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ABSTRACT 

Syntactic parsing plays a pivotal role in most automatic natural language 

processing systems.  

 

The research project presented in this dissertation has focused on two main 

characteristics of connectionist models for natural language processing: their 

adaptability to different tagging conventions, and their ability to use multiple 

linguistic constraints in parallel during sentence processing. In focusing on these 

key characteristics, an existing hybrid connectionist, shift-reduce corpus-based 

parsing model has been modified. 

         

This parser, which had earlier been trained to acquire linguistic knowledge from the 

Lancaster Parsed Corpus, has been adapted to learn linguistic knowledge from the 

Wall Street Journal Corpus. This adaptation is a novel demonstration that this 

connectionist parser, and by extension, other similar connectionist models, is able 

to adapt to more than one syntactic tagging convention; this implies their ability to 

adapt to the underlying linguistic theories used to annotate these corpora. 

  

The parser has also been adapted to integrate shallow lexical semantic information 

with syntactic information for full syntactic parsing. This approach was used to 

investigate the effect of shallow lexical semantic information on full syntactic 

parsing. 

 

In pursuing the aims of this project, a novel algorithm for semantic tagging of 

nouns in the Wall Street Journal Corpus has been developed. The lexical semantic 

information used in this semantic annotation algorithm was extracted from 

WordNet, an online lexical resource. 

 

Using only syntactic information in making parsing decisions, this parsing model 

was tested on test sets of sentences that were not used during training. The parser 

generalised to parse these test sentences with an F-measure of 72.5% and 59.5% 

on sentences from the Lancaster Parsed Corpus and Wall Street Journal Corpus, 

respectively. On the integration of shallow lexical semantic information with 

syntactic information in its input representation, the parser generalised to parse 

test sentences from the Wall Street Journal Corpus with an F-measure of 56.75%. 

Although this integration did not seem to improve the parser’s overall 

training/generalisation performance, given its present configuration, it did appear 

to improve the parser’s decision making concerning preposition phrase attachment. 
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1. Introduction 

1.1 Background 

Automatic natural language understanding systems are built with the purpose of 

getting them to generate and/or interpret natural language. They have been used 

in language tasks such as machine translation, information retrieval, human-

machine interfaces, text analysis, corpora analyses and knowledge acquisition. At 

the centre of most, if not all, of such systems is syntactic analysis [1, 2], or parsing 

[3, 4]. Syntactic parsing is the process of identifying and representing the 

structural relationships between words with respect to phrases, clauses and 

sentences. It is an integral part of accurately interpreting a sentence. Given the 

complex, ambiguous and potentially unbounded nature of natural language, the 

ability to parse realistic subsets of unconstrained natural language is a significant 

problem for practical natural language-based systems and progress has been 

limited. Other than in automatic natural language understanding systems, parsers 

have also been employed in simpler and more constrained problem domains such 

as compiler construction, database interfaces, document preparation and 

conversion, typesetting chemical formulae and chromosome recognition, to mention 

but a few. 

 

To date, traditional statistical parsing models [5, 6, 7, 121] continue to represent 

the state-of-the-art for broad coverage natural language parsing, achieving, at 

best, an accuracy rate of 90% for sentences of 40 words or less. They implement 

the parsing process by estimating parse probabilities from pre-parsed corpora. The 

level and quality of improvements reported for such methods are decreasing every 

year [5, 6, 7, 121]. Besides, these models lack an in-built ability to combine 

multiple types of linguistic information (semantics, pragmatics, discourse, etc) in 

syntactic analysis, due to inherent coupling with symbolic representation of 

linguistic information. This reduces their usefulness for practical language 
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applications, such as information extraction and knowledge–base inferencing via 

query/answering interfaces, which require semantically-aided processing. In 

contrast to statistical models, the connectionist (also known as the artificial neural 

network-based, parallel distributed processing, or subsymbolic) approach [8, 9, 

122] offers inherent robust representations that are able to naturally combine, inter 

alia, syntactic and semantic information. 

 

It is widely accepted that semantic information is needed to resolve common 

syntactic ambiguities [120]. However, a lot of parsing models do not attempt to 

incorporate this information into initial syntactic parsing. They typically adopt the 

two-stage ‘Fodorian’ approach [10, 11, 12] whereby semantic information is 

considered along with other linguistic information during a second independent 

post-processing stage. The first stage of the process considers syntactic information 

alone.  

 

A growing body of research, however, refutes the two-stage model and advocates a 

multiple constraint-based approach. These researchers argue that the human 

sentence processor (HSP) does not only use syntactic information during sentence 

processing, but is a multiple constraint-satisfaction process that allows syntactic, 

semantic, pragmatic and discourse information to simultaneously interact (to 

varying degrees) during on-line processing [13, 14, 15, 16, 22]. 

 

It is, therefore, necessary to determine the effect of integrating additional word-

level (or lexical) semantic information with syntactic information on the 

performance of full syntactic parsers.          
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1.2 Aims and Objectives of Research 

This research is based on an existing modular/hybrid, shift-reduce, connectionist 

parser [18, 19, 111], which integrates three connectionist modules (two temporal 

sequence processing modules and a phrase structure recognition module) with 

three symbolic modules to automatically learn syntactic structure from a subset of 

the Lancaster Parsed Corpus [20]. The parser has shown good learning ability by 

achieving an average parsing accuracy of 73% on a test set of sentences that were 

not used during its training. Considering its connectionist nature, the method is 

adaptable to other corpora and for other syntactic and semantic annotations 

without its architecture being changed. In order to improve the natural language 

acquisition capability of this parser, and other connectionist parsers, a number of 

research questions must be addressed: 

a) Can this parser’s (and by extension, other similar connectionist models’) 

ability to acquire linguistic knowledge from more than one corpus (with 

different tagging conventions) be demonstrated? 

b) What level of lexical semantic information will provide improvement to full 

syntactic parsing? 

c) What lexical resources are available for the extraction of lexical semantic 

information? 

d) How will the lexical semantic information be extracted and how will this 

information be integrated with syntactic information in the process of full 

syntactic parsing? 

e) What is the effect of the integration of shallow lexical semantic information 

with syntactic information on the performance and behaviour of the parser? 

 

Including lexical semantic information during syntactic parsing could help to resolve 

common syntactic ambiguities and preposition phrase attachment cases in 

sentences such as: 
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i. The boy ate the pasta with the sauce. 

ii. The boy ate the pasta with the fork. 

 

The aim of this dissertation is to investigate whether additional word-level semantic 

information can improve decisions in full syntactic parsing (involving syntactic 

ambiguity resolution). The investigation will determine the level of semantic 

abstraction necessary for improvement to occur. The sensitivity of the system to 

the type of input representation used would also be determined. This project also 

aims to investigate the re-usability and adaptability of this parser to other corpora. 

 

In pursuing the aims of this research, investigations designed to specifically 

improve the performance of the temporal sequence processing modules of the 

existing parser were carried out. These modules form the bedrock of the parser as 

they tackle the most challenging aspects of natural language processing: the 

sequential nature of language and the existence of dependencies (sometimes, long-

distance) between words in sentences. The re-usability and adaptability of this 

connectionist parser was investigated by adapting it for the internationally accepted 

benchmark corpus, The Wall Street Journal Corpus [101].  

 

In further pursuