cells that can contain symbols from a

finite alphabet, a head that can read from or write to one cell on the tape at a time

and can be moved, and a finite number of states.

Type 2 grammars describe context-free languages and have their production sets

restricted such that the LHS of each re-write rule is a single non-terminal symbol

while its RHS is a string of one or more terminals and non-terminals. Their

production rules are of the form:

 A β

 Where A is a non-terminal

 and β is a string of terminals and non-terminals

This type of grammars has equivalent computational power to push-down automata

(PDA). A push-down automaton is equivalent to a finite state automaton (FSA) with

Chapter 2 - Literature Survey

 12

a stack-like memory. A finite state automaton is a finite collection of states and

transitions, with certain states designated as start and end states. The addition of a

stack-like memory enables states to be stored whilst intermediate states are being

processed. While context-free grammars alone are inadequate in describing natural

languages, they can be extended with complex linguistic categories to do so.

However, the number of categories must not be restricted [30]. The resulting

grammar from this type of extension is referred to as an index grammar. Index

grammars have equivalent computational power to nested stack automata [31];

their descriptive power is greater than that of context-free grammars but less than

that of context-sensitive grammars.

Type 3 grammars describe regular languages. They have their production sets

constrained such that the LHS of each re-write rule is a single non-terminal symbol

while its RHS is either a single terminal symbol or a terminal symbol and a non-

terminal symbol. Their productions are of the form:

 A a, or, A aB

 Where A and B are non-terminals

and a is a terminal

This type of grammars has equivalent computational power to finite state automata

(FSA).

Several grammatical frameworks have been employed in the syntactic analysis and

generation of natural languages. Among these are generative grammars which are

the most traditionally used grammatical framework in natural language processing

systems. This group of linguistic formalisms include Transformational Grammar

(TG) [26], Government Binding Theory (GB) [136], and Generalised Phrase

Structure Grammar (GPSG) [137, 139]. Both TG and GB theory consist of deep and

surface syntactic structures. GPSG, on the other hand, consists of only surface

Chapter 2 - Literature Survey

 13

structure. GPSG augments phrase structure grammar such that linguistic

constructions beyond the reach of phrase structure grammar can be handled.

Also within the generative grammar ambit are lexicalised frameworks which encode

syntactic and semantic information in the lexicon. This group of frameworks also

produce parse trees that comprise lexical items and direct relationships between

them. They include Lexical Functional Grammar (LFG) [138], Head-Driven Phrase

Structure Grammar (HPSG) [140], Dependency Grammar [141], Categorial

Grammar [142], Lexicalised Tree-adjoining Grammar (LTAG) [143].

Besides generative grammar, there are semantic-based grammars which seek to

create semantic representation of sentences. This group of grammatical framework

include Semantic Grammar [146] and Case Grammars [144, 145]. Aside from

generative and semantic-based grammars, there are stochastic grammar such as

Probabilistic Phrase Structure Grammar, and functional grammar such as Role and

Reference Grammar [148].

A key problem that designers of syntactic parsing systems for natural language

have to contend with is ambiguity. Ambiguity increases the range of possible parse

trees for a given sentence. There are various types of ambiguity such as lexical

ambiguity, structural ambiguity, and referential ambiguity. Lexical (or categorical)

ambiguity arises when a word in a sentence can be assigned to more than one

syntactic category depending on its linguistic context. It is usually resolved at the

tagging phase, where input to a parser consists of syntactic tags.

Structural ambiguity could be local or global. It is local ambiguity when part (and

not the whole) of a sentence such as a phrase can be assigned to various structures

and meanings if taken out of context. An example is: The man who accompanied

the lady paid the bill. Here, the phrase, the lady paid the bill has a meaning that is

Chapter 2 - Literature Survey

 14

different from that of the whole sentence. Global ambiguity arises when a whole

sentence has more than one possible interpretation. An example is: Visiting

lecturers can be expensive.

Referential ambiguity arises when more than one object is being referred to by a

noun phrase. An example is: When they had finished writing their test, the students

and lecturers left. Here, “they” could refer to only the students, only the lecturers

or both groups.

2.2.2 Role of parsing in Natural Language Understanding

Syntactic parsing is an essential part of the process of understanding natural

language texts. In assigning tree structures to sentences in a text, parsing

identifies the roles of words in a sentence. A parse of the following sentences,

James bit Jane and Jane bit James, would identify the noun phrase/subject and

enable the understanding of who did what to whom in each case. Besides, parsing

highlights the structural relationships between words and phrases in a sentence. A

parse of the following sentences, Visiting lecturers ARE exciting and Visiting

lecturers IS exciting, would identify the subject – verb agreement and enable an

understanding of the different meanings conveyed by each of these two sentences.

Parsing can also identify relationship between words in neighbouring sentences.

However, most successful natural language analyses do not consider syntax alone.

Other aspects of analysis considered include semantics, pragmatics and discourse

integration. In adopting these components for the realisation of successful syntactic

parsing systems, psycholinguistic researchers have used two different approaches:

treating parsing as a two-stage model [10, 11, 12] and as a multiple constraint-

based model [13, 14, 15, 16, 22].

Chapter 2 - Literature Survey

 15

The two-stage parsing model (also known as the Garden-Path or “Fodorian” model)

considers parsing to be a two-stage process with syntactic information playing a

crucial role in the first stage. The second stage, which acts as a post-processing

stage independent of the first, uses other linguistic information (semantics,

pragmatics, discourse, etc) to evaluate and possibly revise the analysis done at the

first stage. Any structural ambiguity that arose at the first stage is likely to be

resolved at the second stage.

Multiple constraint-based models implement parsing by allowing various

components of linguistic information (syntax, semantics, pragmatics, discourse,

etc) to interact simultaneously during online processing. They restrict the use of

particular components of linguistic information in sentence processing and allow for

parallel evaluation of alternative syntactic analyses.

2.2.3 Parsing Methods

The two main methods of parsing are top-down and bottom-up parsing. Top-down

parsers construct parse trees by working from the start symbol (the root of the

parse tree) to the terminals (the leaves of the parse tree) that make up the input

sentence. Bottom-up parsers construct parse trees, beginning from the terminals

that make up the input sentence and work up to the start symbol. Apart from this

main classification, parsing techniques can also be grouped based on directionality

[32].

Focusing on the directionality classification, parsing techniques can be directional or

non-directional. Non-directional parsers construct parse trees by processing the

terminals in the input string in an arbitrary order. This method needs the entire

input to be in working memory before parsing can commence. An example of a

Chapter 2 - Literature Survey

 16

non-directional parser is the Unger parser [33]. The Unger parser can also be

classified as a top-down parser. Another non-directional parser, which is also a

bottom-up parser, is the CYK parser [34, 35, 36, 37].

Directional parsers construct parse trees by processing the terminals in the input

string from left to right (or, from right to left). With this method, and as with the

human sentence processor (HSP), the entire input does not need to be in working

memory as parsing can commence, and progress, before the last symbol (or the

first symbol if parsing from right to left) in the input string is seen. This group of

parsers could be further grouped into non-deterministic and deterministic parsers.

Non-deterministic directional parsers often have several moves to choose from, in

their bid to solve parsing problems, with the particular choice not being

predetermined. Search for the solution could either be depth-first or breadth-first.

Recursive descent parsers, which are top-down, depth-first parsers, are examples

of non-deterministic directional parsers. Other examples are Earley parsers [38]

and Tomita parsers [39, 40] which are both bottom-up parsers that employ the

breadth-first search technique.

Deterministic directional parsers are restricted to one possible move in each

decision case, while solving parsing problems. The moves to be made are

determined by the input string. An example of this group of parsers is the LL(k)

(Left-to-right, “identifying the Left-most production”; k is the number of look-

ahead symbols) parser [41], which is also a top-down parser. Examples of bottom-

up parsers which belong to this group are LR(k) [42], LALR [43, 44], and SLR

(Simple LR) parsers.

All the parsing methods treated above could be classified as top-down or bottom-

up. However, a method of parsing that can not be classified into one of these two

main groups, because it is a hybrid between them, is left-corner parsing [45]. Left-

Chapter 2 - Literature Survey

 17

corner parsers have the right-hand-side of each production rule split into two parts,

the left part (called the left corner) and the right part. The left corner is identified

with a bottom-up method. When the left-corner has been identified, the right part

is then parsed with a top-down method.

In implementing these methods of parsing, symbolic, statistical and connectionist

approaches have variously been employed. Hybrids of these approaches have also

been used.

2.2.4 Connectionist Parsing

Connectionist (or, artificial neural network-based) parsing systems make use of

parallel distributed processors which consist of simple processing units that interact

to acquire and store linguistic knowledge and make this knowledge available for

solving parsing problems. These networks are presented with representations of

sentence examples, from which linguistic knowledge is acquired through a learning

process. The knowledge acquired is stored in the networks’ synaptic weights, which

link the simple processing units (or, nodes) together.

Knowledge representation in connectionist networks could either be localist or

distributed. Localist networks are designed in such a way that individual units

denote particular concepts or features. These individual units are clearly labelled

making their roles in such networks obvious. However, information is not shared

among the different components of the network, creating inefficiency in terms of

connections and nodes. Distributed networks are designed in such a way that

concepts or features are denoted as patterns of activation distributed across several

units in the network. They exhibit a high fault-tolerance as the loss of one or more

units may not necessarily lead to the network losing all of its representation of a

particular concept.

Chapter 2 - Literature Survey

 18

2.3 Localist Parsing Models

Localist models were the earliest connectionist attempts at parsing. Parsing models

developed by Small [46], Cottrell [48] (an extension of word-sense disambiguation

work done by Small, Cottrell, and Shastri [47] and implemented by Cottrell [49]),

Howells [50], and Waltz and Pollack [51] are multiple constraint based localist

models that allow syntactic and lexical-semantic constraints to interact in attempts

to solve parsing problems. These models, apart from [50] and [51], accommodate

only fixed-length sentences and, therefore find it difficult to deal with recursive,

context-free structure which is likely to lead to long sentences.

Fanty [52] and Rager’s [53] models are localist models that implement the CYK

parser [34, 35, 36, 37], while Selman and Hirst’s [54, 55] model implements a

variation of the Boltzman machine [56]. These models can only deal with fixed-

length sentences; they therefore rely on redundant structure. This reduces the

complexity of language structure they can handle. They, also, do not incorporate

other types of linguistic information into parsing.

Charniak and Santos’ parsing model [57] uses a sliding input window on a localist

network. This makes it able to process sentences of unbounded length. However, it

is unable to process long-distance dependencies. Generally, localist networks

manifest difficulty in functioning as language processors because of the manner of

their input representation [9, 109, 110].

2.4 Distributed Parsing Models

Distributed parsing models exhibit the fault-tolerance associated with neural

networks that use distributed representations. Early distributed models employed in

language processing [58, 59, 60] used feed-forward multi-layer perceptrons (FF-

Chapter 2 - Literature Survey

 19

MLP) architectures for their networks. These networks were mostly trained with

Back-propagation algorithm. These early models were able to learn and, given their

distributed representation, had the potential to combine several types of linguistic

information into their input vectors. However, these models were limited by fixed

length restrictions on their input vectors. In designing these models, maximum

sentence lengths had to be pre-determined so that the number of input units could

be fixed. This meant that apart from the redundancy that would result in processing

sentences of lengths lower than the maximum, sentences with lengths above the

maximum could not be processed. These models were, therefore, not well equipped

for linguistic inputs which require sequential processing.

In a bid to erase the limitation from the fixed inputs, several distributed parsing

models [61, 62, 63] adopted sliding input windows. With these windows, a fixed

number of sentence tokens were presented to the networks per time step, instead

of presenting whole sentences at once. This ensured that sentence lengths were not

restricted. However, input window sizes limited temporal context and, therefore,

restrained the disambiguation capability of the models.

In view of the temporal sequence processing needs of language, language

processing models [18, 19, 64, 65] have increasingly turned to recurrent neural

networks [66, 67, 68, 69]. A modified version of backpropagation, referred to as

Backpropagation Through Time (BPTT) [104], is commonly used to train recurrent

networks to better learn temporal dependencies using gradient-based information.

Although marginal improvements have been reported, these are very limited due to

gradient information about previous input items diminishing rapidly as sequence

length increases [105]. It has also been recently reported that although BPTT may

not be suitable for learning complex temporal problems, recurrent neural network

architectures are themselves capable of representing the solution [106] – a more

effective learning algorithm is required to determine the optimum weight values.

Chapter 2 - Literature Survey

 20

Subsequently, there is much research on either improving gradient descent learning

[107, 108] or searching for alternative learning algorithms.

2.5 Hybrid and Modular Parsing Models

To contend with the complexity of processing natural language, connectionist

parsers have had modularity and hybridity introduced into them. The modularity

feature in connectionist parsers involves breaking the parsing problem into simpler

tasks and employing specialist modules (some of which may be non-connectionist)

to solve these tasks. In doing this, the learning task is simplified and different

connectionist network architectures (e.g. Feed forward Multilayer Perceptron (FF-

MLP), Simple Recurrent Network (SRN) [66] and Recursive Auto-associative

Memory (RAAM) [70]) are used to their strengths. Modular connectionist parsing

models could be pure (with all the modules being connectionist) or hybrid

connectionist parsers.

Hybrid connectionist parsers involve the combination of connectionist and non-

connectionist (like symbolic, statistical) modules in a parser. Symbolic modules

have generally been employed in such parsers to provide storage, symbol

manipulation and control [8]. The storage provided by the symbolic modules could

be made to temporarily hold input states, intermediate parse states and full

sentential parses. They could also be made to permanently hold structured

knowledge about the language being processed.

Modular/hybrid connectionist networks [18, 63, 71, 72, 73, 74, 75, 76, 77, 78, 79,

80, 81, 82, 83, 84, 85, 86, 87, 88, 89] have exhibited a better ability to learn than

single network parsing models. They have also exhibited a greater potential to

handle more complex language structure and continue to make progress [18, 72,

81].

Chapter 2 - Literature Survey

 21

The parsing model used in this work [18, 19] is a modular/hybrid, shift-reduce

parser that integrates three connectionist modules with three symbolic modules to

automatically learn syntactic structure from a subset of the Lancaster Parsed

Corpus [20]. The process of parsing employed by this model involves two stages:

delimitation of phrases and recognition of phrase structure. The phrase delimitation

process is further broken down into two sub-processes: right-to-left delimiter (RLD)

process and left-to-right delimiter (LRD) process. Each of these two delimiter sub-

processes is implemented with the Temporal Auto-associative Simple Recurrent

Network (TASRN) [68]. The phrase structure recognition (PSR) process is

implemented with a feed-forward Multilayer Perceptron (FF-MLP). The three

symbolic modules in this parser are used to store tag and parse state information,

the resulting parse tree and the current input state. The parser has shown good

learning ability by achieving an average labelled precision/recall of 72.5% on a test

set of sentences from the Lancaster Parsed Corpus that were not used during

training. It is also adaptable to other corpora and for other syntactic and semantic

annotations without biasing its architecture; in this work, it has been adapted to

the BLLIP 1987-89 WSJ Corpus [90] and its input representation has also been

further adapted to include semantic information.

2.6 Semantic Annotation Schemes

Reported work that made use of WordNet have been reviewed with the aim of

noting how the WordNet taxonomy is applied. Paul Buitelaar and his colleagues

[124] describe an unsupervised semantic tagger, applied to German, but which

could be used with any language for which a corresponding “XNet” (WordNet,

Germanet, etc), POS tagger and morphological analyzer are available. Their system

treats all synsets and their hypernyms as semantic classes to which a word may

belong. The evaluation corpus used was manually annotated by two annotators with

Chapter 2 - Literature Survey

 22

differences in annotation solved by arbitration. In cases where annotators were

unable to distinguish between senses, they had the option of choosing more than

one sense. This follows from Buitelaar’s earlier work [117]. In reporting this earlier

work, Buitelaar suggests that semantic tagging should be viewed as more than

disambiguation between senses. He suggests further that some senses may be

systematically related (systematic polysemy) and should therefore not be

disambiguated; rather, they should be left underspecified. To support this, a “new”

type of lexicon, “CoreLex” was created through a design based on systematic

polysemous classes. “Corelex”, which uses a set of 442 polysemous classes, was

also used in annotation work reported by Pustejovsky and colleagues (including

Buitelaar) [125].

Fellbaum [126], Palmer [127], Kingsbury[128] and Miller [129] report on sense

tagging tasks that involved the annotation of content words with WordNet synsets.

Miller’s [129] work is the WordNet group’s annotation of a subset of the Brown

Corpus; it is the basis for the determination of frequencies for senses in WordNet.

Semantic annotation work done by Fellbaum [126], Palmer [127], and Kingsbury

[128] are on the Wall Street Journal Corpus. However, they are geared towards the

representation of predicate-argument structure, rather than classical surface

grammatical analysis. Resnik [120] reports on a method for automatic sense

disambiguation of nouns, using WordNet senses. His method also permits the

assignment of higher-level WordNet categories rather than sense labels.

The semantic annotation work reported above made use of sense distinctions that

are too fine-grained for practical use, considering there are approximately 48,800

noun synsets (word meanings) in WordNet. Chang [130] present work that assigns

domain tags to WordNet entries, using a domain taxonomy which they established

(from a combination of WordNet and The Far East Dictionary). Their reported work

was still at a preliminary stage.

Chapter 2 - Literature Survey

 23

Reported work not based on WordNet include that by Ceusters [123] which

presents the “Cassandra II” syntactic-semantic tagging system, a bracketing

technique combining phrase structure tagging with semantic tagging. It is used to

annotate parallel corpora of medical texts in different languages for marking

similarities independent of a specific grammar formalism. Its technique is akin to

thematic case role assignment. Dill and his IBM colleagues [131] report on

“SemTag”, an application written on the “Seeker” platform (a platform for large-

scale text analytics) to perform automated semantic tagging of large corpora. Berg

[77] presents “XERIC” networks which parse and represent sentence structure

while also performing number-person and lexical disambiguation. Mayberry, III and

Miikkulainen [122] present “INSOMNET”, a connectionist model trained on semantic

representations from LINGO Redwoods HPSG Treebank of annotated sentences.

Zelle and Mooney [132] present a system that employs inductive logic

programming to learn a shift-reduce parser that integrates syntactic and semantic

constraints to produce case-role representations.

Lowe and colleagues [133] present a frame-semantic approach to semantic

annotation. They argue that the number and arrangement of semantic tags must be

constrained, lest the size and complexity of the tag sets used for semantic

annotation become unwieldy both for humans and computers.

2.7 Summary

Syntactic parsing is fundamental to automatic natural language processing

systems. The two main methods of parsing are top-down and bottom-up. Parsing

techniques can also be classified in terms of directionality – directional and non-

directional parsers. All parsing techniques can be grouped as either top-down or

bottom-up, apart from, left-corner parsing which is a hybrid of both classes.

Chapter 2 - Literature Survey

 24

Symbolic, statistical and connectionist approaches have been used to implement

the various parsing techniques. Hybrids of these approaches have also been used.

Connectionist (or, artificial neural network-based) parsing systems could be localist,

distributed or modular/hybrid. Modular/hybrid connectionist parsing models have

exhibited superiority over the other types of connectionist parsers because of their

better ability to learn and their competence in handling complex language

structure. They have also been used to combine several types of linguistic

information and continue to make significant progress.

 25

3. PRELIMINARY ANALYSIS OF THE EXISTING

CONNECTIONIST PARSING MODEL

3.1 Introduction

The existing parsing model [18, 19] used in this work employs a parsing process

that involves two stages: delimitation of phrases and recognition of phrase

structure. The phrase delimitation process is further broken down into two sub-

processes: a right-to-left delimiter (RLD) process to discover the beginning of a

phrase and a left-to-right delimiter (LRD) process to discover the corresponding

end of the phrase. Each of these two delimiter sub-processes is implemented with

the Temporal Auto-associative Simple Recurrent Network (TASRN) [68]; training of

the networks is done with the standard back-propagation algorithm. This network,

given its sequential input and feedback to context nodes, is architecturally better

equipped than feed forward multilayer perceptrons (which are well-equipped for

general-purpose pattern recognition and function approximation) in dealing with the

temporal sequential nature of language and the dependencies that exist between

words/phrases in sentences [66, 111].

As part of the preliminary stage of this project, experiments were set up to improve

the performance of back-propagation learning by the delimiters, considering their

vital temporal sequence processing role in the parser. The aims of these

experiments were to reduce the tendency for the hidden neurons to be driven into

saturation and to obtain optimal learning rates, momentum constants and network

sizes for the two modified delimiter networks. With the same motive of improving

learning by the delimiter networks, cross-validation was introduced to determine

the stopping criterion during training. The generalisation performance of the refined

delimiter modules were compared with that of the existing parser’s [18, 19]

delimiter modules. Their average labelled precision/recall measure (defined in

Chapter 3 - Preliminary Analysis of the Existing Connectionist Parsing Model

 26

section 3.7) was also compared. To enable this comparison, all experiments in this

chapter were run with training/test data sets drawn from the Lancaster Parsed

Corpus. These experiments are covered in the following sections of this chapter.

3.2 The Existing Parsing Model

The existing parsing model [18, 19, 111] used for the investigations in this work is

a hybrid shift-reduce, syntactic parser that integrates modular connectionist

architectures with symbolic structures to automatically learn syntactic structure

from annotated sentence examples. These sentence examples were extracted from

the Lancaster Parsed Corpus (LPC) [20]. The LPC is therefore used as the

fundamental basis of linguistic knowledge for this parsing model. Using this corpus,

instead of strict grammar rules, enables the connectionist networks employed to

learn less constraining grammars implicitly.

The process of parsing employed by this parsing model involves two stages:

delimitation of phrases and recognition of phrase structure. The phrase delimitation

process is further broken down into two sub-processes: right-to-left delimiter (RLD)

process and left-to-right delimiter (LRD) process. Each of these two delimiter

processes is implemented with the Temporal Auto-associative Simple Recurrent

Network (TASRN) [68]. The phrase structure recognition process is implemented

with a feed-forward Multilayer Perceptron (MLP).

The model also uses three core symbolic structures to store input symbols (word

and constituent tags), properties of these input symbols and the phrase structure

tree. These are: a linked list used to store tag information, a stack to store parse

state and another stack to store the current input state.

Chapter 3 - Preliminary Analysis of the Existing Connectionist Parsing Model

 27

This model achieved an average labelled precision/recall of 73% on a test set of

sentences that were not used during training.

3.2.1 The Lancaster Parsed Corpus (LPC)

The Lancaster Parsed Corpus (LPC), a sub-set of the Lancaster-Oslo/Bergen (LOB)

Corpus [112], is a corpus of British English sentences selected from printed

publications of the year 1961. Each word in the LPC is tagged with its syntactic

category using the CLAWS [113] word tagger. Each sentence in the corpus has

been syntactically analysed in the form of labelled bracketing. This syntactic

analysis has been done by computer, using a HMM-based probabilistic parser [114].

The syntactic analysis is completed using manual correction by several researchers.

The LPC contains 134,740 words, distributed in 11,827 sentences (13.29% of the

LOB corpus); an average of 11.39 words per sentence. Most sentences over 20-25

words in length found in the LOB corpus were omitted from the LPC; in setting up

the LPC, the prototype probabilistic parser developed to automatically parse the

whole of the LOB corpus was unable to achieve a parse of most sentences over 20-

25 words in length. There are samples, in the LPC, from each of the 15 genre

categories in the LOB corpus. These categories are Press (Reportage), Press

(Editorial), Press (Reviews), Reviews, and Skills, Trades and Hobbies. Other

categories are Popular Lore, Belles Lettres, Biography and Essays, Miscellaneous

(government documents, etc), General Fiction and Learned and Scientific Writing.

The remaining categories are Humour, Science Fiction, Mystery and Detective

Fiction, Adventure and Western Fiction, and Romance and Love Story.

Chapter 3 - Preliminary Analysis of the Existing Connectionist Parsing Model

 28

3.2.2 Tag Representation

In order to adapt the parsing model to the pre-tagged LPC, an input representation

was designed. This input representation was designed in such a way as to enhance

the training process by reflecting similarities between symbols into their coding. To

attain this, the input space is separated into regions; each region represents a

group of symbols of the same type. 12 different symbol groups (5 terminal symbol

groups and 7 non-terminal symbol groups) exist. The 5 terminal symbol groups

are: punctuation, conjunctions, nouns, verbs, and prepositions. The 7 non-terminal

groups are sentences, finite clauses, non-finite clauses, major phrase types, minor

phrase types, slash tag phrases and coordinated phrases. These groups are

represented using separate fields of the input vector.

Linear binary coding is used to represent the symbols within their respective group

fields. An additional bit is used in the field to denote a symbol of that particular

group type. This implies that the number of bits in each field is the minimum

number required to represent all the symbols in the particular group plus 1.This

representation scheme, shown in figure 3.1, ensures that patterns for symbols in

different groups are always orthogonal to one another; patterns for symbols within

a group are not orthogonal to one another.

Chapter 3 - Preliminary Analysis of the Existing Connectionist Parsing Model

 29

61 bits

27 bits 34 bits

P
u
n
c
tu
a
ti
o
n

C
o
n
ju
n
c
ti
o
n
s

N
o
u
n
s

V
e
rb
s

P
ro
p
o
s
it
io
n
s

S
e
n
te
n
c
e
s

F
in
it
e
 C
la
u
s
e
s

N
o
n
-f
in
it
e
 C
la
u
s
e
s

M
a
jo
r
P
h
ra
s
e
 T
y
p
e
s

M
in
o
r
P
h
ra
s
e
 T
y
p
e
s

S
la
s
h
 T
a
g
 P
h
ra
s
e
s

C
o
o
rd
in
a
te
d
 P
h
ra
s
e
s

5 3 8 7 4 3 4 5 6 4 7 5

Word Tag Section Constituent Tag Section

Figure 3.1: Word tag and constituent representation

A total of 61 bits are used, in this tag representation scheme, to encode all possible

input symbols.

3.2.3 Parsing Architecture and Algorithm

3.2.3.1 The Architecture

This parsing model employs a modular, hybrid parsing architecture comprising

three connectionist and three symbolic modules. The connectionist modules are

used for the two fundamental processes involved in syntactic parsing: phrase

boundary identification and phrase structure recognition. The symbolic modules are

used for storage and to enhance the flow of information between different

connectionist modules.

Chapter 3 - Preliminary Analysis of the Existing Connectionist Parsing Model

 30

3.2.3.2 Phrase Delimitation

The phrase boundary identification, or phrase delimitation process is further broken

down into two sub-processes; phrase delimitation requires the identification of both

the beginning and end of a phrase or clause. These two sub-processes

(implemented by two of the three available connectionist networks) are the right-

to-left delimiter (RLD) process to identify the beginning of a phrase, and the left-to-

right delimiter (LRD) process to identify the corresponding end of the phrase.

Since the number of input symbols processed by the each of the delimiter networks

before the beginning (or end) of a phrase is encountered is variable and not known

a priori, a recurrent neural network that is able to sequentially process linguistic

input is assigned to each of the delimiter processes. The recurrent network

assigned to these tasks is the Temporal Auto-associative Simple Recurrent Network

(TASRN) [68]. This network is shown in figure 3.2.

Figure 3.2: The TASRN architecture used for the LRD and RLD modules

Chapter 3 - Preliminary Analysis of the Existing Connectionist Parsing Model

 31

The TASRN architecture has recurrent connections feeding back from the hidden

units (these represent the internal reduced description of the input representation)

back to the input units. The network also has, as elements of its output vector, the

phrase boundary indicator (a bit in the output vector) and all the elements of the

previous hidden and current input vectors. This architecture is set up to achieve

auto-associative learning of the current input and hidden state during each stage of

processing. It provides for temporal processing of linguistic input. Its memory limit

is also enhanced by the availability of targets at every processing stage (input

symbol and previous hidden state are produced as part of the output vector for

every processing stage).

The phrase boundary indicator bit in the output vector of the delimiter networks

uses a value between 0 and 1 to indicate when a phrase boundary has been

encountered by the delimiters. A ramp followed by a step function is used to train

this output unit; this indicates the phrase boundary when it is encountered while

also indicating the proximity to the phrase boundary at each stage of processing a

sequence. The output for the first symbol in a sequence is a ‘don’t care’. The output

for the next symbol is 0. This ramps up to 0.4 for the penultimate symbol, and

finally outputs 1 for the last symbol (beginning or end of phrase).

3.2.3.3 Phrase Structure Recognition

The Phrase Structure Recognition (PSR) module is used in the parsing model to

classify collections of word and constituent tags as syntactic phrases, denoting each

of these collections with a single syntactic tag. The collections of word and

constituent symbols fed into the PSR module as input are derived from processing

carried out by the two delimiter modules on the input sequences to the parser.

Chapter 3 - Preliminary Analysis of the Existing Connectionist Parsing Model

 32

The PSR module is implemented using a feed-forward, Multilayer Perceptron (MLP)

architecture, with a single hidden layer.

3.2.3.4 Symbolic Parse Organisation

While the connectionist modules cater for the linguistic constraints and actions to

be carried out by the parser, the symbolic modules of this parser enable simple

communication between the connectionist networks. These symbolic structures also

allow the interpretation of the parser’s actions as a whole. Three core symbolic

structures, a linked list and two stacks, are used for storage in this parser. A linked

list is used to hold tag information for the words and constituents, as provided in

the used corpus. The Parse-stack is used to store parse state information and the

resulting parse tree for each sentence. The Input-stack holds the current input

state.

Apart from the core symbolic structures, temporary stacks are used to hold data

passing between the RLD and LRD modules, and between the LRD and PSR

modules.

3.2.3.5 The Algorithm

A supervisory code, the Scheduler, controls the interaction and flow of information

between the connectionist and symbolic modules of this parsing model. The

scheduler implements a deterministic shift-reduce parsing strategy which parses

from right to left. The shift-reduce algorithm implemented by this parser is similar

to that defined by Shieber [115, 116].

The parser accepts, as input, word tags and constituent tags used to annotate the

Lancaster Parsed Corpus (LPC). Word tags represent the grammatical class of the

Chapter 3 - Preliminary Analysis of the Existing Connectionist Parsing Model

 33

word. Constituent tags represent the syntactic phrases or clauses for a particular

group of words and/or phrases.

With this model, the parsing of each sentence commences by passing its word tags

sequentially to the Right-to-Left delimiter (RLD) module. The passing of these word

tags to the RLD begins with the last tag of the sentence and shifts to the left; this

goes on until the output of the RLD triggers to indicate the beginning (left-hand

phrase boundary) of the first phrase to be reduced. The word tags are then passed

sequentially to the Left-to-Right (LRD) delimiter module, beginning with the left-

hand boundary tag, but now shifting to the right; this continues until the output of

the LRD triggers to indicate the end (right-hand phrase boundary) of the first

phrase to be reduced. The identification of the phrase boundaries provides the

Scheduler with enough information to define the position and width of the reduction

window; the tags within these boundaries are passed as input to the Phrase

Structure Recogniser (PSR) modules. The output of the PSR, a constituent tag, is a

reduction which is then substituted for the phrase in the sentence sequence on the

Input-stack. After these, delimitation begins again. The delimiters are reset, and

the RLD input is drawn once again beginning from the end of the sentence stored

on the Input-stack. This time, the input sequence to the RLD will include one non-

terminal symbol (constituent tag) amongst the remaining terminal symbols (word

tags).

The process of delimitation, followed by reduction and substitution is repeated,

thereby continuing the parse, until the reduction produces the sentence symbol.

The output of the parser after each shift-reduce processing stage is a phrase or

clause represented in the labelled bracketing format. The final parser output is a

labelled bracketing structure that encodes the parse tree for the entire sentence.

Chapter 3 - Preliminary Analysis of the Existing Connectionist Parsing Model

 34

3.3 Reducing Saturation

The TASRN architecture used for the delimiters, as shown in figure 3.2 [18, 19],

has, as elements of its output vector, the phrase boundary indicator and all the

elements of the previous hidden and current input vectors. Its target vector

(desired response) has a similar composition. The values of the target vector

elements need to be kept within the range of the logistic activation function, 0 to 1.

This is to curb the tendency of the back-propagation algorithm to drive the free

parameters of the delimiter network to infinity, thereby slowing down the learning

process by driving the hidden neurons into saturation [94]. The purpose of this

experiment was to select a set of input values that would reduce the tendency for

the delimiter hidden nodes to be driven into saturation.

The experiment was carried out with two sets of input values. The first set had

input vector element values, 0 and 1. The second set involved offsetting the input

vector element values from the first set by 0.2. That is, 0 was offset to 0.2 and 1

was offset to 0.8. Training sessions were run with input values of 0.2 and 0.8 and

the results were compared with sessions run with input values of 0 and 1. Training

sessions were run till the rate of learning (rate of decrease of the RMSE) was

empirically observed to have minimised. 2500 epochs were run with the right-to-

left delimiter (RLD) while 3500 epochs were run with the left-to-right delimiter

(LRD).

The root mean square error (RMSE) for the two sets of inputs was plotted against

the number of epochs for the LRD and RLD as shown in figures 3.3 and 3.4. For

both delimiters, the 0.2_0.8 inputs produced smoother RMSE curves although the

0_1 inputs produced a lower final RMSE. The high spikes observed on the RMSE

curves with the 0_1 inputs, compared to the very low spikes (almost smooth)

observed with the 0.2_0.8 inputs can be attributed to the difference between the

Chapter 3 - Preliminary Analysis of the Existing Connectionist Parsing Model

 35

low (0 and 0.2) and high (1 and 0.8) values of the input sets and the impact of this

difference on the error calculated after each forward pass.

Generalisation tests were also run for the RLD and LRD with the two sets of inputs,

using a pure test set (this sample set is disjoint with the training set). For the RLD,

after 2500 epochs the 0.2_0.8 input produced a sequence generalisation of

83.4397% compared to 85.5051% produced by the 0_1 inputs.

For the LRD, after 3500 epochs the 0.2_0.8 input produced a sequence

generalisation of 90.445% compared to 84.1623% produced by the 0_1 inputs.

From the sequence generalisation results of the experiments, the 0.2_0.8 inputs

displayed better performance for the LRD while the 0_1 inputs displayed better

performance for the RLD (having also displayed better RMSE values). Because of

the difference in generalisation performance of the two input sets on the LRD and

RLD, the 0.2_0.8 input was only temporarily chosen for the optimal learning

rate/momentum constant experiment (This did not affect the outcome of the

investigations as all the parameters used were the same apart from the different

learning rate/ momentum constant cases). The 0_1 input was, however, selected

after it still came out with better performance when trained with optimal learning

rate/momentum constant.

Chapter 3 - Preliminary Analysis of the Existing Connectionist Parsing Model

 36

LRD RMSE Comparison (0_1 Vs 0.2_0.8 Inputs) over 3500 epochs

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 133 265 397 529 661 793 925 1057 1189 1321 1453 1585 1717 1849 1981 2113 2245 2377 2509 2641 2773 2905 3037 3169 3301 3433

Number of Epochs

R
M

S
E

0_1 Input

0.2_0.8 Input

Figure 3.3: Plot of RMSE Against Number of Epochs (LRD)

RLD RMSE Comparison (0_1 Vs 0.2_0.8 Inputs) over 2500 epochs

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 92 183 274 365 456 547 638 729 820 911 1002 1093 1184 1275 1366 1457 1548 1639 1730 1821 1912 2003 2094 2185 2276 2367 2458

Number of Epochs

R
M

S
E

0_1 Input

0.2_0.8 input

Figure 3.4: Plot of RMSE Against Number of Epochs (RLD)

Chapter 3 - Preliminary Analysis of the Existing Connectionist Parsing Model

 37

3.4 Optimal Learning Rate/Momentum Constant

This set of the experiments aims to improve back-propagation learning on the

delimiters by selecting the optimal combination of learning rate type, learning rate

(or initial learning rate) and momentum term.

Three learning rate types were considered – fixed learning rate, search-then-

converge learning rate [91], and delta-bar-delta learning rate [92]. Two

momentum constants were used; 0.9 and 0.5. The training data set, which was

scaled down (10167 patterns and 1354 sequences) to limit training time, had

inputs of 0.2 and 0.8. All training sessions were done with 60 hidden nodes (chosen

because of the reduced data set) and run for 2000 epochs (uniform training

duration for all the learning rate type/momentum constant cases). With each

momentum constant, training sessions were carried out with learning rate, η, fixed

at 0.01, 0.1, 0.2, 0.3, 0.35 and 0.4. After that, for each momentum constant, α,

training sessions were carried out using the search-then-converge learning rate

with initial learning rates of 0.01, 0.1, 0.2, 0.3, 0.35 and 0.4.

Using the fixed learning rate schedule, the learning rate, η in the weight adaptation

rule for standard back-propagation remained constant throughout the duration of

training. The weight change, at time t+1, for weight ωij is as follows:

∆ωij(t+1) = ηδjoi + α∆ωij(t)

Where δj is the local gradient of node j

 oi is the output signal of node i

With the search-then-converge schedule, the learning rate, η in the weight

adaptation rule above changes every time step as follows:

 η(t) = η0/(1 + (t/τ))

 where η0 and τ are user-selected constants.

Chapter 3 - Preliminary Analysis of the Existing Connectionist Parsing Model

 38

Training sessions were also run using the delta-bar-delta learning rate algorithm.

This algorithm comprises a weight update rule and a learning rate update rule, and

allows each weight to have its own learning rate. Each weight’s learning rate varies

with time as training progresses. The direction of learning rate change for each

weight depends on the direction of the weight change; if the weight change is in

the same direction over several time steps, the learning rate for that weight is

increased, otherwise, it is decreased. The new learning rate for each weight at

time, t + 1, is given by:

 ηjk(t) + κ if ∆ωjk(t – 1) ∆ωjk(t) > 0,

ηjk(t + 1) (1 – γ) ηjk(t) if ∆ωjk(t – 1) ∆ωjk(t) > 0,

{
ηjk(t) otherwise.

Where ∆ωjk(t) is the weight change, at time t, for weight ωjk

and, κ and γ are constants

Apart from requiring more processing time than the other two learning rate types

considered, this learning rate type did not produce better generalisation

performance than the other two and, so its results were not considered in the final

performance ranking. From the plots of RMSE against Number of epochs for the

different learning rates/ momentum constants, the learning rate and momentum

constant combination that gave the best outcomes (assessed by the curves that

converged at the lowest RMSE in fewer epochs and that produced the lowest RMSE)

are shown in table 3.1.

Chapter 3 - Preliminary Analysis of the Existing Connectionist Parsing Model

 39

Table 3.1: Training performance for combinations of learning rate /momentum term

Momentum

Term

Learning

Rate Type

(Initial)

Learning

Rate

RMSE Epoch Rank

0.9 Search-

then-

converge

0.3 0.100639 1301 1

0.9 Search-

then-

converge

0.4 0.101999 1303 2

0.5 Search-

then-

converge

0.4 0.100865 1335 3

0.5 Fixed 0.4 0.111686 1895 4

The pattern and sequence generalisations (using a natural test set) for the four

listed parameter combinations were also the best. Their generalisation

performances are as shown in table 3.2.

Based on the results shown in table 3.2, the search-then-converge learning rate

with an initial rate of 0.4 and a momentum term of 0.9 were selected as the

optimal combination. The difference in the top two ranking positions for the training

and generalisation performance indices is because the RMSE values are calculated

on a pattern by pattern basis (on-line mode) rather than at the sequence level.

Chapter 3 - Preliminary Analysis of the Existing Connectionist Parsing Model

 40

 Table 3.2: Generalisation performance for combinations of learning rate/momentum

term

Momentum

Term

Learning

Rate Type

(Initial)

Learning

Rate

% Sequence

Generalisation

% Pattern

Generalisation

Generalisation

Performance

Rank

0.9 Search-

then-

converge

0.4 72.5366 95.5343 1

0.9 Search-

then-

converge

0.3 72.2727 95.3443 2

0.5 Search-

then-

converge

0.4 71.1718 95.1693 3

0.5 Fixed 0.4 67.3301 94.4783 4

Chapter 3 - Preliminary Analysis of the Existing Connectionist Parsing Model

 41

3.5 Optimal Network Size

With the number of input layer neurons already fixed by the representation

technique used, the network size of an artificial neural network depends on the

number of neurons in its hidden layer. This makes hidden layer neurons responsible

for properties of the network such as the ability to learn and to generalise. If the

number of hidden layer neurons is too small, the network will be unable to learn. If

the number is too large, the network will over-fit its training data and therefore be

unable to generalise. The purpose of these experiments was to determine optimal

network sizes (this is vital for optimal network performance [93, 94]) for the right-

to-left (RLD) and left-to-right (LRD) networks by adopting, for each network, the

number of hidden layer nodes that produced the best generalisation performance

during training. The number of hidden layer neurons adopted for the RLD and LRD

networks used in the existing parsing model [18, 19] were 165 and 110,

respectively. These network sizes were chosen ahead of others because they

produced the lowest root mean square errors during training [18, 19].

Cross-validation (as described in section 3.6) was used in this set of experiments.

Training the delimiter networks involved halting the standard training process every

50 epochs to run generalisation tests with the validation sets during the following

three consecutive training epochs to obtain a gradient for generalisation

performance. Cross-validation was also used to detect the beginning of over-fitting

during training; training was then stopped before convergence to check for over-

fitting. Each training session was restricted to 2000 epochs to cater for cases where

training was not stopped automatically.

In choosing the optimal number of hidden layer nodes for the delimiter networks, a

theoretical “optimal” number of hidden nodes was calculated for each delimiter by

equating the number of its weights to the sum of the products of sequence lengths

Chapter 3 - Preliminary Analysis of the Existing Connectionist Parsing Model

 42

and their frequencies. Hidden node values were then selected between these

“optimal” number of hidden nodes and the number of hidden nodes used in the

existing parser. 77 and 61 hidden nodes were derived for the RLD and LRD,

respectively. For the RLD, six sizes were considered: 77, 88, 107, 126, 145 and

165 hidden nodes. The maximum test generalisation and training performance

exhibited by each hidden layer size in the course of training was recorded and

plotted as shown in fig. 3.5.

For the LRD, three sizes were considered: 61, 85 and 110 hidden nodes. The

maximum test generalisation and training performance exhibited by each hidden

node in the course of training was recorded and plotted as shown in fig. 3.6.

For the RLD, as shown in fig. 3.5, the network size with 145 hidden nodes produced

the best test generalisation (87.91%) and was therefore chosen as the optimal

network size for the RLD.

For the LRD, as shown in fig. 3.6, the network size with 85 hidden nodes produced

the best test generalisation (89.18%) and was therefore chosen as the optimal

network size for the RLD.

Chapter 3 - Preliminary Analysis of the Existing Connectionist Parsing Model

 43

Optimum Test Generalisation and Training Performance for Different Number of Hidden Nodes

(RLD)

75

80

85

90

95

100

RLD_77 RLD_88 RLD_107 RLD_126 RLD_145 RLD_165

RLD Network Size

%
 G

e
n

./
S

e
q

u
e
n

c
e
s
 L

e
a
rn

t

Test Generalisation

Training Performance

Figure 3.5: Training/Generalisation performance for different RLD network sizes

Test Generalisation and Training Performance for Different Number of Hidden Nodes (LRD)

0

10

20

30

40

50

60

70

80

90

100

LRD_61 LRD_85 LRD_110

Number of Hidden Nodes (LRD)

%
 G

e
n

e
ra

li
s
a
ti

o
n

/S
e
q

u
e
n

c
e
s
 L

e
a
rn

t

Test Generalisation

Training Performance

Figure 3.6: Training/Generalisation performance for different LRD network sizes

Chapter 3 - Preliminary Analysis of the Existing Connectionist Parsing Model

 44

3.6 Using Cross-validation for Automatic Early Stopping

During supervised training of neural networks, the objective is usually to achieve

optimal generalisation performance. Generalisation performance is the performance

of the network when presented with examples it has not seen before. However,

with training factors such as large parameter space, trained networks stand the risk

of over-fitting [95]. This is a situation during network training where the training

performance gets better while the generalisation performance gets worse.

Over-fitting can be checked with the use of cross-validation, which is a standard

technique in statistics [96]. An approach of cross-validation, known as the hold-out

method [94], involves dividing the available data set into two sets, a training set

and a test set. The training set is further split into two disjoint sets, an estimation

set and a validation set. The idea is to train the network only on the estimation set

and occasionally evaluate it on the validation set.

To curb over-fitting, a cross-validation procedure known as the early stopping

method of training [94] is used. This procedure is used to detect when over-fitting

starts during training; training is then stopped before convergence to check the

over-fitting. In carrying out this procedure, the synaptic weights of the neural

network are fixed after a period of estimation (training). A forward pass of the

network is then run, using the validation set. After error measurements have been

taken for all examples of the validation set, the training resumes for another period

and the process continues. Training is then stopped based, not on the performance

of the training data but on the performance of the validation data.

For this work, network training and test samples were drawn from the Lancaster

Parsed Corpus [20]. Data from the LPC was passed through some complexity

constraint [18, 19] before the training and test data were chosen. After the

Chapter 3 - Preliminary Analysis of the Existing Connectionist Parsing Model

 45

complexity constraint was applied, every 8th sentence was extracted for the training

(estimation) set. To ensure that the validation and test sets do not have sentences

that are present in the training set (this is essential), every 8th + 1 sentence was

extracted for the validation set and every 8th + 2 sentence was extracted for the

test set. After the training and test data had been processed to RLD and LRD

training and test sequences, the estimation set was compared with the validation

set and any sequence that occurred in both sets was removed from the validation

set, making both sets disjoint. The same process was carried out for the estimation

and test sets and the validation and test sets. All three sets, were, therefore,

disjoint. For the Left-to-right delimiter (LRD), the estimation set had 4068

sequences, while the validation set had 2292 sequences and the test set, 1871

sequences. For the Right-to-left delimiter (RLD), the estimation set had 4060

sequences while the validation set had 2663 sequences and the test set, 2262

sequences.

 Training the delimiters involved halting standard training every 50 epochs to run

generalisation tests (with the validation sets) for a further three consecutive

training epochs. Again, the purpose here is to determine a gradient for the

generalisation performance. This implies that generalisation tests were carried out

at epochs 50, 51, 52, 100, 101, 102, 150, 151, 152 and so on. If the cross-

validation test generalisation decreased over 5 successive generalisation tests,

training was stopped automatically. The result of the training would be the set of

weights that came out with the best test generalisation; only one duplicate weight

set is needed for this [102].

Chapter 3 - Preliminary Analysis of the Existing Connectionist Parsing Model

 46

3.7 Sentence Parse Performance

On completion of the experiments to optimise the temporal sequence processing

modules of the original parsing model [18, 19], the delimiter module and sentence

level performances for the original and refined models were compared.

For the delimiter module performance, the optimal weight sets obtained for the RLD

and LRD, were used to run a test on a test set not seen by the delimiters during

training. This same test set was used to test the original delimiter modules, using

the original weight sets.

The results obtained from these tests are as shown in table 3.3.

Table 3.3: Module-level performance for refined parser

Module Original Model

Delimiter (Test

Generalisation)

Refined Model

Delimiter (Test

Generalisation)

Right-to-Left Delimiter 84.8806% 83.8638%

Left-to-Right Delimiter 88.5088% 87.6537%

For the sentence level tests, the optimal weight sets for the delimiters were

plugged into the whole parser. PARSEVAL measures, a widely used standard for

assessing the performance of statistical broad coverage parsing models [103], was

used. This involved measuring the parsers’ labelled precision and labelled recall.

Labelled precision is the ratio of the number of correct constituents output by the

parser to the number of constituents output by the parser. Labelled recall is the

ratio of correct constituents output by the parser to the number of constituents in

the Treebank parse.

Chapter 3 - Preliminary Analysis of the Existing Connectionist Parsing Model

 47

Labelled Precision = (no. of correct constituents)/(no. of constituents output by

parser)

Labelled Recall = (no. of correct constituents output by parser)/(no. of constituents

in Treebank parse)

The average labelled precision/recall obtained for the original and refined parsers

are shown in table 3.4.

Table 3.4: Sentence-level performance for refined parser

Original Parser (Average Labelled

Precision/Recall)

Refined Parser (Average Labelled

Precision/Recall)

73.3% 72.5%

From the module and sentence level performance results obtained, the refinements

on the temporal sequence processing modules of the parser did not yield any

significant improvement in the parsers performance. However, the parser has

maintained its ability to learn and it is envisaged that it is adaptable to other

corpora (given its representation and modular architecture which should make it

independent of individual corpora). To confirm its adaptability to other corpora, the

parser will be extended to the widely used Wall Street Journal Corpus in the next

chapter.

 48

4. THE CORPUS-BASED PARSING MODEL:

ADAPTED TO THE WALL STREET JOURNAL

CORPUS

4.1 Introduction

As part of the aims of this work, investigations have been carried out into the

generic nature of the corpus-based, connectionist parsing model [18, 19, 111] used

for this project. This investigation has been with a view to demonstrating that the

parsing model is adaptable to other corpora and for other syntactic and semantic

annotations without its architecture or its algorithm being changed. This parser has

been trained and successfully evaluated on the Lancaster Parsed Corpus (LPC) [20].

However, the widely used Wall Street Journal (WSJ) sections of the Penn Treebank

Corpus [101] have become the internationally accepted benchmark corpus for

parsing models [5, 6, 7, 98, 99, 100]. This has informed the need to adapt the

parser to the WSJ corpus. The WSJ corpus used is the BLLIP (Brown Laboratory for

Linguistic Information Processing) 1987-89 Corpus [90] which overlaps the WSJ

portion of the Penn Treebank Corpus.

Adapting the existing parsing model to the WSJ Corpus required the extraction and

syntactic grouping of all tags used in the corpus. Binary input representations were

then designed for the tags to make them compatible with the parser. Training,

cross-validation and test data were generated from the 1989 section of the corpus

for the left-to-right delimiter (LRD), right-to-left delimiter (RLD) and phrase

structure recogniser (PSR) modules of the parser. These modules, which are the

connectionist modules of the hybrid parser, were then trained and the optimal

weight sets obtained for the sentence level evaluation of the parser.

Section 4.2 presents the nature of the BLLIP 1987-89 WSJ Corpus; its content and

tagging convention. Section 4.3 deals with the input representations designed for

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 49

the WSJ tags. In section 4.4, a parsing example of a sentence from the WSJ Corpus

is presented. Section 4.5 focuses on the training, cross-validation and test data sets

generated for the left-to-right delimiter (LRD), right-to-left delimiter (RLD) and

phrase structure recogniser (PSR) modules of the parser. In section 4.6, the

training and generalisation performances of the delimiter networks are assessed.

The training and generalisation performances of the phrase recognition network are

assessed in section 4.7 while the sentence level performance of the parsing model

on the WSJ Corpus is dealt with in section 4.8. The outcome of adapting the parsing

model to the WSJ Corpus is discussed in section 4.9.

4.2 The BLLIP 1987-89 Wall Street Journal CORPUS

4.2.1 Corpus Content

The BLLIP 1987-89 Wall Street Journal (WSJ) Corpus [90] is a pre-parsed newswire

corpus which contains a complete, Penn Treebank II-style [101, 119] parsing of the

three-year Wall Street Journal archive (provided by Dow Jones, Inc.) from the

ACL/DCI (Association for Computational Linguistics/ Data Collection Initiative)

Corpus of American English. This corpus contains about thirty million words of text,

and its parsing and part-of-speech (POS) annotation were done using statistically-

based methods developed by Eugene Charniak, Don Blaheta, Niyu Ge, Keith Hall,

John Hale and Mark Johnson [90] of the Brown Laboratory for Linguistic

Information Processing. All the processing for this corpus was implemented by

machine. The processing comprised basic parsing, grammatical/functional tag

assignment, full noun-phrase co-reference identification, pronoun reference

identification, and empty node insertion.

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 50

The BLLIP 1987-89 WSJ Corpus both overlaps and supplements the one million-

word, 1989 Wall Street Journal section of the Penn Treebank Corpus. In a bid to

save on parsing time, sentences of length greater than 70 words (including

punctuations) were not included in this corpus. The developers report that in about

one news story in a thousand, there was some parser error. These parser errors

imply that stories in which they occur get cut short; errors led to partial parses.

4.2.2 Tagging Convention

4.2.2.1 The Penn Treebank II Convention

The Penn Treebank II bracketing convention was implemented during the second

phase of the Penn Treebank Project at the University of Pennsylvania, U.S.A. The

syntactic annotation scheme used is designed to allow the extraction of simple

predicate/argument structure.

In addition to the standard syntactic constituent tags (e.g. NP, PP, VP, etc.)

functional tags are also assigned to constituents under this scheme. These

functional tags denote text categories (list markers, titles, headlines and datelines),

grammatical functions (surface subject, logical subjects in passives, true clefts, non

NPs that function as NPs, clausal and NP adverbials, non VP predicates, topicalized

and fronted constituents, closely related – adjuncts -) and semantic roles

(vocatives, direction and trajectory, location, manner, purpose and reason,

temporal phrases). For this work, as with other reported work on the WSJ Corpus

[5, 6, 7, 98, 99, 100], only the standard syntactic constituent tags are used; this is

all that is needed for skeletal syntactic analysis.

This scheme also annotates null elements in a wide range of cases.

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 51

4.2.2.2 Exceptions to the Penn Treebank II Convention

All parsing in the BLLIP 1987-89 WSJ Corpus is done using the Penn Treebank II

conventions with four exceptions. The first exception is that certain auxiliary verbs

(e.g. “have”, “been”, etc.) are deterministically labelled AUX or AUXG (e.g.,

“having”).

The next exception to the Penn Treebank II scheme in this corpus is that root nodes

are given the new non-terminal label S1 (as opposed to the empty string in the

Penn Treebank).

Another exception is that numbers attached to non-terminals indicating co-

reference are preceded by “#” (as opposed to “-” in the Penn Treebank).

The fourth exception is that two new grammatical function tags, PLE (denoting

pleonastic, a form of non-coreferential pronouns) and DEI (denoting deictic, a form

of non-coreferential pronouns) have been added.

In setting up this corpus, sentences of length greater than 70 words (including

punctuations) were ignored.

4.2.3 The BLLIP 1987-89 WSJ Corpus Vs The Lancaster Parsed

Corpus

Like the Lancaster Parsed Corpus (LPC), the syntactic part of the Penn Treebank-II

tagset (used in tagging the Wall Street Journal – WSJ -) is based on that of the

Brown Corpus. However, the annotation scheme used for the WSJ Corpus is an

extended and somewhat modified form of that used for the LPC [119].

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 52

Whereas word tags in the LPC are quite detailed and unique to particular lexical

items, the Penn Treebank tag-set is designed in such a way to eliminate lexical

redundancy. For example, the LPC distinguishes five different forms of main verbs

(VB – base form of lexical verb (uninflected present tense, infinitive); VBD – past

tense of lexical verb; VBG – present participle or gerund of lexical verb; VBN – past

participle of lexical verb; VBZ – 3rd person singular of verb). This same paradigm is

also used in the LPC for the word, have, irrespective of whether it is used as a main

or auxiliary verb (i.e. HV, HVD, HVG, HVN, HVZ). The LPC also provides tags for

three forms of do (DO – base form; DOD – past tense; DOZ – third person singular

present) and eight forms of be (BE - be; BED - were; BEDZ - was; BEG - being;

BEM - am; BEN - been; BER – are, ‘re; BEZ – is, ‘s). On the contrary, since the

distinctions between the forms of VB on the one hand and the forms of HV, DO and

BE on the other hand are lexically recoverable, they are eliminated in the tag-set

for the WSJ; only the five forms of VB are used as shown in table 4.1 below.

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 53

Table 4.1: Elimination of lexically recoverable distinctions in verbs

Word Word tag

Drink VB

Drinks VBZ

Drank VBD

Drinking VBG

Drunk VBN

Be VB

Is VBZ

Was VBD

Being VBG

Been VBN

Do VB

Does VBZ

Did VBD

Doing VBG

Done VBN

Have VB

Has VBZ

Had VBD

Having VBG

Had VBD

Another example of the elimination of lexical redundancy in the WSJ Corpus, as

opposed to the LPC, is the case of tagging words that precede articles in noun

phrases. In the LPC, the tags ABL, ABN and ABX are used to denote pre-qualifiers

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 54

(quite, rather, such), pre-quantifiers (all, half, many, nary) and both, respectively.

However, in the WSJ Corpus, a single tag, PDT is used to denote all these words (all

categorised as pre-determiners).

Null tags are used in the WSJ Corpus in cases such as WH-movement,

topicalization, indicating which lexical NP is to be interpreted as the null subject of

an infinitive complement clause and aiding the interpretation of other grammatical

structure where constituents do not appear in their default positions. Null tags are

not used in the LPC. Also, the tags, AUX and AUXG are used for auxiliary verbs in

the BLLIP WSJ Corpus. Auxiliary verbs are not denoted in the LPC.

Compared to the 184 tags (143 tags for words and punctuations; 41 tags for

constituents) used in the LPC, 84 (57 tags for words and punctuations; 27 tags for

constituents – excluding the functional tags -) are used in the BLLIP WSJ Corpus.

The Penn Treebank II tags, therefore represent coarser syntactic categories,

compared to the syntactic categories represented by the LPC tags.

The BLLIP WSJ Corpus consists of longer sentences than the LPC. Sentences of

length greater than 70 words (including punctuations) were not included in the

BLLIP WSJ Corpus. Most sentences over 20-25 words in length found in the LOB

corpus were omitted from the LPC.

4.3 Tag Representations

The first step in adapting the original parsing model [18, 19, 111] (which was

trained on the Lancaster Parsed Corpus) to the BLLIP WSJ Corpus was to design

binary input representations for the word and constituent tags used in the corpus.

The same technique used for LPC tag representation [18, 19, 111] in the existing

parser was adopted because of its success. This technique sees the creation of

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 55

input representations that aid the training process by segmenting the input space

into different regions that correspond to different word and constituent tag types.

Each segment has an associated signalling bit (its first bit) that is only active when

an input symbol belongs to a syntactic group represented by that sub-section. The

remaining bits in the segment are used to represent the particular input symbol.

This ensures that the representation of any two symbols in different syntactic

groups will be orthogonal to each other.

The fifty-seven word tags encoded were placed into five syntactic groups:

punctuations, co-ordinate conjunction, preposition/sub-ordinate conjunction, nouns

and verb groups. 19 bits of the 46-bit input space were used to represent word

tags. As an example, the word tag, NNP (Proper noun, singular) is represented as

follows:

0000000100011000000000000000000000000000000000

Punctuations, which were removed in the processing of LPC sentences are included

here, and treated the same as words. Although they add to the complexity of the

parsing task, they are expected to provide linguistic cues. This should aid decision

making during parsing.

The constituent tags were placed into thirteen groups according to their syntactic

categories: adjective phrase, adverb phrase, conjunction phrase, fragment, phrase

containing an interjection, noun phrase, prepositional phrase, phrase within

parentheses, reduced relative clause, sentence/clause, unlike co-ordinated phrase,

verb phrase, and unknown/uncertain category. 27 bits of the 46-bit input space

were used to represent constituent tags. As an example, the constituent tag, NP

(Noun phrase) is represented as follows:

0000000000000000000000000000000001001000000000

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 56

The organisation of the input representation space is as shown in figure 4.1.

46 bits

19 bits

27 bits

P
u
n
c
tu
a
ti
o
n

C
o
-o
rd
in
a
ti
n
g
 C
o
n
j.

P
re
p
o
s
it
io
n
/
S
u
b
o
rd
.
C
o
n
j.

N
o
u
n

V
e
rb

S
e
n
te
n
c
e
/C
la
u
s
e

P
a
re
n
th
e
s
is
e
d
 p
h
ra
s
e

C
o
n
ju
n
c
ti
o
n
 p
h
ra
s
e

U
n
li
k
e
 c
o
-o
rd
in
a
te
d
 p
h
ra
s
e

In
te
rj
e
c
ti
o
n
 p
h
ra
s
e

P
re
p
o
s
it
io
n
 p
h
ra
s
e

A
d
je
c
ti
v
e
 p
h
ra
s
e

N
o
u
n
 p
h
ra
s
e

A
d
v
e
rb
 p
h
ra
s
e

R
e
d
u
c
e
d
 r
e
la
ti
v
e
 c
la
u
s
e

V
e
rb
 p
h
ra
s
e

F
ra
g
m
e
n
t

U
n
k
n
o
w
n
/u
n
c
e
rt
a
in

c
a
te
g
o
ry

5 1 1 6 6 4 1 1 1 1 3 3 4 3 1 3 1 1

Word Tag Section Constituent Tag Section

Figure 4.1: Word tag and constituent tag representation

4.4 A Parsing Example

A high level description of the parsing process, using the Wall Street Journal Corpus

is presented in this section. The following sentence is used to facilitate this

description:

The rate will increase 0.25 point each quarter beginning in the third

quarter of the financing.

The input to the parser is a sequence of word tags that correspond to the words of

the sentence. Therefore, the input to the parser is as follows:

DT NN MD VB CD NN DT NN VBG IN DT JJ NN IN DT NN .

For clarity, the actual words of the sentence will be used for description in this

section.

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 57

On being presented with each sentence for parsing, the Scheduler first delimits the

sentence with asterisks. These asterisks are used as begin and end markers before

all the input symbols are pushed onto the Input-stack from left-to-right. For this

sentence the initial content of the Input-stack is:

* The rate will increase 0.25 point each quarter beginning in the third

quarter of the financing. *

Table 4.2: A parsing example

 Input-stack Extracted

Phrase

Reduction Parse-stack

Entries

1 * The rate will increase 0.25

point each quarter beginning

in the third quarter of the

financing. *

the

financing

NP (NP the financing)

2 * The rate will increase 0.25

point each quarter beginning

in the third quarter of NP. *

of NP PP (PP of (NP the

financing))

3 * The rate will increase 0.25

point each quarter beginning

in the third quarter PP. *

the third

quarter

NP (NP the third

quarter) (PP of

(NP the

financing))

4 * The rate will increase 0.25

point each quarter beginning

in NP PP. *

NP PP NP (NP (NP the third

quarter) (PP of

(NP the

financing)))

5 * The rate will increase 0.25

point each quarter beginning

in NP. *

in NP PP (PP in (NP (NP the

third quarter) (PP

of (NP the

financing))))

6 * The rate will increase 0.25

point each quarter beginning

PP. *

beginning

PP

PP (PP beginning (PP

in (NP (NP the

third quarter) (PP

of (NP the

financing)))))

7 * The rate will increase 0.25

point each quarter PP. *

each

quarter

NP (NP each quarter)

(PP beginning (PP

in (NP (NP the

third quarter) (PP

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 58

of (NP the

financing)))))

8 * The rate will increase 0.25

point NP PP. *

0.25 point NP (NP 0.25 point)

(NP each quarter)

(PP beginning (PP

in (NP (NP the

third quarter) (PP

of (NP the

financing)))))

9 * The rate will increase NP

NP PP. *

increase NP

NP PP

VP (VP increase (NP

0.25 point) (NP

each quarter) (PP

beginning (PP in

(NP (NP the third

quarter) (PP of

(NP the

financing))))))

10 * The rate will VP. * will VP VP (VP will (VP

increase (NP 0.25

point) (NP each

quarter) (PP

beginning (PP in

(NP (NP the third

quarter) (PP of

(NP the

financing)))))))

11 * The rate VP. * The rate NP (NP The rate) (VP

will (VP increase

(NP 0.25 point)

(NP each quarter)

(PP beginning (PP

in (NP (NP the

third quarter) (PP

of (NP the

financing)))))))

12 * NP VP. * NP VP. S (S (NP The rate)

(VP will (VP

increase (NP 0.25

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 59

point) (NP each

quarter) (PP

beginning (PP in

(NP (NP the third

quarter) (PP of

(NP the

financing))))))) .)

13 * S * S S1 (S1 (S (NP The

rate) (VP will (VP

increase (NP 0.25

point) (NP each

quarter) (PP

beginning (PP in

(NP (NP the third

quarter) (PP of

(NP the

financing))))))) .))

As indicated in Table 4.2 above, at stage one of the parsing process for the given

sentence, the RLD and LRD have extracted the financing as the first valid syntactic

phrase. This phrase consists of two symbols; the PSR network requires a phrase

length of ten symbols, in addition to the six look-back and one look-ahead symbols.

An additional eight null symbols are therefore added to the extracted phrase to pad

it out to the ten symbol requirement. The input to the recogniser is therefore:

beginning in the third quarter of the financing ^ ^ ^ ^ ^ ^ ^ ^ .

The actual phrase to be recognised is emphasized in bold and underlined as well.

The six symbols (seen above as words, but presented to the parser as part-of-

speech tags) to the left of the actual phrase are the look-back symbols, as

extracted by the RLD. The symbol to the right of the actual phrase is the look-

ahead symbol, as extracted by the LRD. The PSR network performs a forward-pass

computation and the corresponding Euclidean distances between the resulting

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 60

output vector and the binary representations of all the constituent tags in the tag

database indicates NP to be the nearest match. NP is attached to the financing and

the following bracketing sequence is pushed onto the Parse-stack:

(NP the financing)

The Input-stack is then updated to reflect this ‘reduction’ by pushing back on the

six look-back symbols, the constituent tag, NP, and the look-ahead symbol. The

Input-stack now holds the following sequence:

* The rate will increase 0.25 point each quarter beginning in the third quarter of

NP. *

As shown in table 4.1, at processing stage two, the RLD and LRD have extracted of

NP as the next valid phrase. Again, an additional eight null symbols are required to

pad out the phrase. At this stage, the input to the recogniser is:

quarter beginning in the third quarter of NP ^ ^ ^ ^ ^ ^ ^ ^ .

The Recogniser network performs a forward-pass computation and PP is selected as

the nearest matching constituent tag. The content of the Parse-stack now becomes:

(PP of (NP the financing))

The Input-stack is then updated to reflect this ‘reduction’ by pushing back on the

six look-back symbols, the constituent tag, PP, and the look-ahead symbol. The

Input-stack now holds the following symbols:

* The rate will increase 0.25 point each quarter beginning in the third quarter PP. *

At the third processing stage, the RLD and LRD extract the phrase, the third

quarter. This phrase is padded out with seven additional null symbols to meet the

ten-symbol input requirement for the Recogniser. The input to the Recogniser is:

0.25 point each quarter beginning in the third quarter ^ ^ ^ ^ ^ ^ ^ PP

The Recogniser network performs a forward-pass computation and NP is selected as

the nearest matching constituent tag. The content of the Parse-stack now becomes:

(NP the third quarter) (PP of (NP the financing))

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 61

The Input-stack is then updated by pushing back on the six look-back symbols, the

constituent tag, NP, and the look-ahead symbol. The reduction has now been

implemented and the Input-stack now holds the following symbols:

* The rate will increase 0.25 point each quarter beginning in NP PP. *

The fourth phrase to be extracted from the sentence, by the RLD and LRD, is NP

PP. This phrase is padded out with eight null symbols before the six look-back and

one look-ahead symbols are added to make up the Recogniser input. The

Recogniser input at this stage is:

0.25 point each quarter beginning in NP PP ^ ^ ^ ^ ^ ^ ^ ^ .

The Recogniser network then performs a forward-pass computation in response to

the input above. NP is selected as the nearest match constituent tag. The content

of the Parse-stack therefore changes to the following:

(NP (NP the third quarter) (PP of (NP the financing)))

The Input-stack is then updated to reflect this ‘reduction’ by pushing back on the

six look-back symbols, the constituent tag, NP, and the look-ahead symbol. The

Input-stack now holds the following symbols:

* The rate will increase 0.25 point each quarter beginning in NP. *

At the fifth processing stage, the phrase, in NP is extracted by the RLD and LRD.

Again, an additional eight null symbols are required to pad out the phrase. At this

stage, the input to the recogniser is:

increase 0.25 point each quarter beginning in NP ^ ^ ^ ^ ^ ^ ^ ^ .

The Recogniser network then performs a forward-pass computation in response to

the input above. PP is selected as the nearest match constituent tag. The content of

the Parse-stack therefore changes to the following:

(PP in (NP (NP the third quarter) (PP of (NP the financing))))

The Input-stack is then updated by pushing back on the six look-back symbols, the

constituent tag, PP, and the look-ahead symbol. The reduction has now been

performed and the Input-stack now holds the following symbols:

* The rate will increase 0.25 point each quarter beginning PP. *

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 62

The sixth phrase to be extracted from the sentence, by the RLD and LRD, is

beginning PP. This phrase is padded out with eight null symbols before the six look-

back and one look-ahead symbols are added to make up the Recogniser input. The

Recogniser input at this stage is:

will increase 0.25 point each quarter beginning PP ^ ^ ^ ^ ^ ^ ^ ^ .

The Recogniser network then performs a forward-pass computation in response to

the input above. PP is selected as the nearest match constituent tag. The content of

the Parse-stack therefore changes to the following:

(PP beginning (PP in (NP (NP the third quarter) (PP of (NP the financing)))))

The Input-stack is then updated by pushing back on the six look-back symbols, the

constituent tag, PP, and the look-ahead symbol. The reduction has now been

performed and the Input-stack now holds the following symbols:

* The rate will increase 0.25 point each quarter PP. *

At the seventh processing stage, the phrase, each quarter is extracted by the RLD

and LRD. Again, an additional eight null symbols are required to pad out the

phrase. At this stage, the input to the recogniser is:

The rate will increase 0.25 point each quarter ^ ^ ^ ^ ^ ^ ^ ^ PP

The Recogniser network then performs a forward-pass computation in response to

the input above. NP is selected as the nearest match constituent tag. The content

of the Parse-stack therefore changes to the following:

(NP each quarter) (PP beginning (PP in (NP (NP the third quarter) (PP of (NP the

financing)))))

The Input-stack is then updated by pushing back on the six look-back symbols, the

constituent tag, NP, and the look-ahead symbol. The reduction has now been

performed and the Input-stack now holds the following symbols:

* The rate will increase 0.25 point NP PP. *

The eighth phrase extracted by the RLD and LRD is 0.25 point. Eight additional null

symbols are required to pad out the phrase. As there were not enough available

input symbols on the left of the phrase to make up the required six look-back

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 63

symbols, the RLD network would have used an additional null symbol to pad the

number of look-back symbols to the desired length. At this stage, the input to the

recogniser is:

* The rate will increase ^ 0.25 point ^ ^ ^ ^ ^ ^ ^ ^ NP

The Scheduler arranges the null padding to the right of the look-back symbols. This

ensures that the look-back symbols are positioned further away from the phase.

The Recogniser network then performs a forward-pass computation in response to

the input above. NP is selected as the nearest match constituent tag. The content

of the Parse-stack therefore changes to the following:

(NP 0.25 point) (NP each quarter) (PP beginning (PP in (NP (NP the third quarter)

(PP of (NP the financing)))))

The Input-stack is then updated by pushing back on the look-back symbols, the

constituent tag, NP, and the look-ahead symbol. The reduction has now been

performed and the Input-stack now holds the following symbols:

* The rate will increase NP NP PP. *

At the ninth processing stage, the phrase, increase NP NP PP is extracted by the

RLD and LRD networks. This time, an additional six null symbols are required to

pad out the phrase. Again, there were not enough available input symbols on the

left of the phrase to make up the required six look-back symbols; the RLD network

would have used two additional null symbols to pad the number of look-back

symbols to the desired length. At this stage, the input to the recogniser is:

* The rate will ^ ^ increase NP NP PP ^ ^ ^ ^ ^ ^ .

The Recogniser network then performs a forward-pass computation in response to

the input above. VP is selected as the nearest match constituent tag. The content of

the Parse-stack therefore changes to the following:

(VP increase (NP 0.25 point) (NP each quarter) (PP beginning (PP in (NP (NP the

third quarter) (PP of (NP the financing))))))

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 64

The Input-stack is then updated by pushing back on the look-back symbols, the

constituent tag, VP, and the look-ahead symbol. The reduction has now been

performed and the Input-stack now holds the following symbols:

* The rate will VP. *

At the tenth processing stage, the phrase, will VP is extracted by the RLD and LRD

networks. Additional eight null symbols are required to pad out the phrase. Again,

there were not enough available input symbols on the left of the phrase to make up

the required six look-back symbols; the RLD network would have used three

additional null symbols to pad the number of look-back symbols to the desired

length. At this stage, the input to the recogniser is:

* The rate ^ ^ ^ will VP ^ ^ ^ ^ ^ ^ ^ ^ .

The Recogniser network then performs a forward-pass computation in response to

the input above. VP is selected as the nearest match constituent tag. The content of

the Parse-stack therefore changes to the following:

(VP will (VP increase (NP 0.25 point) (NP each quarter) (PP beginning (PP in (NP

(NP the third quarter) (PP of (NP the financing)))))))

The Input-stack is then updated by pushing back on the look-back symbols, the

constituent tag, VP, and the look-ahead symbol. The reduction has now been

performed and the Input-stack now holds the following symbols:

* The rate VP. *

The eleventh phrase to be extracted by the RLD and LRD networks is The rate.

Eight additional null symbols are required to pad out the phrase. As there were not

enough available input symbols on the left of the phrase to make up the required

six look-back symbols, the RLD network would have used five additional null

symbols to pad the number of look-back symbols to the desired length. At this

stage, the input to the recogniser is:

* ^ ^ ^ ^ ^ The rate ^ ^ ^ ^ ^ ^ ^ ^ VP

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 65

The Recogniser network then performs a forward-pass computation in response to

the input above. NP is selected as the nearest match constituent tag. The content

of the Parse-stack therefore changes to the following:

(NP The rate) (VP will (VP increase (NP 0.25 point) (NP each quarter) (PP beginning

(PP in (NP (NP the third quarter) (PP of (NP the financing)))))))

The Input-stack is then updated by pushing back on the look-back symbol, the

constituent tag, VP, and the look-ahead symbol. The reduction has now been

performed and the Input-stack now holds the following symbols:

* NP VP. *

The twelfth phrase to be extracted by the RLD and LRD networks is NP VP.. Seven

additional null symbols are required to pad out the phrase. As there were not

enough available input symbols on the left of the phrase to make up the required

six look-back symbols, the RLD network would have used five additional null

symbols to pad the number of look-back symbols to the desired length. At this

stage, the input to the recogniser is:

* ^ ^ ^ ^ ^ NP VP . ^ ^ ^ ^ ^ ^ ^ *

The Recogniser network then performs a forward-pass computation in response to

the input above. S is selected as the nearest match constituent tag. The content of

the Parse-stack therefore changes to the following:

(S (NP The rate) (VP will (VP increase (NP 0.25 point) (NP each quarter) (PP

beginning (PP in (NP (NP the third quarter) (PP of (NP the financing))))))))

The Input-stack is then updated by pushing back on the look-back symbol, the

constituent tag, S, and the look-ahead symbol. The reduction has now been

performed and the Input-stack now holds the following symbols:

* S *

At the thirteenth processing stage, the phrase S is extracted by the RLD and LRD

networks. Nine additional null symbols are required to pad out the phrase. Again,

there were not enough available input symbols on the left of the phrase to make up

the required six look-back symbols; the RLD network would have used five

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 66

additional null symbols to pad the number of look-back symbols to the desired

length. At this stage, the input to the recogniser is:

* ^ ^ ^ ^ ^ S ^ ^ ^ ^ ^ ^ ^ ^ ^ *

The Recogniser network then performs a forward-pass computation in response to

the input above. S1 is selected as the nearest match constituent tag. The content of

the Parse-stack therefore changes to the following:

(S1 (S (NP The rate) (VP will (VP increase (NP 0.25 point) (NP each quarter) (PP

beginning (PP in (NP (NP the third quarter) (PP of (NP the financing)))))))))

As the constituent tag, S1 represents the entire sentence structure (the ‘root’ of the

parse tree), its selection by the Recogniser denotes the end of the ‘shift-reduce’

parsing process. The last state of the Parse-tree becomes the final parse state. This

state corresponds to the traditional tree representation illustrated in figure 4.2.

S1

S

NP VP

VP

NP NP PP

 PP

 NP

 NP PP

NP

DT NN MD VB CD NN DT NN VBG IN DT JJ NN IN DT NN .

The rate will increase 0.25 point each quarter beginning in the third quarter of the financing .

Figure 4.2: Parse tree denoting an example parse from the WSJC

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 67

4.5 Training, Validation and Test Samples

Training, cross-validation and test data sets have been selected from the 1989

section of the corpus (The BLLIP WSJ Corpus consists of 3 sections: 1987, 1988

and 1989). This has been done to align them with the WSJ section of the Penn

Treebank which consists of material from the 1989 archive of the journal.

The 1989 section of the BLLIP WSJ Corpus comprises 32 sub-sections (10 – 41).

Pre-parsed sentences from all the sub-sections have been used to provide data to

the different sets; all the sub-sections were collapsed into one file. There are

40,043 pre-parsed sentences in the 1989 section of the BLLIP WSJ Corpus.

In sampling data for the training set, every 800th sentence, beginning from the first

sentence, was extracted from the corpus. 206 sentences (0.51% of the 1989

section of the BLLIP WSJ Corpus) were selected for the training data sets. The

number of sentences in the training set was arrived at after attempts to incorporate

more sentences led to impractically long training times, given the computer

resource used (Intel Pentium 4 CPU 1.70 GHz; 1.70GHz, 1 GB of RAM). Every 160th

sentence, beginning from the second sentence (i.e. the 160th + 1 sentence), was

extracted for the test set. 1059 sentences (2.64% of the 1989 section of the BLLIP

WSJ Corpus) were selected for the test data sets. Every 2400th sentence, beginning

from the third sentence (i.e. the 2400th + 2 sentence), was picked for the cross-

validation set. 74 sentences (0.18% of the 1989 section of the BLLIP WSJ Corpus)

were selected for the cross-validation data sets. This provides the needed

generalisation test for the cross-validation and test data sets, as the data are

extracted in such a way that the different data sets are independent samples of the

corpus. Complexity constraints were placed on these data to make them compatible

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 68

with data used in reported work [5]. To restrict the complexity of the data, only

sentences of 40 words or less have been picked for all 3 data sets. Another

complexity constraint imposed has been to restrict the valence of the right-to-left

delimiter to 17 words; if the RLD has to process more than 17 symbols before the

beginning of a phrase is found, the sentence containing that phrase is not used in

training, cross-validation or testing.

Table 4.3: RLD, LRD and PSR data generation

RLD Input

Sequence

LRD Input

Sequence

Recogniser Input

Pattern

Recogniser

Output Pattern

1

* . CD , CD NNP

VBD NNS NNP CC ,

VBD

NNP NNS VBD

NNP CD , CD . *

^

VBD , CC NNP NNS

VBD NNP CD , CD ^

^ ^ ^ ^ ^ . NP

2

* . NP VBD NNS

NNP CC , VBD RB

CC NNP NNS

VBD NP . * ^

RB VBD , CC NNP NNS

VBD NP ^ ^ ^ ^ ^ ^

^ ^ . VP

3

* . VP NNS NNP CC

, VBD RB NN DT

VBD , CC NNP

NNS VP . *

DT NN RB VBD , CC

NNP NNS ^ ^ ^ ^ ^

^ ^ ^ VP NP

4

* . VP NP CC , VBD

RB NN DT

VBD , CC NP VP

. * ^

DT NN RB VBD , CC

NP VP ^ ^ ^ ^ ^ ^

^ ^ . S

5

* . S CC , VBD RB

NN DT CC * ^

DT NN RB VBD ,

CC S

* CC DT NN RB ^

VBD ^ ^ ^ ^ ^ ^ ^

^ ^ , VP

6

* . S CC , VP RB NN

DT CC * ^ ^

CC DT NN RB VP

, CC

* CC DT NN ^ ^ RB ^

^ ^ ^ ^ ^ ^ ^ ^ VP ADVP

7

* . S CC , VP ADVP

NN DT CC * ^ ^ ^

^

^ * CC DT NN

ADVP VP ,

* CC ^ ^ ^ ^ DT NN

^ ^ ^ ^ ^ ^ ^ ^

ADVP NP

8

* . S CC , VP ADVP

NP CC * ^ ^ ^ ^ ^

^ ^ * CC NP

ADVP VP , CC S

* ^ ^ ^ ^ ^ CC NP

ADVP VP ^ ^ ^ ^ ^

^ , S

9

* . S CC , S * ^ ^ ^

^ ^

^ ^ * S , CC S .

* ^ ^

* ^ ^ ^ ^ ^ S , CC S

. ^ ^ ^ ^ ^ * S

10 * S * ^ ^ ^ ^ ^ ^ ^ * S * ^ ^

* ^ ^ ^ ^ ^ S ^ ^ ^

^ ^ ^ ^ ^ ^ * S1

11 * S1 * ^ ^ ^ ^ ^ ^ ^ * S1 * ^ ^

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 69

Pre-processing the sentences from the corpus involved generating data sets for the

left-to-right delimiter (LRD), right-to-left delimiter (RLD) and phrase structure

recogniser (PSR) modules. So, the training, cross-validation and test sets each had

LRD, RLD and PSR data sets generated from it (an example is shown in table 4.3).

Each of these generated data sets had any replicated sequences within it removed.

Structural replication would occur in cases where sentences shared the same phase

structure. For example, all the sentences will generate *S1*^^^^^ for the RLD

network and ^^*S1*^^ for the LRD network. Most sentences will also generate

S^^^^^ for the RLD network and ^^*S*^^ for the LRD network. The

occurrence of replicated sequences is enhanced by the use of word tags, rather

than the words themselves, as input representation to the different parser

networks. The presence of these replicated sequences creates an imbalance with

some sequences occurring more frequently than others in the training set. If the

training set is used in this state, network learning would be skewed in favour of the

replicated sequences; at the expense of the less frequently occurring sequences.

The data sets with non-replicated sequences were processed to remove any

conflicting sequences. An input sequence for the RLD or LRD network is considered

to be in conflict with another if it is a sub-set of that other sequence. An input

pattern for the Recogniser network would be in conflict if it occurred more than

once in a training set and one or more occurrences have different target outputs

associated with it. Conflicts within the data sets can be reduced by adding further

contextual information to resolve the sequence ambiguity. This implies adding look-

back symbols to the RLD data and, look-back and look-ahead data to the LRD data.

The cost of reducing the number of conflicts with further contextual information is

an increase in the length of input sequences which increases training times. It is

therefore necessary to determine the optimum number of look-back and look-ahead

symbols for the RLD and LRD networks.

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 70

Optimum Number of Look-back and Look-ahead

Prior to pre-processing the data sets, experiments were carried out to determine

the optimum number of look-back and look-ahead for the LRD, and look-back for

the RLD (the RLD only requires look-back because sentences are processed from

right to left and the RLD always starts processing sequences from the end of a

sentence). Look-back symbols are those symbols to the left of a phrase. Look-

ahead symbols are the symbols to the right of a phrase. Although look-back and

look-ahead symbols are not part of a phrase, they play an essential role in the

phrase delimitation process by providing context, which enables the phrase

delimitation networks of the parser to resolve sequence ambiguities. RLD and LRD

data sets were extracted from 652 sentences (1989 section of the BLLIP WSJ

Corpus) for these experiments.

In determining the optimum number of look-back and look-ahead symbols for the

LRD, different look-back/look-ahead combinations were considered (Table 4.4) and

the combination (3 look-back symbols, 3 look-ahead symbols) with the lowest level

of conflicting sequences was chosen as the optimum combination. The other

combinations that had the same (or slightly lower) levels of conflicting sequences

were not considered because they would make the sequences longer, thereby

adding complexity to them with little gain in terms of conflicting sequence

reduction.

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 71

Table 4.4: Optimising LRD Look-back and Look-ahead Symbols

Look-Back

Symbols

Look-Ahead

Symbols

Conflicting

Sequences

Training

Sentences

Affected

% Training

Corpus

Affected

1 1 83 265 40.6

1 2 17 59 9.0

1 3 18 57 8.7

1 4 18 57 8.7

2 1 33 75 11.5

2 2 8 17 2.6

2 3 7 12 1.8

2 4 7 12 1.8

3 1 17 33 5.1

3 2 2 6 0.9

3 3 2 5 0.8

3 4 2 5 0.8

4 1 8 17 2.6

4 2 1 5 0.8

4 3 1 4 0.6

4 4 1 4 0.6

In determining the optimum number of look-back symbols for the RLD, different

look-back symbols were considered (Table 4.5) and the number of look-back

symbols (6 look-back symbols) with the lowest level of conflicting sequences was

chosen as the optimum look-back symbol.

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 72

Table 4.5: Optimising RLD Look-Back Symbols

Look-Back

Symbols

Conflicting

Sequences

Training

Sequences

Affected

% Training

Corpus Affected

1 147 634 97.2

2 91 225 34.5

3 49 90 13.8

4 24 34 5.2

5 9 9 1.4

6 6 6 0.9

Balancing the Training Data

At this stage of pre-processing, the cross-validation and test data sets for the RLD,

LRD and PSR networks are ready to be used. The training data for the PSR network

is also ready to be used. However, the training data sets for the RLD and LRD

networks need to be balanced according to the different sequence lengths (The LRD

has 8 different sequence lengths ranging from length 7 to length 13, while the RLD

has 10 different sequence lengths ranging from length 8 to length 17). Balancing is

done to aid learning by ensuring that the frequency of occurrence of sequence

lengths is the same for all lengths.

For each of these two data sets, the frequency of the most frequent sequence

length (length 9 for the RLD, and length 8 for the LRD) is used as a standard; all

other sequence lengths are made up to this standard using sequence replication.

The sequences with sequence length used as a standard for balancing are not

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 73

replicated during balancing; this skews training to their disadvantage. To curtail this

new imbalance, the unbalanced data set is added to the balanced data set to create

the final training data set. This way every sequence is replicated, at least once. In

order to determine the number of unbalanced data sets to be added to the

balanced data set to create an optimum final data set, experiments were carried

out on different combinations of balanced and unbalanced data sets for both

delimiter networks. The data sets experimented on comprised an unbalanced set, a

balanced set and a combination of a balanced set and one unbalanced set. Also

experimented on were a combination of a balanced set and two unbalanced set and

a combination of an unbalanced set and three unbalanced set.

The RLD was trained with the five different data sets for 300 epochs. Overall

training performance, in terms of sequences learnt, and training performances on

sequences of particular sequence lengths were compared for each data set (as

shown in table 4.6). Learning progress, using a plot of root mean square error

against number of epochs (figure 4.3) was also compared for the different data set

combinations. Considering these performance indices, the final training data set for

the RLD network is represented as shown in equation 4.1 below.

Nf = Nb + Nubl (4.1)

Where Nf = final training data set

 Nb = Balanced training data set

Nubl = Unbalanced training data set

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 74

Table 4.6: Optimising RLD Training Data Set (Balanced and Unbalanced Sets

Combination)

Data Set Unbalanced

Set

Balanced

Set

Balanced +

UnBalanced

Set

Balanced +

2 *

UnBalanced

Balanced +

3 *

UnBalanced

Number of

Unbalanced

Sequences

%

Sequences

Learnt

75.943 93.5848 94.4747 94.1438 91.708 -

Length 8 70.5263 100 100 97.9198 98.9899 95

Length 9 80.9854 78.368 87.9908 92.6097 87.4519 1299

Length 10 71.2247 82.679 86.6355 85.0721 84.4846 841

Length 11 77.7244 86.2972 91.0556 91.7943 88.9625 624

Length 12 80.2469 96.6128 96.9193 95.9938 93.2188 324

Length 13 62.931 98.3064 99.1519 100 99.15 116

Length 14 35.2941 100 100 98.0014 98.0716 51

Length 15 27.2727 100 100 100 100 11

Length 16 0 100 100 100 100 6

%

Patterns

Learnt

87.5557 91.1249 90.8686 90.6391 90.2659 -

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 75

RLD RMSE Comparison for Different Combinations of Balanced and Unbalanced Data Sets

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181 190 199 208 217 226 235 244 253 262 271 280 289 298

Epochs

R
M

S
E

UnBal

Bal

Bal+UnBal

Bal+2UnBal

Bal+3UnBal

Figure 4.3: RLD RMSE for Combinations of Balanced and Unbalanced Data Sets

The LRD was trained with the five different data sets for 500 epochs. As with the

RLD, overall training performance, in terms of sequences learnt and training

performances on sequences of particular sequence lengths were compared for each

data set (as shown in table 4.7). Learning progress, using a plot of root mean

square error against number of epochs (figure 4.4) was also compared for the

different data set combinations. Considering these performance indices, the final

training data set for the LRD network is represented as shown in equation 4.2

below.

Nf = Nb + 2 X Nubl (4.2)

Where Nf = final training data set

 Nb = Balanced training data set

Nubl = Unbalanced training data set

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 76

Table 4.7: Optimising LRD Training Data Set (Balanced and Unbalanced Sets

Combination)

Data Set Unbalanced

Set

Balanced

Set

Balanced +

UnBalanced

Set

Balanced +

2 *

UnBalanced

Balanced +

3 *

UnBalanced

Number

of Unbal.

Seq.s

% Seq.

Learnt

93.8917 95.5078 94.5029 97.6048 94.2593 -

Length 7 90.2439 91.0464 90.5976 96.3992 91.8629 656

Length 8 96.548 85.2211 89.9173 97.0874 93.1499 1854

Length 9 91.3655 92.2869 90.5612 94.4912 88.7993 498

Length 10 86.4286 100 97.1916 98.5942 95.6904 140

Length 11 78.9474 100 100 100 100 19

Length 12 100 100 100 100 100 7

Length 13 100 100 100 100 100 2

%

Patterns

Learnt

86.8371 89.55 89.0158 89.0615 88.4673 -

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 77

LRD RMSE Comparison for Different Combinations of Balanced and Unbalanced Data Sets

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241 256 271 286 301 316 331 346 361 376 391 406 421 436 451 466 481 496

Epochs

R
M

S
E

UnBal

Bal

Bal+UnBal

Bal+2UnBal

Bal+3UnBal

Figure 4.4: LRD RMSE for Combinations of Balanced and Unbalanced Data Sets

On completion of pre-processing, the training data set for the LRD consisted of

14,839 sequences and 142,840 patterns. The training data set for the RLD had

14,268 sequences and 175,115 patterns. The training data set for the PSR was

made up of 3,103 patterns.

The cross-validation data set for the LRD had 1169 sequences and 9584 patterns,

while that for the RLD comprised 1201 sequences and 13,846 patterns. The cross-

validation data set for the PSR had 1191 patterns.

The test data set generated for the LRD was made up of 13,383 sequences and

109,494 patterns. The test data set for the RLD had 15,605 sequences and 178,507

patterns. The test data set for the PSR consisted of 15,317 patterns.

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 78

4.6 Phrase Segmentation Performance

The training data generated were trained and tested (for training and generalisation

performances) to determine whether the delimiter modules of the parser could be

successfully adapted to the Wall Street Journal Corpus. The sentences used in

generating these data included punctuations, which were treated the same as

words (punctuations were removed in the processing of LPC sentences). Although

including punctuations add to the complexity of the parsing task, they are expected

to provide linguistic cues. Corresponding training data were therefore generated

from the same sentences used in generating the main training data, but with

punctuations removed. These corresponding training data (from sentences with

punctuations removed) were used to investigate if the inclusion of punctuations in

the training data aids decision making during parsing

The LRD was trained, with an empirically determined network size of 105 hidden

nodes for 500 epochs. 96.97% of the 14,839 sequences were learnt. Details of the

LRD training result are displayed in table 4.8. Table 4.9 indicates the training

performance of the LRD network on sequences of different lengths. When the

corresponding training data without punctuations were used in training the LRD

(using the same network configuration and number of epochs), 94.50% of

sequences were learnt.

A plot (figure 4.5) of the root mean square error (RMSE) for the LRD at each of the

500 epochs is observed. Also plotted, in this figure, is the RMSE for the LRD at

these 500 epochs, using corresponding training data with punctuations removed

from the training sentences. These plots detail the learning process for the LRD,

showing RMSE curves (in both cases) with negative gradients; this indicates that

the network is learning with each periodic presentation of the given data. The plots

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 79

also show that the LRD performed better when punctuations were included in the

sentences that when punctuations were removed.

Table 4.8: Training Results for the LRD and RLD

Hidden

Nodes Connections

No. of

Patterns

No. of

Sequences Epochs RMS Error

% Pat.

Learnt

%

Seq.

Learnt

RLD 165 70,172 175,115 14,268 360 0.0407269 91.55 96.31

LRD 105 32,072 142,840 14,839 500 0.0457812 89.29 96.97

Table 4.9: Training Results (for sequences of different lengths) for the LRD

Sequence

Length

7 8 9 10 11 12 13

No. of

Sequences

2290 3384 2179 1839 1731 1712 1704

%

Sequences

Learnt

96.68 92.38 95.27 99.35 100 100 100

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 80

RMSE Vs Number of Epochs for LRD (with and without Punctuations)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241 256 271 286 301 316 331 346 361 376 391 406 421 436 451 466 481 496

Epochs

R
M

S
E

withPunct

PunctRem

Figure 4.5: Plot of RMSE Against Number of Epochs for the LRD (WSJ Data)

To validate the RMSE training result for the LRD network, the network was tested

after the 500th epoch. The test was carried out using both the cross-validation

(containing 1169 sequences generated from 74 sentences) and the test (containing

13383 sequences generated from 1059 sentences) data sets. Results from this test

indicate that the network came up with a sequence generalisation performance of

84% and 80.05% on the cross-validation and test data sets, respectively.

The RLD was trained, with an empirically determined network size of 165 hidden

nodes for 360 epochs. 96.31% of the 14,268 sequences were learnt. Details of the

RLD training result are displayed in table 4.8. Table 4.10 indicates the training

performance of the LRD network on sequences of different lengths. When the

corresponding training data without punctuations were used in training the RLD

(using the same network configuration and number of epochs), 94.68% of

sequences were learnt.

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 81

A plot (figure 4.6) of the root mean square error (RMSE) for the RLD at each of the

360 epochs is observed. Also plotted, in this figure, is the RMSE for the RLD at

these 360 epochs, using corresponding training data with punctuations removed

from the training sentences. These plots detail the learning process for the RLD,

showing RMSE curves (in both cases) with negative gradients; this indicates that

the network is learning with each periodic presentation of the given data. The plots

also show that the RLD performed better when punctuations were included in the

sentences that when punctuations were removed.

Table 4.10: Training Results (for sequences of different lengths) for the RLD

Length of

Sequence

8 9 10 11 12 13 14 15 16 17

No. of

Sequences

1119 1119 2222 1780 1585 1460 1386 1231 1159 1127

%

Sequences

Learnt

100 100 92.44 90.62 95.14 93.50 98.56 100 100 100

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 82

RMSE Vs Number of Epochs for RLD (with and without Punctuations)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232 243 254 265 276 287 298 309 320 331 342 353

Epochs

R
M

S
E

withPunct

PunctRem

Figure 4.6: Plot of RMSE Against Number of Epochs for the RLD (WSJ Data)

To validate the RMSE training result for the RLD network, the network was tested

after the 360th epoch. The test was carried out using both the cross-validation

(containing 1201 sequences generated from 74 sentences) and the test (containing

15605 sequences generated from 1059 sentences) data sets. Results from this test

indicate that the network came up with a sequence generalisation performance of

73.02% and 74.44% on the cross-validation and test data sets, respectively.

4.7 Phrase Recognition Performance

Training the PSR, with a network size of 50 hidden nodes for 500 epochs resulted in

99.84% of the 3103 patterns presented to the network being learnt. When the

corresponding training data without punctuations were used in training the PSR

(using the same network configuration and number of epochs), 99.70% of patterns

were learnt.

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 83

A plot (figure 4.7) of the root mean square error (RMSE) for the PSR at each of the

500 epochs is observed. Also plotted, in this figure, is the RMSE for the PSR at

these 500 epochs, using corresponding training data with punctuations removed

from the training sentences. The comparison of these two cases (performance of

the LRD on training sentences with punctuations and those with punctuations

removed) is to highlight the effect of punctuations in the learning process. These

plots detail the learning process for the PSR, showing RMSE curves (in both cases)

with negative gradients; this indicates that the network is learning with each

periodic presentation of the given data. The plots also show that the PSR performed

better when punctuations were included in the sentences that when punctuations

were.

RMSE Vs Number of Epochs for PSR (with and without Punctuations)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241 256 271 286 301 316 331 346 361 376 391 406 421 436 451 466 481 496

Epochs

R
M

S
E

with Punctuations

Punctuations Removed

Figure 4.7: Plot of RMSE Against Number of Epochs for the PSR (WSJ Data)

To validate the RMSE training result for the PSR network, the network was tested

after the 500th epoch. The test was carried out using both the cross-validation

(consisting of 1191 patterns generated from 74 sentences) and the test (consisting

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 84

of 15317 patterns generated from 1059 sentences) data sets. Results from this test

indicate that the network came up with a pattern generalisation performance of

95.05% and 93.36% on the cross-validation and test data sets, respectively.

4.8 Sentence Level Performance

Weights derived from the network training of the LRD, RLD and PSR were used in

the parsing model to parse the three sentence sets: the training, cross-validation

and test sets.

In addition to the PARSEVAL measures, Labelled Precision and Labelled Recall, used

to assess sentence level performance, the F-Measure (the harmonic mean of

labelled precision and labelled recall) is also used.

F-Measure = (2 × Labelled_Precision × Labelled_Recall)
(Labelled_Precision + Labelled_Recall)

Details of the sentence level results derived from the parser are shown in table 4.9.

Table 4.11: Sentence Level Results for the WSJ Corpus

Sentence Level Results

 Sentences Words Parsed

Exact

Matches

Labelled

Precision

Labelled

Recall

F-

Measure

Training

Set 202 3572 88.12% 20.30% 76.73 74.81 75.76%

Cross-

validation

Set 74 1382 87.84% 8.11% 60.16% 57.99% 59.06%

Test Set 1059 18722 85.74% 5.85% 60.21% 58.83% 59.51%

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 85

4.9 Discussion

After this parsing model was refined (in Chapter 3), trained and tested (with

sentences that were not used in training) on the LPC, the parser performed with an

average labelled precision/recall of 72.5%. On adapting this parser to the WSJ

Corpus, it performed with an average labelled precision/recall of 59.52% when

presented with test sentences not used during training (this set of test sentences

being five times the size of the set of training sentences). It performed with an

average labelled precision/recall of 75.77% when presented with the sentences

used during training.

In digesting these results, the composition of longer sentences in the WSJ Corpus,

compared to those in the LPC, is considered; on the average, sentences from the

WSJ corpus generate nine times the number of LRD/RLD sequences generated from

LPC sentences. Besides, syntactic tags used in annotating the WSJ corpus are of a

coarser nature than those used for the LPC. Also considered is the fact that

whereas punctuations were included in the WSJ Corpus sentences during training

and testing, the data used from the LPC had all punctuations removed to simplify

the parsing problem. Including punctuations add to the complexity of the parsing

task. However, training results (as shown in sections 4.6 and 4.7) indicate that

punctuations actually improve the performances of the three connectionist modules

(LRD, RLD and PSR), thereby aiding decision making during parsing.

The reduced performance can therefore be attributed to the longer sentences in the

WSJ corpus and the less coarse nature of the LPC tags, compared to the WSJ

Corpus tags. This finer-grained nature of the LPC tags implies that they presented

the parser with more information to make decisions with, during the parsing

process. With these factors in mind, the parsing results for the WSJ Corpus

Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus

 86

demonstrate that this parsing model is adaptable to the Wall Street Journal Corpus

without its architecture or algorithm being changed.

By this adaptation, the parsing model takes advantage of its connectionism. Given

its representation and modular architecture, which makes it independent of

individual corpora, this parsing model should be adaptable to other corpora.

 87

5. THE CORPUS-BASED PARSING MODEL:

INTRODUCING LEXICAL SEMANTIC

INFORMATION FOR NOUNS

5.1 Introduction

Semantic information is important in the resolution of common syntactic

ambiguities during syntactic parsing [120]. However, contrasting theories on the

use of semantic information during syntactic parsing exist. One body of research

adopts the two-stage ‘Fodorian’ approach whereby semantic information (with other

linguistic information) is considered during a second independent post-processing

stage, after the syntactic information-only stage [10, 11, 12]; the other body of

research, citing psycholinguistic evidence, adopts the multiple constraint-

satisfaction process whereby syntactic and semantic information (as well as other

linguistic information) are allowed to simultaneously interact (to varying degrees)

during online syntactic processing[13, 14, 15, 16]. Considering the importance of

semantic information during sentence processing and to gain an insight into these

two contrasting theories of syntactic parsing, this chapter reports on the effect on

the performance of full syntactic parsers, of integrating lexical semantic information

with syntactic information in the parsing process. This integration of lexical

semantic information with syntactic information is thought to be necessary for

large-scale parsing of unconstrained natural language to be truly realisable and

useful for practical applications.

In a bid to integrate lexical semantic information with syntactic information during

parsing, it is necessary to extract lexical semantic features from large-scale

resources. A host of lexical semantic resources exist. These include the Longman

Dictionary of Contemporary English, the Longman Lexicon of Contemporary English,

the Core Lexical Engine, Euro WordNet, CYC, EDL, WordNet, Cycorp, etc. WordNet

[17], a generic lexical semantic network developed at Princeton University, U.S.A,

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 88

is used for the extraction of lexical semantic information needed for the

investigation in this project. WordNet was chosen because of its availability, large

coverage and taxonomy. In the course of this work, an algorithm has been

developed to annotate nouns in the BLLIP (Brown Laboratory for Linguistic

Information Processing) 1987-89 Wall Street Journal Corpus [90] with lexical

semantic information extracted from WordNet. This algorithm defines a semi-

automatic semantic tagging process.

The adaptability of the connectionist shift-reduce parsing model used in this project

has been exploited in the process of integrating lexical semantic information with

syntactic information. The parser (which has been shown in previous chapters to

have been used successfully on both the Lancaster Parsed Corpus and the BLLIP

1987-89 Wall Street Journal Corpus [90]) has been extended to allow the

combination of lexical semantic and syntactic representation in its input. When

integrating the new lexical semantic tag representations (developed from the word

sense tagging process) with the existing syntactic representations of the parser, the

architecture of the parser has remained unchanged. Its three connectionist modules

(Left-to-Right Delimiter network, Right-to-Left Delimiter network and Phrase

Structure Recogniser network) remain in conjunction with its symbolic modules.

Data was generated for the different connectionist modules, with the combined

linguistic information. The modules were then trained and tested. Linguistic

knowledge, in the form of network weights, garnered from the network training

processes was then used by the parser to syntactically analyse sentences.

Section 5.2 provides a description of WordNet, the on-line lexical reference system

used for lexical semantic tagging. The new algorithm for the extraction of lexical

semantic information from WordNet and the semantic annotation of nouns in the

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 89

BLLIP WSJ Corpus is described in section 5.3. In section 5.4, the tag representation

scheme developed for the combination of semantic and syntactic knowledge and

used as input to the parser is presented. Section 5.5 focuses on the performance of

the connectionist modules of the parser, given the combination of lexical semantic

and syntactic information. This performance is compared with the performance of

the modules using only syntactic information as input in section 5.6. This

comparison is done in a bid to assess the impact of each different piece of linguistic

knowledge. Section 5.7 shows the performance of the phrase structure recogniser

module of the parser, given the combination of lexical semantic and syntactic

information. Again, the performance is compared with that obtained for the module

without the combination. In section 5.8, the sentence-level performance of the

parser is detailed. A comparison is made between this performance and the parser’s

performance before the combination of semantic and syntactic information. Section

5.9 presents a comparison of this work with other work that parses the Wall Street

Journal corpus. The various performances are discussed in section 5.10.

5.2 WordNet

Wordnet [17] is an on-line lexical reference system which organises lexical

information in terms of word meanings, rather than word forms. Word forms refer

to the physical utterances or inscriptions of words; they are represented in WordNet

in their familiar orthography. Word meanings refer to the lexicalised concept that a

word can be used to express; they are represented in WordNet by synonym sets

(synsets). In this reference system, English nouns, verbs, adjectives and adverbs

are organised into synonym sets, each representing an underlying lexical concept.

Each synset in WordNet contains synonymous word forms, relational pointers, and

other information. Different relations link the synonym sets. The relations

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 90

represented by the pointers in the synsets include hypernymy/hyponymy,

antonymy, entailment, and meronymy/holonymy. Words that make up a synset are

words which are equal or very close in meaning, for example, {plant, flora}.

Hyperonyms are synsets which are the more general class of other synsets, for

example, {mouth, muzzle} is a hyperonym of {beak, bill, neb}. Hyponyms are

synsets which are particular kinds of a synset, for example, {beak, bill, neb} is an

hyponym of {mouth, muzzle}. Antonyms are synsets which are opposite in

meaning, for example, {man, adult man} and {woman, adult woman} are

antonyms. Holonyms are synsets which are the whole of which another synset is a

part, for example, {face, countenance} is a holonym of {mouth, muzzle}.

Meronyms are synsets which are the parts of a synset, for example {flower, bloom,

blossom} is a meronym of {angiosperm, flowering plant}.

The hypernymy/hyponymy relation provides the basis for the hierarchical semantic

organisation of nouns in WordNet. This organisation takes into consideration the

fact that definitions of common nouns typically provide a super-ordinate term and

distinguishing features. Hyponyms are linked to their super-ordinates, and vice

versa, in the WordNet database. WordNet is, therefore, a lexical inheritance

system.

At the inception of the WordNet project about sixteen years ago, there were

approximately 57,000 noun word forms organised into approximately 48,800

synsets. These numbers have grown since then; WordNet being an online database.

Nouns in WordNet are partitioned into a set of 25 generic semantic concepts, each

treated as the unique beginner of a separate semantic hierarchy. These 25

hierarchies correspond to relatively distinct semantic fields, each having its own

vocabulary. They vary widely in size and cover distinct conceptual and lexical

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 91

domains. The unique beginners are: {act, action, activity}, {animal, fauna},

{artefact}, {attribute, property}, {body, corpus}, {cognition, knowledge},

{communication}, {event, happening}, {feeling, emotion}, {food}, {group,

collection}, {location, place}, {motive}, {natural object}, {natural phenomenon},

{person, human being}, {plant, flora}, {possession}, {process}, {quantity,

amount}, {relation}, {shape}, {state, condition}, {substance}, and {time}. A

description of these unique beginners is given in table 5.1.

All the nouns belonging to each of the 25 unique beginners are placed in one file.

Three of these unique beginners: {animal, fauna}; {person, human being}; and

{plant, flora}, are concerned with living things and can be grouped under {living

thing, organism}. Four others: {artefact}; {food}; {natural object}; and

{substance}, are concerned with non-living things and can be grouped under {non-

living thing, object}. These two semantic concepts could be further converged

under {thing, entity}. A 26th ‘Tops’ file is created in WordNet to include this

extended semantic hierarchy.

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 92

Table 5.1: Unique Beginners for Nouns in WordNet

Unique Beginners Category

Act Nouns denoting acts or actions

Animal Nouns denoting animals

Artefact Nouns denoting man-made objects

Attribute Nouns denoting attributes of people and objects

Body Nouns denoting body parts

Cognition Nouns denoting cognitive processes and contents

Communication Nouns denoting communicative processes and contents

Event Nouns denoting natural events

Feeling Nouns denoting feelings and emotions

Food Nouns denoting foods and drinks

Group Nouns denoting groupings of people or objects

Location Nouns denoting spatial position

Motive Nouns denoting goals

Object Nouns denoting natural objects (not man-made)

Person Nouns denoting people

Phenomenon Nouns denoting natural phenomena

Plant Nouns denoting plants

Possession Nouns denoting possession and transfer of possession

Process Nouns denoting natural processes

Quantity Nouns denoting quantities and units of measure

Relation Nouns denoting relations between people or things or ideas

Shape Nouns denoting two or three dimensional shapes

State Nouns denoting stable states of affairs

Substance Nouns denoting substances

Time Nouns denoting time and temporal relations

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 93

5.3 Semantic Annotation of Nouns in The BLLIP WSJ Corpus

An important part of the process of investigating the effect on syntactic parsing, of

providing shallow semantic information for nouns, is the semantic annotation of

these nouns. In annotating the nouns in the BLLIP WSJ corpus, advantage was

taken of the lexical inheritance system provided by WordNet: each noun in the WSJ

sentence sets had information extracted from WordNet as to which of the topmost

generic levels (unique beginners) it belonged.

A lot of the nouns are polysemous, and could have senses that belong to more than

one of the unique beginners. In such cases, a maximum of four of the most

frequently used senses are extracted from WordNet. The frequency of use for each

sense (determined by the number of times a sense is tagged in the various

semantic concordance texts built up as part of the WordNet project) is also

extracted.

An algorithm, as depicted in the flow chart in figure 5.1, has been developed for the

semantic annotation of nouns in the BLLIP WSJ corpus. Nouns in all the three

sentence sets (training, cross-validation and test sets) that were previously set

aside from the BLLIP WSJ Corpus have been semantically tagged. This annotation

algorithm maps out a semi-automatic semantic tagging procedure.

As shown in figure 5.1, for each set of WSJ corpus sentences, one sentence is dealt

with at a time. For each sentence, each word (and its tag) is picked up and

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 94

Figure 5.1: A flow-chart depicting the semantic annotation process for nouns from the

BLLIP WSJ Corpus, using WordNet

True

True

True

True

True

True

Pass word to WordNet for search

to retrieve up to 4 noun

categories and their frequencies

Start Lexical Semantic

Information Extraction

End process

Manually tag

pronouns

Manually re-

tag proper

nouns

Manually re-tag

nouns with 'Top'

Manually tag

nouns without any

entry in WordNet

If word tag is

a noun tag

If word

tag is a

pronoun

tag

If any of categories

retrieved is 'Top'

category OR Given

noun is a proper

noun

If no entry for

given word is

found in WordNet

While there are still

sentences left in

selected section of

WSJ Corpus set

While there are still

unread words from

given sentence, read

each word sequentially

Read in one

sentence at a time

from the WSJ Corpus

Place word, word tag and

sentence number aside in

appropriate file

Pass tags up to parent

noun and preposition

phrases

Assign semantic tag

to word

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 95

evaluated sequentially until all the words in the sentence have been looked up. The

syntactic tag for each word picked up is first checked to determine if the word is a

noun or a pronoun. If a word is neither a noun nor a pronoun, it is ignored, and the

next word in the sentence is evaluated. If the word looked up is a pronoun, it is

stored (together with its tag and sentence number) in a dedicated file for manual

tagging after the automatic phase of the annotation. If the word looked up is a

noun, it is passed through a program to WordNet. This noun undergoes a search in

WordNet, culminating in WordNet returning the unique beginner(s) (the topmost

category where the noun’s sense(s) is placed) for that noun. This retrieval of

information from is implemented with the aid of a program which has been created

in the course of this work to interface WordNet’s library of functions, which in turn

interface the WordNet database. Up to four unique beginners (senses) can be

returned for each noun. WordNet also returns the frequency of use of each sense

associated with the noun. Nouns with more than one sense have their categories

returned in order of frequency (from the most frequent to the least frequent). If

there is no entry in WordNet for a particular WSJ noun, it is stored (together with

its tag and sentence number) in a dedicated file for manual tagging after the

automatic phase of the annotation. Nouns with no corresponding senses in WordNet

could be names of people, places or establishments. They could also be

abbreviations. Wrongly spelt words would also not have any entries in WordNet

(unless, the wrong spellings turned out to be correct spellings for some other

word). Besides, words in combination words like “New” in “New York” have no

senses in the noun section of WordNet, as they are not nouns. Most of these words

(set aside to be tagged manually) can be easily tagged and the most common

categories they fall into are “person”, “location” or “group”.

At the next processing stage in the semantic annotation procedure, nouns for which

unique beginners are returned by WordNet have these unique beginners checked. If

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 96

any of the unique beginners returned for the noun is the “Top” category, it is stored

(together with its syntactic tag and sentence number) in a dedicated file for manual

re-tagging after the automatic phase of the annotation. The “Top” category is the

“26th category” for nouns in WordNet; it is a vague abstraction that attempts to pull

all nouns into a single hierarchical memory structure. It has as its immediate

hyponyms, senses (synsets) that are at the top of the other categories (unique

beginners), like: {natural object}; {artefact}; {plant}; and {food}. The “Top” tag

for each word is converted to any of the 25 categories which is the immediate

hyponym in each case.

As part of the automatic phase of processing, all the proper nouns passed to

WordNet are stored (together with their tags and sentence numbers) in a dedicated

file. This enables them to be later manually assessed (and re-tagged, if need be).

This is because proper nouns like names of people, places or organisations (e.g. Mr.

Bank, Miss Stone) could easily be assigned wrong categories by WordNet.

After the automatic phase of semantic tagging, the four files containing nouns that

need re-assessing and possible re-tagging are used to manually assess and tag

some nouns. These four files contain, separately, nouns from the WSJ corpus

(together with their tags and sentence numbers) without any entries in WordNet,

nouns with the “Top” tag assigned as their semantic category, proper nouns and

pronouns.

At this stage, the semantic tags (as shown in table 5.2) would be attached to the

syntactic tags in the form “NN_act*5*_art*2*_pos*1*_qua*0*”. This is the

annotation for the noun “yield”. It indicates that “yield” is polysemous and has the

following senses: {act, action, activity} – frequency of 5; {artefact} – frequency of

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 97

2; {possession} – frequency of 1; and {quantity} – no occurrence in the semantic

concordance texts. The tags are attached in order of frequency.

The semantic tags derived for the nouns are then ready to be converted to a binary

form; to provide compatibility with the connectionist parser.

Table 5.2: Semantic Tags Used to Represent WordNet Unique Beginners

Unique Beginners Tags

Act act

Animal ani

Artefact art

Attribute att

Body bod

Cognition cog

Communication com

Event eve

Feeling fee

Food foo

Group gro

Location loc

Motive mot

Object obj

Person per

Phenomenon phe

Plant pla

Possession pos

Process pro

Quantity qua

Relation rel

Shape sha

State sta

Substance sub

Time tim

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 98

5.4 Tag Representation

The semantic tags assigned to the nouns from the implementation of the

annotation algorithm described in section 5.3 are symbolic tags. To enable the

integration of the semantic information inherent in these tags into the existing

syntactic information used by the connectionist parser, these symbolic word sense

tags need to be converted to binary vector representations. The parser’s input also

needs to be adapted to accommodate the semantic representation together with

the syntactic information it already receives.

5.4.1 Semantic Tag Representation

In designing binary input representations for the word senses (unique beginners),

the number of high-level sense categories to be represented (twenty-five) and the

frequency of each sense (for polysemous words) are considered. 25 bits are used to

represent this lexical semantic information. Each of the 25 high-level sense

categories is assigned its “bit space”, as shown in figure 5.2.

25 bits

A
c
t

A
n
im

a
l

A
rt
if
a
c
t

A
tt
ri
b
u
te

B
o
d
y

C
o
g
n
it
io
n

C
o
m
m
u
n
ic
a
ti
o
n

E
v
e
n
t

F
e
e
li
n
g

F
o
o
d

G
ro
u
p

L
o
c
a
ti
o
n

M
o
ti
v
e

O
b
je
c
t

P
e
rs
o
n

P
h
e
n
o
m
e
n
o
n

P
la
n
t

P
o
s
s
e
s
s
io
n

P
ro
c
e
s
s

Q
u
a
n
ti
ty

R
e
la
ti
o
n

S
h
a
p
e

S
ta
te

S
u
b
s
ta
n
c
e

T
im

e

1

Figure 5.2: Bit Space Allocation to WordNet Senses

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 99

For each noun, the value for the bit corresponding to each sense is 0, unless the

sense is one of the senses that define the noun. The values for the senses that

define the given noun range from 0.25 to 1, depending on the frequency of the

sense for the given noun. The values are, however, initially represented with the

letters ‘A’, ‘B’, ‘C’, and ‘D’ (with ‘A’ indicating the most frequent category and ‘D’,

the least frequent). The values that these bit representation symbols denote are

shown in table 5.3. The actual values, as shown in table 5.3, are fed as input to the

neural networks.

Table 5.3: Semantic Representation Values

Semantic Bit Representation Symbol Value

A 1

B 0.75

C 0.5

D 0.25

Before assigning the ‘A’ – ‘D’ symbols, the extracted frequency value for each sense

is compared with the value for the next most frequent sense. A frequency

difference measure, FDM is calculated as follows:

 FDM = (1 – fv / fnext) × 100%

 where fv = frequency value

 and fnext = frequency value of next most frequent sense

This measure has been designed to capture cases where the frequencies of

occurrence of different senses for a word are very close to each other. If the FDM is

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 100

less than 10%, the sense with the frequency value being assessed is assigned the

same frequency symbol, say ‘A’, as that assigned the next most frequent sense.

For the “yield” example first given in section 5.3, the semantic tag annotation is

then changed from the form, “NN_act*5*_art*2*_pos*1*_qua*0*” into the form

NN_A0B00000000000000C0D00000.

The semantic representation is, at this stage, ready to be integrated with the

syntactic representation for the nouns.

5.4.2 Integrating Syntactic and Semantic Representation

The binary input representation adopted for denoting the BLLIP WSJ syntactic tags

in this work uses 46 bits with bit spaces created for terminal and non-terminal tags.

The first 19 bits of the 46-bit input space are used to represent word tags, while

the next 27 bits are used to represent constituent tags. To incorporate the

extracted lexical semantic information into this word tag representation, 25

additional bit spaces were added to the input bit representation. These 25 bit

spaces (placed immediately after the 27 bit spaces used for constituent tags) cater

for the 25-bit semantic representation adopted in sub-section 5.4.1 above. This

results in a 71-bit input space for all word and constituent tags. Non-noun tags

have all 0’s as their last 25 bits.

The representation for the word tag, NN_A0B00000000000000C0D00000 for “yield”

would then be:

0000000100001000000000000000000000000000000000A0B00000000000000C0D00000

The semantic tags for nouns, pronouns, noun phrases and preposition phrases that

constitute noun (NP) or preposition phrases (PP) are then incorporated into parent

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 101

noun and preposition phrases. This is to ensure that the semantic properties are

not lost during the initial stages of shift-reduce parsing. It is envisaged that this

stage of the process will help resolve preposition attachment cases in sentences

such as “the boy ate the pasta with the sauce” and “the boy ate the pasta with the

fork”. In the first sentence, the {food} category returned by WordNet for “sauce” is

transferred to the noun phrase, “the sauce” and further on to the preposition

phrase, “with the sauce”. There would, therefore, be a difference in input

representations to the parser for the prepositional phrases, “with the sauce” and

“with the fork”.

In semantically tagging a noun or preposition phrase, the configuration of the 25-

bit section of its tag representation depends on the configurations of the semantic

sections of the tag representations that denote the nouns, pronouns, noun phrases

and preposition phrases that constitute the given noun or preposition phrase. For

each bit space in the semantic tag representation of the given noun or preposition

phrase, if the values of all the constituting tags in a similar bit position are all ‘0’,

the bit value for that position would be ‘0’. If the value for any of the constituting

tags in a similar position is ‘A’, ‘B’, ‘C’ or ‘D’, the highest value (‘A’ > ‘B’ > ‘C’ > ‘D’

> ‘0’) becomes the value for that position.

To further aid decision making during parsing, the head nouns of all noun phrases

are attached to the noun phrases during the shift-reduce parsing process. In cases

where the head noun of a noun phrase is itself a noun phrase, the head noun of the

head noun constituent is carried along.

With the semantic representations integrated into the syntactic representations for

the WSJ corpus, the left-to-right and right-to-left delimiter and phrase structure

recogniser data sets were generated, trained and tested.

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 102

5.5 Phrase Segmentation Performance

The training data generated from the integration of lexical semantic and syntactic

tag representations were trained and tested (for training and generalisation

performances) for the delimiter modules of the parser. Given that the delimiter

modules handle the most complex aspects of the parsing problem, temporal

sequence processing, their performance with the integrated input is critical to the

ability of the parser to analyse the new data.

The LRD network was initially trained for 1800 epochs, with an empirically

determined network size of 165 hidden nodes. In determining the network size,

training was initially attempted with the same number of hidden nodes (105 hidden

nodes) that was used to train the LRD with an input representation that contained

only syntactic information. As expected, given the increased complexity of the

training data, the network with these initial hidden nodes could not learn. The

number of hidden nodes was then successively increased by 20 until the network

started learning. The initial number of hidden nodes (165 hidden nodes) used for

training is therefore the minimum number of hidden nodes at which the fully-

connected TASRN network started learning. After 1800 epochs of training the LRD

network, 95.53% of the 16,492 sequences in the training set had been learnt. To

improve the training performance of the network, it was trained for 200 more

epochs. After 2000 epochs, 95.66% of the 16,492 sequences in the training set

had been learnt. However, generalisation performance on the cross-validation set

was 79.94% and 80.17% for both training times.

In a bid to search for the optimal network size for the LRD network, the number of

hidden nodes was increased to 205. The content of the LRD data set was also

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 103

reconfigured using equation 4.2 (a combination of one balanced set and two

unbalanced sets), set out in section 4.5. The enlarged network was initially trained

for 600 epochs, and then to 800 epochs in an attempt to achieve some improved

training performance. Of the 19,845 sequences in the reconfigured training set,

94.69% and 95.13% were learnt by the LRD after 600 and 800 epochs,

respectively.

A plot (figure 5.3) of the root mean square error (RMSE) for the LRD network is

observed for training carried out with the two different network sizes. This plot

shows the network needing fewer epochs to converge with the larger network size

(205 hidden nodes). However, in determining the best weight vector to be used as

the LRD component of the parser, the performance measure used was the

sequence generalisation performances of the five weight vectors obtained on the

cross-validation set. These generalisation performances are shown in figure 5.4.

The weight vector obtained from the network trained with 205 hidden nodes after

700 epochs was the best available weight vector with a sequence generalisation of

82.3949%; it was therefore chosen as the LRD component of the parser.

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 104

Plot of RMSE Against Number of Epochs for LRD

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 78 155 232 309 386 463 540 617 694 771 848 925 1002 1079 1156 1233 1310 1387 1464 1541 1618 1695 1772 1849 1926

Number of Epochs

R
M

S
E

165 Hidden Nodes

205 Hidden Nodes

Figure 5.3: Plot of RMSE Against Number of Epochs for the LRD (WSJ Data)

LRD Generalisation Performance for Different Number of Hidden Nodes and Training Times

78.5

79

79.5

80

80.5

81

81.5

82

82.5

83

%
 G

e
n

e
ra

li
s
a
ti

o
n

165Hidden-1800epochs

165Hidden-2000epochs

205Hidden-600epochs

205Hidden-700epochs

205Hidden-800epochs

Figure 5.4: RLD Generalisation Performance for Different Number of Hidden

Nodes and Training Times (WSJ Data)

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 105

Details of the training results (including number of connections, hidden nodes and

% sequences learnt) for the chosen LRD network, are displayed, alongside those of

the RLD, in table 5.7. Table 5.4 indicates a breakdown of the training performance

of the LRD network according to sequences of different lengths. While the LRD

network learnt all of the sequences of length 11 to length 13, it had short-comings

in learning sequences of length 7 to length 10. Sequences of length 7 were the

ones where the LRD network had the greatest learning challenge, with only 86.99%

of the 3137 of such sequences learnt.

Apart from being tested on the cross-validation data set (containing 1261

sequences generated from 74 sentences), LRD network was also tested on the test

data set (containing 16786 sequences generated from 1059 sentences). Results

from this test indicate that the network came up with a sequence generalisation of

82.04% on the test data sets, compared to the sequence generalisation of 82.39%

it achieved on the smaller cross-validation data set. Considering the difference in

size of the two sentence samples used in generating the data sets, this difference in

performance of only 0.35% indicates that the network could possibly generalise at

the same level to any data set not used in training but generated from the corpus

used in training, irrespective of the size of the data set.

Table 5.4: Training Results (for sequences of different lengths) for the LRD

Sequence

Length

7 8 9 10 11 12 13

No. of

Sequences

3137 5631 3017 2225 2005 1921 1909

%

Sequences

Learnt

86.99 93.23 94.90 98.92 100 100 100

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 106

Further attempts at optimising the number of hidden nodes for the LRD network

would require experimenting with higher number of hidden nodes than 205.

However, due to the computational complexity of training the Temporal Auto-

Associative Simple Recurrent Network used for the LRD (given the size of the

training data sets, number of parameters and the case that the rate of convergence

in back-propagation learning tends to be relatively slow; making it computationally

excruciating [94, 134]) and the computer resource (Intel Pentium 4 CPU 1.70 GHz;

1.70GHz, 1 GB of RAM) available for this project, it is not feasible to exhaustively

optimise the network. Attempts to further increase the number of synaptic weights

for this network would lead to impractical training times (table 5.5).

Table 5.5: Training Times for the LRD Network

Number

of

Hidden

Nodes

Number of

Network

Connections

(Weights)

Number of

Training

Sequences

Number of

Training

Patterns

Time

needed

for

training

(days)

Approximate

Number of

Epochs

165 78447 16492 158862 95 2000

205 113847 19845 186334 285* 2000

225 133947 19845 186334 335† 2000

* Estimated from training carried out with 205 hidden nodes

† Estimated for training yet to be undertaken (using training times for other network

configurations)

The RLD network was initially trained, with an empirically determined network size

of 265 hidden nodes for 500 epochs. As with the LRD network, in determining the

initial network size for the RLD network, training was firstly attempted with the

same number of hidden nodes (165 hidden nodes) that was used to train the RLD

network with an input representation that contained only syntactic information. As

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 107

envisaged, given the increased complexity of the training data, the network with

these initial hidden nodes could not learn. The number of hidden nodes was then

successively increased by 20 until the network started learning. The number of

hidden nodes used (265 hidden nodes) is therefore the initial minimum number of

hidden nodes at which the fully-connected TASRN network started learning the

right-to-left delimitation task.

After 500 epochs of training the RLD network, 91.61% of the 15,308 sequences

were learnt. In a bid to determine the optimal network size for the RLD network,

the number of hidden nodes was increased twice to 285 and 305. The network

training with 285 hidden nodes had to be truncated early after 152 epochs when it

was observed that its training performance was not significantly different from that

of the network with 265 hidden nodes. Training of the RLD network with 305

epochs led to 94.78% of the 15,308 sequences being learnt, after 400 epochs of

training.

A plot (figure 5.5) of the root mean square error (RMSE) for the RLD network is

observed for training carried out with the three different network sizes. This plot

shows the networks displaying better training ability (lower RMSE) the larger the

network size. However, in determining the best weight vector to be used as the

RLD component of the parser, the performance measure used was the sequence

generalisation performances of the two weight vectors (for hidden node sizes of

265 and 305) obtained on the cross-validation set; the network with 285 hidden

nodes was not trained for long enough to be considered. These generalisation

performances are shown in figure 5.6. The weight vector obtained from the network

trained with 305 hidden nodes after 400 epochs was the best available weight

vector with a sequence generalisation of 74.29%; it was therefore chosen as the

RLD component of the parser.

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 108

Plot of RMSE Against Number of Epochs for RLD

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289 305 321 337 353 369 385 401 417 433 449 465 481 497

Number of Epochs

R
M

S
E

265 Hidden Nodes

285 Hidden Nodes

305 Hidden Nodes

Figure 5.5: Plot of RMSE Against Number of Epochs for the RLD (WSJ Data)

RLD Generalisation Performance for Different Number of Hidden Nodes

67

68

69

70

71

72

73

74

75

%
 G

e
n

e
ra

li
s
a
ti

o
n

265 Hidden Nodes

305 Hidden Nodes

Figure 5.6: RLD Generalisation Performance for Different Number of Hidden Nodes

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 109

Details of the training results (including number of connections, hidden nodes and

% sequences learnt) for the chosen RLD network, are displayed, alongside those of

the LRD, in table 5.7. Table 5.6 indicates a breakdown of the training performance

of the RLD network according to sequences of different lengths. While the RLD

network learnt all of the sequences of lengths 8, 16 and 17, it had short-comings in

learning sequences of length 9 to length 15. Sequences of lengths 10 and 11 were

the ones where the RLD network had the greatest learning challenge; only 86.84%

of the 2386 sequences with length 10 were learnt while 88.93% of the 1915

sequences with length 11 were learnt.

Besides being tested on the cross-validation data set (containing 1264 sequences

generated from 74 sentences), the RLD network was also tested on the test data

set (containing 17221 sequences generated from 1059 sentences). Results from

this test indicate that the network came up with a sequence generalisation of

72.67% on the test data sets, compared to the sequence generalisation of 74.29%

it achieved on the smaller cross-validation data set. Considering the difference in

size of the two sentence samples used in generating the data sets, this difference in

performance of 1.62% indicates that the network could possibly generalise at the

same level to any data set not used in training but generated from the corpus used

in training, irrespective of the size of the data set.

Table 5.6: Training Results (for sequences of different lengths) for the RLD

Length of

Sequence

8 9 10 11 12 13 14 15 16 17

No. of

Sequences

1207 1281 2386 1915 1699 1575 1482 1313 1241 1209

%

Sequences

Learnt

100 97.74 86.84 88.93 94.11 94.86 97.23 98.32 100 100

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 110

Table 5.7: Training Results for the LRD and RLD

 Hidden

Nodes Connections

No. of

Patterns

No. of

Sequences Epochs RMS Error

% Pat.

Learnt

% Seq.

Learnt

RLD 305 230,347 187,825 15,308 400 0.0381275 91.42 94.78

LRD 205 113,847 186,334 19,845 800 0.048689 88.83 95.13

As with the LRD network, further attempts at optimising the number of hidden

nodes for the LRD network would require experimenting with higher number of

hidden nodes than 305. However, due to the computational complexity of training

the network and the computer resource (Intel Pentium M CPU 1.73 GHz; 1.73GHz,

1 GB of RAM) available for this project, it is not feasible to exhaustively optimise

the network. Attempts to further increase the number of synaptic weights for this

network would lead to impractical training times (table 5.8).

Table 5.8: Training Times for the RLD Network

Number

of

Hidden

Nodes

Number of

Network

Connections

(Weights)

Number of

Training

Sequences

Number of

Training

Patterns

Time

needed

for

training

(days)

Approximate

Number of

Epochs

265 178947 15308 187825 43 500

285 203847 15308 187825 78* 500

305 230347 15308 187825 118* 500

325 258447 15308 187825 133† 500

* Estimated from training carried out with 285 and 305 hidden nodes

† Estimated for training yet to be undertaken (using training times for other network

configurations)

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 111

5.6 Effect of Integrating Lexical Semantic and Syntactic

Representation on Phrase Segmentation Performance

Table 5.9 shows a comparison of training results for the delimiter networks

(LRD and RLD). This compares training results achieved using a combination of

lexical semantic and syntactic input representation with training results achieved

using only syntactic input representation. Larger network sizes were required to

train the delimiter networks using the combined linguistic information because of

the additional information they had to process.

For both delimiters, the networks trained on the combination of lexical semantic

and syntactic input representation (compared to the networks trained on only

syntactic input representations) dealt with more complex tasks (using a greater

number of network connections) and had to be trained for longer periods in terms

of number of epochs and actual training time. They also learnt slightly lower

proportions of the sequences presented to them, with both the LRD and RLD

networks learning over 94.5% of these sequences in both input representation

cases. The differences in proportions of patterns learnt between the networks

trained on the combination of semantic and syntactic input representation and

those trained on only syntactic input representation was very slight (less than 0.5%

in both cases – 0.46% for the LRD and 0.13% for the RLD). The training data sets

(with the integrated semantic and syntactic input representation) for both delimiter

networks were larger than the sets generated with only syntactic input

representation; the integration of lexical semantic and syntactic information having

resulted in fewer sequence replications and conflicts.

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 112

Table 5.9: Comparison – Training Results for the Delimiter Networks for Input

Representations with Syntactic-only and a Combination of Semantic and Syntactic

Information

 LRD RLD

 Syntactic-

Only

Semantic +

Syntactic

Syntactic-

Only

Semantic +

Syntactic

No. of

Hidden

Nodes

105 205 165 305

No. of

Connections
32,072 113,847 70,172 230,347

No. of

Patterns
142,840 186,334 175,115 187,825

No. of

Sequences
14,839 19,845 14,268 15,308

No. of

Epochs
500 800 360 400

RMS Error 0.0457812 0.0486.89 0.0407269 0.0381275

% Pattern

Learnt
89.29 88.83 91.55 91.42

% Sequence

Learnt
96.97 95.13 96.31 94.78

A breakdown (based on sequence lengths) of training comparison between the two

different input representations fed to the LRD (as shown in table 5.10) indicate that

with sequence lengths of 8 to 13, both input representations achieve about the

same training performances. However, with sequences of length 7, there is 9.69%

difference in training performance; the LRD network with a combination of lexical

semantic and syntactic input representation learns only 86.99% of these

sequences. Given that LRD sequences make use three look-back symbols and three

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 113

look-ahead symbols, sequences of length 7 would normally be phrases with only

one word or constituent.

Table 5.10: Comparison – LRD Training Results (for sequences of different lengths) for

the Delimiter Networks for Input Representations with Syntactic-only and a Combination

of Semantic and Syntactic Information

No. of sequences % Sequences Learnt Sequence

Length Syntactic-

Only

Semantic +

Syntactic

Syntactic-

Only

Semantic +

Syntactic

7 2290 3137 96.68 86.99

8 3384 5631 92.38 93.23

9 2179 3017 95.27 94.90

10 1839 2225 99.35 98.92

11 1731 2005 100 100

12 1712 1921 100 100

13 1704 1909 100 100

A plot (figure 5.7) of the root mean square error (RMSE) for the LRD network is

observed for training carried out with the two different input representations. This

plot shows the network needing fewer epochs to converge when syntactic-only

input is used. This indicates that the LRD network with syntactic-only input has

parameters that enable it to deal more comfortably with its task, compared to the

network with a combination of lexical semantic and syntactic input representation.

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 114

LRD - Comparison of Training Performance Given Syntactic-Only and Semantic+Syntactic

Information

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451 476 501 526 551 576 601 626 651 676 701 726 751 776

Number fo Epochs

R
M

S
E

Syntactic-only

Lexical Semantic + Syntactic

Figure 5.7: Plot Comparison of Training Performance for the LRD, Given Syntactic-Only

and Semantic + Syntactic Information

A breakdown (based on sequence lengths) of training comparison between the two

different input representations fed to the RLD (as shown in table 5.11) shows that

learnt sequences of length 8, 16 and 17 irrespective of the input representation.

Apart from sequences of these three sequence lengths, the RLD network trained on

syntactic-only input performed better on sequences of all but one (sequence length

13) sequence lengths. On the whole, the performances of the RLD network on

sequences of different lengths given the two input representations followed a very

similar trend.

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 115

Table 5.11: Comparison – RLD Training Results (for sequences of different lengths) for

the Delimiter Networks for Input Representations with Syntactic-only and a Combination

of Semantic and Syntactic Information

No. of sequences % Sequences Learnt Sequence

Length Syntactic-

Only

Semantic +

Syntactic

Syntactic-

Only

Semantic +

Syntactic

8 1119 1207 100 100

9 1119 1281 100 97.74

10 2222 2386 92.44 86.84

11 1780 1915 90.62 88.93

12 1585 1699 95.14 94.11

13 1460 1575 93.50 94.86

14 1386 1482 98.56 97.23

15 1231 1313 100 98.32

16 1159 1241 100 100

17 1127 1209 100 100

A plot (figure 5.8) of the root mean square error (RMSE) for the RLD network is

observed for training carried out with the two different input representations.

Although the network seems to have a slight edge when syntactic-only input is

used, this plot shows the network having a similar learning pattern with both input

representations during training.

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 116

RLD - Comparison of Training Performance Given Syntactic-Only and Semantic+Syntactic

Information

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209 222 235 248 261 274 287 300 313 326 339 352 365 378 391 404

Number of Epochs

R
M

S
E

Syntactic-Only

Lexical Semantic +Syntactic

Figure 5.8: Plot Comparison of Training Performance for the RLD, Given Syntactic-Only

and Semantic + Syntactic Information

A comparison of the generalisation performances (table 5.12) of the delimiter

networks, using two test sets, reveals very close performances when both sets of

input representations are used. The LRD network with syntactic-only input has a

1.61% better generalisation performance on the cross-validation set (generated

from 74 sentences) than the same network with a combination of lexical semantic

and syntactic input representation. However, with the test set (generated from

1059 sentences), the LRD network with a combination of lexical semantic and

syntactic input representation produces a 1.99% better performance than the same

network with syntactic-only input representation. With the RLD, the network with a

combination of lexical semantic and syntactic input representation has a 1.27%

better generalisation than the same network with syntactic-only representation

when tested on the cross-validation set. On the other and, the RLD network with

syntactic-only representation has a 1.77% better performance when the test set is

used for testing. From the foregoing, for each of the delimiter networks, the use of

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 117

a particular set of input representations produces slightly better generalisation

performance depending on which of the two test sets is used. The generalisation

performance of each delimiter network when lexical semantic information is added

appears to be at par with its performance when only syntactic information is used

Table 5.12: Comparison – Generalisation Performance for the Delimiter Networks for

Input Representations with Syntactic-only and a Combination of Semantic and Syntactic

Information

 LRD RLD

 Syntactic-

Only

Semantic +

Syntactic

Syntactic-

Only

Semantic +

Syntactic

%

Generalisation

on Cross-

validation Set

(from 74

sentences)

84.00 82.39 73.02 74.29

%

Generalisation

on Test Set

(from 1059

sentences)

80.05 82.04 74.44 72.67

5.7 Phrase Recognition Performance

The training data generated from the integration of lexical semantic and syntactic

tag representations were also trained and tested (for training and generalisation

performances) for the phrase recognition module of the parser. Training the PSR,

with an initial network size of 50 hidden nodes for 2000 epochs resulted in 99.91%

of the 3349 patterns presented to the network being learnt. In a search for an

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 118

optimal network size for the PSR, three more network sizes (60, 70 and 90 hidden

nodes) were experimented with. The PSR networks with 60, 70, and 90 hidden

nodes learnt 99.88, 99.94, and 99.91 of the 3349 patterns presented to them,

respectively. A plot (figure 5.9) of the root mean square error (RMSE) for the four

PSR networks shows a similar convergence, with the network made of 90 hidden

nodes exhibiting lower root mean square error. However, in determining the best

weight vector to be used as the PSR component of the parser, the performance

measure used was the pattern generalisation performances of the four weight

vectors obtained on the cross-validation set. These generalisation performances are

shown in figure 5.10. The weight vector obtained from the network trained with 70

hidden nodes produced the best pattern generalisation of 90.71%; it was therefore

chosen as the PSR component of the parser.

Plot of RMSE Against Number of Epochs for PSR

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 79 157 235 313 391 469 547 625 703 781 859 937 1015 1093 1171 1249 1327 1405 1483 1561 1639 1717 1795 1873 1951

Number of Epochs

R
M

S
E

50 Hidden Nodes

60 Hidden Nodes

70 Hidden Nodes

90 Hidden Nodes

Figure 5.9: Plot of RMSE Against Number of Epochs for the PSR (WSJ Data)

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 119

Besides being tested on the cross-validation data set (consisting of 1259 patterns

generated from 74 sentences), the PSR network was also tested on the test data

set (consisting of 16890 patterns generated from 1059 sentences). Results from

this test indicate that the network came up with a pattern generalisation of 88.93%

on the test data set, compared to the pattern generalisation of 90.71% it achieved

on the smaller cross-validation data set; a small difference of 1.78% when the

differences in sizes of the two data sets are considered.

PSR Generalisation Performance for Different Number of Hidden Nodes

89.6

89.8

90

90.2

90.4

90.6

90.8

%
 G

e
n

e
ra

li
s
a
ti

o
n

50 Hidden Nodes

60 Hidden Nodes

70 Hidden Nodes

90 Hidden Nodes

Figure 5.10: PSR Generalisation Performance for Different Number of Hidden Nodes

Figure 5.11 shows a plot comparing the learning curve of the PSR network when

fed with a combination of lexical semantic and syntactic input representation and

when fed with only syntactic input representation. Although the PSR network with

syntactic-only input representation converges much faster (in terms of number of

epochs), the network with a combination of lexical semantic and syntactic input

representation gradually achieves the same minimum error.

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 120

PSR - Comparison of Training Performance Given Syntactic-Only and Semantic+Syntactic

Information

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 80 159 238 317 396 475 554 633 712 791 870 949 1028 1107 1186 1265 1344 1423 1502 1581 1660 1739 1818 1897 1976

Number of Epochs

R
M

S
E

Syntactic-Only

Lexical Semantic + Syntactic

Figure 5.11: Plot Comparison of Training Performance for the PSR, Given Syntactic-Only

and Semantic + Syntactic Information

A comparison of the generalisation performance (table 5.13) of the phrase

recognition network, using two test sets, shows that the PSR performs better when

only syntactic information is used than when a combination of lexical semantic and

syntactic information is used.

Table 5.13: Comparison – Generalisation Performance for the PSR Network for Input

Representations with Syntactic-only and a Combination of Semantic and Syntactic

Information

 PSR

 Syntactic-Only Semantic + Syntactic

% Generalisation on Cross-

validation Set (from 74

sentences)

95.05 90.71

% Generalisation on Test

Set (from 1059 sentences)
93.36 88.93

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 121

5.8 Sentence Level Performance

Synaptic weights derived from the network training of the LRD, RLD and PSR store

the linguistic knowledge acquired by the connectionist parser. They were used in

the parsing model to parse the three sentence sets: the training, cross-validation

and test sets.

Details of the sentence level results derived from the parser are shown in table

5.13. Table 5.14 shows a comparison of these results with those obtained using

only syntactic information.

Table 5.14: Sentence Level Results for the WSJ Corpus (Lexical Semantic + Syntactic

Input Representations)

Sentence Level Results

 Sentences Words Parsed

Exact

Matches

Labelled

Precision

Labelled

Recall F-Measure

Training

Set
206 2903 68.45% 17.48% 73.06% 74.14% 73.60%

Cross-

validation

Set

74 1092 54.05% 8.11% 57.44% 58.93% 58.17%

Test Set 1059 12551 60.72% 5.19% 55.78% 57.76% 56.75%

The sentence level results have kept improving with positive modifications to the

component connectionist modules. When sentences from the training set were

parsed with a connectionist module configuration that comprised an LRD (165

hidden nodes after 1800 epochs), RLD (265 hidden nodes) and PSR (50 hidden

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 122

nodes), an F-Measure of 69.26% was achieved. This rose to 73.45% when the

configuration was changed to [LRD (165 hidden nodes after 2000epochs), RLD (305

hidden nodes), PSR (70 hidden nodes)]. The F-Measure improved further to

73.60% with the present connectionist module configuration [LRD (205 hidden

nodes), RLD (305 hidden nodes), PSR (70 hidden nodes)]. This indicates a lot of

room for improvement of the sentence level performance if the connectionist

modules are further optimised.

As with the training set, when sentences from the cross-validation set were parsed

with a connectionist module configuration that comprised an LRD (165 hidden

nodes after 1800 epochs), RLD (265 hidden nodes) and PSR (50 hidden nodes), an

F-Measure of 52.79% was achieved. This went up to 54.57% when the

configuration was changed to [LRD (165 hidden nodes after 2000epochs), RLD (305

hidden nodes), PSR (70 hidden nodes)]. The F-Measure improved further to

58.17% with the present connectionist module configuration [LRD (205 hidden

nodes), RLD (305 hidden nodes), PSR (70 hidden nodes)].

When sentences from the test set were parsed with a connectionist module

configuration that comprised an LRD (165 hidden nodes after 1800 epochs), RLD

(265 hidden nodes) and PSR (50 hidden nodes), an F-Measure of 55.06% was

achieved. This improved to 55.15% when the configuration was changed to [LRD

(165 hidden nodes after 2000epochs), RLD (305 hidden nodes), PSR (70 hidden

nodes)]. The F-Measure improved further to 56.75% with the present connectionist

module configuration [LRD (205 hidden nodes), RLD (305 hidden nodes), PSR (70

hidden nodes)].

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 123

Table 5.15: Sentence Level Comparison for the WSJ Corpus (Syntactic-Only Vs Lexical

Semantic + Syntactic Input Representations)

Sentence Level Comparison

 Sentences Words Parsed

Exact

Matches

Labelled

Precision

Labelled

Recall F-Measure

Training Set(

Semantic +

Syntactic)

206 2903 68.45% 17.48% 73.06% 74.14% 73.60%

Training

Set(Syntactic

Only)

202 3572 88.12% 20.30% 76.73% 74.81% 75.76%

Cross-

Validation

Set(Semantic

+ Syntactic)

74 1092 54.05% 8.11% 57.44% 58.93% 58.17%

Cross-

validation

Set(Syntactic

Only)

74 1382 87.84% 8.11% 60.16% 57.99% 59.06%

Test

Set(Semantic

+ Syntactic)

1059 12551 60.72% 5.19% 55.78% 57.76% 56.75%

Test

Set(Syntactic

Only)

1059 18722 85.74% 5.85% 60.21% 58.83% 59.51%

5.9 Comparison with Other WSJ Parsers

Parsing models that have used the Wall Street Journal Corpus have focused on two

main tasks: full syntactic parsing [5, 7, 98, 100, 121], which the parsing model

presented in this work does, and Semantic Role Labelling [147, 149, 150, 151,

152]. Reported work on full syntactic parsing has mostly involved traditional

statistical parsing models which continue to represent the state-of-the-art for broad

coverage natural language parsing (table 5.15). While this connectionist parsing

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 124

model does not yet compare favourably with the statistical parsers in terms of

performance, it has achieved its performance with a far smaller training data set

size. Its training to test data set ratio is 1:5.14.

Table 5.16: Comparison of Syntactic Parser Results on the WSJ Corpus

Full

Syntactic

Parser

Training

Data Set

Test

Data

Set

Training

To Test

Data

Ratio

Precision Recall F-

Measure

This Parser

(Syntactic

only input)

202 1059

(74)

1:5.14

(2.73:1)

60.21

(60.16)

58.83

(57.99)

59.51

(59.06)

This Parser

(Syntactic +

Lexical

semantics

input)

206 1059

(74)

17.74:1

(2.78:1)

55.78

(57.44)

57.76

(58.93)

56.75

(58.17)

Charniak &

Johnson

(2005)[121]

39832 2245 17.74:1 91.3 90.6 90.9

Bod

(2003)[7]

39832 2245 17.74:1 90.8 90.7 90.7

Charniak

(2000)[5]

39832 2245 17.74:1 89.5 89.6 89.5

Collins

(2000)[98]

39832 2245 17.74:1 89.9 89.6 89.7

Ratnaparkhi

(1997)[100]

39832 2245 17.74:1 87.5 86.3 86.9

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 125

5.10 Discussion

To enable the combination of lexical semantic information with syntactic knowledge

as input to the parser, an algorithm, involving a semi-automatic semantic tagging

procedure, has been developed for the semantic annotation of nouns in the BLLIP

WSJ corpus. A manual parse of semantically tagged sentences from the WSJ corpus

shows that the noun classes obtained from WordNet provide sufficient information

to aid the disambiguation of preposition attachment cases. They have also been

found to be sufficient in the preposition attachment resolution for the following

sentence pairs (POS tags for the first three pairs are the same; including the lexical

semantic information provides useful additional knowledge):

1a) The boy ate the pasta with the sauce.

1b) The boy ate the pasta with he fork.

2a) The boy broke the window with the curtain.

2b) The boy broke the window with the rock.

3a) The policeman chased the boy with a limp.

3b) The policeman chased the boy with a truncheon.

4a) I examined the man with a stethoscope.

4b) I examined the man with a broken leg.

For all three connectionist modules of this parser, the networks trained on the

combination of lexical semantic and syntactic input representation (compared to the

networks trained on only syntactic input representations) dealt with more complex

tasks (using a greater number of network connections) and had to be trained for

longer periods in terms of number of epochs and actual training time. The delimiter

networks learnt slightly lower proportions of the sequences presented to them

when trained on a combination of lexical semantic and syntactic input

representation, with both the LRD and RLD networks learning over 94.5% of

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 126

sequences in both input representation cases. However, a comparison of the

generalisation performances of the delimiter networks, using two test sets, reveals

very close performances when both sets of input representations are used. The

generalisation performance of each delimiter network when lexical semantic

information is added appears to be at par with its performance when only syntactic

information is used.

In comparing the performances of the delimiters at sequence length level, there

was a similar trend in learning performance for sequences of the same length, apart

from one case. This is the case with LRD sequences of length 7, there is 9.69%

difference in training performance between both input representation instances; the

LRD network with a combination of lexical semantic and syntactic input

representation learns only 86.99% of these sequences. Given that LRD sequences

make use of three look-back and three look-ahead symbols, sequences of length 7

would normally be phrases with only one word or constituent, for example a single

noun forming a noun phrase. The introduction of additional information seems to

have made the parsing of phrases like this a more difficult task. This could be

solved by fitting the network better to its training examples (longer training times

and more optimal networks).

For the RLD, sequences with sequence lengths of 10, 11, 12 and 13 did not perform

as well as sequences of other lengths (8, 9, 14, 15, 16 and 17). Sequences with

these four least performing sequence lengths are the four most frequent

sequences, in terms of sequence length. The RLD sequences include six look-back

symbols. They also always include the end-of-sentence symbol, ‘*’ and possibly

symbols that do not belong to the phrase for which they set out to find the

beginning of. The phrases involved with the sequence lengths of 10, 11, 12 and 13

would therefore be short phrases with the same phrase composition variety and

Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for

Nouns

 127

balancing issues as raised for the LRD. It is worth noting that for the RLD,

sequences with the shortest sequence lengths (8 and 9) are among the high

performers. Considering the presence of number of look-back symbols (6) and the

end-of-sentence symbol, ‘*’, phrases involved here would usually have one or two

symbols; there are not very many of these phrases.

Another similarity in results obtained for the two different set of input

representations is the consistency in the generalisation result on test sets

generated from sentences of very different sample sizes. Generalisation

performances were about the same for test data generated from 74 sentences and

for those generated from 1059 sentences. This shows that the generalisation

performance in these cases is not deeply affected by test sample size.

On the whole, the module level performances of the delimiter networks seemed to

be at par, irrespective of the set of input representation used. The module level

performance of the phrase recognition network that used only syntactic input

representation appeared to perform better than when a combination of lexical

semantic and syntactic information was used. This also seemed the case with

performances at the sentence level. However, when using a combination of lexical

semantic and syntactic information, the sentence level results have kept improving

with positive modifications to the component connectionist modules. Its F-Measure

has improved from 69.26% to 73.45% and up to 73.60% with training

improvement to different component connectionist modules. This indicates a lot of

room for improvement of the sentence level performance if the connectionist

modules are further optimised. To fully grasp the effect of combining lexical

semantic and syntactic input representation on the parser, an examination of the

parser’s behaviour on the two sets of input representations is necessary. This is

done in the next chapter.

 128

6. SENTENCE LEVEL EVALUATION

6.1 Introduction

Having been adapted to syntactically analyse sentences from the Wall Street

Journal Corpus, and further adapted to integrate lexical semantic and syntactic

representations in this analysis, the sentence level results achieved by the parser

are presented in chapters 4 and 5. There is the need to analyse these results in

detail in order to get an insight into the parser’s behavioural characteristics and

structural preferences. This analysis should also reveal the effect of integrating

lexical semantic and syntactic representations on the capabilities of the parser.

In section 6.2, the performance of the parser on the Wall Street Journal Corpus,

given only syntactic information as input, is examined in detail. A similar analysis is

done on the parser, given a combination of lexical semantic and syntactic

information as input, in section 6.3. Section 6.3 also contains a comparison of the

parser’s behaviour and structural preferences when presented with the two sets of

input representations. A summary of the findings in the analyses carried out in this

chapter is presented in section 6.4.

6.2 Parser with Syntactic-Only Input Representation

As shown in table 5.14 in the last chapter, of the 202 training sentences

syntactically analysed by the parser (using only syntactic information in its input

representation), 178 (88.12%) were successfully parsed, with an F-measure of

75.76%. 41 (20.30%) of the parse trees produced by the parser from analysing the

202 training sentences were exact matches of the target parse trees. The parser

failed to produce complete parse trees for 24 (11.88%) of these sentences.

Chapter 6 – Sentence Level Evaluation

 129

For each sentence analysed by the parser, the parser could fail to produce a

complete parse if, during the process of building up the parse tree for the sentence,

any of its connectionist modules (RLD, LRD, and PSR networks) failed to carry out

its function. In other words, if the right-to-left delimiter network failed to identify

the beginning of a phrase, having seen all the word or constituent tags in the

sentence, then the parser would fail for that particular sentence. This is

notwithstanding how far the parser had gone in the parsing process for that

sentence. Similarly, if the left-to-right delimiter network failed to identify the end of

a phrase, having seen all the word or constituent tags to the right of the

word/constituent tag identified as the beginning of phrase by the right-to-left

delimiter network, the parser would fail for that particular sentence. Also, after the

delimiter networks have identified a sequence of tags that constitute a phrase, if

the phrase structure recogniser network fails to find a parent for that sequence, the

parser would fail for that particular sentence. For the 24 failed parses, 1 (4.17%)

failed parse was due to the right-to-left delimiter network’s inability to find the

beginning of a phrase. 5 (20.83%) failed parses were due to the left-to-right

delimiter network’s inability to find the ends of certain phrases. 18 (75%) failed

parses were due to the phrase recogniser network’s inability to create the valid

phrase classification from the sequence passed to it by the delimiter networks.

Despite 75% of failed parses being due to the inability of the phrase recogniser

network to create a valid phrase from the sequences passed to it by the delimiter

networks, most of the failed parses can be attributed to incorrect phrase boundary

identifications by the delimiter networks. This is because if the beginning and/or

end of a phrase are incorrectly indicated by any or both of the delimiter networks,

the phrase recogniser network receives an incorrect sequence of tokens to create a

valid phrase for. In most cases, the PSR network creates a valid parent for such

sequences; however, the error only accumulates in the shift-reduce process. In the

cases where the PSR network failed to create valid phrases from the sequences

Chapter 6 – Sentence Level Evaluation

 130

passed to it, all of these sequences have been identified to be single constituent

tags (14 ‘NP’s, 2 ‘S1’s, 1 ‘VP and 1’FRAG’). The phrase structure recogniser network

is designed to result in a failed parse if, at any point in the parsing process, the

‘daughter’ (sequence of word/constituent tags input to the PSR network to be

classified as a phrase) is the same as the ‘mother’ (constituent tag to be identified

by the PSR network as denoting the phrase for the input sequence of tags). This

design is to prevent the parser from shifting and reducing indefinitely at a particular

stage in the shift-reduce parsing process where the ‘daughter’ and ‘mother’ are the

same.

The 24 sentences which the parser failed to completely parse had RLD and LRD

data generated from them. These data were then used to test the different

delimiter modules to determine how much of this group of sentences they had

learnt during training. Results from these tests, shown in table 6.1 (detailed

sequence level results are shown in tables 6.4 and 6.7) indicate a strong learning

performance at module level. These modular results for the failed sentences

compare favourably with those for the mismatched sentences, as shown in table

6.3 (detailed sequence results for the mismatched sentences are shown in tables

6.6 and 6.9). Modular results (shown in tables 6.2, 6.5 and 6.8) for the sentences

whose parses matched the target parses indicate, expectedly, that all, but 9 RLD

sequences were learnt during training.

The strong modular performances of the failed/mismatched sentences, compared to

their sentence level performance highlights a limitation of the modular model that is

due to the knock-on effects that occur throughout the shift-reduce parsing process.

During the parsing process, the parser’s connectionist modules operate in cascade.

The RLD first processes the sequences and passes its results, including any errors,

if available, to the LRD. The LRD passes its own results, including any errors, if

available to the PSR.

Chapter 6 – Sentence Level Evaluation

 131

Table 6.1: Training Results for the LRD and RLD Data Generated from Failed Sentences

Hidden

Nodes Connections

No. of

Patterns

No. of

Sequences RMS Error

%

Pat.

Learnt

%

Seq.

Learnt

RLD 165 70,172 6535 580 0.0489381 90.60 94.31

LRD 105 32,072 4691 580 0.0648378 86.72 92.59

Table 6.2: Training Results for the LRD and RLD Data Generated from Matching

Sentences

Hidden

Nodes Connections

No. of

Patterns

No. of

Sequences RMS Error

%

Pat.

Learnt

%

Seq.

Learnt

RLD 165 70,172 4507 420 0.027647 90.66 97.76

LRD 105 32,072 3370 420 0.0440867 87.54 100

Table 6.3: Training Results for the LRD and RLD Data Generated from Mismatching

Sentences

Hidden

Nodes Connections

No. of

Patterns

No. of

Sequences RMS Error

%

Pat.

Learnt

%

Seq.

Learnt

RLD 165 70,172 30,496 2,747 0.0486726 90.45 94.03

LRD 105 32,072 22,193 2,747 0.0577466 87.03 95.30

Chapter 6 – Sentence Level Evaluation

 132

Table 6.4: Training Results (for sequences of different lengths) for the LRD Data

Generated from Failed Sentences

Sequence

Length

7 8 9 10 11 12 13

No. of

Sequences

148 297 92 28 11 2 2

%

Sequences

Learnt

95.95 89.56 93.48 100 100 100 100

Table 6.5: Training Results (for sequences of different lengths) for the LRD Data

Generated from Matching Sentences

Sequence

Length

7 8 9 10 11 12 13

No. of

Sequences

148 171 66 22 8 1 4

%

Sequences

Learnt

100 100 100 100 100 100 100

Table 6.6: Training Results (for sequences of different lengths) for the LRD Data

Generated from Mismatching Sentences

Sequence

Length

7 8 9 10 11 12 13

No. of

Sequences

732 1394 418 122 49 20 12

%

Sequences

Learnt

98.09 92.97 96.41 98.36 100 100 100

Chapter 6 – Sentence Level Evaluation

 133

Table 6.7: Trained Results (for sequences of different lengths) for the RLD Data

Generated from Failed Sentences

Length of

Sequence

8 9 10 11 12 13 14 15 16 17

No. of

Sequences

48 23 138 136 93 76 38 17 10 1

%

Sequences

Learnt

100 100 92.75 89.71 95.70 93.42 100 100 100 100

Table 6.8: Training Results (for sequences of different lengths) for the RLD data

Generated from Matching Sentences

Length of

Sequence

8 9 10 11 12 13 14 15 16 17

No. of

Sequences

87 13 125 60 44 42 30 15 3 1

%

Sequences

Learnt

100 100 100 100 97.73 100 100 100 100 100

Table 6.9: Training Results (for sequences of different lengths) for the RLD data

Generated from Mismatching Sentences

Length of

Sequence

8 9 10 11 12 13 14 15 16 17

No. of

Sequences

274 51 939 510 360 255 223 86 35 14

%

Sequences

Learnt

100 100 92.11 90.39 94.72 92.94 98.21 100 100 100

Chapter 6 – Sentence Level Evaluation

 134

In the course of the training session, the parser would have acquired linguistic

knowledge from the training data presented to it. This linguistic knowledge is stored

in the synaptic weights for the different connectionist modules of the parser. In

order for this parser to be useful in any automatic natural language application, it

should be able to syntactically analyse sentences not presented to it during

training, using its acquired linguistic knowledge. Two sets of test sentences were

presented to the parser; one consisting of 74 sentences, the other comprising 1059

sentences.

As shown in table 5.14 in the last chapter, of the 74 test sentences (from the first

test set) syntactically analysed by the parser (using only syntactic information in its

input representation), 65 (87.84%) were successfully parsed, with an F-measure of

59.06%. 6 (8.11%) of the parse trees produced by the parser from analysing the

74 test sentences were exact matches of the target parse trees. The parser failed

to produce complete parse trees for 9 (12.16%) of these sentences.

As also shown in table 5.14 in the last chapter, of the 1059 test sentences (from

the second test set whose sentence composition is different from that of the first

test set) syntactically analysed by the parser (using only syntactic information in its

input representation), 908 (85.74%) were successfully parsed, with an F-measure

of 59.51%. 62 (5.85%) of the parse trees produced by the parser from analysing

the 1059 test sentences were exact matches of the target parse trees. The parser

failed to produce complete parse trees for 151 (14.26%) of these sentences.

The parser’s performance on these test sets shows its ability to generalise to

sentences not seen during training. The parser has been able to do this because of

linguistic knowledge derived during training. The parser’s performance was also

Chapter 6 – Sentence Level Evaluation

 135

consistent, irrespective of the size of the test set. In most cases, where the parser

could not achieve the target parse for a test sentence, it was able to make useful

approximations. However, the inadequacies noticed in the parser during training,

also affect its generalisation performance. Its performance is also hindered in part

by inconsistencies in the pre-parsed corpus.

In examining the behaviour of the parser, a sample of 12 matching parse trees

produced by the parser from sentences belonging to the large test set (1059

sentences) has been extracted and presented below. The sentences whose parse

trees are shown below are of varying structural complexity. Figures 6.1, 6.2 and

6.3 display the parser’s ability to generalise to sentences with simple syntactic

structures. The parser is able to analyse the determiner and two nouns that

constitute the object noun phrase in figure 6.1. It is also able to deal with the

modifying adjectives in the subject noun phrase as well as the case that there is no

object noun phrase in figure 6.2. In figure 6.3, the parser is shown to be able to

handle the cardinal number and noun that constitute the object noun phrase.

S1

S

VP

NP NP

NN AUX DT NN NN .

Ametek is an instrument maker .

Figure 6.1: Matching parse tree for the sentence, Amatek is an instrument maker. (Using

only syntactic information)

Chapter 6 – Sentence Level Evaluation

 136

 S1

 S

 VP

NP ADJP

JJ JJ NNS VBP JJ .

Many small investors remain cautious .

Figure 6.2: Matching parse tree for the sentence, Many small investors remain cautious.

(Using only syntactic information)

 S1

 S

 VB

NP NP

DT JJ NN VBZ CD NNS .

A metric ton equals 2,204.62 pounds .

Figure 6.3: Matching parse tree for the sentence, A metric ton equals 2,204.62 pounds.

(Using only syntactic information)

Chapter 6 – Sentence Level Evaluation

 137

S1

S

NP

PP VP

NP NP NP

DT NN IN DT NN AUX DT NN .

The rest of the world was an afterthought .

Figure 6.4: Matching parse tree for the sentence, The rest of the world was an afterthought.

(Using only syntactic information)

S1

 S

 VP

NP

PP

NP NP NP

NN VBZ JJ NN NNS IN NNP NNP .

SUIT SEEKS equal insurance benefits for manic depression .

Figure 6.5: Matching parse tree for the sentence, SUIT SEEKS equal insurance benefits for

manic depression. (Using only syntactic information)

Figures 6.4 and 6.5 show the parser’s ability to analyse sentences containing more

complex noun phrases, while dealing with cases requiring the attachment of

preposition phrases. The parser is also seen to be able to handle recursivity in

sentence structure. In figures 6.6 and 6.7 the parser is shown to be able to parse

sentence structures containing right-embedded clauses. The parser is also able to

Chapter 6 – Sentence Level Evaluation

 138

handle centre-embedding as seen in figures 6.8 and 6.9. Figures 6.10, 6.11 and

6.12 show the parser’s handling of more structurally complex sentences.

S1

S

VP

S

VP

VP

PP

NP NP NP NP

NNP NNP VBZ NNP NNP TO VB DT NN IN NNS .

Mr. Gray wants Mr. Penn to provide an example for others .

Figure 6.6: Matching parse tree for the sentence, Mr. Gray wants Mr. Penn to provide an

example for others. (Using only syntactic information)

S1

S

VP

VP

VP

S

NP VP

NP NP NP

DT NN POS NN AUX AUX VBG JJ NNS VB NN NNS .

The yen ’s slide has been helping Japanese companies improve export profits .

Figure 6.7: Matching parse tree for the sentence, The yen’s slide has been helping Japanese

companies improve export profits. (Using only syntactic information)

Chapter 6 – Sentence Level Evaluation

 139

 S1

 S

NP VP

NP NP NP

NNP NNP , DT JJ NN NN , VBZ NNS CC NNS .

Donald Leach , a retired court clerk , suspects workmen and tourists .

Figure 6.8: Matching parse tree for the sentence, Donald Leach, a retired court clerk,

suspects workmen and tourists. (Using only syntactic information)

S1

S

NP

PP

NP VP

PP PP

NP NP NP NP

DT NN IN DT NNPS IN DT NNP AUX IN JJ NN .

The bulk of the Hispanics in the U.S. are of Mexican origin .

Figure 6.9: Matching parse tree for the sentence, The bulk of the Hispanics in the U.S. are

of Mexican origin. (Using only syntactic information)

Chapter 6 – Sentence Level Evaluation

 140

 S1

 S

PP VP

NP NP NP

IN NNP CD , DT NN VBD DT NN .

In November 1985 , the company suspended the payout .

Figure 6.10: Matching parse tree for the sentence, In November 1985, the company

suspended the payout. (Using only syntactic information)

S1

S

 NP VP

PP PP PP

NP NP NP NP

IN DT JJ NN , DT NN IN NN VBZ IN NN NN .

Near the distant farmhouse , a wisp of smoke rises from burning stubble .

Figure 6.11: Matching parse tree for the sentence, Near the distant farmhouse, a wisp of

smoke rises from burning stubble. (Using only syntactic information)

Chapter 6 – Sentence Level Evaluation

 141

S1

S

 VP

S

 VP

 PP PP PP

 NP NP NP NP NP NP

IN NNP , JJ JJ NN NNP NNP VBD IN NNP , -NONE- VBG CD NNS IN NN .

[1] [2] [3][4][5][6] [7] [8] [9] [10] [11] [13] [14] [15] [16] [17] [18][19][20]

Figure 6.12: Matching parse tree for the sentence, In[1] Namibia[2],[3] a[4] black[5]

nationalist[6] leader[7] Sam[8] Nujoma[9] arrived[10] in[11] Windhoek[12],[13] *-7[14]

ending[15] three[16] decades[17] in[18] exile[19].[20]

6.3 Parser with a Combination of Lexical Semantic and

Syntactic Input Representation

As shown in table 5.14 in the last chapter, of the 206 training sentences

syntactically analysed by the parser (using a combination of lexical semantic and

syntactic information in its input representation), 141 (68.45%%) were successfully

parsed, with an F-Measure of 73.60%. 36 (17.48%) of the parse trees produced by

the parser from analysing the 206 training sentences were exact matches of the

target parse trees. The parser failed to produce complete parse trees for 65

(31.55%) of these sentences.

For the 65 failed parses, 4 (6.15%) failed parses were triggered off by the right-to-

left delimiter network’s inability to find the beginnings of some phrases. 20

(30.77%) failed parses were triggered off by the left-to-right delimiter network’s

inability to find the ends of certain phrases. 41 (63.08%) failed parses were

Chapter 6 – Sentence Level Evaluation

 142

triggered off by the phrase recogniser network’s inability to create a valid phrase

from the sequence passed to it by the delimiter networks.

Despite 63.08% of failed parses being triggered off by the inability of the phrase

recogniser network to create a valid phrase from the sequences passed to it by the

delimiter networks, most of the failed parses can be attributed to incorrect phrase

boundary identifications by the delimiter networks. This is a similar situation to that

when the parser had only syntactic information in its input representation. In the

cases where the PSR network failed to create valid phrases from the sequences

passed to it, all of these sequences have been identified to be single constituent

tags (30 ‘NP’s, 1 ‘S1’, 2 ‘VP’s, 1 ‘S’, 1 ‘ADVP’, 2 ‘PRN’s, 1 ‘INTJ’, 1 ‘WHAVDP’, 1 ‘QP’

and 1 ‘UCP’). This is deduced from the fact that the parser’s average precision and

recall (where phrase ‘daughters’ are correctly identified but the ‘mother’ is not) on

the training set compares favourably with its average labelled precision and recall

(average precision = 73.76%; average recall = 74.85%; average labelled precision

=73.06%; average labelled recall = 74.14%).

The parser’s “knock-on effect” limitation (due to its connectionist modules operating

in cascade), seen when it had only syntactic information in its input representation,

still affects its performance with the combined input representation. The number of

sentences successfully parsed and F-measure were lower than when the parser had

only syntactic information in its input. It is envisaged that further optimising the

network sizes for the delimiter modules would optimise this shortfall; although the

number of hidden nodes had been increased to cope with the increased complexity

of combining lexical semantic and syntactic information, there seems to be some

room for improvement.

To test the modified parser’s ability to syntactically analyse sentences not

presented to it during training, two sets of test sentences were presented to it.

Chapter 6 – Sentence Level Evaluation

 143

These are the same sets of test sentences earlier presented to the parser when it

had only syntactic information in its input representation.

Of the 74 test sentences (from the first test set - as shown in table 5.14 in the last

chapter -) syntactically analysed by the parser (using a combination of lexical

semantic and syntactic information in its input representation), 40 (54.05%) were

successfully parsed, with an F-measure of 58.17%. 6 (8.11%) of the parse trees

produced by the parser from analysing the 74 test sentences were exact matches of

the target parse trees. The parser failed to produce complete parse trees for 34

(45.95%) of these sentences.

Of the 1059 test sentences (from the second test set whose sentence composition

is different from that of the first test set - as also shown in table 5.14 in the last

chapter -) syntactically analysed by the parser (using a combination of lexical

semantic and syntactic information in its input representation), 643 (60.72%) were

successfully parsed, with an F-Measure of 56.75%. 55 (5.19%) of the parse trees

produced by the parser from analysing the 1059 test sentences were exact matches

of the target parse trees. The parser failed to produce complete parse trees for 416

(39.28%) of these sentences.

The parser’s performance on the test set (compared to its performance using only

syntactic information in its input representation) reflects its training results. Its

generalisation performance on the test sentences was, however, consistent,

irrespective of the size of the test set.

In order to observe the effects, if any, of combining lexical semantic and syntactic

information in the parser’s input representation, it is pertinent to compare the

parser’s analytic behaviour, given the two sets of input representations. All

matching and mismatched parses were examined. A sample of eight pairs of parse

Chapter 6 – Sentence Level Evaluation

 144

trees is presented here. Each pair comprises a matching (to the target Treebank

parse tree) parse tree constructed by the parser using the combined linguistic

information and a mismatching parse tree constructed, for the same sentence, by

the parser with only syntactic information. Another sample comprising three

mismatching parse trees constructed by the parser using the combined linguistic

information is presented, in comparison with matching parse trees constructed by

the parser for the same sentences using only syntactic information.

S1

S

VP

NP ADJP

PRP AUX JJ .

It is fruitless .

Figure 6.13: Matching Parse tree for the sentence, It is fruitless. (Using combined linguistic

information)

S1

S

VP

NP NP

PRP AUX JJ .

It is fruitless .

Figure 6.14: Mismatching parse tree for the sentence, It is fruitless. (Using only syntactic

information)

Figures 6.13 and 6.14 show two parse trees for the sentence, It is fruitless., where

the parser used a combination of linguistic information to make better judgement

on analysing the given structure. Using a combination of lexical semantic and

Chapter 6 – Sentence Level Evaluation

 145

syntactic, compared to its use of only syntactic information in its input

representation, the parser also made better parsing decisions in the structural

analysis of the sentences shown in figures 6.15 to 6.28. Worthy of note is the

parser’s consistent better decision making (when using a combination of lexical

semantic and syntactic information in its input representation) in the attachment of

preposition phrases (figures 6.21 to 6.28).

S1

S

VP

NP NP

“ PRP AUX JJ JJ NNS .

“ They ‘re such fine boys .

Figure 6.15: Matching Parse tree for the sentence, “They’re such fine boys. (Using

combined linguistic information)

S1

S

 NP VP

“ PRP AUX JJ JJ NNS .

“ They ‘re such fine boys .

Figure 6.16: Mismatching parse tree for the sentence, “They’re such fine boys. (Using only

syntactic information)

Chapter 6 – Sentence Level Evaluation

 146

S1

S

VP

NP NP ADVP

NNP NNS VBD DT NNS RB .

U.S. officials confirmed these reports too .

Figure 6.17: Matching Parse tree for the sentence, U.S. officials confirmed these reports

too. (Using combined linguistic information)

S1

NP

VP

 NP ADVP

NNP NNS VBD DT NNS RB .

U.S. officials confirmed these reports too .

Figure 6.18: Mismatching parse tree for the sentence, U.S. officials confirmed these

reports too. (Using only syntactic information)

S1

S

VP

NP NP

DT NN VBZ NNP CD , CD .

The authorisation expires July 31 , 1990 .

Figure 6.19: Matching Parse tree for the sentence, The authorisation expires July 31, 1990.

(Using combined linguistic information)

Chapter 6 – Sentence Level Evaluation

 147

S1

S

VP

NP NP NP

DT NN VBZ NNP CD , CD .

The authorisation expires July 31 , 1990 .

Figure 6.20: Mismatching parse tree for the sentence, The authorisation expires July 31,

1990. (Using only syntactic information)

S1

S

VP

NP

PP

NP ADVP NP NP

JJ NNS RB VBP CD NN IN DT NN .

Conventional chips only process one instruction at a time .

Figure 6.21: Matching Parse tree for the sentence, Conventional chips only process one

instruction at a time. (Using combined linguistic information)

S1

NP

VP

 PP

ADVP NP NP

JJ NNS RB VBP CD NN IN DT NN .

Conventional chips only process one instruction at a time .

Figure 6.22: Mismatching parse tree for the sentence, Conventional chips only process one

instruction at a time. (Using only syntactic information)

Chapter 6 – Sentence Level Evaluation

 148

S1

S

VP

NP

PP

 NP NP NP

NNP NNP AUX JJ NN NN IN DT NNP NNP .

Mr. Upton is associate finance spokesman for the National Party .

Figure 6.23: Matching Parse tree for the sentence, Mr. Upton is associate finance

spokesman for the National Party. (Using combined linguistic information)

S1

S

 VP

PP

 NP NP NP

NNP NNP AUX JJ NN NN IN DT NNP NNP .

Mr. Upton is associate finance spokesman for the National Party .

Figure 6.24: Mismatching parse tree for the sentence, Mr. Upton is associate finance

spokeman for the National Party. (Using only syntactic information)

S1

S

VP

NP

PP

 NP NP NP

NNP NNP AUX DT JJ NN IN DT NNP NNP NNP .

Mr. Muravchik is a resident scholar at the American Enterprise Institute .

Figure 6.25: Matching Parse tree for the sentence, Mr. Muravchik is a resident scholar at

the American Enterprise Institute. (Using combined linguistic information)

Chapter 6 – Sentence Level Evaluation

 149

S1

S

VP

 PP

 NP NP NP

NNP NNP AUX DT JJ NN IN DT NNP NNP NNP .

Mr. Muravchik is a resident scholar at the American Enterprise Institute.

Figure 6.26: Mismatching parse tree for the sentence, Mr. Muravchik is a resident scholar

at the American Enterprise Institute. (Using only syntactic information)

S1

S

VP

VP

S

NP

 PP

NP

NP PP

NP NP NP NP NP NP

NNP NNP NNP , CD , AUX VBN –NONE- DT JJ NN NN , IN NNS IN NN CC NN NN .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 6.27: Matching Parse tree for the sentence, Marshall[1] N.[2] Norton[3],[4]44[5],[6]

was[7] elected[8] *-1[9] a[10] senior[11] vice[12] president[13],[14] with[15]

responsibilities[16] in[17] finance[18] and[19] data[20] processing[21].[22] (Using combined

linguistic information)

Chapter 6 – Sentence Level Evaluation

 150

S1

S

 PP

VP NP

 PRN VP PP

NP NP NP NP NP

NNP NNP NNP , CD , AUX VBN –NONE- DT JJ NN NN , IN NNS IN NN CC NN NN .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 6.28: Mismatching parse tree for the sentence, Marshall[1] N.[2] Norton[3],[4

]44[5],[6] was[7] elected[8] *-1[9] a[10] senior[11] vice[12] president[13],[14] with[15]

responsibilities[16] in[17] finance[18] and[19] data[20] processing[21].[22] (Using only

syntactic information)

S1

S

 VP

PP

NP NP NP

NN VBZ JJ NN NNS IN NNP NNP .

SUIT SEEKS equal insurance benefits for manic depression .

Figure 6.29: Mismatching parse tree for the sentence, SUIT SEEKS equal insurance

benefits for manic depression., using combined linguistic information (see fig. 6.5 for

matching parse)

Mismatched parsed trees produced by the parser, using a combination of linguistic

information in its output is also compared with matching parse trees produced by

the parser with only syntactic information. Figure 6.29 shows the mismatched parse

Chapter 6 – Sentence Level Evaluation

 151

(using a combination of lexical semantic and syntactic information) of the same

sentence whose parse tree (using only syntactic information) is depicted in figure

6.5. Although this parse (figure 6.29), where the parser prefers the high

attachment (with the VP) for the proposition phrase, does not match the target

parse, it is a plausible sentence analysis. It also shows that the parser (using the

combined linguistic information) can make decisions on attaching preposition

phrases to verb phrases (high attachment), as well as noun phrases (low

attachment).

Figure 6.30 shows the mismatched parse (using a combination of lexical semantic

and syntactic information) of the same sentence whose parse tree (using only

syntactic information) is depicted in figure 6.4. Here the parser (using the

combined linguistic information) erroneously identifies the world was an

afterthought as a reduced relative clause.

S1

SBAR

S

 VP

 NP NP NP

DT NN IN DT NN AUX DT NN .

The rest of the world was an afterthought .

Figure 6.30: Mismatching parse tree for the sentence, The rest of the world was an

afterthought., using combined linguistic information (see fig. 6.4 for matching parse)

Of all the matched parses (labelled precision/recall = 100%/100%) achieved by the

parser, 16 had preposition phrase attachment issues and were exclusively attained

with only one set of input representation. When it used a combination of lexical

semantic and syntactic information in its input representation, the parser

successfully parsed 62.5% of these cases. On the other hand, when it used only

syntactic information in its input representation, the parser was only able to parse

Chapter 6 – Sentence Level Evaluation

 152

37.5% of these cases. The parser therefore appeared to be able to make better

decisions concerning preposition phrase attachment when it used a combination of

lexical semantic and syntactic information than when it used only syntactic

information in its input representation.

6.4 Summary

The parser has successfully acquired a degree of linguistic knowledge inherent in

the BLLIP WSJ Corpus by learning to syntactically analyse sentences from this

corpus. Although there is still room for improvement on its learning and

generalisation performance, the parser is able to generalise to sentences of the

same structural complexity as the training sample. In generalising to test sets that

were not used during training, the parser’s generalisation performance has been

consistent, irrespective of test sample size.

In exploiting the connectionist nature of the parser, and by extension, its ability to

make use of multiple constraints during sentence processing, lexical semantic

information was combined with syntactic information in the parser’s input

representation. In terms of the number of successfully parsed sentences, this

combination of linguistic information did not yield better performance for the

parser. It is envisaged that a further optimisation of the network size used in

training with the combination of linguistic information could lead to better

performance. However, an in-depth look at the parser’s analysis revealed that the

parser appeared to be able to make better decisions concerning preposition phrase

attachment when it used a combination of lexical semantic and syntactic

information than when it used only syntactic information in its input representation;

of the 16 matched parses (involving preposition phrase attachment resolution) that

were exclusively parsed using either set of input representation, the parser

successfully parsed 62.5% of these cases when it used a combination of lexical

semantic and syntactic information in its input representation.

 153

7. CONCLUSIONS

7.1 Introduction

The research project presented in this dissertation, has focused on two main

characteristics of connectionist models for natural language processing. These

characteristics are their adaptability to different tagging conventions, and their

ability to use multiple linguistic constraints in parallel during sentence processing.

In focusing on these key characteristics, an existing parsing model has been

modified. This model is a hybrid connectionist, shift-reduce corpus-based parser.

This parser, which had earlier been trained to acquire some level of linguistic

knowledge from the Lancaster Parsed Corpus, has been adapted to learn a degree

of linguistic knowledge from the BLLIP Wall Street Journal Corpus. This adaptation

is a novel demonstration that this connectionist parser, and possibly, other similar

connectionist models, is able to adapt to more than one tagging convention; this

implies their ability to adapt to the underlying linguistic theories used to annotate

different corpora.

Another characteristic of connectionist systems is their inherent ability to use

multiple constraints in decision making. In further exploiting this aspect of the

connectionist nature of this parsing model, it has been adapted to integrate shallow

lexical semantic information with syntactic information for full syntactic parsing.

This novel approach to the integration of lexical semantic and syntactic information

was used to investigate the effect of shallow lexical semantic information on full

syntactic parsing.

A challenge encountered in the attempt to integrate shallow lexical semantic

information with syntactic information for full syntactic parsing is the scarcity of

Chapter 7 – Conclusions

 154

large-scale, pre-parsed corpora with lexical semantic annotation, as well as part of

speech annotation. This challenge was surmounted with the development of a novel

algorithm for semantic tagging of nouns in the BLLIP Wall Street Journal Corpus.

The lexical semantic information used in this semantic annotation algorithm was

extracted from WordNet, an online lexical resource. WordNet provides a lexical

inheritance system for nouns.

Using only syntactic information in making parsing decisions, this parsing model

was tested on test sets of sentences that were not used during training. The parser

generalised to parse these test sentences with an F-measure of 72.5% and 59.5%

on sentences from the Lancaster Parsed Corpus and Wall Street Journal Corpus,

respectively. On the integration of shallow lexical semantic information with

syntactic information in its input representation, the parser generalised to parse

test sentences from the Wall Street Journal Corpus with an F-measure of 56.75%.

Although the integration of shallow lexical semantic information with syntactic

information has not seemed to improve the parser’s overall training/generalisation

performance yet, given its present configuration, it did appear to improve the

parser’s decision making in preposition phrase attachment cases.

The demonstrations and findings from investigations conducted in the course of this

work contribute to the field of Connectionist Parsing in particular and the field of

Artificial Intelligence in general.

Section 7.2 presents details of specific contributions made to the field of

Connectionist Parsing by this work. In section 7.3, further lines of investigation and

improvements to the parsing model are suggested as future work to the research.

Chapter 7 – Conclusions

 155

7.2 Contributions

7.2.1 Adaptation of Parsing Model to the BLLIP WSJ Corpus

Most previous connectionist parsers have been trained on hand-made or artificial

grammars. Most of the few that have ventured into analysing natural language are

yet to be trained and tested on a large scale, using broad-coverage corpora such as

the Wall Street Journal Corpus. The generic nature of the connectionist, corpus-

based, shift-reduce parsing model used for this project has been demonstrated with

the model being successfully trained to acquire linguistic knowledge from two

different corpora, the Lancaster Parsed Corpus and the BLLIP Wall Street Journal

Corpus.

After the parser had been used to learn the underlying linguistic theory used to pre-

parse the Lancaster Parsed Corpus, its adaptation to the Wall Street Journal Corpus

was without a change to its architecture or algorithm. However, new binary input

representations were designed for the parser, to cater for the different word and

constituent tags used in the new corpus.

When used with the Lancaster Parsed Corpus, the parser was trained with a set

comprising 654 sentences. The test set used had 687 sentences which were not

used during training. The parser analysed sentences from the test set with an F-

measure of 72.5%. On being adapted to the BLLIP Wall Street Journal Corpus, the

training set used consisted of 202 sentences. There were two test sets of sentences

that had not been used during training; one had 74 sentences while the other held

1059 sentences. The parser analysed sentences from the 74-sentence test set with

an F-measure of 59.1%. It analysed sentences from the 1059-sentence test set

with an F-measure of 59.5%.

Chapter 7 – Conclusions

 156

7.2.2 Semantic Annotation of Nouns in the BLLIP Corpus

An important part of the process of integrating shallow lexical semantic information

with syntactic information for full syntactic parsing is the semantic annotation of

words in sentences. However, there is a scarcity of large-scale, pre-parsed corpora

with lexical semantic annotation as well as part of speech annotation. Also, the

lexical semantic tagging models available are too fine-grained for practical use. The

need therefore arose for the development of a semi-automatic algorithm for

semantic tagging of nouns in the BLLIP Wall Street Journal Corpus. The lexical

semantic information used in this semantic annotation algorithm was extracted

from WordNet, an online lexical resource. WordNet provides a lexical inheritance

system for nouns. Each noun (and pronoun) in the training and test samples from

the BLLIP Wall Street Journal Corpus was semantically annotated using the

developed algorithm. The semantic classes used for this annotation are the 25 top-

level classes (called unique beginners) in WordNet’s lexical inheritance system for

nouns.

A lot of the nouns annotated are polysemous and could have senses that belong to

more than one of the unique beginners. In such cases, the views of Buitelaar [117]

are shared in the design of this annotation scheme; there is no disambiguation

between the senses, rather they are left underspecified. However, this algorithm

allowed a maximum of four of the most frequently used senses to be extracted

from WordNet for each noun in BLLIP Wall Street Journal Corpus samples. The

frequency of use for each sense (determined by the number of times a sense is

tagged in the various semantic concordance texts built up as part of the WordNet

project) is also extracted. This frequency forms part of the semantic tags for the

nouns.

Chapter 7 – Conclusions

 157

The semantic tags for nouns and pronouns are extended to noun phrases and

preposition phrases which the nouns are part of.

7.2.3 Integration of Shallow Lexical Semantic Information

with Syntactic Information in Full Syntactic Parsing

In introducing shallow lexical semantic information to the syntactic parsing process,

the main aim of this work is not to improve parsing accuracy per se. Rather, the

main aim is to investigate the role that lexical semantic information (of vary levels

of abstraction) plays in the syntactic parsing process. This investigation has also

provided some insight into two contrasting parsing theories; i.e. whether syntactic

parsing should be modelled as a two-stage “Fodorian” process with a lot of stress

on compartmentalism and serial processing, or as an integrated constraint-

satisfaction process which stresses the importance of interaction between syntactic

information and semantics.

On the integration of shallow lexical semantic information with syntactic information

in its input representation, the parser learnt with a training set of 206 sentences.

Two test sets consisting of 74 and 1059 sentences each were used to test the

parsers generalisation performance. Sentences in the test set were not used during

training. When presented with sentences from the training set, the parser analysed

them with an F-measure of 73.6%. On being presented with the test sentences, the

parser generalised to parse 1059 test sentences from the Wall Street Journal

Corpus with an F-measure of 56.75%. It analysed the 74-sentence set with an F-

measure of 58.17%.

Although the integration of shallow lexical semantic information with syntactic

information did not seem to improve the parser’s overall training/generalisation

performance, given its present configuration, an examination of the parser’s

Chapter 7 – Conclusions

 158

behaviour showed that it did appear to improve the parser’s decision concerning

preposition phrase attachment.

On the whole, this connectionist parsing model provides a plausible account of

natural language acquisition. This is considering its ability to process sentences

sequentially and learn the underlying linguistic theory used to annotate the

Lancaster Parsed and Wall Street Journal Copora. It is able to handle recursive

structure and the potentially long sentences, including complex, multi-clause

sentences that result from it. It is able to process long-distance dependencies,

such as centre-embeddings. Apart from being able to learn and make use of

multiple linguistic constraints, it includes contextual constraints, in the form of look-

backs and look-aheads, in its decision making process. Unlike, other parsing

models, especially the statistical models (most use test sets that are 6% the size of

their training data sets) which need very large training data compared to their test

data, this connectionist model is able to generalise to test sets that are larger than

its training data set. Its generalisation performance is not deeply affected by test

data size.

7.3 Future Work

Work on the connectionist model used in this project suggests that there is a lot of

room for improvement. To begin with, a re-structuring of the modular architecture

used by this parser could lead to better sentence level performance. Findings show

that strong modular performances by the connectionist modules on the

failed/mismatched sentences were matched with weak sentence level performance.

This brings to the fore a limitation of the modular model, the knock-on effects that

occur throughout the shift-reduce parsing process. During the parsing process, the

parser’s connectionist modules operate in cascade. The right-to-left delimiter (RLD)

module first processes the sequences and passes its results, including any errors, if

Chapter 7 – Conclusions

 159

available, to the left-to-right delimiter (LRD) module. The LRD passes its own

results, including any errors, if available to the phrase structure recogniser (PSR)

module. To eradicate or drastically reduce the effects of this limitation, it would be

necessary to use one recurrent network for the delimitation process. This would

result in two connectionist modules, one for delimitation, and the other for phrase

structure recognition. Alternatively, the whole parsing process could be assigned to

one network, a recurrent network which is capable of handling the sequential and

unbounded nature of natural language processing.

Improvement in parsing performance could also be achieved by increasing the size

of the training set. This is considering that the parser had better training/test

performance on the Lancaster Parsed Corpus (LPC) than on the Wall Street Journal

Corpus (WSJC). The training set used to train the parser on the LPC contained 654

sentences. That used to train the parser on the WSLC had 202 sentences. However,

in towing this line, the limitations of training set sizes, networks sizes and training

times are bound to re-surface. A way around this would be to make use of faster

computer resources; research in Artificial Intelligence has over the years been

enhanced by growth in computer power and speed. News of the emergence of Tesla

supercomputers from NVIDIA Corporation may provide the solution for optimising

these neural networks on a large scale in the future. Another way around this would

be to explore the use of less computationally excruciating recurrent neural network

architectures, such as Echo State Networks [135]. In addition to increasing the

training data size, a further optimisation of the network size would be necessary for

improved performance. In ensuring the improvement of generalisation performance

during network optimisation, weight regularisation techniques [94, 118] such as

weight decay, weight elimination and approximate smoother may come in handy.

A re-structuring of the training programme for the parser’s modules could also lead

to improvement in parsing performance. This would involve a situation where the

Chapter 7 – Conclusions

 160

parser’s modules are re-trained only on data generated from the failed/non-

matching sentences. After this session of re-training on these failed/non-matching

data, the parser would again be trained on data from the whole test set. In re-

structuring the training programme in this way, it would be necessary to avoid

over-fitting. This can be done by using the early stopping method of cross-

validation [94, 95, 96].

The above recommendations are aimed at improvement in the parser’s

performance. They would also lead to a better exposure of the effects of integrating

lexical semantic information with syntactic information in full syntactic parsing.

Further effects of this integration might also be observed with the use of deeper

levels of semantic abstraction for the annotated nouns. To be useful for practical

use, the level of semantic abstraction should balance the need for additional

information whilst ensuring that the sense distinctions are not too fine-grained.

 161

Appendix A: The Penn Treebank II Word Tags

The word tags can be sub-divided into five separate groups: nouns, verbs,

prepositions, conjunctions and punctuation. The following tables list the tag,

description and bit representation within the encoding scheme defined in Chapter 4

for each tag in each group:

Tag Description Bit Representation

NN Noun, singular or mass 100001

NNS Noun, plural 100010

NNP Proper noun, singular 100011

NNPS Proper noun, plural 100100

PRP Personal pronoun 100101

PRP-DEI Personal pronoun, deictic 100110

PRP-PLE Personal pronoun, pleonastic 100111

PRP$ Possessive pronoun 101000

PRP$-DEI Possessive pronoun, deictic 101001

PRP$-PLE Possessive pronoun, pleonastic 101010

JJ Adjective 101011

JJR Adjective, comparative 101100

JJS Adjective, superlative 101101

CD Cardinal number 101110

DT Determiner 101111

EX Existential there 110000

FW Foreign word 110001

LS List item marker 110010

PDT Pre-determiner 110011

POS Possessive ending 110100

SYM Symbol 110101

WDT wh-determiner 110110

WP wh-pronoun 110111

WP$ Possessive wh-pronoun 111000

Tag Description Bit Representation

IN Preposition/subord. Conjunction 11

Appendix A – The Penn Treebank II Word Tags

 162

Tag Description Bit Representation

CC Coordinating conjunction 11

Tag Description Bit Representation

VB Verb, base form 100001

VBD Verb, past tense 100010

VBG Verb, gerund/present participle 100011

VBN Verb, past participle 100100

VBP Verb, non-3rd ps. Sing. present 100101

VBZ Verb, 3rd ps. Sing. Present 100110

AUX Verb, auxilliary e.g. have, been 100111

AUXG Verb, auxilliary e.g. having, etc 101000

RB Adverb 101001

RBR Adverb, comparative 101010

RBS Adverb, superlative 101011

RP Particle 101100

MD Modal 101101

TO to 101110

UH Interjection 101111

WRB wh-adverb 110000

Tag Description Bit Representation

£ Pound sign 10001

$ Dollar sign 10010

. Sentence-final punctuation 10011

, Comma 10100

: Colon 10101

; Semi-colon 10110

-LRB- Left bracket character 10111

-RRB- Right bracket character 11000

`` Straight double quote 11001

‘ Single open/close quote 11010

“ Double open/close quote 11011

-NONE- Null element 10000

 163

Appendix B: The Penn Treebank II Constituent Tags

Tag Description Bit Representation

ADJP Adjective phrase 101

WHADJP Wh-adjective phrase 110

QP Quantifier phrase 111

Tag Description Bit Representation

ADVP Adverb phrase 101

WHADVP Wh-adverb phrase 110

Tag Description Bit Representation

CONJP Conjunction phrase 1

Tag Description Bit Representation

FRAG Fragment 1

Tag Description Bit Representation

INTJ Interjection 1

Tag Description Bit Representation

NP Noun phrase 1001

NX Head of complex NP 1010

NAC Not a constituent 1011

LST List marker 1100

WHNP Wh-noun phrase 1101

Tag Description Bit Representation

PP Prepositional phrase 101

WHPP Wh-prepositional phrase 110

Tag Description Bit Representation

PRN Parenthesis 1

Tag Description Bit Representation

RRC Reduced relative clause 1

Appendix B – The Penn Treebank II Constituent Tags

 164

Tag Description Bit Representation

S1 Root node 1001

S Simple declarative clause 1010

SBAR Clause introd. by surbor. Conj. 1011

SBARQ Direct quest. introd. by wh-word 1100

SINV Declar. sent. with subj-aux inversion1101

SQ Sub-constituent of SBARQ 1110

Tag Description Bit Representation

UCP Unlike coordinated phrase 1

Tag Description Bit Representation

VP Verb phrase 101

PRT Particle 110

Tag Description Bit Representation

X Unknown/uncertain category 1

 165

Appendix C: The Word Tags Used In The LPC

The word tags can be sub-divided into five separate groups: nouns, verbs,

prepositions, conjunctions and punctuation. The following tables lists the tag,

description and bit representation within the encoding scheme used in this work

for each tag in each group.

83 Word Tags for Nouns

Tag Description Bit Rep.

ABL pre-qualifier in a noun phrase (QUITE, RATHER, SUCH) 1 0 0 0 0 0 0 1

ABN pre-quantifier in a noun phrase (ALL, HALF) 1 0 0 0 0 0 1 0

AP post-determiner (FEW, FEWER, FORMER) 1 0 0 0 0 0 1 1

AP$ OTHER'S 1 0 0 0 0 1 0 0

APS OTHERS 1 0 0 0 0 1 0 1

APS$ OTHERS' 1 0 0 0 0 1 1 0

AT singular article (A, AN, EVERY) 1 0 0 0 0 1 1 1

ATI singular or plural article (THE, NO) 1 0 0 0 1 0 0 0

CD cardinal number (2, 3, etc; TWO, THREE, THOUSAND) 1 0 0 0 1 0 0 1

CS$ cardinal number + genitive 1 0 0 0 1 0 1 0

CD-CD hyphenated pair of cardinal numbers (e.g. 1988-90) 1 0 0 0 1 0 1 1

CD1 ONE 1 0 0 0 1 1 0 0

CD1$ ONE'S 1 0 0 0 1 1 0 1

CD1S ONES 1 0 0 0 1 1 1 0

CDS cardinal number+plural(TENS, MILLIONS, DOZENS, etc) 1 0 0 0 1 1 1 1

DT singular determiner (ANOTHER, EACH, THAT, THIS) 1 0 0 1 0 0 0 0

DT$ singular determiner + genitive (ANOTHER'S) 1 0 0 1 0 0 0 1

DTI determiner neutral for number (ANY, ENOUGH, SOME) 1 0 0 1 0 0 1 0

DTS plural determiner (THESE, THOSE) 1 0 0 1 0 0 1 1

DTX determiner / double conjunction (EITHER, NEITHER) 1 0 0 1 0 1 0 0

EX existential THERE 1 0 0 1 0 1 0 1

JJ adjective (general) 1 0 0 1 0 1 1 0

JJB attributive adjective 1 0 0 1 0 1 1 1

JNP adjective with word-initial cap; e.g. WELSH, KEYNESIAN 1 0 0 1 1 0 0 0

JJR comparative adjective 1 0 0 1 1 0 0 1

JJT superlative adjective 1 0 0 1 1 0 1 0

NC cited word as singular noun (e.g. "LED is a verb") 1 0 0 1 1 0 1 1

Appendix C – The Word Tags used in the LPC

 166

NN singular common noun 1 0 0 1 1 1 0 0

NNP sing. common noun; word-initial cap; e.g. LONDONER 1 0 0 1 1 1 0 1

NNPS plural common noun; word-initial cap; e.g. LONDONERS 1 0 0 1 1 1 1 0

NNPS$ plu. common noun; word-init. cap; gen. : LONDONERS' 1 0 0 1 1 1 1 1

NNP$ sing. common noun; word-init.cap; gen.: LONDONER'S 1 0 1 0 0 0 0 0

NNS plural common noun 1 0 1 0 0 0 0 1

NNS$ plural common noun + genitive 1 0 1 0 0 0 1 0

NNU singular unit of measurement (e.g. IN. KG.) 1 0 1 0 0 0 1 1

NNUS plural unit of measurement (e.g. INS. KGS.) 1 0 1 0 0 1 0 0

NNUS$ plural unit of measurement + genitive 1 0 1 0 0 1 0 1

NP singular proper noun 1 0 1 0 0 1 1 0

NPS plural proper noun 1 0 1 0 0 1 1 1

NPS$ plural proper noun + genitive 1 0 1 0 1 0 0 0

NP$ singular proper noun + genitive 1 0 1 0 1 0 0 1

NPL singular locative noun; word-initial cap.; e.g. ISLAND 1 0 1 0 1 0 1 0

NPLS plural locative noun; word-initial cap.; e.g. ISLANDS 1 0 1 0 1 0 1 1

NPLS$ plu. locative noun; word-init. cap; + gen.; e.g. ISLANDS'1 0 1 0 1 1 0 0

NPL$ sing. locative noun; word-init. cap; + gen.: ISLAND'S 1 0 1 0 1 1 0 1

NPT singular titular noun; word-initial cap.; e.g. DR. 1 0 1 0 1 1 1 0

NPTS plural titular noun; word-initial cap.; e.g. MESSRS. 1 0 1 0 1 1 1 1

NPTS$ plu. titular noun; word-init. cap.; + gen.; e.g. QUEENS' 1 0 1 1 0 0 0 0

NR singular adverbial noun (JANUARY, MONDAY, EAST) 1 0 1 1 0 0 0 1

NR$ singular adverbial noun + genitive 1 0 1 1 0 0 1 0

NRS plural adverbial noun 1 0 1 1 0 0 1 1

OD ordinal number (1ST, 2ND, etc; FIRST, SECOND, etc) 1 0 1 1 0 1 0 0

PN nominal pronoun (ANYBODY, ANYONE, EVERYONE etc) 1 0 1 1 0 1 0 1

PN$ nominal pronoun + genitive 1 0 1 1 0 1 1 0

PP$ possessive determiner (MY, YOUR, etc) 1 0 1 1 0 1 1 1

PPS$ possessive pronoun (MINE, YOURS, etc) 1 0 1 1 1 0 0 0

PP1A personal pronoun, 1st pers sing nom (I) 1 0 1 1 1 0 0 1

PP1AS personal pronoun, 1st pers plur nom (WE) 1 0 1 1 1 0 1 0

PP1O personal pronoun, 1st pers sing acc (ME) 1 0 1 1 1 0 1 1

PP1OS personal pronoun, 1st pers plur acc (US, 'S) 1 0 1 1 1 1 0 0

PP2 personal pronoun, 2nd pers (YOU, THOU, THEE, YE) 1 0 1 1 1 1 0 1

PP3 personal pronoun, 3rd pers sing nom+acc (IT) 1 0 1 1 1 1 1 0

PP3A personal pronoun, 3rd pers sing nom (HE, SHE) 1 0 1 1 1 1 1 1

PP3AS personal pronoun, 3rd pers plur nom (THEY) 1 1 0 0 0 0 0 0

PP3O personal pronoun, 3rd pers plur acc (HIM, HER) 1 1 0 0 0 0 0 1

Appendix C – The Word Tags used in the LPC

 167

PP3OS personal pronoun, 3rd pers plur acc (THEM, 'EM) 1 1 0 0 0 0 1 0

PPL singular reflexive pronoun 1 1 0 0 0 0 1 1

PPLS plural reflexive pronoun 1 1 0 0 0 1 0 0

QL qualifier (AS, AWFULLY, LESS, MORE, SO, TOO, VERY, etc) 1 1 0 0 0 1 0 1

QLP post-qualifier (ENOUGH, INDEED) 1 1 0 0 0 1 1 0

WDT WH-determiner (WHAT, WHATEVER,WHICH) 1 1 0 0 0 1 1 1

WP WH-pronoun, nom+acc (WHO, WHOEVER, THAT) 1 1 0 0 1 0 0 0

WP$ WH-pronoun, genitive (WHOSE) 1 1 0 0 1 0 0 1

WPA WH-pronoun, nom (WHOSOEVER) 1 1 0 0 1 0 1 0

WPO WH-pronoun, acc (WHOM, WHOMSOEVER) 1 1 0 0 1 0 1 1

PP$$ possessive pronoun (MINE,YOURS etc) 1 1 0 0 1 1 0 0

NN$ singular common noun + genitive 1 1 0 0 1 1 0 1

NPT$ titular noun with w.i.c + genitive 1 1 0 0 1 1 1 0

WDTR WH-determiner - relative e.g. WHICH 1 1 0 0 1 1 1 1

WP$R WH-pronoun - relative - gen e.g. WHOSE 1 1 0 1 0 0 0 0

WPOR WH-pronoun - relative - acc e.g. WHOM 1 1 0 1 0 0 0 1

WPR WH-pronoun - relative - nom+acc e.g. THAT,relative WHO 1 1 0 1 0 0 1 0

WRB WH-verb (HOW,WHEN) 1 1 0 1 0 0 1 1

4 Word Tags for Prepositions

Tag Description Bit Representation

IN preposition (general) 1 0 0 1

INF FOR as a preposition 1 0 1 0

INO OF as a preposition 1 0 1 1

INW WITH as a preposition 1 1 0 0

33 Word Tags for Verbs

Tag Description Bit Representation

BE BE 1 0 0 0 0 0 1

BED WERE 1 0 0 0 0 1 0

BEDZ WAS 1 0 0 0 0 1 1

BEG BEING 1 0 0 0 1 0 0

BEM AM 1 0 0 0 1 0 1

BEN BEEN 1 0 0 0 1 1 0

BER ARE, 'RE 1 0 0 0 1 1 1

BEZ IS, 'S 1 0 0 1 0 0 0

DO DO 1 0 0 1 0 0 1

DOD DID 1 0 0 1 0 1 0

Appendix C – The Word Tags used in the LPC

 168

DOZ DOES 1 0 0 1 0 1 1

HV HAVE 1 0 0 1 1 0 0

HVD HAD, 'D (past tense) 1 0 0 1 1 0 1

HVG HAVING 1 0 0 1 1 1 0

HVN HAD (past participle) 1 0 0 1 1 1 1

HVZ HAS, 'S 1 0 1 0 0 0 0

MD modal auxiliary 1 0 1 0 0 0 1

RB adverb (general) 1 0 1 0 0 1 0

RB$ adverb + genitive (ELSE'S) 1 0 1 0 0 1 1

RBR comparative adverb 1 0 1 0 1 0 0

RBT superlative adverb 1 0 1 0 1 0 1

RI adverb (homograph of preposition: BELOW, NEAR, etc) 1 0 1 0 1 1 0

RN nominal adverb (HERE, NOW, THERE, THEN, etc) 1 0 1 0 1 1 1

RP adverbial particle (BACK, DOWN, OFF, etc) 1 0 1 1 0 0 0

TO infinitival TO 1 0 1 1 0 0 1

UH interjection 1 0 1 1 0 1 0

VB base form of lexi. verb (uninflected pres. tense, infinitive)1 0 1 1 0 1 1

VBD past tense of lexical verb 1 0 1 1 1 0 0

VBG present participle or gerund of lexical verb 1 0 1 1 1 0 1

VBN past participle of lexical verb 1 0 1 1 1 1 0

VBZ 3rd person singular of verb 1 0 1 1 1 1 1

WRB WH-adverb (HOW, WHEN, WHERE, etc) 1 1 0 0 0 0 0

XNOT NOT, N'T 1 1 0 0 0 0 1

3 Word Tags for Conjunctions

Tag Description Bit Representation

ABX pre-quantifier / double conjunction (e.g. BOTH) 1 0 1

CC coordinating conjunction (e.g. AND, AND/OR, BUT, OR, YET) 1 1 0

CS subordinating conjunction (e.g. AFTER, ALTHOUGH, etc) 1 1 1

20 Word Tags for Punctuation

Tag Description Bit Representation

^ null 0 0 0 0 0

ZZ letter of the alphabet (E, X, etc). 1 0 0 0 1

! exclamation mark (!) 1 0 0 1 0

&FO formula 1 0 0 1 1

&FW foreign word 1 0 1 0 0

(left bracket 1 0 1 0 1

Appendix C – The Word Tags used in the LPC

 169

[left bracket 1 0 1 0 1

) right bracket 1 0 1 1 0

] right bracket 1 0 1 1 0

*' begin quote 1 0 1 1 1

*" begin quote 1 0 1 1 1

**' end quote 1 1 0 0 0

**" end quote 1 1 0 0 0

- dash 1 1 0 0 1

, comma 1 1 0 1 0

? question mark 1 1 0 1 1

... ellipsis 1 1 1 0 0

: colon 1 1 1 0 1

; semicolon 1 1 1 1 0

. full stop 1 1 1 1 1

 170

Appendix D: The Constituent Tags Used In The LPC

The constituent tags can be sub-divided into five main groups : sentence tags,

finite clause tags, non-finite and verbless clause tags, major phrase tags, and minor

phrase tags. The following table lists the tag, description and

bit representation within the encoding scheme used in this work.

3 Sentence Tags

Tag Description Bit Representation

S sentence. 1 0 1

Sq piece of direct quotation. 1 1 0

Si interpolated sentence. 1 1 1

5 Finite Clause Tags

Tag Description Bit Representation

F finite subor. clause i.e. a clause which contains a finite verb. 1 0 0 1

Fa finite adverbial clause(e.g. finite subordinate clause of time etc)1 0 1 0

Fc comparative clause, normally beginning with `than' or `as'. 1 0 1 1

Fn finite nominal clause (subord clause func in pos of Noun PH) 1 1 0 0

Fr relative clause - whether restrictive or non-restrictive. 1 1 0 1

9 Non-finite And Verbless Clause Tags

Tag Description Bit Representation

T nonfinite clause. 1 0 0 0 1

Ti to-infinitive clause. 1 0 0 1 0

Tg -ing clause. 1 0 0 1 1

Tn past participle clause. 1 0 1 0 0

Tb ` bare infinitive clause'. 1 0 1 0 1

Tf subject of the infinitive which is introduced by `for'. 1 0 1 1 0

W nonfinite or verbless clause that is introduced by with. 1 0 1 1 1

L verbless clause that is not intro. by subordinating conjunction. 1 1 0 0 0

17 Major Phrase Tags

Tag Description Bit Representation

V A finite “verb phrase” i.e. one that excludes objects,

complements 1 0 0 0 0 1

Vo Used when a verb phrase is split into two parts by subj-aux inv.

Appendix D – The Constituent Tags used in the LPC

 171

o=operator 1 0 0 0 1 0

Vr Used when a verb phrase is split into two parts by subj-aux inversion.

r=remaindr 1 0 0 0 1 1

Vi Label for nonfinite verb phrases(VP). i.e VP's that are

VP's of Ti,Tg and Tn. 1 0 0 1 0 0

Vg Label for nonfinite verb phrases(VP). i.e VP's that are VP's of

Ti,Tg and Tn. 1 0 0 1 0 1

Vn Label for nonfinite verb phrases(VP). i.e VP's that are VP's of

Ti,Tg and Tn. 1 0 0 1 1 0

N Label for a noun phrase, whether it is a single word or a sequence

of words. 1 0 0 1 1 1

Na A noun phrase marked as subject of the verb. 1 0 1 0 0 0

Nq A wh- noun phrase, such as `who', `which', `which car',

`what time'. 1 0 1 0 0 1

J An adjective phrase such as `happy', `very tall' etc. 1 0 1 0 1 0

Jq A phrase beginning with a wh-word e.g. `How old'. 1 0 1 0 1 1

P A prepositional phrase, e.g. `in London' or `on arriving

at the station'. 1 0 1 1 0 0

Pq A prepositional phrase with a wh-word, e.g. `on whose behalf',

`in which case'. 1 0 1 1 0 1

Po A prepositional phrase beginning with the preposition 'of'. 1 0 1 1 1 0

Poq A prepositional phrase beginning with the preposition 'of'

with wh-word? 1 1 0 0 0 1

R An adverb phrase, e.g. `there',`quickly' or a sequence such as `quite

often' etc 1 0 1 1 1 1

Rq an adverb phrase beginning with a wh-word, e.g. `How do you feel?',

or `how long' 1 1 0 0 0 0

7 Minor Phrase Tags

Tag Description Bit Representation

M `numeric phrase' when such an expression is part of a

noun phrase. 1 0 0 1

D `determiner phrase'. 1 0 1 0

Dq determiner phrase beginning with a wh-word. 1 0 1 1

G genitive phrase - phrase with two or more words acting as the

genitive in a noun. 1 1 0 0

X negative word 'not' when acting as an independent element of

a clause. 1 1 0 1

Appendix D – The Constituent Tags used in the LPC

 172

E label used for existential `there' i.e 'There' is nothing

wrong. 1 1 1 0

U tag used for an exclamatory word such as `Oh','yes',

or 'no'. 1 1 1 1

 173

Appendix E: Parse Failures made on the WSJ Corpus

Training Set (Using Syntactic

Information Only)

Parse failed - could not create a valid parent for NP

Desired parse : (S1 (S (NP (NP (NP NNP NNPS POS) NNP NN NN) (PP IN (NP NNP

NNP))) (VP VBD (PP IN (NP CD NN)) (PP IN (ADVP (NP DT NN) RBR)) , (PP VBG (PP

TO (NP (NP DT NNP) (PP IN (NP NNP NNP)))))) .))

wsj_Concord-II's attempt

State 1 : (NP NNP NNP)

Description : Noun phrase

State 2 : (PP IN (NP NNP NNP))

Description : Prepositional phrase

State 3 : (NP DT NNP)

Description : Noun phrase

State 4 : (NP (NP DT NNP) (PP IN (NP NNP NNP)))

Description : Noun phrase

State 5 : (PP TO (NP (NP DT NNP) (PP IN (NP NNP NNP))))

Description : Prepositional phrase

State 6 : (PP VBG (PP TO (NP (NP DT NNP) (PP IN (NP NNP NNP)))))

Description : Prepositional phrase

State 7 : (NP DT NN)

Description : Noun phrase

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 174

Parse failed - could not create a valid parent for NP

Desired parse : (S1 (S (PP IN (PP TO (S (NP -NONE-) (VP VBG (NP DT NN) (PP IN

(NP CD)))))) , (NP PRP) (VP VBD (SBAR -NONE- (S (NP DT NNP) `` (VP AUX RB

(VP VB (S (NP -NONE-) (VP TO (VP VB (S (NP -NONE-) (VP VBG (NP DT NN) (PP

(ADVP RB) IN (NP (NP DT NN) (PP IN (NP NN)))))))))))))) . ''))

wsj_Concord-II's attempt

State 1 : (NP NN)

Description : Noun phrase

State 2 : (PP IN (NP NN))

Description : Prepositional phrase

State 3 : (NP DT NN)

Description : Noun phrase

State 4 : (VP IN (NP DT NN) (PP IN (NP NN)))

Description : Verb phrase

State 5 : (ADVP RB)

Description : Adverb phrase

State 6 : (NP DT NN)

Description : Noun phrase

State 7 : (VP VBG (NP DT NN) (ADVP RB) (VP IN (NP DT NN) (PP IN

(NP NN))) .)

Description : Verb phrase

State 8 : (NP -NONE-)

Description : Noun phrase

State 9 : (S (NP -NONE-) (VP VBG (NP DT NN) (ADVP RB) (VP IN (NP

DT NN) (PP IN (NP NN))) .))

Description : Simple declarative clause

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 175

State 10 : (VP VB (S (NP -NONE-) (VP VBG (NP DT NN) (ADVP RB) (VP

IN (NP DT NN) (PP IN (NP NN))) .)))

Description : Verb phrase

State 11 : (VP TO (VP VB (S (NP -NONE-) (VP VBG (NP DT NN) (ADVP

RB) (VP IN (NP DT NN) (PP IN (NP NN))) .))))

Description : Verb phrase

State 12 : (NP -NONE-)

Description : Noun phrase

State 13 : (S (NP -NONE-) (VP TO (VP VB (S (NP -NONE-) (VP VBG

(NP DT NN) (ADVP RB) (VP IN (NP DT NN) (PP IN (NP NN))) .)))))

Description : Simple declarative clause

State 14 : (VP VB (S (NP -NONE-) (VP TO (VP VB (S (NP -NONE-) (VP

VBG (NP DT NN) (ADVP RB) (VP IN (NP DT NN) (PP IN (NP NN))) .))))))

Description : Verb phrase

State 15 : (VP RB (VP VB (S (NP -NONE-) (VP TO (VP VB (S (NP -

NONE-) (VP VBG (NP DT NN) (ADVP RB) (VP IN (NP DT NN) (PP IN (NP NN)))

.)))))))

Description : Verb phrase

State 16 : (VP AUX (VP RB (VP VB (S (NP -NONE-) (VP TO (VP VB (S

(NP -NONE-) (VP VBG (NP DT NN) (ADVP RB) (VP IN (NP DT NN) (PP IN (NP NN)))

.))))))) '')

Description : Verb phrase

State 17 : (NP DT NNP)

Description : Noun phrase

State 18 : (NP -NONE- (NP DT NNP) ``)

Description : Noun phrase

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 176

Parse failed - could not create a valid parent for NP

Desired parse : (S1 (S (PP IN (NP NNP)) , (NP NN NNS) (VP (VP VBD (NP (NP DT

NN) (PP IN (NP NN NNS)))) CC (VP (ADVP RB) VBD (NP (NP DT NN) (PP IN (NP (NP

NNS) (PP TO (NP NNP))))) (PP IN (NP (NP DT NN) (PP IN (NP NNP NNS))))))))

wsj_Concord-II's attempt

State 1 : (NP NNP NNS)

Description : Noun phrase

State 2 : (PP IN (NP NNP NNS))

Description : Prepositional phrase

State 3 : (NP DT NN)

Description : Noun phrase

Parse failed - could not create a valid parent for NP

Desired parse : (S1 (S (NP DT NNP NN) (VP VBD (NP NNP NNPS) (SBAR IN (S (NP

(NP DT NNP NNP) (PP IN (NP NNP NNP))) (VP MD RB (VP VB (NP (NP NNS) (PP IN

(NP (NP JJ NNS) (VP VBD (NP NNP NNP))))))))))))

wsj_Concord-II's attempt

State 1 : (NP NNP NNP)

Description : Noun phrase

State 2 : (VP VBD (NP NNP NNP))

Description : Verb phrase

State 3 : (NP JJ NNS)

Description : Noun phrase

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 177

Parse failed - could not create a valid parent for NP

Desired parse : (S1 (PRN -LRB- (VP VBP (NP (NP VBN NN) : `` (S (NP (NP NNP

POS) NNP) (VP VBZ (S (NP NNP NNP POS) (VP VBG '' (S (NP -NONE-) (VP TO (VP

VB (NP DT JJ NN NN)))))))) '' : (NP (NP NNP) (NP NNP CD , CD)))) -RRB-))

wsj_Concord-II's attempt

State 1 : (NP NNP CD , CD)

Description : Noun phrase

State 2 : (ADVP '')

Description : Adverb phrase

State 3 : (NP NNP)

Description : Noun phrase

State 4 : (NP (NP NNP) (NP NNP CD , CD))

Description : Noun phrase

State 5 : (NP DT JJ NN NN)

Description : Noun phrase

State 6 : (VP VB (NP DT JJ NN NN) (ADVP ''))

Description : Verb phrase

State 7 : (VP TO (VP VB (NP DT JJ NN NN) (ADVP '')) :)

Description : Verb phrase

State 8 : (VP VBG)

Description : Verb phrase

State 9 : (VP (VP VBG) '' -NONE- (VP TO (VP VB (NP DT JJ NN NN)

(ADVP '')) :) (NP (NP NNP) (NP NNP CD , CD)))

Description : Verb phrase

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 178

State 10 : (NP NNP NNP)

Description : Noun phrase

State 11 : (NP POS)

Description : Noun phrase

State 12 : (NP (NP POS) (NP NNP NNP))

Description : Noun phrase

State 13 : (S (NP (NP POS) (NP NNP NNP)) (VP (VP VBG) '' -NONE-

(VP TO (VP VB (NP DT JJ NN NN) (ADVP '')) :) (NP (NP NNP) (NP NNP CD , CD))))

Description : Simple declarative clause

State 14 : (VP VBZ (S (NP (NP POS) (NP NNP NNP)) (VP (VP VBG) '' -

NONE- (VP TO (VP VB (NP DT JJ NN NN) (ADVP '')) :) (NP (NP NNP) (NP NNP CD ,

CD)))) -RRB-)

Description : Verb phrase

State 15 : (NP NNP POS)

Description : Noun phrase

State 16 : (NP `` (NP NNP POS) NNP)

Description : Noun phrase

Parse failed - could not create a valid parent for S1

Desired parse : (S1 (S (PP IN (NP JJ NNS)) , (NP (NP NNS) (PP IN (NP NNP))) (VP

AUX (VP VBN (NP (NP NNS) (PP IN (NP NN))) (PP IN (NP (NP DT NN NNS) (PP IN

(NP (NP NNS) (VP VBN (S (NP -NONE-) (ADJP JJ (PP IN (NP NN))))))))))) .))

wsj_Concord-II's attempt

State 1 : (NP NN)

Description : Noun phrase

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 179

State 2 : (PP IN (NP NN))

Description : Prepositional phrase

State 3 : (UCP JJ)

Description : Unlike coordinated phrase

State 4 : (S1 .)

Description : Root node

Parse failed - could not create a valid parent for NP

Desired parse : (S1 (S CC (NP DT NN (S (NP -NONE-) (VP TO (VP VB (NP (NP (NP

DT NN POS) JJ NNS NN) (PRN : (SBAR (WHNP WDT) (S (NP -NONE-) (VP MD (VP

VB (NP DT NNS) (PP IN (NP NN)))))) :)))))) (VP AUX (VP VBG (NP NN))) .))

wsj_Concord-II's attempt

State 1 : (NP NN)

Description : Noun phrase

State 2 : (VP VBG (NP NN))

Description : Verb phrase

State 3 : (VP AUX (VP VBG (NP NN)))

Description : Verb phrase

State 4 : (NP NN)

Description : Noun phrase

State 5 : (PP IN (NP NN))

Description : Prepositional phrase

State 6 : (NP DT NNS)

Description : Noun phrase

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 180

State 7 : (VP VB (NP DT NNS) (PP IN (NP NN)))

Description : Verb phrase

State 8 : (VP MD (VP VB (NP DT NNS) (PP IN (NP NN))))

Description : Verb phrase

State 9 : (NP -NONE-)

Description : Noun phrase

State 10 : (S (NP -NONE-) (VP MD (VP VB (NP DT NNS) (PP IN (NP

NN)))))

Description : Simple declarative clause

State 11 : (WHNP WDT)

Description : Wh-noun phrase

State 12 : (SBAR (WHNP WDT) (S (NP -NONE-) (VP MD (VP VB (NP DT

NNS) (PP IN (NP NN))))))

Description : Clause introduced by sub-ordinating conjunction

State 13 : (PRN : (SBAR (WHNP WDT) (S (NP -NONE-) (VP MD (VP VB

(NP DT NNS) (PP IN (NP NN)))))) :)

Description : Parenthetical

State 14 : (NP DT NN POS)

Description : Noun phrase

State 15 : (NP (NP DT NN POS) JJ NNS NN)

Description : Noun phrase

Parse failed - could not create a valid parent for NP

Desired parse : (S1 (S (NP DT NN) (ADVP RB) (VP VBD (NP (NP DT NN NN) (PP IN

(NP (QP $ CD CD) -NONE-)) (PP IN (NP JJ JJ NNS)))) .))

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 181

wsj_Concord-II's attempt

State 1 : (NP JJ JJ NNS)

Description : Noun phrase

State 2 : (PP IN (NP JJ JJ NNS))

Description : Prepositional phrase

State 3 : (QP $ CD CD)

Description : Adjective phrase (Quantitative)

State 4 : (PP IN)

Description : Prepositional phrase

State 5 : (NP DT NN NN)

Description : Noun phrase

State 6 : (NP (NP DT NN NN) (PP IN))

Description : Noun phrase

Parse failed - could not create a valid parent for NP

Desired parse : (S1 (S (PP IN (PP IN (NP (NP (NP DT NN POS) NN NN) (PP TO (NP

JJ NNS))))) , (NP DT NN) (VP VBD : `` (S (NP JJS NNS) (VP VBP (PP IN (NP PRP$

NNS)) (PP IN (NP (NP DT NN) (PP IN (NP (NP (ADJP JJ CC JJ) NNS) (ADJP JJ))))))))

.))

wsj_Concord-II's attempt

State 1 : (ADJP JJ)

Description : Adjective phrase

State 2 : (ADJP JJ CC JJ)

Description : Adjective phrase

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 182

State 3 : (NP (ADJP JJ CC JJ) NNS)

Description : Noun phrase

State 4 : (NP (NP (ADJP JJ CC JJ) NNS) (ADJP JJ))

Description : Noun phrase

State 5 : (PP IN (NP (NP (ADJP JJ CC JJ) NNS) (ADJP JJ)))

Description : Prepositional phrase

State 6 : (NP DT NN)

Description : Noun phrase

State 7 : (NP (NP DT NN) (PP IN (NP (NP (ADJP JJ CC JJ) NNS) (ADJP

JJ))))

Description : Noun phrase

State 8 : (PP IN (NP (NP DT NN) (PP IN (NP (NP (ADJP JJ CC JJ)

NNS) (ADJP JJ)))))

Description : Prepositional phrase

State 9 : (NP PRP$ NNS)

Description : Noun phrase

State 10 : (NP (NP PRP$ NNS) (PP IN (NP (NP DT NN) (PP IN (NP (NP

(ADJP JJ CC JJ) NNS) (ADJP JJ))))))

Description : Noun phrase

NNS , VBP .

Parse failed - the tail of a phrase could not be found!

Desired parse : (S1 (S (NP NNS) , (VP VBP) .))

wsj_Concord-II's attempt

State 1 : (VP VBP)

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 183

Description : Verb phrase

State 2 : (VP NNS , (VP VBP) .)

Description : Verb phrase

`` DT AUX DT JJ NN , '' VBD -NONE- NNP NNP NNP , CD IN DT NN POS NNS .Parse

failed - the head of a phrase could not be found!

Desired parse : (S1 (SINV `` (S (NP DT) (VP AUX (NP DT JJ NN))) , '' (VP VBD (S -

NONE-)) (NP (NP NNP NNP NNP) , (NP (NP CD) (PP IN (NP (NP DT NN POS) NNS))))

.))

wsj_Concord-II's attempt

State 1 : (NP DT NN POS)

Description : Noun phrase

State 2 : (PP IN (NP DT NN POS) NNS)

Description : Prepositional phrase

State 3 : (NP CD)

Description : Noun phrase

State 4 : (NP (NP CD) (PP IN (NP DT NN POS) NNS))

Description : Noun phrase

State 5 : (NP NNP NNP NNP)

Description : Noun phrase

State 6 : (NP (NP NNP NNP NNP) , (NP (NP CD) (PP IN (NP DT NN

POS) NNS)))

Description : Noun phrase

State 7 : (S -NONE-)

Description : Simple declarative clause

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 184

State 8 : (VP VBD (S -NONE-) (NP (NP NNP NNP NNP) , (NP (NP CD)

(PP IN (NP DT NN POS) NNS))))

Description : Verb phrase

State 9 : (NP DT JJ NN)

Description : Noun phrase

State 10 : (VP AUX (NP DT JJ NN))

Description : Verb phrase

State 11 : (NP DT)

Description : Noun phrase

Parse failed - could not create a valid parent for NP

Desired parse : (S1 (S (S (NP -NONE-) (VP VBG (PP IN (NP (NP DT NN) (PP IN (NP

PRP$ NNP NNP NN)))) (PP (NP DT JJ NNS) IN (NP NN NN)))) , (NP NNP) (VP AUX

(ADJP JJ (PP IN (S (NP -NONE-) (VP VBG (PRT RP) (NP (NP DT NNS) (SBAR (WHNP

WDT) (S (NP -NONE-) (PRN , (S (NP PRP) (VP VBZ (SBAR -NONE- (S -NONE-)))) ,)

(NP -NONE-) (VP VBP (NP NNP)))))))))) .))

wsj_Concord-II's attempt

State 1 : (NP NNP)

Description : Noun phrase

State 2 : (VP VBP (NP NNP))

Description : Verb phrase

State 3 : (NP -NONE-)

Description : Noun phrase

State 4 : (S -NONE-)

Description : Simple declarative clause

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 185

State 5 : (S -NONE- (S -NONE-) ,)

Description : Simple declarative clause

State 6 : (VP VBZ (S -NONE- (S -NONE-) ,))

Description : Verb phrase

State 7 : (NP PRP)

Description : Noun phrase

State 8 : (S (NP PRP) (VP VBZ (S -NONE- (S -NONE-) ,)) (NP -NONE-

))

Description : Simple declarative clause

State 9 : (NP WDT)

Description : Noun phrase

State 10 : (NP DT NNS)

Description : Noun phrase

State 11 : (NP (NP DT NNS) (NP WDT))

Description : Noun phrase

State 12 : (PRT RP)

Description : Particle; category for words that should be tagged RP

State 13 : (VP VBG (PRT RP) (NP (NP DT NNS) (NP WDT)))

Description : Verb phrase

State 14 : (NP -NONE-)

Description : Noun phrase

State 15 : (S (NP -NONE-) (VP VBG (PRT RP) (NP (NP DT NNS) (NP

WDT))))

Description : Simple declarative clause

State 16 : (PP IN (S (NP -NONE-) (VP VBG (PRT RP) (NP (NP DT NNS)

(NP WDT)))))

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 186

Description : Prepositional phrase

State 17 : (NP JJ)

Description : Noun phrase

State 18 : (VP AUX (NP JJ) (PP IN (S (NP -NONE-) (VP VBG (PRT RP)

(NP (NP DT NNS) (NP WDT))))))

Description : Verb phrase

State 19 : (NP NNP)

Description : Noun phrase

State 20 : (S (NP NNP) (VP AUX (NP JJ) (PP IN (S (NP -NONE-) (VP

VBG (PRT RP) (NP (NP DT NNS) (NP WDT)))))))

Description : Simple declarative clause

State 21 : (NP NN NN)

Description : Noun phrase

State 22 : (NP (NP NN NN) , (S (NP NNP) (VP AUX (NP JJ) (PP IN (S

(NP -NONE-) (VP VBG (PRT RP) (NP (NP DT NNS) (NP WDT))))))))

Description : Noun phrase

Parse failed - could not create a valid parent for VP

Desired parse : (S1 (S (NP DT NN) (VP MD (VP VB (S (NP NNP) (VP TO (VP VB (NP

(NP DT (ADJP CD NN) NN NN) (VP VBN (NP -NONE-) (PP IN (NP PRP$ NN (S (NP -

NONE-) (VP TO (VP VB)))))))))) , (SBAR RB IN (S (NP NNP CC NNP) (VP AUX RB

(VP VB (NP PRP$ NN))))))) .))

wsj_Concord-II's attempt

State 1 : (NP PRP$ NN)

Description : Noun phrase

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 187

State 2 : (VP VB (NP PRP$ NN))

Description : Verb phrase

State 3 : (VP AUX RB (VP VB (NP PRP$ NN)))

Description : Verb phrase

State 4 : (NP NNP CC NNP)

Description : Noun phrase

State 5 : (S (NP NNP CC NNP) (VP AUX RB (VP VB (NP PRP$ NN))))

Description : Simple declarative clause

State 6 : (PP IN (S (NP NNP CC NNP) (VP AUX RB (VP VB (NP PRP$

NN)))))

Description : Prepositional phrase

State 7 : (UCP RB (PP IN (S (NP NNP CC NNP) (VP AUX RB (VP VB

(NP PRP$ NN))))))

Description : Unlike coordinated phrase

State 8 : (VP VB)

Description : Verb phrase

Parse failed - could not create a valid parent for NP

Desired parse : (S1 (S (NP DT NN) (VP MD (VP AUX (VP VBN (NP -NONE-) (PP IN

(NP (NP RB CD) CC (NP DT JJ))) (PP IN IN (NP (NP DT NN) (PP IN (NP NN

NNS))))))) . ''))

wsj_Concord-II's attempt

State 1 : (NP NN NNS)

Description : Noun phrase

State 2 : (PP IN (NP NN NNS))

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 188

Description : Prepositional phrase

State 3 : (NP DT NN)

Description : Noun phrase

State 4 : (PP IN (NP DT NN) (PP IN (NP NN NNS)))

Description : Prepositional phrase

State 5 : (PP IN (PP IN (NP DT NN) (PP IN (NP NN NNS))))

Description : Prepositional phrase

State 6 : (NP DT JJ)

Description : Noun phrase

State 7 : (NP RB CD)

Description : Noun phrase

State 8 : (NP (NP RB CD) CC (NP DT JJ))

Description : Noun phrase

State 9 : (PP IN (NP (NP RB CD) CC (NP DT JJ)) (PP IN (PP IN (NP DT

NN) (PP IN (NP NN NNS)))))

Description : Prepositional phrase

State 10 : (NP -NONE-)

Description : Noun phrase

State 11 : (VP VBN (NP -NONE-) (PP IN (NP (NP RB CD) CC (NP DT

JJ)) (PP IN (PP IN (NP DT NN) (PP IN (NP NN NNS))))) .)

Description : Verb phrase

State 12 : (VP AUX (VP VBN (NP -NONE-) (PP IN (NP (NP RB CD) CC

(NP DT JJ)) (PP IN (PP IN (NP DT NN) (PP IN (NP NN NNS))))) .) '')

Description : Verb phrase

State 13 : (ADVP MD)

Description : Adverb phrase

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 189

State 14 : (NP (ADVP MD))

Description : Noun phrase

PRP RB VBZ IN NN : IN DT NN IN JJ , JJ NNS JJ IN NNP NNP : AUX VBG DT JJ NN IN

IN NNP NNP CC NNP NN .

Parse failed - the tail of a phrase could not be found!

Desired parse : (S1 (S (NP PRP) (ADVP RB) (VP VBZ (SBAR IN (S (NP (NP NN) (PRN

: (PP IN (NP (NP DT NN) (PP IN (NP (NP JJ , JJ NNS) (PP JJ IN (NP NNP NNP))))))

:)) (VP AUX (VP VBG (NP DT JJ NN) (PP IN (PP IN (NP NNP NNP CC NNP NN))))))))

.))

wsj_Concord-II's attempt

State 1 : (NP NNP NNP CC NNP NN)

Description : Noun phrase

State 2 : (PP IN (NP NNP NNP CC NNP NN))

Description : Prepositional phrase

State 3 : (PP IN (PP IN (NP NNP NNP CC NNP NN)))

Description : Prepositional phrase

State 4 : (NP DT JJ NN)

Description : Noun phrase

State 5 : (VP VBG (NP DT JJ NN) (PP IN (PP IN (NP NNP NNP CC NNP

NN))))

Description : Verb phrase

State 6 : (VP AUX (VP VBG (NP DT JJ NN) (PP IN (PP IN (NP NNP NNP

CC NNP NN)))))

Description : Verb phrase

State 7 : (NP NNP NNP)

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 190

Description : Noun phrase

State 8 : (PP IN (NP NNP NNP))

Description : Prepositional phrase

State 9 : (NP JJ NNS JJ)

Description : Noun phrase

State 10 : (S (NP JJ NNS JJ) (PP IN (NP NNP NNP)) : (VP AUX (VP VBG

(NP DT JJ NN) (PP IN (PP IN (NP NNP NNP CC NNP NN))))) .)

Description : Simple declarative clause

State 11 : (SBAR , (S (NP JJ NNS JJ) (PP IN (NP NNP NNP)) : (VP AUX

(VP VBG (NP DT JJ NN) (PP IN (PP IN (NP NNP NNP CC NNP NN))))) .))

Description : Clause introduced by sub-ordinating conjunction

State 12 : (ADJP JJ)

Description : Adjective phrase

State 13 : (NP DT NN)

Description : Noun phrase

State 14 : (PP IN (NP DT NN))

Description : Prepositional phrase

State 15 : (PP IN)

Description : Prepositional phrase

State 16 : (NP NN)

Description : Noun phrase

State 17 : (NP (NP NN) : (PP IN) (PP IN (NP DT NN)) (ADJP JJ) (SBAR

, (S (NP JJ NNS JJ) (PP IN (NP NNP NNP)) : (VP AUX (VP VBG (NP DT JJ NN) (PP IN

(PP IN (NP NNP NNP CC NNP NN))))) .)))

Description : Noun phrase

State 18 : (PP IN)

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 191

Description : Prepositional phrase

State 19 : (VP VBZ (PP IN) (NP (NP NN) : (PP IN) (PP IN (NP DT NN))

(ADJP JJ) (SBAR , (S (NP JJ NNS JJ) (PP IN (NP NNP NNP)) : (VP AUX (VP VBG (NP

DT JJ NN) (PP IN (PP IN (NP NNP NNP CC NNP NN))))) .))))

Description : Verb phrase

State 20 : (ADVP RB)

Description : Adverb phrase

State 21 : (NP PRP)

Description : Noun phrase

Parse failed - could not create a valid parent for NP

Desired parse : (S1 (S (NP (NP NNP POS) NNP NNP NNS) (VP VBD (NP (NP CD JJ

NN) (PRN -LRB- (NP $ CD -NONE-) -RRB-)) (PP TO (NP (NP CD) (PRN -LRB- (NP $

CD -NONE-) -RRB-))) (NP NN) , (SBAR IN (S (NP NNP NNS) (VP VBD (NP CD) (PP

TO (NP CD)))))) .))

wsj_Concord-II's attempt

State 1 : (NP CD)

Description : Noun phrase

State 2 : (PP TO (NP CD))

Description : Prepositional phrase

State 3 : (NP CD)

Description : Noun phrase

State 4 : (VP VBD (NP CD) (PP TO (NP CD)))

Description : Verb phrase

State 5 : (NP NNP NNS)

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 192

Description : Noun phrase

State 6 : (S (NP NNP NNS) (VP VBD (NP CD) (PP TO (NP CD))))

Description : Simple declarative clause

State 7 : (SBAR IN (S (NP NNP NNS) (VP VBD (NP CD) (PP TO (NP

CD)))))

Description : Clause introduced by sub-ordinating conjunction

State 8 : (NP $ CD -NONE- -RRB- NN , (SBAR IN (S (NP NNP NNS)

(VP VBD (NP CD) (PP TO (NP CD))))))

Description : Noun phrase

State 9 : (NP CD)

Description : Noun phrase

State 10 : (PP TO (NP CD) -LRB-)

Description : Prepositional phrase

State 11 : (NP $ CD -NONE-)

Description : Noun phrase

State 12 : (NP CD JJ NN)

Description : Noun phrase

State 13 : (NP NNP NNP NNS)

Description : Noun phrase

State 14 : (NP POS (NP NNP NNP NNS))

Description : Noun phrase

Parse failed - could not create a valid parent for NP

Desired parse : (S1 (S (NP PRP) (VP VBP (NP (NP DT JJ NN) (PP IN (NP (NP DT JJ JJ

NNS) , (VP (ADVP RB) VBN (NP -NONE-) (S (NP -NONE-) (VP TO (VP VB (PP IN (NP

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 193

(NP CD NN) (PP IN (NP CD)))) (PP TO (NP (NP CD NN) (PP IN (NP CD CC

CD)))))))))))) .))

wsj_Concord-II's attempt

State 1 : (NP CD CC CD)

Description : Noun phrase

State 2 : (PP IN (NP CD CC CD))

Description : Prepositional phrase

State 3 : (ADJP TO CD NN)

Description : Adjective phrase

State 4 : (NP CD)

Description : Noun phrase

State 5 : (PP IN (NP CD))

Description : Prepositional phrase

State 6 : (NP CD NN)

Description : Noun phrase

State 7 : (VP VB IN)

Description : Verb phrase

State 8 : (VP TO (VP VB IN))

Description : Verb phrase

State 9 : (NP -NONE-)

Description : Noun phrase

State 10 : (S (NP -NONE-) (VP TO (VP VB IN)))

Description : Simple declarative clause

State 11 : (S -NONE- (S (NP -NONE-) (VP TO (VP VB IN))))

Description : Simple declarative clause

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 194

State 12 : (NP (NP CD NN) (PP IN (NP CD)))

Description : Noun phrase

NN NNS VBP PRP AUX VBG IN JJ JJ NN WDT -NONE- MD VB DT NN NN , CC JJS VBP

-NONE- DT CD NNP NNS VBN -NONE- IN NN NN MD RB VB PRP$ NNS .

Parse failed - the tail of a phrase could not be found!

Desired parse : (S1 (S (S (NP NN NNS) (VP VBP (S (NP PRP) (VP AUX (VP VBG (PP

IN (NP (NP JJ JJ NN) (SBAR (WHNP WDT) (S (NP -NONE-) (VP MD (VP VB (NP DT

NN) (NP NN)))))))))))) , CC (S (NP JJS) (VP VBP (SBAR -NONE- (S (NP (NP DT CD

NNP NNS) (VP VBN (NP -NONE-) (PP IN (NP NN)) (NP NN))) (VP MD RB (VP VB (NP

PRP$ NNS))))))) .))

wsj_Concord-II's attempt

State 1 : (NP PRP$ NNS)

Description : Noun phrase

State 2 : (VP VB (NP PRP$ NNS))

Description : Verb phrase

State 3 : (ADVP RB)

Description : Adverb phrase

State 4 : (VP MD (ADVP RB) (VP VB (NP PRP$ NNS)) .)

Description : Verb phrase

State 5 : (NP NN NN)

Description : Noun phrase

State 6 : (PP IN (NP NN NN))

Description : Prepositional phrase

State 7 : (NP -NONE-)

Description : Noun phrase

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 195

State 8 : (VP VBN (NP -NONE-))

Description : Verb phrase

State 9 : (NP DT CD NNP NNS)

Description : Noun phrase

State 10 : (FRAG (VP VBN (NP -NONE-)))

Description : Fragment

State 11 : (NP (NP DT CD NNP NNS) (FRAG (VP VBN (NP -NONE-))))

Description : Noun phrase

State 12 : (NP -NONE- (NP (NP DT CD NNP NNS) (FRAG (VP VBN (NP -

NONE-)))) (PP IN (NP NN NN)))

Description : Noun phrase

State 13 : (VP VBP (NP -NONE- (NP (NP DT CD NNP NNS) (FRAG (VP

VBN (NP -NONE-)))) (PP IN (NP NN NN))))

Description : Verb phrase

State 14 : (NP JJS)

Description : Noun phrase

State 15 : (S (NP JJS) (VP VBP (NP -NONE- (NP (NP DT CD NNP NNS)

(FRAG (VP VBN (NP -NONE-)))) (PP IN (NP NN NN)))))

Description : Simple declarative clause

State 16 : (NP DT NN NN)

Description : Noun phrase

State 17 : (VP MD VB (NP DT NN NN))

Description : Verb phrase

State 18 : (VP (VP MD VB (NP DT NN NN)) , CC (S (NP JJS) (VP VBP

(NP -NONE- (NP (NP DT CD NNP NNS) (FRAG (VP VBN (NP -NONE-)))) (PP IN (NP

NN NN))))))

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 196

Description : Verb phrase

Parse failed - could not create a valid parent for FRAG

Desired parse : (S1 (S (SBAR (WHADVP WRB RB) (S (NP (NP DT NN POS) NN NN)

(VP VBZ (NP DT NN) (ADVP -NONE-)))) (VP VBZ (PP IN (S (NP (NP NNS) (PP IN (NP

DT JJ NN))) (VP VBG (ADVP RB))))) .))

wsj_Concord-II's attempt

State 1 : (ADVP RB)

Description : Adverb phrase

State 2 : (VP VBG)

Description : Verb phrase

State 3 : (NP DT JJ NN)

Description : Noun phrase

State 4 : (PP IN (NP DT JJ NN))

Description : Prepositional phrase

State 5 : (NP NNS)

Description : Noun phrase

State 6 : (NP (NP NNS) (PP IN (NP DT JJ NN)))

Description : Noun phrase

State 7 : (S (NP (NP NNS) (PP IN (NP DT JJ NN))) (VP VBG))

Description : Simple declarative clause

State 8 : (FRAG (S (NP (NP NNS) (PP IN (NP DT JJ NN))) (VP VBG)))

Description : Fragment

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 197

`` PRP AUX RB RB NN -NONE- PRP VBP -NONE- TO VB -NONE- RP CC VB . ''

Parse failed - the tail of a phrase could not be found!

Desired parse : (S1 (S `` (NP PRP) (VP AUX (ADVP RB) RB (NP (NP NN) (SBAR

(WHNP -NONE-) (S (NP PRP) (VP VBP (S (NP -NONE-) (VP TO (VP (VP VB (NP -

NONE-) (PRT RP)) CC (VP VB))))))))) . ''))

wsj_Concord-II's attempt

State 1 : (VP VB .)

Description : Verb phrase

State 2 : (PRT RP CC (VP VB .))

Description : Particle; category for words that should be tagged RP

State 3 : (NP -NONE-)

Description : Noun phrase

State 4 : (VP VB (NP -NONE-) (PRT RP CC (VP VB .)))

Description : Verb phrase

State 5 : (VP TO (VP VB (NP -NONE-) (PRT RP CC (VP VB .))))

Description : Verb phrase

State 6 : (NP -NONE-)

Description : Noun phrase

State 7 : (S (NP -NONE-) (VP TO (VP VB (NP -NONE-) (PRT RP CC

(VP VB .)))))

Description : Simple declarative clause

State 8 : (VP VBP (S (NP -NONE-) (VP TO (VP VB (NP -NONE-) (PRT

RP CC (VP VB .))))))

Description : Verb phrase

State 9 : (ADJP -NONE-)

Description : Adjective phrase

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 198

State 10 : (NP PRP)

Description : Noun phrase

State 11 : (ADVP RB RB)

Description : Adverb phrase

State 12 : (NP NN (ADJP -NONE-) (NP PRP))

Description : Noun phrase

State 13 : (S (NP NN (ADJP -NONE-) (NP PRP)) (VP VBP (S (NP -

NONE-) (VP TO (VP VB (NP -NONE-) (PRT RP CC (VP VB .)))))))

Description : Simple declarative clause

State 14 : (VP AUX (ADVP RB RB) (S (NP NN (ADJP -NONE-) (NP

PRP)) (VP VBP (S (NP -NONE-) (VP TO (VP VB (NP -NONE-) (PRT RP CC (VP VB

.))))))))

Description : Verb phrase

State 15 : (NP PRP)

Description : Noun phrase

DT NNP POS JJ JJ NN AUX VBN -NONE- IN DT NN IN CD CD -NONE- -NONE- TO VB

CD NN VBN IN DT NN IN CD CD CC NN IN CD NN NNP .

Parse failed - the tail of a phrase could not be found!

Desired parse : (S1 (S (NP (NP DT NNP POS) JJ JJ NN) (VP AUX (VP VBN (NP -

NONE-) (PP IN (NP (NP DT NN) (PP IN (NP (NP (QP CD CD)) (SBAR (WHNP -NONE-)

(S (NP -NONE-) (VP TO (VP VB (NP CD NN) (PP VBN (PP IN (NP (NP (NP (NP DT

NN) (PP IN (NP (QP CD CD)))) CC (NP NN)) (PP IN (NP (NP CD NN) (NP

NNP)))))))))))))))) .))

wsj_Concord-II's attempt

State 1 : (NP NNP)

Description : Noun phrase

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 199

State 2 : (NP CD NN)

Description : Noun phrase

State 3 : (NP (NP CD NN) (NP NNP))

Description : Noun phrase

State 4 : (PP IN (NP (NP CD NN) (NP NNP)))

Description : Prepositional phrase

State 5 : (QP CD CD CC NN)

Description : Adjective phrase (Quantitative)

State 6 : (NP (QP CD CD CC NN) (PP IN (NP (NP CD NN) (NP NNP))))

Description : Noun phrase

State 7 : (PP IN (NP (QP CD CD CC NN) (PP IN (NP (NP CD NN) (NP

NNP)))))

Description : Prepositional phrase

State 8 : (NP DT NN)

Description : Noun phrase

State 9 : (NP (NP DT NN) (PP IN (NP (QP CD CD CC NN) (PP IN (NP

(NP CD NN) (NP NNP))))))

Description : Noun phrase

State 10 : (PP IN (NP (NP DT NN) (PP IN (NP (QP CD CD CC NN) (PP

IN (NP (NP CD NN) (NP NNP)))))))

Description : Prepositional phrase

State 11 : (PP VBN (PP IN (NP (NP DT NN) (PP IN (NP (QP CD CD CC

NN) (PP IN (NP (NP CD NN) (NP NNP))))))))

Description : Prepositional phrase

State 12 : (NP CD NN)

Description : Noun phrase

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 200

State 13 : (VP VB (NP CD NN) (PP VBN (PP IN (NP (NP DT NN) (PP IN

(NP (QP CD CD CC NN) (PP IN (NP (NP CD NN) (NP NNP)))))))))

Description : Verb phrase

State 14 : (VP TO (VP VB (NP CD NN) (PP VBN (PP IN (NP (NP DT NN)

(PP IN (NP (QP CD CD CC NN) (PP IN (NP (NP CD NN) (NP NNP))))))))))

Description : Verb phrase

State 15 : (NP -NONE-)

Description : Noun phrase

State 16 : (S (NP -NONE-) (VP TO (VP VB (NP CD NN) (PP VBN (PP IN

(NP (NP DT NN) (PP IN (NP (QP CD CD CC NN) (PP IN (NP (NP CD NN) (NP

NNP)))))))))))

Description : Simple declarative clause

State 17 : (QP CD CD)

Description : Adjective phrase (Quantitative)

State 18 : (NP DT NN)

Description : Noun phrase

State 19 : (PP IN (NP DT NN))

Description : Prepositional phrase

State 20 : (NP -NONE-)

Description : Noun phrase

State 21 : (NP (NP -NONE-) (PP IN (NP DT NN)))

Description : Noun phrase

State 22 : (WHNP -NONE-)

Description : Wh-noun phrase

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 201

State 23 : (SBAR (WHNP -NONE-) (S (NP -NONE-) (VP TO (VP VB (NP

CD NN) (PP VBN (PP IN (NP (NP DT NN) (PP IN (NP (QP CD CD CC NN) (PP IN (NP

(NP CD NN) (NP NNP))))))))))))

Description : Clause introduced by sub-ordinating conjunction

State 24 : (NP (NP (NP -NONE-) (PP IN (NP DT NN))) IN)

Description : Noun phrase

State 25 : (VP VBN (NP (NP (NP -NONE-) (PP IN (NP DT NN))) IN))

Description : Verb phrase

Parse failed - could not create a valid parent for NP

Desired parse : (S1 (SBARQ `` (WHNP WP) (SQ (NP PRP) (VP AUX (S (NP -NONE-)

(VP TO (VP AUX (S (NP -NONE-) (ADVP RB) (VP AUX (S (NP -NONE-) (VP VB (ADJP

JJ (SBAR (SBAR IN (S (NP (NP DT JJ NN) (PP IN (NP NN NN CC NNS))) (VP AUX (VP

VBD)))) CC (SBAR IN (S (NP PRP) (VP MD (VP VB (NP DT JJR NN)))))))))))))))) . ''))

wsj_Concord-II's attempt

State 1 : (NP DT JJR NN)

Description : Noun phrase

State 2 : (VP VB (NP DT JJR NN))

Description : Verb phrase

State 3 : (VP MD (VP VB (NP DT JJR NN)) .)

Description : Verb phrase

State 4 : (NP PRP)

Description : Noun phrase

State 5 : (PP IN (NP PRP))

Description : Prepositional phrase

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 202

State 6 : (VP VBD CC (PP IN (NP PRP)))

Description : Verb phrase

State 7 : (VP (VP VBD CC (PP IN (NP PRP))) (VP MD (VP VB (NP DT

JJR NN)) .) '')

Description : Verb phrase

State 8 : (VP AUX)

Description : Verb phrase

State 9 : (NP NN CC NNS)

Description : Noun phrase

State 10 : (S (NP NN CC NNS) (VP AUX))

Description : Simple declarative clause

State 11 : (NP NN)

Description : Noun phrase

State 12 : (NP (NP NN) (S (NP NN CC NNS) (VP AUX)))

Description : Noun phrase

State 13 : (PP IN (NP (NP NN) (S (NP NN CC NNS) (VP AUX))))

Description : Prepositional phrase

State 14 : (NP DT JJ NN)

Description : Noun phrase

State 15 : (NP (NP DT JJ NN) (PP IN (NP (NP NN) (S (NP NN CC NNS)

(VP AUX)))))

Description : Noun phrase

Parse failed - could not create a valid parent for S1

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 203

Desired parse : (S1 (S `` (NP (NP PRP) (PP IN (NP DT NNS))) (VP MD (VP VB

(SBAR -NONE- (S -LRB- (NP WDT) -RRB- (NP (NP DT NNS) (PP IN (NP NN CC NN)))

(VP MD (VP AUX (VP VBN (NP -NONE-) (PP IN (NP NN CC NN)) , (PP RB IN (NP (NP

DT JJ NN) (PP IN (NP NNP))))))))))) . ''))

wsj_Concord-II's attempt

State 1 : (NP NNP)

Description : Noun phrase

State 2 : (PP IN (NP NNP))

Description : Prepositional phrase

State 3 : (NP DT JJ NN)

Description : Noun phrase

State 4 : (NP (NP DT JJ NN) (PP IN (NP NNP)))

Description : Noun phrase

State 5 : (PP RB IN (NP (NP DT JJ NN) (PP IN (NP NNP))))

Description : Prepositional phrase

State 6 : (NP NN CC NN)

Description : Noun phrase

State 7 : (PP IN (NP NN CC NN))

Description : Prepositional phrase

State 8 : (NP -NONE-)

Description : Noun phrase

State 9 : (VP VBN (NP -NONE-) (PP IN (NP NN CC NN)) , (PP RB IN

(NP (NP DT JJ NN) (PP IN (NP NNP)))))

Description : Verb phrase

State 10 : (VP AUX (VP VBN (NP -NONE-) (PP IN (NP NN CC NN)) , (PP

RB IN (NP (NP DT JJ NN) (PP IN (NP NNP))))))

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 204

Description : Verb phrase

State 11 : (VP MD (VP AUX (VP VBN (NP -NONE-) (PP IN (NP NN CC

NN)) , (PP RB IN (NP (NP DT JJ NN) (PP IN (NP NNP)))))))

Description : Verb phrase

State 12 : (NP NN CC NN)

Description : Noun phrase

State 13 : (PP IN (NP NN CC NN))

Description : Prepositional phrase

State 14 : (NP DT NNS)

Description : Noun phrase

State 15 : (NP (NP DT NNS) (PP IN (NP NN CC NN)))

Description : Noun phrase

State 16 : (NP WDT -RRB-)

Description : Noun phrase

State 17 : (S (NP WDT -RRB-) (NP (NP DT NNS) (PP IN (NP NN CC

NN))) (VP MD (VP AUX (VP VBN (NP -NONE-) (PP IN (NP NN CC NN)) , (PP RB IN

(NP (NP DT JJ NN) (PP IN (NP NNP))))))))

Description : Simple declarative clause

State 18 : (VP MD VB)

Description : Verb phrase

State 19 : (NP DT NNS)

Description : Noun phrase

State 20 : (PP IN (NP DT NNS))

Description : Prepositional phrase

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 205

State 21 : (S1 (S (NP WDT -RRB-) (NP (NP DT NNS) (PP IN (NP NN CC

NN))) (VP MD (VP AUX (VP VBN (NP -NONE-) (PP IN (NP NN CC NN)) , (PP RB IN

(NP (NP DT JJ NN) (PP IN (NP NNP)))))))) .)

Description : Root node

Parse failed - could not create a valid parent for NP

Desired parse : (S1 (S (NP DT NNP NN) (VP VBD (SBAR -NONE- (S (NP NNS) (VP

VBD (PP IN (NP DT (ADJP (QP $ CD CD) -NONE-) JJ NN)) , (ADVP RB (PP IN (NP DT

(ADJP (QP $ CD CD) -NONE-) NN) (PP IN (NP DT JJ NN)))))))) .))

wsj_Concord-II's attempt

State 1 : (NP DT JJ NN)

Description : Noun phrase

State 2 : (PP IN (NP DT JJ NN))

Description : Prepositional phrase

State 3 : (QP $ CD CD)

Description : Adjective phrase (Quantitative)

State 4 : (NP DT (QP $ CD CD) -NONE- NN)

Description : Noun phrase

State 5 : (PP IN (NP DT (QP $ CD CD) -NONE- NN) (PP IN (NP DT JJ

NN)))

Description : Prepositional phrase

State 6 : (ADVP RB)

Description : Adverb phrase

State 7 : (FRAG (ADVP RB) (PP IN (NP DT (QP $ CD CD) -NONE- NN)

(PP IN (NP DT JJ NN))))

Description : Fragment

Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic

Information Only)

 206

State 8 : (NP CD CD -NONE- JJ NN)

Description : Noun phrase

State 9 : (S (NP CD CD -NONE- JJ NN) , (FRAG (ADVP RB) (PP IN (NP

DT (QP $ CD CD) -NONE- NN) (PP IN (NP DT JJ NN)))) .)

Description : Simple declarative clause

State 10 : (NP DT)

Description : Noun phrase

State 11 : (PP IN (NP DT) $ (S (NP CD CD -NONE- JJ NN) , (FRAG

(ADVP RB) (PP IN (NP DT (QP $ CD CD) -NONE- NN) (PP IN (NP DT JJ NN)))) .))

Description : Prepositional phrase

State 12 : (VP VBD (PP IN (NP DT) $ (S (NP CD CD -NONE- JJ NN) ,

(FRAG (ADVP RB) (PP IN (NP DT (QP $ CD CD) -NONE- NN) (PP IN (NP DT JJ NN))))

.)))

Description : Verb phrase

State 13 : (NP -NONE- NNS)

Description : Noun phrase

 207

Appendix F: A Sample of Parse Failures made on the

WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

Parse failed - could not create a valid parent for

NP_00000000000000000000A000A~NN

Desired parse : (S1 (S (NP (NP (NP NNP NNPS POS) NNP NN NN) (PP IN (NP NNP

NNP))) (VP VBD (PP IN (NP CD NN)) (PP IN (ADVP (NP DT NN) RBR)) , (PP VBG (PP

TO (NP (NP DT NNP) (PP IN (NP NNP NNP)))))) .))

wsj_Concord-II's attempt

State 1 : (NP_0000000000A00000000000000~NNP

NNP_0000000000A00000000000000 NNP_0000000000A00000000000000)

Description : Noun phrase

State 2 : (PP_0000000000A00000000000000 IN

(NP_0000000000A00000000000000~NNP NNP_0000000000A00000000000000

NNP_0000000000A00000000000000))

Description : Prepositional phrase

State 3 : (NP_0000000000A00000000000000~NNP DT

NNP_0000000000A00000000000000)

Description : Noun phrase

State 4 : (PP_0000000000A00000000000000 TO

(NP_0000000000A00000000000000~NNP DT

NNP_0000000000A00000000000000))

Description : Prepositional phrase

State 5 : (NP_0000000000B00000000000000~-NONE-

(PP_0000000000A00000000000000 TO (NP_0000000000A00000000000000~NNP

DT NNP_0000000000A00000000000000)))

Description : Noun phrase

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 208

State 6 : (VP VBG (NP_0000000000B00000000000000~-NONE-

(PP_0000000000A00000000000000 TO (NP_0000000000A00000000000000~NNP

DT NNP_0000000000A00000000000000))) (PP_0000000000A00000000000000 IN

(NP_0000000000A00000000000000~NNP NNP_0000000000A00000000000000

NNP_0000000000A00000000000000)))

Description : Verb phrase

State 7 : (ADVP RBR)

Description : Adverb phrase

State 8 : (NP_000000000000000000000000A~NN DT

NN_0000000000D0000000000000A)

Description : Noun phrase

State 9 : (PP_000000000000000000000000A IN

(NP_000000000000000000000000A~NN DT NN_0000000000D0000000000000A))

Description : Prepositional phrase

State 10 : (NP_00000000000000000000A000A~NN CD

NN_00000000000000000000A0000 (PP_000000000000000000000000A IN

(NP_000000000000000000000000A~NN DT NN_0000000000D0000000000000A)))

Description : Noun phrase

State 11 : (NP_00000000000000000000A000A~NN

(NP_00000000000000000000A000A~NN CD NN_00000000000000000000A0000

(PP_000000000000000000000000A IN (NP_000000000000000000000000A~NN

DT NN_0000000000D0000000000000A))) (ADVP RBR))

Description : Noun phrase

State 12 : (NP_00000000000000000000B000A~NN

(NP_00000000000000000000A000A~NN (NP_00000000000000000000A000A~NN

CD NN_00000000000000000000A0000 (PP_000000000000000000000000A IN

(NP_000000000000000000000000A~NN DT NN_0000000000D0000000000000A)))

(ADVP RBR)) , (VP VBG (NP_0000000000B00000000000000~-NONE-

(PP_0000000000A00000000000000 TO (NP_0000000000A00000000000000~NNP

DT NNP_0000000000A00000000000000))) (PP_0000000000A00000000000000 IN

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 209

(NP_0000000000A00000000000000~NNP NNP_0000000000A00000000000000

NNP_0000000000A00000000000000))))

Description : Noun phrase

State 13 : (NP_00000000000000000000A000A~NN

(NP_00000000000000000000B000A~NN (NP_00000000000000000000A000A~NN

(NP_00000000000000000000A000A~NN CD NN_00000000000000000000A0000

(PP_000000000000000000000000A IN (NP_000000000000000000000000A~NN

DT NN_0000000000D0000000000000A))) (ADVP RBR)) , (VP VBG

(NP_0000000000B00000000000000~-NONE- (PP_0000000000A00000000000000

TO (NP_0000000000A00000000000000~NNP DT

NNP_0000000000A00000000000000))) (PP_0000000000A00000000000000 IN

(NP_0000000000A00000000000000~NNP NNP_0000000000A00000000000000

NNP_0000000000A00000000000000)))))

Description : Noun phrase

Parse failed - could not create a valid parent for

NP_00000000000000000000A000A~NN

Desired parse : (S1 (S (NP DT JJ NN) (VP AUX (ADJP JJ) (PP IN (NP (NP CD NN) (PP

IN (NP DT JJ CD NNS)) (PP IN (NP NNP))))) .))

wsj_Concord-II's attempt

State 1 : (NP_000000000000000000000000A~NNP

NNP_000000000000000000000000A)

Description : Noun phrase

State 2 : (PP_000000000000000000000000A IN

(NP_000000000000000000000000A~NNP NNP_000000000000000000000000A))

Description : Prepositional phrase

State 3 : (NP_000000000000000000000000A~NNS DT JJ CD

NNS_000000000000000000000000A)

Description : Noun phrase

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 210

State 4 : (PP_000000000000000000000000A IN

(NP_000000000000000000000000A~NNS DT JJ CD

NNS_000000000000000000000000A))

Description : Prepositional phrase

State 5 : (NP_00000000000000000000A0000~NN CD

NN_00000000000000000000A0000)

Description : Noun phrase

State 6 : (NP_00000000000000000000A000A~NN

(NP_00000000000000000000A0000~NN CD NN_00000000000000000000A0000)

(PP_000000000000000000000000A IN (NP_000000000000000000000000A~NNS

DT JJ CD NNS_000000000000000000000000A))

(PP_000000000000000000000000A IN (NP_000000000000000000000000A~NNP

NNP_000000000000000000000000A)))

Description : Noun phrase

IN NNP_00000000000A0000000000000 NNP_00000000000A0000000000000 ,

NNP_00000000000A0000000000000 , DT NN_00000000000000A0000000000 IN

PRP_0000000000A00000000000000 NNP_0000000000A00000000000000

NNPS_0000000000A00000000000000 NNP_0000000000A00000000000000 , DT

NN_00000D0000C00000000AB0000 IN NNP_0000000000A00000000000000

NNPS_0000000000A00000000000000 NNP_0000000000A00000000000000 VBD -

NONE- DT JJ NN_000000A000000000000000000

NN_00A00000000000A00000000D0 MD RB VB DT

NN_A000000000000000000000000 .

Parse failed - the tail of a phrase could not be found!

Desired parse : (S1 (S (PP IN (NP (NP NNP NNP) , (NP NNP))) , (NP (NP DT NN) (PP

IN (NP PRP))) (NP (NP NNP NNPS NNP) , (NP (NP DT NN) (PP IN (NP NNP NNPS

NNP)))) (VP VBD (SBAR -NONE- (S (NP DT JJ NN NN) (VP MD (ADVP RB) (VP VB

(NP DT NN)))))) .))

wsj_Concord-II's attempt

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 211

State 1 : (NP_A000000000000000000000000~NN DT

NN_A000000000000000000000000)

Description : Noun phrase

State 2 : (VP VB (NP_A000000000000000000000000~NN DT

NN_A000000000000000000000000))

Description : Verb phrase

State 3 : (ADVP RB)

Description : Adverb phrase

State 4 : (VP (ADVP RB) (VP VB

(NP_A000000000000000000000000~NN DT NN_A000000000000000000000000)))

Description : Verb phrase

State 5 : (VP MD (VP (ADVP RB) (VP VB

(NP_A000000000000000000000000~NN DT

NN_A000000000000000000000000))))

Description : Verb phrase

State 6 : (NP_00A000A0000000A00000000D0~NN DT JJ

NN_000000A000000000000000000 NN_00A00000000000A00000000D0)

Description : Noun phrase

State 7 : (S (NP_00A000A0000000A00000000D0~NN DT JJ

NN_000000A000000000000000000 NN_00A00000000000A00000000D0) (VP MD

(VP (ADVP RB) (VP VB (NP_A000000000000000000000000~NN DT

NN_A000000000000000000000000)))))

Description : Simple declarative clause

State 8 : (NP~-NONE- -NONE-)

Description : Noun phrase

State 9 : (SBAR (NP~-NONE- -NONE-) (S

(NP_00A000A0000000A00000000D0~NN DT JJ NN_000000A000000000000000000

NN_00A00000000000A00000000D0) (VP MD (VP (ADVP RB) (VP VB

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 212

(NP_A000000000000000000000000~NN DT

NN_A000000000000000000000000))))))

Description : Clause introduced by sub-ordinating conjunction

State 10 : (VP VBD (SBAR (NP~-NONE- -NONE-) (S

(NP_00A000A0000000A00000000D0~NN DT JJ NN_000000A000000000000000000

NN_00A00000000000A00000000D0) (VP MD (VP (ADVP RB) (VP VB

(NP_A000000000000000000000000~NN DT

NN_A000000000000000000000000)))))))

Description : Verb phrase

State 11 : (NP_0000000000A00000000000000~NNP

NNP_0000000000A00000000000000)

Description : Noun phrase

State 12 : (NP_0000000000A00000000000000~NN

NNP_0000000000A00000000000000)

Description : Noun phrase

State 13 : (PP_0000000000A00000000000000 IN

(NP_0000000000A00000000000000~NN NNP_0000000000A00000000000000))

Description : Prepositional phrase

State 14 : (NP_0000000000000000000C00000~NN

NN_00000D0000C00000000AB0000)

Description : Noun phrase

State 15 : (ADJP (NP_0000000000000000000C00000~NN

NN_00000D0000C00000000AB0000) (PP_0000000000A00000000000000 IN

(NP_0000000000A00000000000000~NN NNP_0000000000A00000000000000)))

Description : Adjective phrase

State 16 : (NP_0000000000A00000000000000~PRP-PLE

NNPS_0000000000A00000000000000 (NP_0000000000A00000000000000~NNP

NNP_0000000000A00000000000000))

Description : Noun phrase

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 213

State 17 : (NP~NN DT)

Description : Noun phrase

State 18 : (NP_0000000000A00000000000000~NN (NP~NN DT)

(ADJP (NP_0000000000000000000C00000~NN

NN_00000D0000C00000000AB0000) (PP_0000000000A00000000000000 IN

(NP_0000000000A00000000000000~NN NNP_0000000000A00000000000000)))

(NP_0000000000A00000000000000~PRP-PLE

NNPS_0000000000A00000000000000 (NP_0000000000A00000000000000~NNP

NNP_0000000000A00000000000000)))

Description : Noun phrase

State 19 : (NP_0000000000A00000000000000~NNP

NNP_0000000000A00000000000000 NNPS_0000000000A00000000000000

NNP_0000000000A00000000000000)

Description : Noun phrase

State 20 : (NP_0000000000A00000000000000~PRP

PRP_0000000000A00000000000000 (NP_0000000000A00000000000000~NNP

NNP_0000000000A00000000000000 NNPS_0000000000A00000000000000

NNP_0000000000A00000000000000))

Description : Noun phrase

State 21 : (PP_0000000000A00000000000000 IN

(NP_0000000000A00000000000000~PRP PRP_0000000000A00000000000000

(NP_0000000000A00000000000000~NNP NNP_0000000000A00000000000000

NNPS_0000000000A00000000000000 NNP_0000000000A00000000000000)))

Description : Prepositional phrase

State 22 : (NP_00000000000000A0000000000~NN DT

NN_00000000000000A0000000000)

Description : Noun phrase

State 23 : (NP_0000000000A000A0000000000~NN

(NP_00000000000000A0000000000~NN DT NN_00000000000000A0000000000)

(PP_0000000000A00000000000000 IN (NP_0000000000A00000000000000~PRP

PRP_0000000000A00000000000000 (NP_0000000000A00000000000000~NNP

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 214

NNP_0000000000A00000000000000 NNPS_0000000000A00000000000000

NNP_0000000000A00000000000000))))

Description : Noun phrase

State 24 : (NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000)

Description : Noun phrase

State 25 : (NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000)

Description : Noun phrase

State 26 : (NP_00000000000A0000000000000~NNP

(NP_00000000000A0000000000000~NNP NNP_00000000000A0000000000000) ,

(NP_00000000000A0000000000000~NNP NNP_00000000000A0000000000000))

Description : Noun phrase

State 27 : (NP_00000000000A0000000000000~NN

(NP_00000000000A0000000000000~NNP

(NP_00000000000A0000000000000~NNP NNP_00000000000A0000000000000) ,

(NP_00000000000A0000000000000~NNP NNP_00000000000A0000000000000)) ,)

Description : Noun phrase

State 28 : (NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000)

Description : Noun phrase

State 29 : (UCP (NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000) (NP_00000000000A0000000000000~NN

(NP_00000000000A0000000000000~NNP

(NP_00000000000A0000000000000~NNP NNP_00000000000A0000000000000) ,

(NP_00000000000A0000000000000~NNP NNP_00000000000A0000000000000))

,))

Description : Unlike coordinated phrase

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 215

DT JJ NN_000A0B0000000000000000000 AUX WRB RB

PRP_0000000A00000000000000000 MD AUX DT

NN_000B00000000000A000000D00 -NONE- . ''

Parse failed - the tail of a phrase could not be found!

Desired parse : (S1 (S (NP DT JJ NN) (VP AUX (SBAR (WHADVP WRB RB) (S (NP

PRP) (VP MD (VP AUX (NP DT NN) (ADVP -NONE-)))))) . ''))

wsj_Concord-II's attempt

State 1 : (ADVP -NONE-)

Description : Adverb phrase

State 2 : (NP_000B00000000000A000000D00~NN DT

NN_000B00000000000A000000D00)

Description : Noun phrase

State 3 : (VP AUX (NP_000B00000000000A000000D00~NN DT

NN_000B00000000000A000000D00) (ADVP -NONE-))

Description : Verb phrase

State 4 : (VP MD (VP AUX (NP_000B00000000000A000000D00~NN

DT NN_000B00000000000A000000D00) (ADVP -NONE-)))

Description : Verb phrase

State 5 : (NP_0000000A00000000000000000~PRP

PRP_0000000A00000000000000000)

Description : Noun phrase

State 6 : (S (NP_0000000A00000000000000000~PRP

PRP_0000000A00000000000000000) (VP MD (VP AUX

(NP_000B00000000000A000000D00~NN DT NN_000B00000000000A000000D00)

(ADVP -NONE-))))

Description : Simple declarative clause

State 7 : (PRN RB (S (NP_0000000A00000000000000000~PRP

PRP_0000000A00000000000000000) (VP MD (VP AUX

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 216

(NP_000B00000000000A000000D00~NN DT NN_000B00000000000A000000D00)

(ADVP -NONE-)))))

Description : Parenthetical

State 8 : (VP AUX WRB (PRN RB (S

(NP_0000000A00000000000000000~PRP PRP_0000000A00000000000000000) (VP

MD (VP AUX (NP_000B00000000000A000000D00~NN DT

NN_000B00000000000A000000D00) (ADVP -NONE-))))))

Description : Verb phrase

Parse failed - could not create a valid parent for

NP_00000000000A0000000000000~NN

Desired parse : (S1 (S (NP (NP DT JJ NN) (PP IN (NP NNP))) (VP AUX (NP (NP CD

NN) (PP IN (NP DT NNP NNP NNP NN)) , (SBAR (WHNP WDT) (S (NP -NONE-) (VP

VBZ (NP (NP (NP NNP NNP) , (NP NNP NNP) CC (NP (NP NNP) , (NP NNP) , CC (NP

NNP))) CC (NP (NP NNP NNP) , (NP NNP)))))))) .))

wsj_Concord-II's attempt

State 1 : (NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000)

Description : Noun phrase

State 2 : (NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000 NNP_00000000000A0000000000000)

Description : Noun phrase

State 3 : (NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000)

Description : Noun phrase

State 4 : (NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000)

Description : Noun phrase

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 217

State 5 : (NP_00000000000A0000000000000~NN

(NP_00000000000A0000000000000~NNP NNP_00000000000A0000000000000) ,

CC (NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000) CC

(NP_00000000000A0000000000000~NNP NNP_00000000000A0000000000000

NNP_00000000000A0000000000000))

Description : Noun phrase

State 6 : (NP_00000000000A0000000000000~NN CC

NNP_00000000000A0000000000000)

Description : Noun phrase

State 7 : (NP_00000000000A00D0000000000~NNP

NNP_00000000000A0000000000000 NNP_00000000000A0000000000000

(NP_00000000000A0000000000000~NN CC NNP_00000000000A0000000000000)

, (NP_00000000000A0000000000000~NN

(NP_00000000000A0000000000000~NNP NNP_00000000000A0000000000000) ,

CC (NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000) CC

(NP_00000000000A0000000000000~NNP NNP_00000000000A0000000000000

NNP_00000000000A0000000000000)))

Description : Noun phrase

State 8 : (NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000 NNP_00000000000A0000000000000)

Description : Noun phrase

State 9 : (VP VBZ (NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000 NNP_00000000000A0000000000000) ,)

Description : Verb phrase

State 10 : (WHNP WDT)

Description : Wh-noun phrase

State 11 : (NP~-NONE- (WHNP WDT) -NONE-)

Description : Noun phrase

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 218

State 12 : (NP_00000000000A0000000000000~IN

NNP_00000000000A0000000000000)

Description : Noun phrase

State 13 : (NP_00000000000A0000000000000~NN

NN_0000B000000A0000000D00000)

Description : Noun phrase

Parse failed - could not create a valid parent for UCP

Desired parse : (S1 (S (NP NNP NNP NNP NNP NNP) (VP VBD (SBAR -NONE- (S (NP

NN NN) (VP VBD (NP CD NN) (PP TO (NP (NP (QP CD CD) NNS) (PRN -LRB- (NP (QP

$ CD CD) -NONE-) -RRB-))) (PP IN (NP DT JJ NN)) (PP IN (NP (QP CD CD) NNS)

(ADVP (NP DT NN) RBR)))))) .))

wsj_Concord-II's attempt

State 1 : (ADVP RBR)

Description : Adverb phrase

State 2 : (NP_000000000000000000000000A~NN DT

NN_0000000000D0000000000000A)

Description : Noun phrase

State 3 : (QP CD CD)

Description : Adjective phrase (Quantitative)

State 4 : (PP IN (QP CD CD))

Description : Prepositional phrase

State 5 : (NP_0000000000000000000B0000D~NN JJ

NN_0000000000000000000A0000B (PP IN (QP CD CD))

NNS_0000000000000000000A00000)

Description : Noun phrase

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 219

State 6 : (NP_0000000000000000000B00000~NN DT

(NP_0000000000000000000B0000D~NN JJ NN_0000000000000000000A0000B

(PP IN (QP CD CD)) NNS_0000000000000000000A00000))

Description : Noun phrase

State 7 : (PP_0000000000000000000B00000 IN

(NP_0000000000000000000B00000~NN DT

(NP_0000000000000000000B0000D~NN JJ NN_0000000000000000000A0000B

(PP IN (QP CD CD)) NNS_0000000000000000000A00000)))

Description : Prepositional phrase

State 8 : (UCP (PP_0000000000000000000B00000 IN

(NP_0000000000000000000B00000~NN DT

(NP_0000000000000000000B0000D~NN JJ NN_0000000000000000000A0000B

(PP IN (QP CD CD)) NNS_0000000000000000000A00000)))

(NP_000000000000000000000000A~NN DT NN_0000000000D0000000000000A))

Description : Unlike coordinated phrase

State 9 : (NP~CD CD CD)

Description : Noun phrase

State 10 : (PP $ (NP~CD CD CD))

Description : Prepositional phrase

State 11 : (UCP (PP $ (NP~CD CD CD)))

Description : Unlike coordinated phrase

State 12 : (NP~-NONE- (UCP (PP $ (NP~CD CD CD))) -NONE-)

Description : Noun phrase

State 13 : (UCP -LRB- (NP~-NONE- (UCP (PP $ (NP~CD CD CD))) -

NONE-) -RRB-)

Description : Unlike coordinated phrase

State 14 : (PRN (UCP -LRB- (NP~-NONE- (UCP (PP $ (NP~CD CD

CD))) -NONE-) -RRB-) (ADVP RBR))

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 220

Description : Parenthetical

DT NNP_00000000000000A0000000000 NN_A000000000B0000000000000D VBD

NNP_00000000000000A0000000000 NNPS_00000000000000A0000000000 IN DT

NNP_00A0000000B00000000000000 NNP_00A0000000B00000000000000 IN

NNP_00000000000A0000000000000 NNP_00000000000A0000000000000 MD RB

VB NNS_B000000A00000000000000000 IN JJ NNS_00000000000000A0000000000

VBD NNP_0000000000000000000000A00 NNP_0000000000000000000000A00

Parse failed - the tail of a phrase could not be found!

Desired parse : (S1 (S (NP DT NNP NN) (VP VBD (NP NNP NNPS) (SBAR IN (S (NP

(NP DT NNP NNP) (PP IN (NP NNP NNP))) (VP MD RB (VP VB (NP (NP NNS) (PP IN

(NP (NP JJ NNS) (VP VBD (NP NNP NNP))))))))))))

wsj_Concord-II's attempt

State 1 : (ADJP NNP_0000000000000000000000A00)

Description : Adjective phrase

State 2 : (NP~NNP NNP_0000000000000000000000A00)

Description : Noun phrase

State 3 : (INTJ (ADJP NNP_0000000000000000000000A00)

(NP~NNP NNP_0000000000000000000000A00))

Description : Interjection - corresponds approximately to the word tag 'UH'

State 4 : (VP VBD)

Description : Verb phrase

State 5 : (NP_00000000000000A0000000000~NNS

NNS_00000000000000A0000000000)

Description : Noun phrase

State 6 : (RRC (NP_00000000000000A0000000000~NNS

NNS_00000000000000A0000000000) (VP VBD))

Description : Reduced relative clause

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 221

Parse failed - could not create a valid parent for

NP_000000A000000000000000000~NNS

Desired parse : (S1 (S (NP DT NNS) (VP VBP (SBAR IN (S (NP NNP CC NNP) (ADVP

RB) (VP VBZ (NP DT JJ NN) (PP TO (NP DT NN)) (SBAR RB IN (S (NP (NP DT NN)

(NP PRP)) (VP VBZ (NP PRP) (ADVP RB RB) (PP IN (NP PRP$ NNS))))))))) .))

wsj_Concord-II's attempt

State 1 : (NP_D00000A0000000000C0000000~NNS PRP$

NNS_D00000A0000000000C0000000)

Description : Noun phrase

State 2 : (NP_000000A000000000000000000~NNS

(NP_D00000A0000000000C0000000~NNS PRP$

NNS_D00000A0000000000C0000000))

Description : Noun phrase

Parse failed - could not create a valid parent for

NP_000000000000000000000000A~NN

Desired parse : (S1 (S (NP (NP NNP NNP NNP) , (NP (NP NN) (PP IN (NP NNP

NNP))) ,) (ADVP RB) (VP VBD (SBAR -NONE- (S (NP NNS) (VP MD (VP VB (PP TO

(NP (QP RB CD CD) NNS)) (NP JJ NN)))))) .))

wsj_Concord-II's attempt

State 1 : (QP CD CD NNS_00A000B000000C000000000C0 JJ)

Description : Adjective phrase (Quantitative)

State 2 : (NP_000000000000000000000000A~NN (QP CD CD

NNS_00A000B000000C000000000C0 JJ) NN_0000000000D0000000000000A)

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 222

Description : Noun phrase

DT NN_00D0B0A000000000000C00000 AUX VBN IN $ CD CD -NONE- IN DT CD

NNS_000000000000000000000000A IN NNP_000000000000000000000000A CD ,

RB IN NNS_A00000000000000C0B0000000 IN

NNS_00000000A0000000000B00000 CC NNS_00000BC0000000A0000000000 .

Parse failed - the tail of a phrase could not be found!

Desired parse : (S1 (S (NP DT NN) (VP AUX (VP VBN (PP IN (NP (QP $ CD CD) -

NONE-)) (PP IN (NP DT CD NNS)) (PP IN (NP NNP CD)) , (PP (ADVP RB) IN (NP (NP

NNS) (PP IN (NP (NP NNS) CC (NP NNS))))))) .))

wsj_Concord-II's attempt

State 1 : (NP_00000BC0000000A0000000000~NNS

NNS_00000BC0000000A0000000000)

Description : Noun phrase

State 2 : (NP_00000000A0000000000B00000~NNS

NNS_00000000A0000000000B00000)

Description : Noun phrase

State 3 : (NP_00000BC0A00000A0000B00000~NNS

(NP_00000000A0000000000B00000~NNS NNS_00000000A0000000000B00000)

CC (NP_00000BC0000000A0000000000~NNS

NNS_00000BC0000000A0000000000))

Description : Noun phrase

State 4 : (PP_00000BC0A00000A0000B00000 IN

(NP_00000BC0A00000A0000B00000~NNS

(NP_00000000A0000000000B00000~NNS NNS_00000000A0000000000B00000)

CC (NP_00000BC0000000A0000000000~NNS

NNS_00000BC0000000A0000000000)))

Description : Prepositional phrase

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 223

State 5 : (NP_A00000000000000C0B0000000~NNS

NNS_A00000000000000C0B0000000)

Description : Noun phrase

State 6 : (PP_A0000000000000000D000000D IN

(NP_A00000000000000C0B0000000~NNS NNS_A00000000000000C0B0000000))

Description : Prepositional phrase

State 7 : (ADVP RB)

Description : Adverb phrase

State 8 : (NP_000000000000000000000000A~CD

NNP_000000000000000000000000A CD)

Description : Noun phrase

State 9 : (NP_B00000000000000000000000A~DT

(NP_000000000000000000000000A~CD NNP_000000000000000000000000A CD)

, (ADVP RB) (PP_A0000000000000000D000000D IN

(NP_A00000000000000C0B0000000~NNS NNS_A00000000000000C0B0000000)))

Description : Noun phrase

State 10 : (NP_AC000000A00000D0000A0000A~JJS

(NP_B00000000000000000000000A~DT (NP_000000000000000000000000A~CD

NNP_000000000000000000000000A CD) , (ADVP RB)

(PP_A0000000000000000D000000D IN (NP_A00000000000000C0B0000000~NNS

NNS_A00000000000000C0B0000000))) (PP_00000BC0A00000A0000B00000 IN

(NP_00000BC0A00000A0000B00000~NNS

(NP_00000000A0000000000B00000~NNS NNS_00000000A0000000000B00000)

CC (NP_00000BC0000000A0000000000~NNS

NNS_00000BC0000000A0000000000))))

Description : Noun phrase

State 11 : (PP_B0000000A0000000000A0000A IN

(NP_AC000000A00000D0000A0000A~JJS (NP_B00000000000000000000000A~DT

(NP_000000000000000000000000A~CD NNP_000000000000000000000000A CD)

, (ADVP RB) (PP_A0000000000000000D000000D IN

(NP_A00000000000000C0B0000000~NNS NNS_A00000000000000C0B0000000)))

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 224

(PP_00000BC0A00000A0000B00000 IN (NP_00000BC0A00000A0000B00000~NNS

(NP_00000000A0000000000B00000~NNS NNS_00000000A0000000000B00000)

CC (NP_00000BC0000000A0000000000~NNS

NNS_00000BC0000000A0000000000)))))

Description : Prepositional phrase

State 12 : (NP_000000000000000000000000A~NNS DT CD

NNS_000000000000000000000000A)

Description : Noun phrase

Parse failed - could not create a valid parent for

NP_A000000000000000000000000~NN

Desired parse : (S1 (S (NP NNP) (VP VBD (SBAR IN (S (NP (NP NN) , (SBAR (WHNP

WDT) (S (NP -NONE-) (VP AUX (PP IN (NP (NP DT JJ NNS) (PP IN (NP NN))))))) ,)

(VP AUX (ADVP RB) (VP AUXG (VP VBN (PP IN (NP DT JJ NN)))))))) .))

wsj_Concord-II's attempt

State 1 : (NP_00000B00000000000000A0000~NN DT JJ

NN_00000B00000000000000A0000)

Description : Noun phrase

State 2 : (NP_00000D00000000000000A0000~NN

(NP_00000B00000000000000A0000~NN DT JJ

NN_00000B00000000000000A0000))

Description : Noun phrase

State 3 : (PP_00000000000000000000A0000 IN

(NP_00000D00000000000000A0000~NN (NP_00000B00000000000000A0000~NN

DT JJ NN_00000B00000000000000A0000)))

Description : Prepositional phrase

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 225

State 4 : (VP VBN (PP_00000000000000000000A0000 IN

(NP_00000D00000000000000A0000~NN (NP_00000B00000000000000A0000~NN

DT JJ NN_00000B00000000000000A0000))))

Description : Verb phrase

State 5 : (ADVP AUXG)

Description : Adverb phrase

State 6 : (VP (ADVP AUXG) (VP VBN

(PP_00000000000000000000A0000 IN (NP_00000D00000000000000A0000~NN

(NP_00000B00000000000000A0000~NN DT JJ

NN_00000B00000000000000A0000)))))

Description : Verb phrase

State 7 : (ADVP RB)

Description : Adverb phrase

State 8 : (VP AUX (ADVP RB) (VP (ADVP AUXG) (VP VBN

(PP_00000000000000000000A0000 IN (NP_00000D00000000000000A0000~NN

(NP_00000B00000000000000A0000~NN DT JJ

NN_00000B00000000000000A0000))))))

Description : Verb phrase

State 9 : (NP_A000000C0000000000B000000~NN

NN_A000000C0000000000B000000)

Description : Noun phrase

State 10 : (NP_B00000000000000000B000000~NN

(NP_A000000C0000000000B000000~NN NN_A000000C0000000000B000000) ,

(VP AUX (ADVP RB) (VP (ADVP AUXG) (VP VBN (PP_00000000000000000000A0000

IN (NP_00000D00000000000000A0000~NN

(NP_00000B00000000000000A0000~NN DT JJ

NN_00000B00000000000000A0000)))))))

Description : Noun phrase

State 11 : (NP_A00000000000000000D000000~NN

(NP_B00000000000000000B000000~NN (NP_A000000C0000000000B000000~NN

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 226

NN_A000000C0000000000B000000) , (VP AUX (ADVP RB) (VP (ADVP AUXG) (VP

VBN (PP_00000000000000000000A0000 IN

(NP_00000D00000000000000A0000~NN (NP_00000B00000000000000A0000~NN

DT JJ NN_00000B00000000000000A0000))))))))

Description : Noun phrase

State 12 : (NP_A000000000000000000000000~NN

(NP_A00000000000000000D000000~NN (NP_B00000000000000000B000000~NN

(NP_A000000C0000000000B000000~NN NN_A000000C0000000000B000000) ,

(VP AUX (ADVP RB) (VP (ADVP AUXG) (VP VBN (PP_00000000000000000000A0000

IN (NP_00000D00000000000000A0000~NN

(NP_00000B00000000000000A0000~NN DT JJ

NN_00000B00000000000000A0000)))))))))

Description : Noun phrase

CC DT NN_A0D0000000B00000000000000 RB VBD , CC

NNP_000000000000000000000000A NNS_A00000B000000000000000000 VBD

NNP_000000000000000000000000A CD , CD .

Parse failed - the tail of a phrase could not be found!

Desired parse : (S1 (S (S CC (NP DT NN) (ADVP RB) (VP VBD)) , CC (S (NP NNP

NNS) (VP VBD (NP NNP CD , CD))) .))

wsj_Concord-II's attempt

State 1 : (UCP CD , CD)

Description : Unlike coordinated phrase

State 2 : (NP_000000000000000000000000A~NNP

NNP_000000000000000000000000A)

Description : Noun phrase

State 3 : (NP_000000000000000000000000A~NNP

(NP_000000000000000000000000A~NNP NNP_000000000000000000000000A)

(UCP CD , CD))

Description : Noun phrase

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 227

State 4 : (VP VBD (NP_000000000000000000000000A~NNP

(NP_000000000000000000000000A~NNP NNP_000000000000000000000000A)

(UCP CD , CD)))

Description : Verb phrase

State 5 : (NP_A00000B00000000000000000A~NNS

NNP_000000000000000000000000A NNS_A00000B000000000000000000)

Description : Noun phrase

State 6 : (S (NP_A00000B00000000000000000A~NNS

NNP_000000000000000000000000A NNS_A00000B000000000000000000) (VP

VBD (NP_000000000000000000000000A~NNP

(NP_000000000000000000000000A~NNP NNP_000000000000000000000000A)

(UCP CD , CD))))

Description : Simple declarative clause

State 7 : (S ,)

Description : Simple declarative clause

State 8 : (LST (S ,) CC)

Description : List marker phrase

Parse failed - could not create a valid parent for S1

Desired parse : (S1 (S (S (NP -NONE-) (VP NNS (NP NNP NNP))) , `` (NP (NP DT

NNS) (PP IN (NP DT NNS))) (VP AUX (ADJP DT JJ CC JJ)) . ''))

wsj_Concord-II's attempt

State 1 : (ADJP DT JJ CC JJ)

Description : Adjective phrase

State 2 : (VP AUX (ADJP DT JJ CC JJ))

Description : Verb phrase

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 228

State 3 : (NP_00000AC000000000000000000~NNS DT

NNS_00000AC000000000000000000)

Description : Noun phrase

State 4 : (S (NP_00000AC000000000000000000~NNS DT

NNS_00000AC000000000000000000) (VP AUX (ADJP DT JJ CC JJ)))

Description : Simple declarative clause

State 5 : (S1 IN (S (NP_00000AC000000000000000000~NNS DT

NNS_00000AC000000000000000000) (VP AUX (ADJP DT JJ CC JJ))))

Description : Root node

State 6 : (NP_D00000A000000000000000000~NNS DT

NNS_C00000A000000000000000000)

Description : Noun phrase

State 7 : (NP_000000A0000000A0000000000~NNP

NNP_000000A000000000000000000 NNP_00000000000000A0000000000)

Description : Noun phrase

State 8 : (VP NNS_00A0000000000000000000000

(NP_000000A0000000A0000000000~NNP NNP_000000A000000000000000000

NNP_00000000000000A0000000000))

Description : Verb phrase

State 9 : (NP~-NONE- -NONE-)

Description : Noun phrase

State 10 : (S (NP~-NONE- -NONE-) (VP

NNS_00A0000000000000000000000 (NP_000000A0000000A0000000000~NNP

NNP_000000A000000000000000000 NNP_00000000000000A0000000000)))

Description : Simple declarative clause

State 11 : (S1 (S (NP~-NONE- -NONE-) (VP

NNS_00A0000000000000000000000 (NP_000000A0000000A0000000000~NNP

NNP_000000A000000000000000000 NNP_00000000000000A0000000000))) ,)

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 229

Description : Root node

Parse failed - could not create a valid parent for VP

Desired parse : (S1 (S (PP IN (NP CD NN)) (NP NNP NNP) (ADVP RB) (VP VBD (S

(NP DT NN NN) (VP TO (VP VB (PP IN (NP (NP JJ NNS) , (NP JJ NNS) CC (NP (NP DT

NN) (PP IN (NP (NP NNS) (PP IN (NP (NP DT NN) (SBAR (WHNP -NONE-) (S (NP

PRP) (VP VBD (S (NP -NONE-) (VP TO (VP VB (NP -NONE-)))))))))))))))))) .))

wsj_Concord-II's attempt

State 1 : (NP~-NONE- -NONE-)

Description : Noun phrase

State 2 : (S (NP~-NONE- -NONE-))

Description : Simple declarative clause

State 3 : (VP VB (S (NP~-NONE- -NONE-)))

Description : Verb phrase

State 4 : (VP (VP VB (S (NP~-NONE- -NONE-))) .)

Description : Verb phrase

Parse failed - could not create a valid parent for

NP_000000A000000000000000000~NN

Desired parse : (S1 (S (PP VBG (NP DT (UCP NN CC JJ) NN NNS)) , (NP (NP DT NN)

(PP IN (NP (NP NNS) (VP VBG (NP NN NNS) (PP IN (NP (NP DT NN) (VP VBN (NP

NNP CD)))))))) (VP VBD (PP TO (NP CD)) (PP IN (NP CD) (ADVP (NP DT NN) RBR)))

.))

wsj_Concord-II's attempt

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 230

State 1 : (ADVP RBR)

Description : Adverb phrase

State 2 : (NP_000000000000000000000000A~PRP CD DT

NN_000000000000000000000000A)

Description : Noun phrase

State 3 : (NP_000000000000000000000000A~JJS

(NP_000000000000000000000000A~PRP CD DT

NN_000000000000000000000000A) (ADVP RBR))

Description : Noun phrase

State 4 : (PP_000000000000000000000000A IN

(NP_000000000000000000000000A~JJS (NP_000000000000000000000000A~PRP

CD DT NN_000000000000000000000000A) (ADVP RBR)))

Description : Prepositional phrase

State 5 : (NP~CD CD)

Description : Noun phrase

State 6 : (PP_000000000000000000000000D TO (NP~CD CD)

(PP_000000000000000000000000A IN (NP_000000000000000000000000A~JJS

(NP_000000000000000000000000A~PRP CD DT

NN_000000000000000000000000A) (ADVP RBR))))

Description : Prepositional phrase

State 7 : (VP VBD (PP_000000000000000000000000D TO (NP~CD

CD) (PP_000000000000000000000000A IN

(NP_000000000000000000000000A~JJS (NP_000000000000000000000000A~PRP

CD DT NN_000000000000000000000000A) (ADVP RBR)))))

Description : Verb phrase

State 8 : (NP~NNS CD)

Description : Noun phrase

State 9 : (NP_000000000000000000000000A~NNS

NNP_000000000000000000000000A (NP~NNS CD))

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 231

Description : Noun phrase

State 10 : (VP VBN (NP_000000000000000000000000A~NNS

NNP_000000000000000000000000A (NP~NNS CD)))

Description : Verb phrase

State 11 : (NP_000000000000000000000000A~NN DT

NN_000000000000000000000000A)

Description : Noun phrase

State 12 : (NP_000000000000000000000000A~NN

(NP_000000000000000000000000A~NN DT NN_000000000000000000000000A)

(VP VBN (NP_000000000000000000000000A~NNS

NNP_000000000000000000000000A (NP~NNS CD))))

Description : Noun phrase

State 13 : (NP_000000000000000000000000A~NN

(NP_000000000000000000000000A~NN (NP_000000000000000000000000A~NN

DT NN_000000000000000000000000A) (VP VBN

(NP_000000000000000000000000A~NNS NNP_000000000000000000000000A

(NP~NNS CD)))) (VP VBD (PP_000000000000000000000000D TO (NP~CD CD)

(PP_000000000000000000000000A IN (NP_000000000000000000000000A~JJS

(NP_000000000000000000000000A~PRP CD DT

NN_000000000000000000000000A) (ADVP RBR))))))

Description : Noun phrase

State 14 : (PP_000000000000000000000000A IN

(NP_000000000000000000000000A~NN (NP_000000000000000000000000A~NN

(NP_000000000000000000000000A~NN DT NN_000000000000000000000000A)

(VP VBN (NP_000000000000000000000000A~NNS

NNP_000000000000000000000000A (NP~NNS CD)))) (VP VBD

(PP_000000000000000000000000D TO (NP~CD CD)

(PP_000000000000000000000000A IN (NP_000000000000000000000000A~JJS

(NP_000000000000000000000000A~PRP CD DT

NN_000000000000000000000000A) (ADVP RBR)))))))

Description : Prepositional phrase

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 232

State 15 : (NP_000A00C0000000000A0000A00~NNS

NN_0000000000000000000000A00 NNS_000A00C0000000000A0000000)

Description : Noun phrase

State 16 : (NP_000A0000000000000A0000A00~NNS

(NP_000A00C0000000000A0000A00~NNS NN_0000000000000000000000A00

NNS_000A00C0000000000A0000000) (PP_000000000000000000000000A IN

(NP_000000000000000000000000A~NN (NP_000000000000000000000000A~NN

(NP_000000000000000000000000A~NN DT NN_000000000000000000000000A)

(VP VBN (NP_000000000000000000000000A~NNS

NNP_000000000000000000000000A (NP~NNS CD)))) (VP VBD

(PP_000000000000000000000000D TO (NP~CD CD)

(PP_000000000000000000000000A IN (NP_000000000000000000000000A~JJS

(NP_000000000000000000000000A~PRP CD DT

NN_000000000000000000000000A) (ADVP RBR))))))))

Description : Noun phrase

State 17 : (VP VBG (NP_000A0000000000000A0000A00~NNS

(NP_000A00C0000000000A0000A00~NNS NN_0000000000000000000000A00

NNS_000A00C0000000000A0000000) (PP_000000000000000000000000A IN

(NP_000000000000000000000000A~NN (NP_000000000000000000000000A~NN

(NP_000000000000000000000000A~NN DT NN_000000000000000000000000A)

(VP VBN (NP_000000000000000000000000A~NNS

NNP_000000000000000000000000A (NP~NNS CD)))) (VP VBD

(PP_000000000000000000000000D TO (NP~CD CD)

(PP_000000000000000000000000A IN (NP_000000000000000000000000A~JJS

(NP_000000000000000000000000A~PRP CD DT

NN_000000000000000000000000A) (ADVP RBR)))))))))

Description : Verb phrase

State 18 : (NP_0000000000A00000000000000~NNS

NNS_0000000000A00000000000000)

Description : Noun phrase

State 19 : (S (NP_0000000000A00000000000000~NNS

NNS_0000000000A00000000000000) (VP VBG

(NP_000A0000000000000A0000A00~NNS

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 233

(NP_000A00C0000000000A0000A00~NNS NN_0000000000000000000000A00

NNS_000A00C0000000000A0000000) (PP_000000000000000000000000A IN

(NP_000000000000000000000000A~NN (NP_000000000000000000000000A~NN

(NP_000000000000000000000000A~NN DT NN_000000000000000000000000A)

(VP VBN (NP_000000000000000000000000A~NNS

NNP_000000000000000000000000A (NP~NNS CD)))) (VP VBD

(PP_000000000000000000000000D TO (NP~CD CD)

(PP_000000000000000000000000A IN (NP_000000000000000000000000A~JJS

(NP_000000000000000000000000A~PRP CD DT

NN_000000000000000000000000A) (ADVP RBR))))))))))

Description : Simple declarative clause

State 20 : (SBAR IN (S (NP_0000000000A00000000000000~NNS

NNS_0000000000A00000000000000) (VP VBG

(NP_000A0000000000000A0000A00~NNS

(NP_000A00C0000000000A0000A00~NNS NN_0000000000000000000000A00

NNS_000A00C0000000000A0000000) (PP_000000000000000000000000A IN

(NP_000000000000000000000000A~NN (NP_000000000000000000000000A~NN

(NP_000000000000000000000000A~NN DT NN_000000000000000000000000A)

(VP VBN (NP_000000000000000000000000A~NNS

NNP_000000000000000000000000A (NP~NNS CD)))) (VP VBD

(PP_000000000000000000000000D TO (NP~CD CD)

(PP_000000000000000000000000A IN (NP_000000000000000000000000A~JJS

(NP_000000000000000000000000A~PRP CD DT

NN_000000000000000000000000A) (ADVP RBR)))))))))))

Description : Clause introduced by sub-ordinating conjunction

State 21 : (NP_000A00C000000000000D00000~NN DT

NN_000A00C000000000000B00000)

Description : Noun phrase

State 22 : (ADJP JJ NN_000A00C0000000000A0000000)

Description : Adjective phrase

State 23 : (NP_000B00A000000000000000000~NN

(NP_000A00C000000000000D00000~NN DT NN_000A00C000000000000B00000)

(SBAR IN (S (NP_0000000000A00000000000000~NNS

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 234

NNS_0000000000A00000000000000) (VP VBG

(NP_000A0000000000000A0000A00~NNS

(NP_000A00C0000000000A0000A00~NNS NN_0000000000000000000000A00

NNS_000A00C0000000000A0000000) (PP_000000000000000000000000A IN

(NP_000000000000000000000000A~NN (NP_000000000000000000000000A~NN

(NP_000000000000000000000000A~NN DT NN_000000000000000000000000A)

(VP VBN (NP_000000000000000000000000A~NNS

NNP_000000000000000000000000A (NP~NNS CD)))) (VP VBD

(PP_000000000000000000000000D TO (NP~CD CD)

(PP_000000000000000000000000A IN (NP_000000000000000000000000A~JJS

(NP_000000000000000000000000A~PRP CD DT

NN_000000000000000000000000A) (ADVP RBR))))))))))))

Description : Noun phrase

State 24 : (NP_000000A000000000000000000~NN

(NP_000B00A000000000000000000~NN (NP_000A00C000000000000D00000~NN

DT NN_000A00C000000000000B00000) (SBAR IN (S

(NP_0000000000A00000000000000~NNS NNS_0000000000A00000000000000)

(VP VBG (NP_000A0000000000000A0000A00~NNS

(NP_000A00C0000000000A0000A00~NNS NN_0000000000000000000000A00

NNS_000A00C0000000000A0000000) (PP_000000000000000000000000A IN

(NP_000000000000000000000000A~NN (NP_000000000000000000000000A~NN

(NP_000000000000000000000000A~NN DT NN_000000000000000000000000A)

(VP VBN (NP_000000000000000000000000A~NNS

NNP_000000000000000000000000A (NP~NNS CD)))) (VP VBD

(PP_000000000000000000000000D TO (NP~CD CD)

(PP_000000000000000000000000A IN (NP_000000000000000000000000A~JJS

(NP_000000000000000000000000A~PRP CD DT

NN_000000000000000000000000A) (ADVP RBR)))))))))))) .)

Description : Noun phrase

Parse failed - could not create a valid parent for VP

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 235

Desired parse : (S1 (PRN -LRB- (VP VBP (NP (NP VBN NN) : `` (S (NP (NP NNP

POS) NNP) (VP VBZ (S (NP NNP NNP POS) (VP VBG '' (S (NP -NONE-) (VP TO (VP

VB (NP DT JJ NN NN)))))))) '' : (NP (NP NNP) (NP NNP CD , CD)))) -RRB-))

wsj_Concord-II's attempt

State 1 : (NP_000000000000000000000000A~CD

NNP_000000000000000000000000A CD , CD)

Description : Noun phrase

State 2 : (NP_0000000000A00000000000000~NNP

NNP_0000000000A00000000000000)

Description : Noun phrase

State 3 : (NP_A0A000C000A00000000000000~NN DT JJ

NN_A000000000000000000000000 NN_00A000C000A00000000000000)

Description : Noun phrase

State 4 : (VP TO)

Description : Verb phrase

Parse failed - could not create a valid parent for

NP_000A000000000000000000B00~NNS

Desired parse : (S1 (S (PP IN (NP JJ NNS)) , (NP (NP NNS) (PP IN (NP NNP))) (VP

AUX (VP VBN (NP (NP NNS) (PP IN (NP NN))) (PP IN (NP (NP DT NN NNS) (PP IN

(NP (NP NNS) (VP VBN (S (NP -NONE-) (ADJP JJ (PP IN (NP NN))))))))))) .))

wsj_Concord-II's attempt

State 1 : (NP_A00000000000000000B000B00~NN

NN_A00000000000000000B000B00)

Description : Noun phrase

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 236

State 2 : (PP_A00000000000000000B000B00 IN

(NP_A00000000000000000B000B00~NN NN_A00000000000000000B000B00))

Description : Prepositional phrase

State 3 : (ADJP JJ)

Description : Adjective phrase

State 4 : (NP~-NONE- -NONE-)

Description : Noun phrase

State 5 : (S (NP~-NONE- -NONE-) (ADJP JJ)

(PP_A00000000000000000B000B00 IN (NP_A00000000000000000B000B00~NN

NN_A00000000000000000B000B00)))

Description : Simple declarative clause

State 6 : (VP VBN (S (NP~-NONE- -NONE-) (ADJP JJ)

(PP_A00000000000000000B000B00 IN (NP_A00000000000000000B000B00~NN

NN_A00000000000000000B000B00))))

Description : Verb phrase

State 7 : (NP_000A000000000000000000B00~NNS

NNS_000A000000000000000000B00)

Description : Noun phrase

NN_A00000000000000000000000A IN DT NN_A000000000000000000000000

NNS_000C0000000000000A0000000 AUX RB JJ IN JJ

NN_00000000000000000A0000000 NN_00000CA000A00000000000000 .

Parse failed - the tail of a phrase could not be found!

Desired parse : (S1 (S (NP (NP NN) (PP IN (NP DT NN NNS))) (VP AUX (ADJP RB JJ)

(PP IN (NP JJ NN NN))) .))

wsj_Concord-II's attempt

State 1 : (NP_00000CA000A000000A0000000~NN JJ

NN_00000000000000000A0000000 NN_00000CA000A00000000000000)

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 237

Description : Noun phrase

State 2 : (PP_00000CA000A000000A0000000 IN

(NP_00000CA000A000000A0000000~NN JJ NN_00000000000000000A0000000

NN_00000CA000A00000000000000))

Description : Prepositional phrase

State 3 : (ADJP JJ (PP_00000CA000A000000A0000000 IN

(NP_00000CA000A000000A0000000~NN JJ NN_00000000000000000A0000000

NN_00000CA000A00000000000000)))

Description : Adjective phrase

State 4 : (ADVP RB)

Description : Adverb phrase

State 5 : (PRN (ADVP RB) (ADJP JJ

(PP_00000CA000A000000A0000000 IN (NP_00000CA000A000000A0000000~NN JJ

NN_00000000000000000A0000000 NN_00000CA000A00000000000000))))

Description : Parenthetical

State 6 : (INTJ (PRN (ADVP RB) (ADJP JJ

(PP_00000CA000A000000A0000000 IN (NP_00000CA000A000000A0000000~NN JJ

NN_00000000000000000A0000000 NN_00000CA000A00000000000000)))))

Description : Interjection - corresponds approximately to the word tag 'UH'

State 7 : (PRN (INTJ (PRN (ADVP RB) (ADJP JJ

(PP_00000CA000A000000A0000000 IN (NP_00000CA000A000000A0000000~NN JJ

NN_00000000000000000A0000000 NN_00000CA000A00000000000000))))) .)

Description : Parenthetical

State 8 : (VP AUX)

Description : Verb phrase

State 9 : (NP_000D0000000000000A0000000~NNS

NNS_000C0000000000000A0000000)

Description : Noun phrase

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 238

State 10 : (S (NP_000D0000000000000A0000000~NNS

NNS_000C0000000000000A0000000) (VP AUX))

Description : Simple declarative clause

State 11 : (RRC DT NN_A000000000000000000000000 (S

(NP_000D0000000000000A0000000~NNS NNS_000C0000000000000A0000000)

(VP AUX)))

Description : Reduced relative clause

State 12 : (S1 IN (RRC DT NN_A000000000000000000000000 (S

(NP_000D0000000000000A0000000~NNS NNS_000C0000000000000A0000000)

(VP AUX))) (PRN (INTJ (PRN (ADVP RB) (ADJP JJ

(PP_00000CA000A000000A0000000 IN (NP_00000CA000A000000A0000000~NN JJ

NN_00000000000000000A0000000 NN_00000CA000A00000000000000))))) .))

Description : Root node

State 13 : (NP_A00000000000000000000000A~PRP

NN_A00000000000000000000000A)

Description : Noun phrase

Parse failed - could not create a valid parent for

NP_0000000000A00000000000000~NNS

Desired parse : (S1 (S (NP DT NN NNS) (VP VBD (PP IN (NP (NP NNP NNPS NNP) ,

(NP (NP DT JJ NN NN) (SBAR (WHNP WDT) (S (NP NNP) (ADVP RB) (VP VBD (NP -

NONE-)))))))) .))

wsj_Concord-II's attempt

State 1 : (NP~-NONE- -NONE-)

Description : Noun phrase

State 2 : (S (NP~-NONE- -NONE-) .)

Description : Simple declarative clause

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 239

State 3 : (VP VBD)

Description : Verb phrase

State 4 : (ADVP RB)

Description : Adverb phrase

State 5 : (VP (ADVP RB) (VP VBD))

Description : Verb phrase

State 6 : (NP_00000000000000A0000000000~NNP

NNP_00000000000000A0000000000)

Description : Noun phrase

State 7 : (NP~NNPS WDT (NP_00000000000000A0000000000~NNP

NNP_00000000000000A0000000000))

Description : Noun phrase

State 8 : (S (NP~NNPS WDT

(NP_00000000000000A0000000000~NNP NNP_00000000000000A0000000000))

(VP (ADVP RB) (VP VBD)))

Description : Simple declarative clause

State 9 : (WHADVP (S (NP~NNPS WDT

(NP_00000000000000A0000000000~NNP NNP_00000000000000A0000000000))

(VP (ADVP RB) (VP VBD))))

Description : Wh-adverb phrase

State 10 : (ADJP DT JJ)

Description : Adjective phrase

State 11 : (NP_000000D000A000A0000000D00~NN

NN_000000B00A0000B0000000000 NN_0000000000A00000000000C00)

Description : Noun phrase

State 12 : (NP_0000000000A00000000000000~NNS

NNPS_0000000000A00000000000000 NNP_0000000000A00000000000000)

Description : Noun phrase

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 240

State 13 : (NP_0000000000A00000000000000~NNS

(NP_0000000000A00000000000000~NNS NNPS_0000000000A00000000000000

NNP_0000000000A00000000000000) ,)

Description : Noun phrase

State 14 : (NP_0000000000A00000000000000~NNS

NNP_0000000000A00000000000000 (NP_0000000000A00000000000000~NNS

(NP_0000000000A00000000000000~NNS NNPS_0000000000A00000000000000

NNP_0000000000A00000000000000) ,))

Description : Noun phrase

Parse failed - could not create a valid parent for

NP_00A00000000A0000000000000~EX

Desired parse : (S1 (S (NP (NP NNS) (PP IN (NP JJ NNS))) (VP VBD (NP (NP NNP

POS) JJ NN) (SBAR IN (S (NP PRP) (VP VBD (PP TO (NP (NP NNP POS) NN)) (PP IN

(S (NP -NONE-) (VP VBG (NP NNP NNP)))))))) .))

wsj_Concord-II's attempt

State 1 : (ADJP NNP_00000000000A0000000000000)

Description : Adjective phrase

State 2 : (NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000)

Description : Noun phrase

State 3 : (VP VBG (ADJP NNP_00000000000A0000000000000)

(NP_00000000000A0000000000000~NNP NNP_00000000000A0000000000000))

Description : Verb phrase

State 4 : (NP~-NONE- -NONE-)

Description : Noun phrase

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 241

State 5 : (S (NP~-NONE- -NONE-) (VP VBG (ADJP

NNP_00000000000A0000000000000) (NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000)))

Description : Simple declarative clause

State 6 : (PP IN (S (NP~-NONE- -NONE-) (VP VBG (ADJP

NNP_00000000000A0000000000000) (NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000))))

Description : Prepositional phrase

State 7 : (NP_00000000000A0000000000000~POS

NNP_00000000000A0000000000000 POS)

Description : Noun phrase

State 8 : (NP_00D00000000A000000000B000~POS

(NP_00000000000A0000000000000~POS NNP_00000000000A0000000000000

POS) NN_00D00000000A000000000B000)

Description : Noun phrase

State 9 : (PP_00D00000000A000000000B000 TO

(NP_00D00000000A000000000B000~POS

(NP_00000000000A0000000000000~POS NNP_00000000000A0000000000000

POS) NN_00D00000000A000000000B000))

Description : Prepositional phrase

State 10 : (VP VBD (PP_00D00000000A000000000B000 TO

(NP_00D00000000A000000000B000~POS

(NP_00000000000A0000000000000~POS NNP_00000000000A0000000000000

POS) NN_00D00000000A000000000B000)) (PP IN (S (NP~-NONE- -NONE-) (VP

VBG (ADJP NNP_00000000000A0000000000000)

(NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000)))))

Description : Verb phrase

State 11 : (NP_0000000000A00000000000000~PRP

PRP_0000000000A00000000000000)

Description : Noun phrase

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 242

State 12 : (S (NP_0000000000A00000000000000~PRP

PRP_0000000000A00000000000000) (VP VBD (PP_00D00000000A000000000B000

TO (NP_00D00000000A000000000B000~POS

(NP_00000000000A0000000000000~POS NNP_00000000000A0000000000000

POS) NN_00D00000000A000000000B000)) (PP IN (S (NP~-NONE- -NONE-) (VP

VBG (ADJP NNP_00000000000A0000000000000)

(NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000))))))

Description : Simple declarative clause

State 13 : (SBAR IN (S (NP_0000000000A00000000000000~PRP

PRP_0000000000A00000000000000) (VP VBD (PP_00D00000000A000000000B000

TO (NP_00D00000000A000000000B000~POS

(NP_00000000000A0000000000000~POS NNP_00000000000A0000000000000

POS) NN_00D00000000A000000000B000)) (PP IN (S (NP~-NONE- -NONE-) (VP

VBG (ADJP NNP_00000000000A0000000000000)

(NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000)))))))

Description : Clause introduced by sub-ordinating conjunction

State 14 : (NP_00000000000A0000000000000~POS

NNP_00000000000A0000000000000 POS)

Description : Noun phrase

State 15 : (NP_00A00000000A0000000000000~POS

(NP_00000000000A0000000000000~POS NNP_00000000000A0000000000000

POS) JJ NN_00A0000000000000000000000)

Description : Noun phrase

State 16 : (NP_00A00000000A0000000000000~EX

(NP_00A00000000A0000000000000~POS

(NP_00000000000A0000000000000~POS NNP_00000000000A0000000000000

POS) JJ NN_00A0000000000000000000000) (SBAR IN (S

(NP_0000000000A00000000000000~PRP PRP_0000000000A00000000000000) (VP

VBD (PP_00D00000000A000000000B000 TO

(NP_00D00000000A000000000B000~POS

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 243

(NP_00000000000A0000000000000~POS NNP_00000000000A0000000000000

POS) NN_00D00000000A000000000B000)) (PP IN (S (NP~-NONE- -NONE-) (VP

VBG (ADJP NNP_00000000000A0000000000000)

(NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000))))))))

Description : Noun phrase

Parse failed - could not create a valid parent for ADVP

Desired parse : (S1 (S (NP PRP) (VP VBD (SBAR -NONE- (S (NP DT NNS) (VP AUX

(VP VBN (NP (NP NN POS) NN)))))) .))

wsj_Concord-II's attempt

State 1 : (UCP POS)

Description : Unlike coordinated phrase

State 2 : (NP_000A000000000000000000000~NN (UCP POS)

NN_000A000000000000000000000)

Description : Noun phrase

State 3 : (NP_A00D000000000000000000000~NN

NN_A000000000B00000000000000 (NP_000A000000000000000000000~NN (UCP

POS) NN_000A000000000000000000000))

Description : Noun phrase

State 4 : (VP VBN (NP_A00D000000000000000000000~NN

NN_A000000000B00000000000000 (NP_000A000000000000000000000~NN (UCP

POS) NN_000A000000000000000000000)))

Description : Verb phrase

State 5 : (ADVP (VP VBN (NP_A00D000000000000000000000~NN

NN_A000000000B00000000000000 (NP_000A000000000000000000000~NN (UCP

POS) NN_000A000000000000000000000))))

Description : Adverb phrase

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 244

DT NN_0000000000A00000000000C00 RB VBD DT

NN_A00B00B000B00000000000000 NN_000000A000000000000000000 IN $ CD

CD -NONE- IN JJ JJ NNS_000C00A0000000000D0000000 .

Parse failed - the tail of a phrase could not be found!

Desired parse : (S1 (S (NP DT NN) (ADVP RB) (VP VBD (NP (NP DT NN NN) (PP IN

(NP (QP $ CD CD) -NONE-)) (PP IN (NP JJ JJ NNS)))) .))

wsj_Concord-II's attempt

State 1 : (NP_000C00A0000000000D0000000~NNS JJ JJ

NNS_000C00A0000000000D0000000)

Description : Noun phrase

State 2 : (PP_000C00A0000000000D0000000 IN

(NP_000C00A0000000000D0000000~NNS JJ JJ

NNS_000C00A0000000000D0000000))

Description : Prepositional phrase

State 3 : (WHADJP CD CD)

Description : Wh-adjective phrase

State 4 : (S -NONE-)

Description : Simple declarative clause

State 5 : (UCP (S -NONE-) (PP_000C00A0000000000D0000000 IN

(NP_000C00A0000000000D0000000~NNS JJ JJ

NNS_000C00A0000000000D0000000)))

Description : Unlike coordinated phrase

State 6 : (INTJ (WHADJP CD CD) (UCP (S -NONE-)

(PP_000C00A0000000000D0000000 IN (NP_000C00A0000000000D0000000~NNS

JJ JJ NNS_000C00A0000000000D0000000))))

Description : Interjection - corresponds approximately to the word tag 'UH'

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 245

`` PRP_0000000000A00000000000000 AUX IN DT

NN_000A0000000000000000B0B00 IN -NONE- VBG

NN_00000000000000A0000000000 NNS_000A00C0000000000A0000000 , '' VBZ -

NONE- NNP_00000000000000A0000000000 NNP_00000000000000A0000000000 ,

JJ NN_B00A000000000000000000000 NN_00000000000000A0000000000 IN

NNP_0000000000A00000000000000 NNP_0000000000A00000000000000 ,

NNP_00000000000A0000000000000 , NNP_00000000000A0000000000000 .

Parse failed - the tail of a phrase could not be found!

Desired parse : (S1 (SINV `` (S (NP PRP) (VP AUX (PP IN (NP (NP DT NN) (PP IN

(S (NP -NONE-) (VP VBG (NP NN NNS)))))))) , '' (VP VBZ (S -NONE-)) (NP (NP NNP

NNP) , (NP (NP JJ NN NN) (PP IN (NP (NP NNP NNP) , (NP (NP NNP) , (NP NNP))))))

.))

wsj_Concord-II's attempt

State 1 : (NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000)

Description : Noun phrase

State 2 : (NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000)

Description : Noun phrase

State 3 : (NP_0000000000A00000000000000~NNP

NNP_0000000000A00000000000000 NNP_0000000000A00000000000000)

Description : Noun phrase

State 4 : (NP_0000000000AA0000000000000~NNP

(NP_0000000000A00000000000000~NNP NNP_0000000000A00000000000000

NNP_0000000000A00000000000000) , (NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000))

Description : Noun phrase

State 5 : (NP_0000000000AA0000000000000~NNP

(NP_0000000000AA0000000000000~NNP

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 246

(NP_0000000000A00000000000000~NNP NNP_0000000000A00000000000000

NNP_0000000000A00000000000000) , (NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000)) , (NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000))

Description : Noun phrase

State 6 : (PP_0000000000AA0000000000000 IN

(NP_0000000000AA0000000000000~NNP

(NP_0000000000AA0000000000000~NNP

(NP_0000000000A00000000000000~NNP NNP_0000000000A00000000000000

NNP_0000000000A00000000000000) , (NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000)) , (NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000)))

Description : Prepositional phrase

State 7 : (NP_B00A0000000000A0000000000~NN JJ

NN_B00A000000000000000000000 NN_00000000000000A0000000000)

Description : Noun phrase

State 8 : (NP_00000000000000A0000000000~NNP

NNP_00000000000000A0000000000 NNP_00000000000000A0000000000)

Description : Noun phrase

State 9 : (VP VBZ -NONE- (NP_00000000000000A0000000000~NNP

NNP_00000000000000A0000000000 NNP_00000000000000A0000000000))

Description : Verb phrase

State 10 : (INTJ ,)

Description : Interjection - corresponds approximately to the word tag 'UH'

State 11 : (S (INTJ ,) '' (VP VBZ -NONE-

(NP_00000000000000A0000000000~NNP NNP_00000000000000A0000000000

NNP_00000000000000A0000000000)))

Description : Simple declarative clause

State 12 : (FRAG , (NP_B00A0000000000A0000000000~NN JJ

NN_B00A000000000000000000000 NN_00000000000000A0000000000)

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 247

(PP_0000000000AA0000000000000 IN (NP_0000000000AA0000000000000~NNP

(NP_0000000000AA0000000000000~NNP

(NP_0000000000A00000000000000~NNP NNP_0000000000A00000000000000

NNP_0000000000A00000000000000) , (NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000)) , (NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000))))

Description : Fragment

State 13 : (NP_000A00D0000000A00A0000000~NNS

NN_00000000000000A0000000000 NNS_000A00C0000000000A0000000)

Description : Noun phrase

State 14 : (NP_000C0000000000000A0000000~NNS

(NP_000A00D0000000A00A0000000~NNS NN_00000000000000A0000000000

NNS_000A00C0000000000A0000000) (S (INTJ ,) '' (VP VBZ -NONE-

(NP_00000000000000A0000000000~NNP NNP_00000000000000A0000000000

NNP_00000000000000A0000000000))))

Description : Noun phrase

State 15 : (S1 (NP_000C0000000000000A0000000~NNS

(NP_000A00D0000000A00A0000000~NNS NN_00000000000000A0000000000

NNS_000A00C0000000000A0000000) (S (INTJ ,) '' (VP VBZ -NONE-

(NP_00000000000000A0000000000~NNP NNP_00000000000000A0000000000

NNP_00000000000000A0000000000)))) (FRAG ,

(NP_B00A0000000000A0000000000~NN JJ NN_B00A000000000000000000000

NN_00000000000000A0000000000) (PP_0000000000AA0000000000000 IN

(NP_0000000000AA0000000000000~NNP

(NP_0000000000AA0000000000000~NNP

(NP_0000000000A00000000000000~NNP NNP_0000000000A00000000000000

NNP_0000000000A00000000000000) , (NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000)) , (NP_00000000000A0000000000000~NNP

NNP_00000000000A0000000000000)))))

Description : Root node

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 248

Parse failed - could not create a valid parent for

NP_00000000000A00000A0000B00~POS

Desired parse : (S1 (S (S (PP IN (NP JJ NNP)) , (NP DT JJS) (VP NNP (NP -NONE-)

(PP IN (NP NN)))) , (NP DT NN) (VP AUX (NP (NP DT NN POS) (ADJP (QP $ CD CD)

-NONE-) JJ NN)) .))

wsj_Concord-II's attempt

State 1 : (QP $ CD CD)

Description : Adjective phrase (Quantitative)

State 2 : (ADJP (QP $ CD CD) -NONE- JJ)

Description : Adjective phrase

State 3 : (NP_0000000000000000000D00000~POS POS)

Description : Noun phrase

State 4 : (NP_0000B000000A0000000000000~POS DT

NN_0000B000000A0000000D00000 (NP_0000000000000000000D00000~POS

POS) (ADJP (QP $ CD CD) -NONE- JJ))

Description : Noun phrase

State 5 : (NP_0000CDC0000A00000A0000A00~POS

(NP_0000B000000A0000000000000~POS DT NN_0000B000000A0000000D00000

(NP_0000000000000000000D00000~POS POS) (ADJP (QP $ CD CD) -NONE- JJ))

NN_000000C0000000000A0000A00)

Description : Noun phrase

State 6 : (NP_000000D0000A00000A0000B00~POS

(NP_0000CDC0000A00000A0000A00~POS

(NP_0000B000000A0000000000000~POS DT NN_0000B000000A0000000D00000

(NP_0000000000000000000D00000~POS POS) (ADJP (QP $ CD CD) -NONE- JJ))

NN_000000C0000000000A0000A00))

Description : Noun phrase

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 249

State 7 : (NP_00000000000A00000A0000B00~POS

(NP_000000D0000A00000A0000B00~POS

(NP_0000CDC0000A00000A0000A00~POS

(NP_0000B000000A0000000000000~POS DT NN_0000B000000A0000000D00000

(NP_0000000000000000000D00000~POS POS) (ADJP (QP $ CD CD) -NONE- JJ))

NN_000000C0000000000A0000A00)))

Description : Noun phrase

Parse failed - could not create a valid parent for

NP_00000000000A0000000000000~POS

Desired parse : (S1 (S (NP NN) , (NP NNP NNP NNP) (VP VBD (S (NP -NONE-) (VP

TO (VP VB (NP (NP DT NNP NN NN NNS) (PP IN (NP (NP NNP POS) NNP NNP NNP)))

(PP IN (NP (QP RB $ CD CD) -NONE-)))))) .))

wsj_Concord-II's attempt

State 1 : (WHADJP $ CD CD)

Description : Wh-adjective phrase

State 2 : (S -NONE-)

Description : Simple declarative clause

State 3 : (S (WHADJP $ CD CD) (S -NONE-))

Description : Simple declarative clause

State 4 : (ADVP RB)

Description : Adverb phrase

State 5 : (SBAR (ADVP RB) (S (WHADJP $ CD CD) (S -NONE-)))

Description : Clause introduced by sub-ordinating conjunction

State 6 : (UCP IN (SBAR (ADVP RB) (S (WHADJP $ CD CD) (S -

NONE-))))

Description : Unlike coordinated phrase

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 250

State 7 : (NP_0000000000AA00D0000000000~POS

NNP_00000000000A0000000000000 POS NNP_0000000000A00000000000000

NNP_0000000000A00000000000000 NNP_0000000000A00000000000000)

Description : Noun phrase

State 8 : (NP_0000000000DA0000000000000~POS

(NP_0000000000AA00D0000000000~POS NNP_00000000000A0000000000000

POS NNP_0000000000A00000000000000 NNP_0000000000A00000000000000

NNP_0000000000A00000000000000) (UCP IN (SBAR (ADVP RB) (S (WHADJP $ CD

CD) (S -NONE-)))))

Description : Noun phrase

State 9 : (NP_00000000000A0000000000000~POS

(NP_0000000000DA0000000000000~POS

(NP_0000000000AA00D0000000000~POS NNP_00000000000A0000000000000

POS NNP_0000000000A00000000000000 NNP_0000000000A00000000000000

NNP_0000000000A00000000000000) (UCP IN (SBAR (ADVP RB) (S (WHADJP $ CD

CD) (S -NONE-))))))

Description : Noun phrase

Parse failed - could not create a valid parent for

NP_00000AA000000000000000000~NN

Desired parse : (S1 (S CC (NP JJ NNS) (VP VBP (SBAR IN (S (NP (NP NNS POS)

NNS) (VP AUX (VP JJ (NP -NONE-) (PP IN (NP (NP NN) (PP IN (NP (NP NNS) (PP IN

(NP DT JJ NN))))))))))) .))

wsj_Concord-II's attempt

State 1 : (NP_00000BA0000000000D0C00000~NN DT JJ

NN_00000BA0000000000D0C00000)

Description : Noun phrase

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 251

State 2 : (NP_00000BA000000000000000000~NN

(NP_00000BA0000000000D0C00000~NN DT JJ

NN_00000BA0000000000D0C00000))

Description : Noun phrase

State 3 : (NP_00000AA000000000000000000~NN

(NP_00000BA000000000000000000~NN (NP_00000BA0000000000D0C00000~NN

DT JJ NN_00000BA0000000000D0C00000)))

Description : Noun phrase

Parse failed - could not create a valid parent for S

Desired parse : (S1 (S (PP IN (PP IN (NP (NP (NP DT NN POS) NN NN) (PP TO (NP

JJ NNS))))) , (NP DT NN) (VP VBD : `` (S (NP JJS NNS) (VP VBP (PP IN (NP PRP$

NNS)) (PP IN (NP (NP DT NN) (PP IN (NP (NP (ADJP JJ CC JJ) NNS) (ADJP JJ))))))))

.))

wsj_Concord-II's attempt

State 1 : (ADJP JJ)

Description : Adjective phrase

State 2 : (NP_00000000000000000B0000000~NNS JJ CC JJ

NNS_000000B0000000000A0000000)

Description : Noun phrase

State 3 : (PP_00000000000000000A0000000 IN

(NP_00000000000000000B0000000~NNS JJ CC JJ

NNS_000000B0000000000A0000000))

Description : Prepositional phrase

State 4 : (NP_00000000000000000000A0000~NN DT

NN_00000000000000000000A0000)

Description : Noun phrase

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 252

State 5 : (NP_00000000000000000A00A0000~NN

(NP_00000000000000000000A0000~NN DT NN_00000000000000000000A0000)

(PP_00000000000000000A0000000 IN (NP_00000000000000000B0000000~NNS

JJ CC JJ NNS_000000B0000000000A0000000)))

Description : Noun phrase

State 6 : (NP_00000000000000000A00A0000~NN

(NP_00000000000000000A00A0000~NN (NP_00000000000000000000A0000~NN

DT NN_00000000000000000000A0000) (PP_00000000000000000A0000000 IN

(NP_00000000000000000B0000000~NNS JJ CC JJ

NNS_000000B0000000000A0000000))) (ADJP JJ))

Description : Noun phrase

State 7 : (PP_00000000000000000A00A0000 IN

(NP_00000000000000000A00A0000~NN (NP_00000000000000000A00A0000~NN

(NP_00000000000000000000A0000~NN DT NN_00000000000000000000A0000)

(PP_00000000000000000A0000000 IN (NP_00000000000000000B0000000~NNS

JJ CC JJ NNS_000000B0000000000A0000000))) (ADJP JJ)))

Description : Prepositional phrase

State 8 : (NP_000B000000A000C00C0000000~NNS PRP$

NNS_000B000000A000C00C0000000)

Description : Noun phrase

State 9 : (PP_000B000000A000C00C0000000 IN

(NP_000B000000A000C00C0000000~NNS PRP$

NNS_000B000000A000C00C0000000))

Description : Prepositional phrase

State 10 : (VP VBP (PP_000B000000A000C00C0000000 IN

(NP_000B000000A000C00C0000000~NNS PRP$

NNS_000B000000A000C00C0000000)))

Description : Verb phrase

State 11 : (NP_00000000000000A0000000000~NNS JJS

NNS_00000000000000A0000000000)

Description : Noun phrase

Appendix F – A Sample of Parse Failures made on the WSJ Corpus Training Set (Using Lexical

Semantic and Syntactic Information)

 253

State 12 : (S ``)

Description : Simple declarative clause

 254

Appendix G: A Sample of Matching Parses from the

WSJ Corpus Test Set (Using Syntactic

Information Only)

JJ NNS IN DT NN IN NN :

Desired parse : (S1 (NP (NP (NP JJ NNS) (PP IN (NP (NP DT NN) (PP IN (NP NN)))))

:))

Actual parse : (S1 (NP (NP (NP JJ NNS) (PP IN (NP (NP DT NN) (PP IN (NP NN)))))

:))

DT NN IN DT NNPS IN DT NNP AUX IN JJ NN .

Desired parse : (S1 (S (NP (NP DT NN) (PP IN (NP (NP DT NNPS) (PP IN (NP DT

NNP))))) (VP AUX (PP IN (NP JJ NN))) .))

Actual parse : (S1 (S (NP (NP DT NN) (PP IN (NP (NP DT NNPS) (PP IN (NP DT

NNP))))) (VP AUX (PP IN (NP JJ NN))) .))

NNP : JJ NNS .

Desired parse : (S1 (NP (NP NNP) : (NP JJ NNS) .))

Actual parse : (S1 (NP (NP NNP) : (NP JJ NNS) .))

DT NN AUX VBN IN -NONE- VBG DT NN POS NN RB .

Desired parse : (S1 (S (NP DT NN) (VP AUX (VP VBN (PP IN (S (NP -NONE-) (VP

VBG (NP (NP DT NN POS) NN) (ADVP RB)))))) .))

Actual parse : (S1 (S (NP DT NN) (VP AUX (VP VBN (PP IN (S (NP -NONE-) (VP VBG

(NP (NP DT NN POS) NN) (ADVP RB)))))) .))

NN

Desired parse : (S1 (NP NN))

Actual parse : (S1 (NP NN))

NNP NNP , DT JJ NN NN , VBZ NNS CC NNS .

Desired parse : (S1 (S (NP (NP NNP NNP) , (NP DT JJ NN NN) ,) (VP VBZ (NP NNS

CC NNS)) .))

Actual parse : (S1 (S (NP (NP NNP NNP) , (NP DT JJ NN NN) ,) (VP VBZ (NP NNS CC

NNS)) .))

Appendix G – A Sample of Matching Parses from the WSJ Corpus Test Set (Using Syntactic

Information Only)

 255

IN NN , DT NN VBZ -NONE- TO VB JJ NNS .

Desired parse : (S1 (S (PP IN (NP NN)) , (NP DT NN) (VP VBZ (S (NP -NONE-) (VP

TO (VP VB (NP JJ NNS))))) .))

Actual parse : (S1 (S (PP IN (NP NN)) , (NP DT NN) (VP VBZ (S (NP -NONE-) (VP

TO (VP VB (NP JJ NNS))))) .))

RB , DT NN AUX VBN -NONE- TO VB PRP$ JJ NNS .

Desired parse : (S1 (S (ADVP RB) , (NP DT NN) (VP AUX (VP VBN (S (NP -NONE-)

(VP TO (VP VB (NP PRP$ JJ NNS)))))) .))

Actual parse : (S1 (S (ADVP RB) , (NP DT NN) (VP AUX (VP VBN (S (NP -NONE-)

(VP TO (VP VB (NP PRP$ JJ NNS)))))) .))

NN NN : CD NN .

Desired parse : (S1 (NP (NP NN NN) : (NP CD NN) .))

Actual parse : (S1 (NP (NP NN NN) : (NP CD NN) .))

DT JJ NNS AUX VBN -NONE- TO VB DT NN .

Desired parse : (S1 (S (NP DT JJ NNS) (VP AUX (VP VBN (S (NP -NONE-) (VP TO

(VP VB (NP DT NN)))))) .))

Actual parse : (S1 (S (NP DT JJ NNS) (VP AUX (VP VBN (S (NP -NONE-) (VP TO (VP

VB (NP DT NN)))))) .))

NN VBZ JJ NN NNS IN NNP NNP .

Desired parse : (S1 (S (NP NN) (VP VBZ (NP (NP JJ NN NNS) (PP IN (NP NNP

NNP)))) .))

Actual parse : (S1 (S (NP NN) (VP VBZ (NP (NP JJ NN NNS) (PP IN (NP NNP NNP))))

.))

DT NN IN DT NN AUX DT NN .

Desired parse : (S1 (S (NP (NP DT NN) (PP IN (NP DT NN))) (VP AUX (NP DT NN))

.))

Actual parse : (S1 (S (NP (NP DT NN) (PP IN (NP DT NN))) (VP AUX (NP DT NN)) .))

`` PRP AUX VBG -NONE- TO AUX DT JJ NN . ''

Desired parse : (S1 (S `` (NP PRP) (VP AUX (VP VBG (S (NP -NONE-) (VP TO (VP

AUX (NP DT JJ NN)))))) . ''))

Appendix G – A Sample of Matching Parses from the WSJ Corpus Test Set (Using Syntactic

Information Only)

 256

Actual parse : (S1 (S `` (NP PRP) (VP AUX (VP VBG (S (NP -NONE-) (VP TO (VP

AUX (NP DT JJ NN)))))) . ''))

NN AUX DT NN NN .

Desired parse : (S1 (S (NP NN) (VP AUX (NP DT NN NN)) .))

Actual parse : (S1 (S (NP NN) (VP AUX (NP DT NN NN)) .))

CC DT NN NN CC NN NN IN DT NN VBD DT NN .

Desired parse : (S1 (S CC (NP (NP DT NN NN CC NN NN) (PP IN (NP DT NN))) (VP

VBD (NP DT NN)) .))

Actual parse : (S1 (S CC (NP (NP DT NN NN CC NN NN) (PP IN (NP DT NN))) (VP

VBD (NP DT NN)) .))

DT JJ NN VBZ CD NNS .

Desired parse : (S1 (S (NP DT JJ NN) (VP VBZ (NP CD NNS)) .))

Actual parse : (S1 (S (NP DT JJ NN) (VP VBZ (NP CD NNS)) .))

DT NNP NNP NNP NNP VBD CD NNS TO CD .

Desired parse : (S1 (S (NP DT NNP NNP NNP NNP) (VP VBD (NP CD NNS) (PP TO

(NP CD))) .))

Actual parse : (S1 (S (NP DT NNP NNP NNP NNP) (VP VBD (NP CD NNS) (PP TO (NP

CD))) .))

IN NNP , JJ JJ NN NNP NNP VBD IN NNP , -NONE- VBG CD NNS IN NN .

Desired parse : (S1 (S (PP IN (NP NNP)) , (NP JJ JJ NN NNP NNP) (VP VBD (PP IN

(NP NNP)) , (S (NP -NONE-) (VP VBG (NP CD NNS) (PP IN (NP NN))))) .))

Actual parse : (S1 (S (PP IN (NP NNP)) , (NP JJ JJ NN NNP NNP) (VP VBD (PP IN

(NP NNP)) , (S (NP -NONE-) (VP VBG (NP CD NNS) (PP IN (NP NN))))) .))

DT JJ NN AUX JJ , '' VBD -NONE- NNP NNP IN NNP .

Desired parse : (S1 (SINV (S (NP DT JJ NN) (VP AUX (ADJP JJ))) , '' (VP VBD (S -

NONE-)) (NP (NP NNP NNP) (PP IN (NP NNP))) .))

Actual parse : (S1 (SINV (S (NP DT JJ NN) (VP AUX (ADJP JJ))) , '' (VP VBD (S -

NONE-)) (NP (NP NNP NNP) (PP IN (NP NNP))) .))

NNP NNP VBZ NNP NNP TO VB DT NN IN NNS .

Appendix G – A Sample of Matching Parses from the WSJ Corpus Test Set (Using Syntactic

Information Only)

 257

Desired parse : (S1 (S (NP NNP NNP) (VP VBZ (S (NP NNP NNP) (VP TO (VP VB (NP

DT NN) (PP IN (NP NNS)))))) .))

Actual parse : (S1 (S (NP NNP NNP) (VP VBZ (S (NP NNP NNP) (VP TO (VP VB (NP

DT NN) (PP IN (NP NNS)))))) .))

DT NN POS NN AUX AUX VBG JJ NNS VB NN NNS .

Desired parse : (S1 (S (NP (NP DT NN POS) NN) (VP AUX (VP AUX (VP VBG (S (NP

JJ NNS) (VP VB (NP NN NNS)))))) .))

Actual parse : (S1 (S (NP (NP DT NN POS) NN) (VP AUX (VP AUX (VP VBG (S (NP JJ

NNS) (VP VB (NP NN NNS)))))) .))

IN NNP CD , DT NN VBD DT NN .

Desired parse : (S1 (S (PP IN (NP NNP CD)) , (NP DT NN) (VP VBD (NP DT NN)) .))

Actual parse : (S1 (S (PP IN (NP NNP CD)) , (NP DT NN) (VP VBD (NP DT NN)) .))

IN DT NN , NNP NNP VBZ DT NNPS .

Desired parse : (S1 (S (PP IN (NP DT NN)) , (NP NNP NNP) (VP VBZ (NP DT NNPS))

.))

Actual parse : (S1 (S (PP IN (NP DT NN)) , (NP NNP NNP) (VP VBZ (NP DT NNPS))

.))

NNP NNP VBZ DT JJ NN .

Desired parse : (S1 (S (NP NNP NNP) (VP VBZ (NP DT JJ NN)) .))

Actual parse : (S1 (S (NP NNP NNP) (VP VBZ (NP DT JJ NN)) .))

IN DT JJ NN , DT NN IN NN VBZ IN NN NN .

Desired parse : (S1 (S (PP IN (NP DT JJ NN)) , (NP (NP DT NN) (PP IN (NP NN)))

(VP VBZ (PP IN (NP NN NN))) .))

Actual parse : (S1 (S (PP IN (NP DT JJ NN)) , (NP (NP DT NN) (PP IN (NP NN))) (VP

VBZ (PP IN (NP NN NN))) .))

Appendix G – A Sample of Matching Parses from the WSJ Corpus Test Set (Using Syntactic

Information Only)

 258

 259

Appendix H: A Sample of Matching Parses from the

WSJ Corpus Test Set (Using Lexical

Semantic and Syntactic Information)

JJ NNS_00000AD000000000000000000 IN DT NN_00B00C0000A00000000000000

IN NN_A0B00D0000000000000000000 :

Desired parse : (S1 (NP (NP (NP JJ NNS) (PP IN (NP (NP DT NN) (PP IN (NP NN)))))

:))

Actual parse : (S1 (NP (NP (NP JJ NNS) (PP IN (NP (NP DT NN) (PP IN (NP NN)))))

:))

NNP_0000000000A00000000000000 NNS_00000000000000A0000000000 VBD DT

NNS_000000AD00000000000000000 RB .

Desired parse : (S1 (S (NP NNP NNS) (VP VBD (NP DT NNS) (ADVP RB)) .))

Actual parse : (S1 (S (NP NNP NNS) (VP VBD (NP DT NNS) (ADVP RB)) .))

NN

Desired parse : (S1 (NP NN))

Actual parse : (S1 (NP NN))

NNP_00000000000000A0000000000 NNP_00000000000000A0000000000 , DT JJ

NN_00C0000000A00000000000000 NN_00000000000000A0000000000 , VBZ

NNS_00000000000000A0000000000 CC NNS_00000000000000A0000000000 .

Desired parse : (S1 (S (NP (NP NNP NNP) , (NP DT JJ NN NN) ,) (VP VBZ (NP NNS

CC NNS)) .))

Actual parse : (S1 (S (NP (NP NNP NNP) , (NP DT JJ NN NN) ,) (VP VBZ (NP NNS CC

NNS)) .))

IN NN_D0C0000000000B0000000000A , DT NN_00A00000000000A00000000D0

VBZ -NONE- TO VB JJ NNS_00B00000000A0000000000000 .

Desired parse : (S1 (S (PP IN (NP NN)) , (NP DT NN) (VP VBZ (S (NP -NONE-) (VP

TO (VP VB (NP JJ NNS))))) .))

Actual parse : (S1 (S (PP IN (NP NN)) , (NP DT NN) (VP VBZ (S (NP -NONE-) (VP

TO (VP VB (NP JJ NNS))))) .))

Appendix H – A Sample of Matching Parses from the WSJ Corpus Test Set (Using Lexical

Semantic and Syntactic Information)

 260

DT NN_000000A000000000000000000 RB MD VB

NN_00000000000000000A0000000 NNS_000A00C0000000000A0000000 IN JJ

NN_B000000000000000000000A00 NNS_000000B000000000000000A00 .

Desired parse : (S1 (S (NP DT NN) (ADVP RB) (VP MD (VP VB (NP (NP NN NNS) (PP

IN (NP JJ NN NNS))))) .))

Actual parse : (S1 (S (NP DT NN) (ADVP RB) (VP MD (VP VB (NP (NP NN NNS) (PP

IN (NP JJ NN NNS))))) .))

PRP_A000000000000000000000000 AUX JJ .

Desired parse : (S1 (S (NP PRP) (VP AUX (ADJP JJ)) .))

Actual parse : (S1 (S (NP PRP) (VP AUX (ADJP JJ)) .))

NNS_00A00000000000000D0000000 : NN_00CB00D000000000000A00000 CD

NNS_C0000000000000000A0000000 .

Desired parse : (S1 (NP (NP NNS) : (NP (NP NN) (NP CD NNS)) .))

Actual parse : (S1 (NP (NP NNS) : (NP (NP NN) (NP CD NNS)) .))

DT JJ NNS_000000A000000000000000000 AUX VBN -NONE- TO VB DT

NN_B000000C00000D0000000000A .

Desired parse : (S1 (S (NP DT JJ NNS) (VP AUX (VP VBN (S (NP -NONE-) (VP TO

(VP VB (NP DT NN)))))) .))

Actual parse : (S1 (S (NP DT JJ NNS) (VP AUX (VP VBN (S (NP -NONE-) (VP TO (VP

VB (NP DT NN)))))) .))

DT JJ NNS_B000000C0000000000000000A AUX AUX JJ -NONE- IN

NNP_000000A000000000000000000 NNP_00000000000000A0000000000 POS

NN_A000000000000000000000000 .

Desired parse : (S1 (S (NP DT JJ NNS) (VP AUX (VP AUX (VP JJ (NP -NONE-) (PP IN

(NP (NP NNP NNP POS) NN))))) .))

Actual parse : (S1 (S (NP DT JJ NNS) (VP AUX (VP AUX (VP JJ (NP -NONE-) (PP IN

(NP (NP NNP NNP POS) NN))))) .))

NN_0000000000A00000000000000 AUX DT NN_B0A000D0000000C0000000000

NN_0000000000B000A0000000000 .

Desired parse : (S1 (S (NP NN) (VP AUX (NP DT NN NN)) .))

Actual parse : (S1 (S (NP NN) (VP AUX (NP DT NN NN)) .))

Appendix H – A Sample of Matching Parses from the WSJ Corpus Test Set (Using Lexical

Semantic and Syntactic Information)

 261

JJ NNS_00A000000C000A00000000000 RB VBP CD

NN_B00000A000000000000000000 IN DT NN_0000000A0000000000000000B .

Desired parse : (S1 (S (NP JJ NNS) (ADVP RB) (VP VBP (NP (NP CD NN) (PP IN (NP

DT NN)))) .))

Actual parse : (S1 (S (NP JJ NNS) (ADVP RB) (VP VBP (NP (NP CD NN) (PP IN (NP

DT NN)))) .))

NNP_000000A000000000000000000 NNP_00000000000000A0000000000 AUX JJ

NN_A0000B0000000000000000000 NN_00000000000000A0000000000 IN DT

NNP_0000000000A00000000000000 NNP_0000000000A00000000000000 .

Desired parse : (S1 (S (NP NNP NNP) (VP AUX (NP (NP JJ NN NN) (PP IN (NP DT

NNP NNP)))) .))

Actual parse : (S1 (S (NP NNP NNP) (VP AUX (NP (NP JJ NN NN) (PP IN (NP DT NNP

NNP)))) .))

NNP_000000A000000000000000000 NNP_00000000000000A0000000000 AUX DT

JJ NN_00000000000000A0000000000 IN DT NNP_0000000000A00000000000000

NNP_0000000000A00000000000000 NNP_0000000000A00000000000000 .

Desired parse : (S1 (S (NP NNP NNP) (VP AUX (NP (NP DT JJ NN) (PP IN (NP DT

NNP NNP NNP)))) .))

Actual parse : (S1 (S (NP NNP NNP) (VP AUX (NP (NP DT JJ NN) (PP IN (NP DT NNP

NNP NNP)))) .))

PRP_00000000000000A0000000000 VBP DT NN_00B00AC000000000000000000 .

Desired parse : (S1 (S (NP PRP) (VP VBP (NP DT NN)) .))

Actual parse : (S1 (S (NP PRP) (VP VBP (NP DT NN)) .))

PRP_00000000000000A0000000000 VBZ -NONE- DT JJ

NN_00000000000000A0000000000 .

Desired parse : (S1 (S (NP PRP) (VP VBZ (S (NP -NONE-) (NP DT JJ NN))) .))

Actual parse : (S1 (S (NP PRP) (VP VBZ (S (NP -NONE-) (NP DT JJ NN))) .))

`` PRP_00000000000000A0000000000 AUX JJ JJ

NNS_00000000000000A0000000000 .

Desired parse : (S1 (S `` (NP PRP) (VP AUX (NP JJ JJ NNS)) .))

Actual parse : (S1 (S `` (NP PRP) (VP AUX (NP JJ JJ NNS)) .))

Appendix H – A Sample of Matching Parses from the WSJ Corpus Test Set (Using Lexical

Semantic and Syntactic Information)

 262

NNS_00000000000C0000000A00D00 IN NNS_00B00DA0000000000000B0000 AUX

IN NN_A000000000000000000000C00 .

Desired parse : (S1 (S (NP (NP NNS) (PP IN (NP NNS))) (VP AUX (PP IN (NP NN)))

.))

Actual parse : (S1 (S (NP (NP NNS) (PP IN (NP NNS))) (VP AUX (PP IN (NP NN)))

.))

JJ JJ NNS_00000000000000A0000000000 VBP JJ .

Desired parse : (S1 (S (NP JJ JJ NNS) (VP VBP (ADJP JJ)) .))

Actual parse : (S1 (S (NP JJ JJ NNS) (VP VBP (ADJP JJ)) .))

NNP_000000A000000000000000000 NNP_00000000000000A0000000000 VBZ DT

JJ NN_000B0A0000000000000000000 .

Desired parse : (S1 (S (NP NNP NNP) (VP VBZ (NP DT JJ NN)) .))

Actual parse : (S1 (S (NP NNP NNP) (VP VBZ (NP DT JJ NN)) .))

DT JJ NN_B0000000000000A0000000000 AUX JJ .

Desired parse : (S1 (S (NP DT JJ NN) (VP AUX (ADJP JJ)) .))

Actual parse : (S1 (S (NP DT JJ NN) (VP AUX (ADJP JJ)) .))

DT JJ VBG IN NN_D00B0A0000000000000000000 .

Desired parse : (S1 (S (NP DT JJ) (VP VBG (PP IN (NP NN))) .))

Actual parse : (S1 (S (NP DT JJ) (VP VBG (PP IN (NP NN))) .))

JJ JJ JJ NN_A0D0000000B00000000000000 NNS_00A0000000000000000000000

VBD IN JJ NN_00000B00000A0000000000000 .

Desired parse : (S1 (S (NP JJ JJ JJ NN NNS) (VP VBD (PP IN (NP JJ NN))) .))

Actual parse : (S1 (S (NP JJ JJ JJ NN NNS) (VP VBD (PP IN (NP JJ NN))) .))

NNP_00000000000000A0000000000 NNP_00000000000000A0000000000

NNP_00000000000000A0000000000 , CD , AUX VBN -NONE- DT JJ

NN_B00A000000000000000000000 NN_00000000000000A0000000000 , IN

NNS_A00B000000000000000000B00 IN NN_A0000B0000000000000000000 CC

NN_00000B0000A00000000000000 NN_000000000000000000A000000 .

Desired parse : (S1 (S (NP (NP NNP NNP NNP) , (NP CD) ,) (VP AUX (VP VBN (S

(NP -NONE-) (NP (NP DT JJ NN NN) , (PP IN (NP (NP NNS) (PP IN (NP NN CC NN

NN)))))))) .))

Appendix H – A Sample of Matching Parses from the WSJ Corpus Test Set (Using Lexical

Semantic and Syntactic Information)

 263

Actual parse : (S1 (S (NP (NP NNP NNP NNP) , (NP CD) ,) (VP AUX (VP VBN (S (NP

-NONE-) (NP (NP DT JJ NN NN) , (PP IN (NP (NP NNS) (PP IN (NP NN CC NN

NN)))))))) .))

DT NN_A00C000000D00000000000000 AUX JJ .

Desired parse : (S1 (S (NP DT NN) (VP AUX (ADJP JJ)) .))

Actual parse : (S1 (S (NP DT NN) (VP AUX (ADJP JJ)) .))

DT NN_B00B00A000000000000000000 VBZ NNP_000000000000000000000000A

CD , CD .

Desired parse : (S1 (S (NP DT NN) (VP VBZ (NP NNP CD , CD)) .))

Actual parse : (S1 (S (NP DT NN) (VP VBZ (NP NNP CD , CD)) .))

Appendix H – A Sample of Matching Parses from the WSJ Corpus Test Set (Using Lexical

Semantic and Syntactic Information)

 264

 265

Appendix I: A Sample of Mismatching Parses from

the WSJ Corpus Test Set (using

Syntactic Information Only)

DT NN VBD JJ NNS IN NN IN NNP CC NNP , -NONE- VBG IN DT NN IN NN NN IN DT

JJ NN IN NNP MD AUX JJ TO CD NN , DT JJ NN VBD -NONE- -NONE- .

Desired parse : (S1 (S (S (NP DT NN) (VP VBD (NP (NP JJ NNS) (PP IN (NP (NP NN)

(PP IN (NP NNP CC NNP))))) , (S (NP -NONE-) (VP VBG (SBAR IN (S (NP (NP DT

NN) (PP IN (NP (NP NN NN) (PP IN (NP DT JJ NN)))) (PP IN (NP NNP))) (VP MD (VP

AUX (ADJP JJ (PP TO (NP CD NN))))))))))) , (NP DT JJ NN) (VP VBD (SBAR -NONE-

(S -NONE-))) .))

Actual parse : (S1 (S (S (NP DT NN) (VP VBD (NP (NP JJ NNS) (PP IN (NP NN))) (PP

IN (NP NNP CC NNP)))) , (NP -NONE-) (VP VBG (PP IN (NP (NP DT NN) (PP IN (NP

(NP NN NN) (PP IN (NP (NP DT JJ NN) (PP IN (NP NNP)))))))) (VP MD (VP AUX (NP

(NP JJ) (PP TO (NP CD NN) ,) (S (NP DT JJ NN) (VP VBD (SBAR -NONE- (S -NONE-

)))))))) .))

-NONE- VBN -NONE- IN DT NN IN NNP NNP , DT NN IN DT NN WP -NONE- VBD IN

CD .

Desired parse : (S1 (S (NP -NONE-) (VP VBN (NP -NONE-) (PP IN (NP (NP DT NN)

(PP IN (NP (NP NNP NNP) , (NP (NP DT NN) (PP IN (NP DT NN)) (SBAR (WHNP WP)

(S (NP -NONE-) (VP VBD (PP IN (NP CD))))))))))) .))

Actual parse : (S1 (S (NP -NONE-) (VP VBN (NP -NONE-) (PP IN (NP (NP DT NN)

(PP IN (NP NNP NNP)))) , (NP (NP DT NN) (PP IN (NP (NP DT NN) (SBAR (WHNP

WP) (S (NP -NONE-) (VP VBD (PP IN (NP CD)))))))) .)))

: NNP NNP .

Desired parse : (S1 (NP : NNP NNP .))

Actual parse : (S1 (SBAR (SBAR (S1 (PRN : (NP NNP NNP)))) .))

NNP NNP , DT NNP , NNP , NN , VBZ -NONE- NNS AUX JJ IN IN DT CD NN NN VBZ

TO DT JJ NN NN CC TO JJ VBG NNS .

Desired parse : (S1 (S (NP (NP NNP NNP) , (NP DT (NAC NNP , NNP ,) NN) ,) (VP

VBZ (SBAR -NONE- (S (NP NNS) (VP AUX (ADJP JJ) (PP IN (SBAR IN (S (NP DT

(ADJP CD NN) NN) (VP VBZ (PP (PP TO (NP DT JJ NN NN)) CC (PP TO (NP JJ VBG

NNS))))))))))) .))

Appendix I – A Sample of Mismatching Parses from the WSJ Corpus Test Set (Using Syntactic

Information Only)

 266

Actual parse : (S1 (S (NP NNP NNP) , (NP (NP DT NNP) , (NP (NP NNP) , NN) ,) (VP

VBZ (S (NP -NONE- NNS) (VP AUX (S (NP (NP JJ) (PP IN (PP IN (NP DT CD NN

NN)))) (VP VBZ (VP TO (S (NP (NP DT JJ NN NN) CC (PP TO (NP JJ))) (VP VBG

NNS)))))))) .))

DT NNS VBP IN PRP MD VB CD NNS IN NNS VBP DT NN JJR .

Desired parse : (S1 (S (NP DT NNS) (VP VBP (SBAR IN (S (NP PRP) (VP MD (VP VB

(NP CD NNS) (SBAR IN (S (NP NNS) (VP VBP (NP DT NN JJR))))))))) .))

Actual parse : (S1 (S (NP DT NNS) (VP VBP (SBAR IN (S (NP PRP) (VP MD (VP VB

(S (NP (NP CD NNS) (PP IN (NP NNS))) (VP VBP (NP DT NN JJR)))))))) .))

RB , NNP NNP RB AUX AUXG VBN , IN DT NN DT NN CC CD DT NN .

Desired parse : (S1 (S (ADVP RB) , (NP NNP NNP) (ADVP RB) (VP AUX (VP AUXG

(VP VBN , (PP IN (NP (NP (NP DT NN) (NP DT NN)) CC (NP (NP CD) (NP DT

NN))))))) .))

Actual parse : (S1 (S (ADVP RB) , (NP NNP NNP) (VP RB (VP AUX (ADVP AUXG) (VP

VBN , (PP IN (NP DT NN DT) NN) CC (NP CD DT NN)))) .))

NNP NNP , NN IN NN IN DT JJ NN NN NN , AUX AUX VBG IN NN NNS VBG NN IN DT

NNP NN .

Desired parse : (S1 (S (NP (NP NNP NNP) , (NP (NP NN) (PP IN (NP NN)) (PP IN (NP

DT JJ NN NN NN))) ,) (VP AUX (VP AUX (VP VBG (PP IN (NP (NP NN NNS) (VP VBG

(NP NN)))) (PP IN (NP DT NNP NN))))) .))

Actual parse : (S1 (NP (NP NNP NNP) (SBAR , (S (NP NN) (PP IN (NP NN)) (PP IN

(NP DT JJ NN NN NN)) , (VP AUX (VP AUX (VP VBG (PP IN (S (NP NN NNS) (VP VBG

(NP (NP NN) (PP IN (NP DT NNP NN))))))))) .))))

NNS IN DT CD NNS VBN -NONE- IN NNP POS VBD RB $ CD CD -NONE- TO DT NN

IN $ CD CD -NONE- IN -NONE- VBG DT JJ NN .

Desired parse : (S1 (S (NP (NP NNS) (PP IN (NP (NP DT CD NNS) (VP VBN (NP -

NONE-) (PP IN (NP NNP POS)))))) (VP VBD (NP (QP RB $ CD CD) -NONE-) (PP TO

(NP (NP DT NN) (PP IN (NP (QP $ CD CD) -NONE-)))) (PP IN (S (NP -NONE-) (VP

VBG (NP DT JJ NN))))) .))

Actual parse : (S1 (S (NP (NP NNS) (PP IN (NP DT CD NNS))) (VP VBN (NP (NP -

NONE-) (FRAG IN NNP)) (S POS (VP VBD)) (ADVP RB) (SBAR $ (S (NP (NP (NP -

NONE-) (PP IN (NP -NONE-))) (NP (NP (NP DT NN) (PP TO (NP -NONE-))) (SBAR

(NP (NP CD) (NP CD) (PP IN)) (S (QP $ CD CD))))) (VP VBG (NP DT JJ NN))))) .))

Appendix I – A Sample of Mismatching Parses from the WSJ Corpus Test Set (Using Syntactic

Information Only)

 267

IN CD NNS , JJ NNS AUX VBN IN RB -NONE- TO VB DT VBG NNS IN NNS IN NN IN

NNP JJ NNS .

Desired parse : (S1 (S (PP IN (NP CD NNS)) , (NP JJ NNS) (VP AUX (VP VBN (PP IN

(NP RB)) (S (NP -NONE-) (VP TO (VP VB (NP (NP DT VBG NNS) (PP IN (NP (NP

NNS) (PP IN (NP NN)) (PP IN (NP NNP JJ NNS)))))))))) .))

Actual parse : (S1 (SBAR (SBAR (S (PP IN (NP CD NNS)) , (S (S (NP JJ NNS) (VP

AUX (VP VBN (PP IN RB (NP -NONE-))))) (VP TO (VP VB (NP DT (UCP VBG NNS) (PP

IN (NP (NP NNS) (PP IN (NP (NP NN) (PP IN (NP NNP JJ NNS)))))))))))) .))

NN NNS NNS RB VBD IN NNP POS NNS IN NNS VBD RB JJ .

Desired parse : (S1 (S (NP NN NNS NNS) (ADVP RB) (VP VBD (PP IN (NP (NP NNP

POS) NNS)) (SBAR IN (S (NP NNS) (VP VBD (ADJP RB JJ))))) .))

Actual parse : (S1 (S (NP NN NNS NNS) (ADVP RB) (VP VBD (SBAR IN (S (NP (NP

(NP NNP POS) NNS) (PP IN (NP NNS))) (VP VBD RB (ADJP JJ))))) .))

RB , NNP MD RB AUX -NONE- TO VB TO DT NNP NNP NNP IN PRP MD VB CC VB JJ

NNS .

Desired parse : (S1 (S (ADVP RB) , (NP NNP) (VP MD (ADVP RB) (VP AUX (S (NP -

NONE-) (VP TO (VP VB (PP TO (NP DT NNP NNP NNP)) (SBAR IN (S (NP PRP) (VP

MD (VP VB CC VB (NP JJ NNS)))))))))) .))

Actual parse : (S1 (S (ADVP RB) , (NP NNP) (VP MD (ADVP RB) (VP AUX (S (NP -

NONE-) (VP TO (VP VB (VP TO (S (NP (NP DT NNP NNP NNP) (PP IN (NP PRP))) (VP

MD VB CC (VP VB (NP JJ NNS)))))))))) .))

NNS VBP -NONE- NNP NNP MD AUX JJR IN CD NNS RB IN DT NN .

Desired parse : (S1 (S (NP NNS) (VP VBP (SBAR -NONE- (S (NP NNP NNP) (VP MD

(VP AUX (ADJP (ADJP JJR) (PP IN (NP (NP CD NNS) (ADVP RB (PP IN (NP DT

NN))))))))))) .))

Actual parse : (S1 (S (NP NNS) (VP VBP (SBAR -NONE- (S (NP NNP NNP) (VP MD

(VP AUX (NP (NP JJR) (PP IN (NP (NP CD NNS) RB))) (PP IN (NP DT NN))))))) .))

IN JJ NNS IN NNP NNP , NN NNP NNP NNP IN NNP , NNP CC NNP VBD , `` PRP AUX

RB VB NNS VBG '' IN DT NN IN NN NN .

Desired parse : (S1 (S (PP IN (NP (NP JJ NNS) (PP IN (NP NNP NNP)))) , (NP (NP

NN NNP NNP NNP) (PP IN (NP NNP , NNP CC NNP))) (VP VBD , `` (S (NP PRP) (VP

Appendix I – A Sample of Mismatching Parses from the WSJ Corpus Test Set (Using Syntactic

Information Only)

 268

AUX RB (VP VB (S (NP NNS) (VP VBG '' (PP IN (NP (NP DT NN) (PP IN (NP NN

NN)))))))))) .))

Actual parse : (S1 (S (PP IN (NP (NP JJ NNS) (PP IN (NP NNP))) (NP (NP NNP) , (NP

NN NNP NNP NNP) IN (NP NNP))) , (NP NNP CC NNP) (VP VBD (S (NP , `` PRP) (VP

AUX (ADVP RB) (VP VB (ADJP NNS VBG '' (PP IN (NP (NP DT NN) (PP IN (NP NN

NN))))))))) .))

NNP NNP VBD PRP IN DT JJ NN -NONE- DT NN AUX VBN -NONE- .

Desired parse : (S1 (S (NP NNP NNP) (VP VBD (NP PRP) (PP IN (NP (NP DT JJ NN)

(SBAR (WHADVP -NONE-) (S (NP DT NN) (VP AUX (VP VBN (NP -NONE-)))))))) .))

Actual parse : (S1 (S (NP NNP NNP) (VP VBD (NP PRP) (PP IN (NP DT JJ NN) (S (NP

(NP -NONE-) (NP DT NN)) (VP AUX (VP VBN (NP -NONE-)))))) .))

NNP NNP RB AUX VBN NN IN NNP POS NN NN , WDT -NONE- VBZ RB $ CD CD -

NONE- IN NN CC NN NNS .

Desired parse : (S1 (S (NP NNP NNP) (ADVP RB) (VP AUX (VP VBN (NP (NP NN) (PP

IN (NP (NP (NP NNP POS) NN NN) , (SBAR (WHNP WDT) (S (NP -NONE-) (VP VBZ

(NP (NP (QP RB $ CD CD) -NONE-) (PP IN (NP NN CC NN NNS))))))))))) .))

Actual parse : (S1 (S (NP NNP NNP) (ADVP RB) (VP AUX (VP VBN (NP (NP NN) (PP

IN (NP NNP POS NN NN))) , (SBAR (WHNP WDT) (S (NP -NONE-) (VP VBZ (ADVP

RB) (QP $ CD CD) -NONE-)) (PP IN (NP NN CC NN NNS))))) .))

DT JJ NN POS NN -NONE- TO VB NNP NNP IN $ CD CD -NONE- AUX VBN -NONE- IN

DT NNP NN NN .

Desired parse : (S1 (S (NP (NP DT JJ NN POS) NN (S (NP -NONE-) (VP TO (VP VB

(NP NNP NNP) (PP IN (NP (QP $ CD CD) -NONE-)))))) (VP AUX (VP VBN (NP -NONE-

) (PP IN (NP DT NNP NN NN)))) .))

Actual parse : (S1 (SBAR (SBAR (S1 (NP (NP -NONE-) NN (S (NP DT JJ NN POS)

(VP TO (VP VB (S (NP (NP NNP NNP IN) (QP $ CD CD) (NP -NONE-)) (VP AUX (VP

VBN (NP -NONE-) (PP IN (NP DT NNP NN NN))))))))))) .))

NNP NNS AUX -NONE- TO VB RB NN , IN NNP NNP NNP NNP NNP IN NNP VBD : ``

PRP MD AUX RB JJ -NONE- -NONE- TO VB NN . ''

Desired parse : (S1 (S (NP NNP NNS) (VP AUX (S (NP -NONE-) (VP TO (VP VB (NP

RB NN)))) , (SBAR IN (S (NP (NP NNP NNP NNP NNP NNP) (PP IN (NP NNP))) (VP

VBD : `` (S (NP PRP) (VP MD (VP AUX (ADJP RB JJ (SBAR (WHNP -NONE-) (S (NP -

NONE-) (VP TO (VP VB (NP NN))))))))))))) . ''))

Appendix I – A Sample of Mismatching Parses from the WSJ Corpus Test Set (Using Syntactic

Information Only)

 269

Actual parse : (S1 (NP NNP NNS (VP AUX (S (NP -NONE-) (VP TO (VP VB (NP RB

NN) , (SBAR IN (S (NP (NP (NP NNP) (PP IN (NP (NP NNP) (VP VBD : `` PRP))))

(NP NNP NNP NNP NNP)) (VP MD (VP AUX RB (NP JJ) (S (NP (NP -NONE-) (NP -

NONE-)) (VP TO (VP VB (NP NN)))) .)))))))) ''))

NNP NNP RB VBD IN DT NN IN DT NNP JJ NN NN , -NONE- VBG CD TO CD .

Desired parse : (S1 (S (NP NNP NNP) (ADVP RB) (VP VBD (PP IN (NP (NP DT NN)

(PP IN (NP DT NNP JJ NN NN)))) , (S (NP -NONE-) (VP VBG (NP CD) (PP TO (NP

CD))))) .))

Actual parse : (S1 (S (NP NNP NNP) (ADVP RB) (VP VBD (PP IN (NP DT NN)) (PP IN

(NP DT NNP JJ NN NN)) , (S (NP -NONE-) (VP VBG (NP CD) (PP TO (NP CD))))) .))

IN PRP AUX RB RB VBN -NONE- TO VB NNS IN DT NN DT NN , NN PRP VBD CD NNS

IN JJ NNS .

Desired parse : (S1 (S (SBAR IN (S (NP PRP) (VP AUX RB (ADVP RB) (VP VBN (S

(NP -NONE-) (VP TO (VP VB (NP (NP NNS) (PP IN (NP DT NN))) (NP DT NN)))))))) ,

(NP NN) (NP PRP) (VP VBD (NP (NP CD NNS) (PP IN (NP JJ NNS)))) .))

Actual parse : (S1 (S (SBAR IN (S (NP PRP) (VP AUX (VP RB (ADVP RB) (VP VBN (S

(NP -NONE-) (VP TO (VP VB (NP NNS) (PP IN (NP DT NN DT NN)))))))))) , (NP NN

PRP) (VP VBD (NP CD NNS) (PP IN (NP JJ NNS))) .))

Appendix I – A Sample of Mismatching Parses from the WSJ Corpus Test Set (Using Syntactic

Information Only)

 270

 271

Appendix J: A Sample of Mismatching Parses from

the WSJ Corpus Test Set (Using Lexical

Semantic and Syntactic Information)

RB , NNP_000000A000000000000000000 NNP_00000000000000A0000000000 RB

AUX AUXG VBN , IN DT NN_C00000A000D0000000000000B DT

NN_000000BC0000000000000000A CC CD DT NN_000000B00000000000000000A

.

Desired parse : (S1 (S (ADVP RB) , (NP NNP NNP) (ADVP RB) (VP AUX (VP AUXG

(VP VBN , (PP IN (NP (NP (NP DT NN) (NP DT NN)) CC (NP (NP CD) (NP DT

NN))))))) .))

Actual parse : (S1 (S (ADVP RB) , (NP NNP NNP) (ADVP RB) (VP AUX (VP (FRAG

AUXG) (VP VBN , (PP IN (NP (NP DT NN DT NN CC) (NP CD DT NN)))))) .))

NNP_00000000000000A0000000000 NNP_00000000000000A0000000000 ,

NN_00000000000000A0000000000 IN NN_0000000000A00000000000000 IN DT

JJ NN_000000000C000B000C00000A0 NN_00B000000BA00000000000000

NN_0000000000B000A0000000000 , AUX AUX VBG IN

NN_000000000C000B000C00000A0 NNS_00B000000BA00000000000000 VBG

NN_00000000000000000000000A0 IN DT NNP_0000000000A00000000000000

NN_00A00C00000000D0B00000000 .

Desired parse : (S1 (S (NP (NP NNP NNP) , (NP (NP NN) (PP IN (NP NN)) (PP IN (NP

DT JJ NN NN NN))) ,) (VP AUX (VP AUX (VP VBG (PP IN (NP (NP NN NNS) (VP VBG

(NP NN)))) (PP IN (NP DT NNP NN))))) .))

Actual parse : (S1 (S (NP (NP NNP NNP) , (NP (NP NN) (PP IN (NP NN (PP IN (NP

DT JJ NN NN)) NN))) ,) (VP AUX (VP AUX (VP VBG (SBAR IN (S (NP NN NNS) (VP

VBG (NP (NP NN) (PP IN (NP DT NNP NN))))))))) .))

IN CD NNS_000000000000000000000000A , JJ

NNS_0000000000B00CA00D0000000 AUX VBN IN RB -NONE- TO VB DT VBG

NNS_00000000000000A0000000000 IN NNS_00000AC000000000000000000 IN

NN_D00000A0000000000B0000000 IN NNP_00000000000A0000000000000 JJ

NNS_000000000000000A0B00C0000 .

Desired parse : (S1 (S (PP IN (NP CD NNS)) , (NP JJ NNS) (VP AUX (VP VBN (PP IN

(NP RB)) (S (NP -NONE-) (VP TO (VP VB (NP (NP DT VBG NNS) (PP IN (NP (NP

NNS) (PP IN (NP NN)) (PP IN (NP NNP JJ NNS)))))))))) .))

Appendix J – A Sample of Mismatching Parses from the WSJ Corpus Test Set (Using Lexical

Semantic and Syntactic Information)

 272

Actual parse : (S1 (S (NP (PP IN (NP (NP CD NNS) , (NP JJ NNS) (VP AUX)))) (VP

VBN (PP IN (PRN RB (S (NP -NONE-) (VP TO (VP VB (S (NP DT) (VP VBG (NP (NP

NNS) (PP IN (NP (NP NNS) (PP IN (NP (NP (NP NN) (PP IN (NP NNP JJ

NNS)))))))))))))))) .))

RB , NNP_0000000000A00000000000000 MD RB AUX -NONE- TO VB TO DT

NNP_0000000000A00000000000000 NNP_0000000000A00000000000000

NNP_0000000000A00000000000000 IN PRP_0000000000A00000000000000 MD

VB CC VB JJ NNS_00A000B000000C000000000C0 .

Desired parse : (S1 (S (ADVP RB) , (NP NNP) (VP MD (ADVP RB) (VP AUX (S (NP -

NONE-) (VP TO (VP VB (PP TO (NP DT NNP NNP NNP)) (SBAR IN (S (NP PRP) (VP

MD (VP VB CC VB (NP JJ NNS)))))))))) .))

Actual parse : (S1 (S (ADVP RB) , (NP NNP) (VP MD (VP (ADVP RB) (VP AUX (S (NP

-NONE-) (VP TO (VP VB (PP TO (NP (S (NP DT NNP NNP) (NP NNP)) (UCP IN (S (NP

PRP) (VP MD (VP VB CC (VP VB (NP JJ NNS)))))))))))))) .))

NNS_00000000000000A0000000000 VBP -NONE-

NNP_0000000000A00000000000000 NNP_0000000000A00000000000000 MD AUX

JJR IN CD NNS_000000000000000000000000A RB IN DT

NN_B000000B000000D00000A0000 .

Desired parse : (S1 (S (NP NNS) (VP VBP (SBAR -NONE- (S (NP NNP NNP) (VP MD

(VP AUX (ADJP (ADJP JJR) (PP IN (NP (NP CD NNS) (ADVP RB (PP IN (NP DT

NN))))))))))) .))

Actual parse : (S1 (S (NP NNS) (VP VBP (SBAR (WHNP -NONE-) (S (NP NNP NNP)

(ADVP MD) (VP AUX (PRN JJR (PP IN (NP CD NNS))) (INTJ (UCP RB) (PP IN (NP DT

NN))))))) .))

IN JJ NNS_00000AB000000000000000000 IN NNP_00000000000A0000000000000

NNP_00000000000A0000000000000 , NN_00000000000000A0000000000

NNP_00000000000000A0000000000 NNP_00000000000000A0000000000

NNP_00000000000000A0000000000 IN NNP_0000000000A00000000000000 ,

NNP_0000000000A00000000000000 CC NNP_0000000000A00000000000000 VBD

, `` PRP_00000000000000A0000000000 AUX RB VB

NNS_00000000000000000A0000000 VBG '' IN DT

NN_000000BC0000000A000000000 IN NN_000000000000A0000B0000000

NN_00000BA00000000000C000C00 .

Appendix J – A Sample of Mismatching Parses from the WSJ Corpus Test Set (Using Lexical

Semantic and Syntactic Information)

 273

Desired parse : (S1 (S (PP IN (NP (NP JJ NNS) (PP IN (NP NNP NNP)))) , (NP (NP

NN NNP NNP NNP) (PP IN (NP NNP , NNP CC NNP))) (VP VBD , `` (S (NP PRP) (VP

AUX RB (VP VB (S (NP NNS) (VP VBG '' (PP IN (NP (NP DT NN) (PP IN (NP NN

NN)))))))))) .))

Actual parse : (S1 (SBAR (NP IN (PRN JJ (NP NNS) IN (NP (NP NNP NNP) , (NP NN

(NP NNP NNP (NP NNP IN (NP NNP)))))) , (NP NNP) CC (S (NP NNP) (VP VBD , ``

(S (NP PRP) (VP AUX (VP (ADVP RB) (VP VB (S (NP NNS) (VP VBG '' (PP IN (NP (NP

DT NN) (PP IN (NP NN NN)))))))))))) .)))

NNP_00000000000000A0000000000 NNP_00000000000000A0000000000 VBD

PRP_00000000000000000A0000000 IN DT JJ NN_0000000000D0000000000000A -

NONE- DT NN_00C00000000000000A0000000 AUX VBN -NONE- .

Desired parse : (S1 (S (NP NNP NNP) (VP VBD (NP PRP) (PP IN (NP (NP DT JJ NN)

(SBAR (WHADVP -NONE-) (S (NP DT NN) (VP AUX (VP VBN (NP -NONE-)))))))) .))

Actual parse : (S1 (S (NP NNP NNP) (VP VBD (SBAR (WHNP (NP PRP) (PP IN (NP

(ADJP DT JJ) NN) (WHADVP -NONE-))) (S (NP DT NN) (VP AUX (VP VBN (NP -

NONE-)))))) .))

NNP_0000000000A00000000000000 NNP_0000000000A00000000000000 RB AUX

VBN NN_000B0A00000000000D0000000 IN NNP_0000000000A00000000000000

POS NN_0000000000A00000000000000 NN_00000D0000C00000000AB0000 ,

WDT -NONE- VBZ RB $ CD CD -NONE- IN NN_000B0B0000D000000A0000000 CC

NN_B000000000000000000000A00 NNS_000B0000000000000A0000000 .

Desired parse : (S1 (S (NP NNP NNP) (ADVP RB) (VP AUX (VP VBN (NP (NP NN) (PP

IN (NP (NP (NP NNP POS) NN NN) , (SBAR (WHNP WDT) (S (NP -NONE-) (VP VBZ

(NP (NP (QP RB $ CD CD) -NONE-) (PP IN (NP NN CC NN NNS))))))))))) .))

Actual parse : (S1 (S (NP NNP NNP) (ADVP RB) (VP AUX (VP VBN NN (PP IN (NP

(NP (NP NNP POS NN) NN) , (SBAR (WHNP WDT) (S (NP -NONE-) (VP VBZ (PRN RB

(S (QP $ CD CD) -NONE- (PP IN (NP (NP NN) CC (NP NN NNS)))))))))))) .))

DT JJ NN_00000A00B0C00000000000000 POS NN_000000A000000000000000000

-NONE- TO VB NNP_0000000000A00000000000000

NNP_0000000000A00000000000000 IN $ CD CD -NONE- AUX VBN -NONE- IN DT

NNP_00000000000A0000000000000 NN_A000000000000000000000000

NN_0000000000A00000000000C00 .

Appendix J – A Sample of Mismatching Parses from the WSJ Corpus Test Set (Using Lexical

Semantic and Syntactic Information)

 274

Desired parse : (S1 (S (NP (NP DT JJ NN POS) NN (S (NP -NONE-) (VP TO (VP VB

(NP NNP NNP) (PP IN (NP (QP $ CD CD) -NONE-)))))) (VP AUX (VP VBN (NP -NONE-

) (PP IN (NP DT NNP NN NN)))) .))

Actual parse : (S1 (SBAR (NP (NP DT JJ NN POS) NN) (S -NONE- (VP TO (VP VB

(NP NNP NNP)))) (PRN IN (SBAR (NP -NONE-) (S (NP (NP $) (NP CD CD)) (VP AUX

(VP VBN (S (NP -NONE-) (PP IN (NP DT NNP NN NN)))))))) .))

NNP_0000000000A00000000000000 NNP_000000A000000000000000000 RB VBD

IN DT NN_000B0A00000000000D0000000 IN DT

NNP_00000000000A0000000000000 JJ NN_00A000B000000000000000000

NN_0000000000A00000000000C00 , -NONE- VBG CD TO CD .

Desired parse : (S1 (S (NP NNP NNP) (ADVP RB) (VP VBD (PP IN (NP (NP DT NN)

(PP IN (NP DT NNP JJ NN NN)))) , (S (NP -NONE-) (VP VBG (NP CD) (PP TO (NP

CD))))) .))

Actual parse : (S1 (S (NP NNP NNP) (ADVP RB) (VP VBD (PP IN (NP (NP DT NN) (PP

IN (ADJP DT NNP JJ NN) NN))) , (S (NP -NONE-) (VP (VP VBG (NP CD)) (PP TO

CD)))) .))

NNP_000000A000000000000000000 : JJ NNS_B00000A00000000000000000C .

Desired parse : (S1 (NP (NP NNP) : (NP JJ NNS) .))

Actual parse : (S1 (NP NNP : (S1 (NP JJ NNS) .)))

PRP$ JJ NN_B0A0C000000000C0000000000 .

Desired parse : (S1 (FRAG (NP PRP$ JJ NN) .))

Actual parse : (S1 (SBAR (NP (NP PRP$ JJ NN) .)))

DT NN_00000000000000A0000000000 VBD -NONE- DT

NNP_0000000000A00000000000000 NNS_C00D00A000000000000000000 IN

NN_00000000000000000A0000000 CC NN_A00B000000000000000000000 CC JJ

NNS_A00B0000000000000B0000000 .

Desired parse : (S1 (S (NP DT NN) (VP VBD (SBAR -NONE- (S (NP DT NNP) (VP

NNS (PP IN (NP (NP NN CC NN) CC (NP JJ NNS))))))) .))

Actual parse : (S1 (S (NP DT NN) (VP VBD (NP -NONE- (NP DT NNP NNS)) (PP IN

(NP NN (NP CC NN) (NP CC JJ NNS)))) .))

IN CD , NNP_00000000000000A0000000000 RB VBD -NONE- RB AUXG VBD -

NONE- DT NN_A000000000000000000000B00 AUX JJ .

Appendix J – A Sample of Mismatching Parses from the WSJ Corpus Test Set (Using Lexical

Semantic and Syntactic Information)

 275

Desired parse : (S1 (S (PP IN (NP CD)) , (NP NNP) (ADVP RB) (VP VBD (S (NP -

NONE-) (VP (ADVP RB) AUXG (VP VBD (SBAR -NONE- (S (NP DT NN) (VP AUX

(ADJP JJ)))))))) .))

Actual parse : (S1 (S IN (NP CD , NNP) (ADVP RB) (VP VBD (SBAR -NONE- (SBAR

(ADVP RB) (S (ADVP AUXG) (VP VBD (SBAR -NONE- (S (NP DT NN) (VP AUX (ADJP

JJ))))))))) .))

NNP_0000000000A00000000000000 NNP_0000000000A00000000000000

NNP_0000000000A00000000000000 : $ CD CD -NONE- IN CD CD

NN_00000000000000000000A0000 NN_0000000AC0000000000000000

NN_0000000000C000000A0000000 NNS_000000A0000000000A0000000 JJ

NNP_000000000000000000000000A CD , CD , VBN -NONE- IN CD TO VB CD

NN_00000000000000000000A0000 .

Desired parse : (S1 (NP (NP NNP NNP NNP) : (NP (NP (QP $ CD CD) -NONE-) (PP

IN (NP (NP (QP CD CD) NN NN NN NNS) (ADJP JJ (NP NNP CD , CD)) , (VP VBN (NP

-NONE-) (PP IN (NP CD)) (S (VP TO (VP VB (NP CD NN)))))))) .))

Actual parse : (S1 (S (NP (UCP NNP (NP NNP NNP) : (SBAR (QP $ CD CD) (S -

NONE-))) (PRN IN (INTJ (UCP CD , (NP (NP CD) , VBN (NP -NONE-)) (SBAR IN (S

(NP CD) (VP TO (VP VB (NP (ADJP CD) NN)))))) (NP (NP JJ NNP) (UCP (QP CD CD

NN) (NP NN NN NNS)))))) .))

JJ NNS_00000B0000A00000000000000 VBN -NONE-

Desired parse : (S1 (NP (NP JJ NNS) (VP VBN (NP -NONE-))))

Actual parse : (S1 (NP JJ NNS VBN) -NONE-)

NNS_00000000000000A0000000000 VBD IN DT JJ

NN_A00000000000000000B000000 IN NN_000B0A00000000000D0000000

NNS_000D0000000000000A000000B RB AUX JJ ,

NNP_000000A000000000000000000 NNP_00000000000000A0000000000 VBD -

NONE- -NONE- .

Desired parse : (S1 (S (S (NP NNS) (VP VBD (SBAR IN (S (NP (NP DT JJ NN) (PP IN

(NP NN NNS))) (ADVP RB) (VP AUX (ADJP JJ)))))) , (NP NNP NNP) (VP VBD (SBAR -

NONE- (S -NONE-))) .))

Actual parse : (S1 (S (NP NNS) (VP VBD (SBAR IN (S (NP (NP DT JJ NN) (PP IN (NP

NN NNS))) (ADVP RB) (VP AUX (S (NP (NP (ADJP JJ)) , (NP NNP NNP)) (VP VBD

(SBAR -NONE- (S -NONE-)))))))) .))

Appendix J – A Sample of Mismatching Parses from the WSJ Corpus Test Set (Using Lexical

Semantic and Syntactic Information)

 276

DT NN_000000A0000000000000A0000 VBD CD TO CD .

Desired parse : (S1 (S (NP DT NN) (VP VBD (NP CD) (PP TO (NP CD))) .))

Actual parse : (S1 (S (NP DT NN) (VP VBD (NP CD) (PP TO)) (S (NP CD) .)))

IN DT JJ NN_000D000000000000000000A0B NNP_0000000000A00000000000000

MD VB PRP$ NNS_00000000000000A0000000000

NNS_D00A0000000C00000B0000000 -NONE- TO VB

NNP_0000000000A00000000000000 JJ NNS_C0000000000000000A0000000 .

Desired parse : (S1 (S (PP IN (NP DT JJ NN)) (NP NNP) (VP MD (VP VB (NP PRP$

NNS) (NP NNS) (S (NP -NONE-) (VP TO (VP VB (NP NNP JJ NNS)))))) .))

Actual parse : (S1 (SBAR (S1 (S (PP IN (NP DT JJ NN NNP (ADVP MD) (VP VB (S1

(NP PRP$ NNS NNS) (S (NP -NONE-) (VP TO (VP VB (NP NNP JJ NNS)))))))))) .))

NNP_0000000000A00000000000000 NNP_0000000000A00000000000000 POS

NN_00000000000000A0000000000 VBD IN CD JJ JJ

NNS_00000000000000A0000000000 , VBG NNS_0000C00000B000A00000C0000

IN DT VBN NNP_0000000000A00000000000000

NNP_0000000000A00000000000000 NNP_0000000000A00000000000000 , MD

AUX VBN -NONE- RB .

Desired parse : (S1 (S (NP (NP NNP NNP POS) NN) (VP VBD (SBAR IN (S (NP (NP

CD JJ JJ NNS) , (PP VBG (NP (NP NNS) (PP IN (NP DT VBN NNP NNP NNP)))) ,) (VP

MD (VP AUX (VP VBN (NP -NONE-) (ADVP RB))))))) .))

Actual parse : (S1 (S (S (NP (NP NNP NNP POS) NN) (VP VBD (PP IN (NP CD JJ JJ

NNS)) , (VP VBG (NP NNS) (SBAR IN (S (NP DT) (VP VBN (NP NNP NNP NNP))))))) ,

(VP MD (VP AUX (VP VBN (S (NP -NONE-) (ADVP RB))))) .))

CC PRP_0000000000A00000000000000 MD VB RP -NONE- VBG RBR , CC VBG DT

NN_0000000000DB0000000A00C00 JJR .

Desired parse : (S1 (S CC (NP PRP) (VP MD (VP VB (PRT RP) (S (NP -NONE-) (VP

(VP VBG (ADVP RBR)) , CC (VP VBG (NP DT NN JJR)))))) .))

Actual parse : (S1 CC (S (NP PRP) (VP MD (VP VB (PRT RP (S (NP -NONE-) (VP VBG

(PP RBR (S (NP ,) CC (NP VBG DT NN JJR))))))))) .)

 277

References

[1] Cole, R., Mariani, J., Uszkoreit, H., Varile, G., Zaenen, A., Zue, V., and

Zampoli, A. (1997). Survey of the State of the Art in Human Language

Technology, Cambridge University Press and Giardini, ISBN: 0521592771

[2] Winograd, T. (1983). Language as a Cognitive Process, Addison-Wesley,

Reading, MA.

[3] Dale, R., Moisl, H., and Somers, H. (2000). Handbook of Natural Language

Processing, Marcel Dekker Inc, New York.

[4] Sells, P. (1985). Lecture on Contemporary Syntactic Theories. CSLI Series,

Stanford.

[5] Charniak, E. (2000). A maximum-entropy-inspired parser. In Proceedings of

the conference of the North American Chapter of the Association for

Computational Linguistics (NAACL-2000). PP 132-139.

[6] Collins, M. J., Duffy, N. (2002). New Ranking Algorithms for Parsing and

Tagging: Kernels over Discrete Structures, and the Voted Perceptron. In

Proceedings of the 40th Annual Meeting of the Association for Computational

Linguistics, pp 263-270.

[7] Bod, R. (2003). An Efficient Implementation of a New DOP Model. In

Proceedings of the 10th Conference of the European Chapter of the

Association for Computational Linguistics (EACL-2003), Budapest, Hungary.

[8] Palmer-Brown, D., Tepper, J. A., and Powell, H. M. (2002). Connectionist

Natural Language Parsing. Trends in Cognitive Sciences, 6(10), 437-442,

Elsevier Science.

[9] Rohde, D. L. T., and Plaut, D. C. (2003). Connectionist models of language

processing. Cognitive Studies, 10(1), 10-28.

[10] Frazier, L., Fodor, J. (1978). The sausage machine: A new two-stage parsing

model. In Cognition 6. PP 291-325.

[11] Frazier, L. (1987). Sentence processing: Evidence from Dutch. In Natural

Language and Linguistic Theory 5. PP 519-559.

[12] Ferreira, F., and Clifton, C., Jr. (1986). The independence of syntactic

processing. Journal of Memory and Language, 25, pp 348-368.

[13] MacDonald, M. C., Pearlmutter, N. J., and Seidenberg, M. S. (1994). The

lexical nature of syntactic ambiguity resolution, Psychological Review, 101,

pp 676-703.

References

 278

[14] Tanenhaus, M., and Carlson, G. (1989). Lexical structure and language

comprehension, In W.D. Marslen-Wilson (Ed.), Lexical representation and

process (pp. 505-528), Cambridge, MA: MIT Press.

[15] Tanenhaus, M. K., and Trueswell, J. C. (1995). Sentence comprehension. In

J. Miller and P. Eimas, eds., Handbook of Perception and Cognition Vol. 11:

Speech and Language. New York: Academic Press.

[16] Merlo, P., and Stevenson, S., (eds), (2000). The Lexical Basis of Sentence

Processing: Formal, Computational and Experimental Issues, John Benjamin

Publ. Co.

[17] Miller, G., 1990, WORDNET: An online lexical database, International Journal

of Lexicography, 3(4).

[18] Tepper, J. A., Powell, H., and Palmer-Brown, D. (2002). A corpus-based

connectionist architecture for large-scale natural language parsing,

Connection Science, 14(2).

[19] Tepper, J. A., Powell, H., and Palmer-Brown, D. (2001). Corpus-Based

Connectionist Parsing, In Proceedings of the Second Workshop on Natural

Language Processing and Neural Networks, National Center of Science,

Tokyo, ISSN 1346-6682, pp 8-15.

[20] Garside, R. G., Leech, G. N., Varadi, T. (1987). Manual of Information to

Accompany the Lancaster Parsed Corpus. Department of English, University

of Oslo.

[21] Manning, C. D., and Schutze, H. (1999). Foundations of Statistical Natural

Language Processing, The MIT Press, Cambridge, MA.

[22] Taraban, R. and McClelland, J. L. (1990). Parsing and comprehension: A

multiple constraint view. In Comprehension Processes in Reading, (Balota,

D. A., Flores d’Arcais, G. B. and Rayner, K., eds), Lawrence Erlbaum,

Hillsdale, NJ, pp 231-263.

[23] Chomsky, N. (1956). Three models for the description of Language, IRE

Transactions on Information Theory, 2, pp 113-124.

[24] Chomsky, N. (1957). Syntactic Structures, The Hague: mouton.

[25] Chomsky, N. (1959). On certain formal properties of grammar, Information

and Control, 1, pp 91-112.

[26] Chomsky, N. (1965). Aspects of the Theory of Syntax, Cambridge, MA: MIT

Press.

[27] Chomsky, N. (1986). Knowledge of Language: Its Nature, Origin, and Use.

New York: Prager.

[28] Grishman, R. (1986). Computational Linguistics: an introduction. Cambridge

University Press.

References

 279

[29] Turing, A. M. (1950). Computing Machinery and Intelligence, Mind: A

Quarterly Review of Psychology and Philosophy, 59, pp 433-460.

[30] Aho, A. V. (1968). Indexed grammars: an extension to context-free

grammars. In Journal of the Association for Computing Machinery, 15(4),

pp 647-671.

[31] Aho, A. V. (1969). Nested Stack Automata. In Journal of the Association for

Computing Machinery, 16(3), pp 383-406.

[32] Grune, D., and Jacobs, C. J. H. (1990). Parsing techniques – A Practical

Guide. Ellis Horwood, Chichester, England.

[33] Unger, S. H. (1968). A global parser for context-free phrase structure

grammars, Communications of the ACM, 11(4), pp 240-247.

[34] Cocke, J., and Schwartz, J. T. (1970). Programming languages and their

compilers: Preliminary notes. Technical report, Courant Institute of

Mathematical Sciences, New York University.

[35] Younger, D.H. (1967). Recognition of context-free languages in time n3,

Information Control, 10(2), pp 189-208.

[36] Kasami, T., and Torii, K. (1969). A syntax-analysis procedure for

unambiguous context-free grammars, Journal of the ACM, 16(3), pp 423-

431.

[37] Sakai, I. (1962). Syntax in universal translation, In proceedings of the 1961

International Conference on Machine Translation of Languages and Applied

Language Analysis, Her Majesty’s Stationery Office, London, pp 593-608.

[38] Earley, J. (1970). An efficient context-free parsing algorithm,

Communications of the ACM, 13(2), pp 94-102.

[39] Tomita, M. (1986). Efficient parsing for natural language, Kluwer Academic

Publishers, Boston, MA.

[40] Tomita, M. (1987). An efficient augmented-context-free parsing algorithm,

American Journal of Computational Linguistics, 13(1-2), pp 31-46.

[41] Lewis II, P.M., and Stearns, R.E. (1968). Syntax-directed transduction,

Journal of the ACM, 15(3), pp 465-488.

[42] Knuth, D.E. (1965). On the translation of languages from left to right,

Information Control, 8, pp 607-639.

[43] DeRemer, F., and Pennello, T.J. (1982). Efficient computation of LALR(1)

look-ahead sets, ACM Transactions on Programming Languages and

Systems, 4(4), pp 615-649.

[44] Ives, F. (1987). Response to remarks on recent algorithms for LALR

lookahead sets, ACM SIGPLAN Notices, 22(8), pp 99-104.

References

 280

[45] Rosenkrantz, D.J., and Lewis II, P.M. (1970). Deterministic left-corner

parsing, In IEEE Conference Record 11th Annual Symposium on Switching

and Automata Theory, pp 139-152.

[46] Small, S. (1981). Word Expert Parsing: A Theory of Distributed Word-Based

Natural Language Understanding. Unpublished Ph.D Thesis, University of

Maryland.

[47] Small, S., Cottrell, G., and Shastri, L. (1982). Toward connectionist parsing.

In Proceedings of the National Conference on Artificial Intelligence,

Pittsburgh, PA: AAAI, pp 247-250.

[48] Cottrell, G. W. (1985). Connectionist parsing. In Proceedings of the 7th

annual conference of the Cognitive Science Society, Hillsdale, NJ: Lawrence

Erlbaum Associates, pp 201-211.

[49] Cottrell, G. W. (1985). A connectionist approach to word sense

disambiguation, Unpublished doctoral dissertation, Department of Computer

Science, University of Rochester, Rochester, NY.

[50] Howells, T. (1988). VITAL: A connectionist parser. In Proceedings of the 10th

annual conference of the Cognitive Science Society, Hillsdale, NJ: Lawrence

Erlbaum Associates, pp 18-25.

[51] Waltz, D. L., and Pollack, J. B. (1985). Massively parallel parsing: A strongly

interactive model of natural language interpretation, Cognitive Science, 9,

pp 51-74.

[52] Fanty, M. A. (1986). Context-free parsing with connectionist networks. In

Proceedings of AIP Conference on Neural Networks for Computers, pp 140-

145.

[53] Rager, J. E. (1992). Self-correcting connectionist parsing. In R.G. Reilly and

N.E. Sharkey (Eds.), Connectionist approaches to natural language

processing, Hillsdale, NJ: Lawrence Erlbaum Associates, pp 143-167.

[54] Selman, B., and Hirst, G. (1985). Connectionist parsing. In Proceedings of

the 7th annual conference of the Cognitive Science Society, Isdale, NJ:

Lawrence Erlbaum Associates, pp 212-221.

[55] Selman, B., and Hirst, G. (1994). Parsing as an energy minimisation

problem, In G. Adriaens and U. Hahn (Eds.), Parallel natural language

processing, Norwood, NJ: Ablex Publishing, pp 238-254.

[56] Fahlman, S. E., Hinton, G. E., and Sejnowski, T. J. (1983). Massively parallel

architectures for AI: NETL, Thistle, and Boltzmann machines. In Proceedings

of the National Conference on Artificial Intelligence, Washington, pp 109-

113.

References

 281

[57] Charniak, E., and Santos, E. (1987). A connectionist context-free parser

which is not context-free, but then it is not really connectionist either, In

Proceedings of the 9th annual conference of the Cognitive Science Society,

Hillsdale, NJ: Lawrence Erlbaum Associates, pp 70-77.

[58] Rumelhart, D., and McClelland, J. (1986). On learning the past tenses of

English verbs, In Parallel Distributed Processing, Explorations in the

Microstructure of Cognition, vol 2, pp 216-271, MIT Press.

[59] McClelland, J. and Kawamoto, A. (1986). Mechanisms of sentence

processing: assigning roles to constituents, In Parallel Distributed

Processing, Explorations in the Microstructure of Cognition, vol 2, MIT Press.

[60] Hanson, S. J. and Kegl, J. (1987). PARSNIP: A connectionist network that

learns natural language grammar from exposure to natural language

sentences, In Proceedings of the 9th Annual Conference of Cognitive Science,

pp 106-119.

[61] Apolloni, B. (1992). Learning to solve PP-attachment ambiguities in natural

language processing through neural networks, In IEEE Transactions on

Neural Networks, pp 199-205.

[62] Archambault, D., and Bassano, J. (1994). A neural network for supervised

learning of natural language grammar. In IEEE Transactions on Neural

Networks, pp 267-273.

[63] Kwasny, S. C. and Faisal, K. A. (1990). Connectionism and determinism in a

syntactic parser, Connection Science, 2, pp 63-82.

[64] Cleeremans, A., Servan-Schreiber, D., McClelland, J. (1989). Finite state

automata and simple recurrent networks, In Neural Computation, 1(3), pp

372-381.

[65] Moisl, H. (1992). Connectionist finite state language processing, In

Connection Science, 4(2), pp 67-91.

[66] Elman, J. L. (1990). Finding structure in time, Cognitive Science, 14, pp

179-211.

[67] Jordan, M. I. (1986). Attractor dynamics and parallelism in a connectionist

sequential machine, In Proceedings of the 8th Annual Conference of the

Cognitive Science Society, pp 531-545.

[68] Ghahramani, Z., Allen, R. (1991). Temporal processing with connectionist

networks. In IEEE Transactions on Neural Networks. PP 541-546.

[69] Tsoi, A. C., and Back, A. (1994). Locally recurrent globally feedforward

networks, a critical review of architectures. In IEEE Transactions on Neural

Networks, 5(2), pp 229-239.

References

 282

[70] Pollack, J. B. (1990). Recursive Distributed Representations, Artificial

Intelligence, 46, pp 77-105.

[71] Weber, V., and Wermter, S. (1996). Using hybrid connectionist learning for

speech/language analysis, In S. Wremter, E. Riloff, and G. Scheler (Eds.),

Lecture notes in artificial intelligence 1040: Connectionist, statistical, and

symbolic approaches to learning for natural language processing, Berlin:

Springer-Verlag, pp 87-101.

[72] Wermter, S., and Weber, V. (1994). Learning fault-tolerant speech parsing

with screen, In Proceedings of the 12th National Conference on Artificial

Intelligence, Seattle, WA: AAAI, pp 670-675.

[73] Wermter, S., and Weber, V. (1997). SCREEN: Learning a flat syntactic and

semantic spoken language analysis using artificial neural networks, Journal

of Artificial Intelligence Research, 6, pp 35-85.

[74] Jain, A. N., and Waibel, A. H (1990). Incremental parsing by modular

recurrent connectionist networks, In D. Touretzky (Ed.), Advances in neural

information processing systems 2, pp 364-371, San Mateo, CA: Morgan

Kaufmann.

[75] Stevenson, S. (1994). A competitive attachment model for resolving

syntactic ambiguities in natural language parsing, Unpublished doctoral

dissertation, Department of Computer Science, University of Maryland.

[76] Stevenson, S., and Merlo, P. (1997). Lexical structure and parsing

complexity, Language and Cognitive Processes, 12, pp 349-399.

[77] Berg, G. (1992). A connectionist parser with recursive sentence structure

and lexical disambiguity, In Proceedings of the 10th National Conference on

Artificial Intelligence, San Jose, CA: AAAI, pp 32-37.

[78] Henderson, J. B. (1994). Connectionist syntactic parsing using temporal

variable binding, Journal of Psycholinguistic Research, 23(5), pp 353-379.

[79] Henderson, J. B. (1994). Description based parsing in a connectionist

network, Unpublished doctoral dissertation, University of Pennsylvania,

Philadelphia, PA.

[80] Henderson, J. B. (1996). A connectionist architecture with inherent

systematicity, In Proceedings of the 18th annual conference of the Cognitive

Science Society, Hillsdale, NJ: Lawrence Erlbaum Associates, pp 574-579.

[81] Henderson, J. B., and Lane, P. C. R. (1998). A connectionist architecture for

learning to parse, In Proceedings of the 17th International Conference on

Computational Linguistics and the 36th annual meeting of the Association for

Computational Linguistics (COLING-ACL ‘98), University of Montreal,

Canada.

References

 283

[82] Lane, P. C. R., and Henderson, J. B. (1998). Simple synchrony networks:

Learning to parse natural language with temporal synchrony variable

binding, In Proceedings of the 1998 International Conference on Artificial

Neural Networks, Skovde, Sweden, pp 615-620.

[83] Lane, P. C. R., and Henderson, J. B. (2003). Towards effective parsing with

neural networks: Inherent generalisations and bounded resource effects,

Applied Intelligence, 19, pp 83-100.

[84] St. John, M. F., and McClelland, J. L. (1992). Parallel constraint satisfaction

as a comprehension mechanism, In R. G. Reilly and N. E. Sharkey (Eds.),

Connectionist approaches to natural language processing, Hillsdale, NJ:

Lawrence Erlbaum Associates, pp 97-136.

[85] Harm, M. W., Thornton, R., and MacDonald, M. C. (2000). A distributed,

large scale connectionist model of the interaction of lexical and semantic

constraints in syntactic ambiguity resolution, In Proceedings of the 13th

annual CUNY Conference on Human Sentence Processing, La Jolla, CA.

[86] Kemke, C. (1996). A hybrid approach to natural language parsing, In

Proceedings of ICANN ’96, pp 875-880.

[87] Kemke, C. (2002). A constructive approach to parsing with neural networks

– the hybrid connectionist parsing method, In Proceedings of the 15th

Canadian Conference on Artificial Intelligence, Calgary, Alberta, Canada.

[88] Sharkey, A. J. C., and Sharkey, N. E. (1992). Connectionism and natural

language, In Connectionist Natural Language Processing, (Ed. N. Sharkey),

Part 20, Intellect, pp 1-10.

[89] Miikkulainen, R. (1995). Subsymbolic parsing of embedded structures, In

Computational Architectures Integrating Neural and Symbolic Processes,

(Ed. R. Sun), Kluwer Academic Publishers, Boston, MA.

[90] Blaheta, D., and Charniak, E. (2000). Assigning function tags to parsed text,

In Proceedings of NAACL, 2000, pp 234-240.

[91] Darken, C., and Moody, J. (1992). Towards faster stochastic gradient

search, Advances in Neural Information Processing Systems, 4, pp 1009-

1016, San Mateo, CA: Morgan Kaufmann.

[92] Jacobs, R. A. (1988). Increased rates of convergence through learning rate

adaptation, Neural Networks, 1(4), pp 295-307.

[93] Lawrence, S., Giles, C. L., and Tsoi, A. C. (1996). What size neural network

gives optimal generalisation? Convergence properties of backpropagation,

Technical Report UMIACS-TR-96-22 and CS-TR-3617, Institute for Advanced

Computer Studies, University of Maryland.

References

 284

[94] Haykin, S., 1999, Neural Networks: A Comprehensive Foundation (2 ed),

Upper Saddle River, NJ: Prentice-Hall, ISBN: 0132733501

[95] Geman, S., Bienenstock, E., and Doursat, R. (1992). Neural networks and

the bias/valence dilemma, Neural Computation, 4, pp 1-58.

[96] Stone, M. (1974). Cross-validation choice and assessment of statistical

predictions, Journal of the Royal Statistical Society, B(36), pp 111-133.

[97] Morgan, N., and Bourlard, H. (1990). Continuous speech recognition using

multilayer perceptrons with hidden Markov models, In Proceedings of the

IEEE International Conference on Acoustics, Speech, and Signal Processing,

pp 413-416.

[98] Collins, M. J. (2000). Discriminative reranking for natural language parsing.

In Proceedings of the 17th International Conference on Machine Learning, pp

175-182.

[99] Magerman, D. M. (1995). Statistical decision-tree models for parsing, In

Proceedings of the 33rd Annual Meeting of The Association for Computational

Linguistics, pp276-283.

[100] Ratnaparkhi, A. (1996). A maximum entropy model for part-of-speech

tagging, In Proceedings of the Conference on Empirical Methods in Natural

Language Processing, 1996.

[101] Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1993). Building a

large annotated corpus of English: the Penn Treebank. Computational

Linguistics, 19, pp 313-330.

[102] Prechelt, L. (1998). Automatic Early Stopping Using Cross Validation :

Quantifying the Criteria, Neural Networks, 11(4), pp 761-767.

[103] Harrison et al. (1991). Evaluating syntax performance of parser/grammars,

In Proceedings of the Natural Language Processing Systems Evaluation

Workshop (Technical Report RL-TR-91-362), Berkeley, CA.

[104] Williams, R.J., Peng, J. (1990). An efficient gradient-based algorithm for on-

line training of recurrent network trajectories. Neural Computation 2, pp 490-

-501.

[105] Bengio, Y. and Simard, P. (1994). Learning long-term dependencies with

gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), pp

157-166.

[106] Sharkey, N., Sharkey, A. and Jackson, S. (2000) Are SRN’s sufficient for

modelling language acquisition? In: P. Broeder and J. Murre, Models of

Language Acquisition: Inductive and Deductive Approaches. Oxford

University Press. pp 33-54.

References

 285

[107] Gers, F. A. and Schmidhuber, J. (2001). Long Short-Term Memory learns

context free and context sensitive languages. In V. Kurkova et.al., editor,

Proceedings of the ICANNGA 2001 Conference, volume 1, pages 134--137,

Wien, NY. Springer.

[108] Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural

Computation, 9(8):1735--1780.

[109] Sharkey, N. E. (1991). Connectionist representation techniques, Artificial

Intelligence Review, 5, pp 143-167.

[110] Browne, A., and Sun, R. (2001). Connectionist inference models, Neural

Networks, 14, pp 1331-1355.

[111] Tepper, J. A. (2000). Corpus-based Connectionist Parsing, Unpublished Ph.D

Thesis, The Nottingham Trent University.

[112] Johansson, S., Leech, G., Goodluck, H. (1978). Manual of Information to

Accompany the Lancaster-Oslo/Bergen Corpus of British English. Department

of English, University of Oslo. Also see ICAME Journal 16, pp 124.

[113] Garside, R. (1987). The CLAWS word-tagging system. In The Computational

Analysis of English: A corpus-based approach. (Ed. R. G. Garside, G. N.

Leech, G. Sampson). London : Longman.

[114] Garside, R.G., Leech, G.N., Sampson G. (1987). The Computational Analysis

of English: A corpus-based approach. London: Longman.

[115] Sheiber, S. M. (1983). Sentence disambiguation by a shift-reduce parsing

technique. In Computer Speech and Language, pp 297-323.

[116] Sheiber, S. M. (1992). Constraint-Based Grammar Formalisms. MIT Press,

Cambridge, Massachusetts.

[117] Buitelaar, P. (1998). A lexicon of underspecified semantic tagging. In

Proceedings of the ACL-SIGLEX Workshop “Tagging Text with Lexical

Semantics: Why, What and How?” Washington, DC. pp 25-33.

[118] Tikhonov, A. N. (1963). On solving incorrectly posed problems and method of

regularisation. Doklady Akademii Nauk, USSR, v151, pp 501-504.

[119] Marcus M., Kim, G., Marcinkiewicz, M., et al. (1994). The Penn Treebank:

Annotating Predicate Argument Structure. In Proceedings of ARPA Speech

and Natural Language Workshop.

[120] Resnik, P. (1995). Disambiguating noun groupings with respect to WordNet

senses. In Proceedings of the Third Workshop on Very Large Corpora,

Cambridge, MA. pp 54-68

[121] Charniak, E., Johnson, M. (2005). Coarse-to-fine n-best parsing and maxent

discriminative reranking. In Proceedings of the 43rd meeting of the

Association for Computational Linguistics, Ann Arbor, MI.

References

 286

[122] Mayberry, III, M., Miikkulainen, R. (2003). Incremental nonmonotonic

parsing through semantic self-organisation. In Proceedings of the 25th Annual

Conference of the Cognitive Science Society, Mahawa, NJ.: Erlbaum. pp 798-

803.

[123] Ceusters, W., Rogers, J., Consorti, F., Rossi-Mori, A. (1999). Syntactic-

semantic tagging as a mediator between linguistic representations and formal

models: an exercise in linking SNOMED to Galen. Artificial Intelligence in

Medicine, v15, pp 5-23.

[124] Buitelaar, P., Alexandersson, J., Jaeger, T., Lesch, S., Pfleger, N., Raileanu,

D. (2001). An unsupervised semantic tagger applied to German. In

Proceedings of Recent Advances in NLP (RANLP), Tzigov Chark, Bulgaria.

[125] Pustejovsky, J., Boguraev, B., Verhagen, M., Buitelaar, P., Johnson, M.

(1997). Semantic indexing and typed hyperlinking. In Proceedings of the

American Association for Artificial Intelligence Conference, Spring

Symposium, NLP for WWW. pp 120-128.

[126] Fellbaum, C., Grabowski, J., Landes, S. (1997). Analysis of a hand-tagging

task. In Proceedings of the ACL-SIGLEX Workshop “Tagging Text with Lexical

Semantics: Why, What, and How?” Washington, DC. pp 34-40.

[127] Palmer, M., Dang, H., Rosenzweig, J. (2000). Sense tagging the Penn

Treebank. In Proceedings of the 2nd International Conference on Language

Resources and Evaluation (LREC-2000), Athens, Greece.

[128] Kingsbury, P., Palmer, M., Marcus, M. (2002). Adding semantic annotation to

the Penn Treebank. In Proceedings of the Human Language Technology

Conference.

[129] Miller, G., Chodorow, M., Landes, S., Leacock, C., Thomas, R. (1994). Using

a semantic concordance for sense identification. In Proceedings of the ARPA

Workshop on Human Language Technology, Plainsboro, NJ. pp 240-243.

[130] Chang, E., Huang, C., Ker, S., Yang, C. (2002). Induction of classification

from lexicon expansion: assigning domain tags to WordNet entries. In

Proceedings of COLING-2002, Taipei, Taiwan.

[131] Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R., Jhingran, A., Kanungo, T.,

Rajagopalan, S., Tomkins, A., Tomlin, J., Zien, J. (2003). SemTag and

Seeker: Bootstrapping the semantic web via automated semantic annotation.

In Proceedings of the 12th International Conference on World Wide Web,

Budapest, Hungary.

[132] Zelle, J., Mooney, R. (1993). Learning semantic grammars with constructive

inductive logic programming. In Proceedings of the 11th National Conference

on Artificial Intelligence, Washington, DC. pp 817-822.

References

 287

[133] Lowe, J., Baker, C., Fillmore, C. (1997). A frame-semantic approach to

semantic annotation. In Proceedings of the ACL-SIGLEX Workshop “Tagging

Text with Lexical Semantics: Why, What, and How?” Washington, DC. pp 18-

24.

[134] Saarinen, S., Bramley, R. B., Cybenko, G. (1992). Neural Networks,

backpropagation, and automatic differentiation, In A. Griewank and G. F.

Corliss (Eds.), Automatic Differentiation of Algorithms: Theory,

Implementation, and Application, Philadelphia: SIAM, pp 31-42.

[135] Jaeger, H., Maass, W., Principe, J. (2007). Special Issue on echo state

networks and liquid state machines. Neural Networks, 20(3), pp 287 – 289.

[136] Chomsky, N. (1982). Some Concepts and Consequences of the Theory of

Government and Binding. Cambridge, Mass.:MIT Press.

[137] Gazdar, G. (1983). Phrase structure grammars and natural languages. In

Proceedings of the 8th International Joint Conference on Artificial Intelligence.

pp 556-565.

[138] Bresnan, J. (1982). The Mental Representation of Grammatical Relations.

Cambridge, Mass.:MIT Press.

[139] Gazdar, G., Klein, E. H., Pullum, G. K., Sag, I. A. (1985). Generalised Phrase

Structure Grammar. Oxford: Blackwell, and Cambridge, MA: Havard

University Press.

[140] Pollard. C., Sag, I. (1994). Head-Driven Phrase Structure Grammar. CSLI

Series, Stanford. The University of Chicago Press.

[141] Mel’cuk, I. (1988). Dependency Syntax: Theory and Practice. State

University of New York Press, Albany, New York.

[142] Wood, M. M. (1993). Categorial Grammar. Routledge.

[143] Schabes, Y. (1990). Mathematical and Computational Aspects of Lexicalised

Grammars. Unpublished PhD thesis, University of Pennsylvania, Department

of Computer Science.

[144] Cook, W. A. (1989). Case Grammar Theory. Georgetown University Press,

Washington, DC.

[145] Fillmore, C. R. (1968). The case for case. In Universals in Linguistics Theory.

Bach, E., Harms, R. (Eds). Holt, Rinehart and Winston.

[146] Jacobs, P., Rau, L. (1993). Innovations in text interpretation. In Artificial

Intelligence. 63(1-2). pp 143-191.

[147] Marquez, L., Carreras X., Litkowski, K. C., Stevenson, S. (2008). Semantic

Role Labelling: An Introduction to the Special Issue, Computational

Linguistics, 34(2), pp 145-159.

References

 288

[148] Van Valin, R. D., LaPolla, R. (1997). Syntax: structure, meaning and

function. Cambridge, UK: CUP.

[149] Toutanova, K., aghighi, A., Manning, C. D. (2008). A Global Joint Model for

Semantic Role Labelling, Computational Linguistics, 34(2), pp 161-191.

[150] Moschitti, A., Pighin, D., Basili, R. (2008). Tree Kernels for Semantic Role

Labelling, Computational Linguistics, 34(2), pp 193-224.

[151] Punyakanok, V., Roth, D., Yih, W. (2008). The importance of Syntactic

Parsing and Inference in Semantic Role Labelling, Computational Linguistics,

34(2), pp 257-287.

[152] Pradhan, S. S., Ward, W., Martin, J. H. (2008). Towards Robust Semantic

Role Labelling, Computational Linguistics, 34(2), pp 290-310.

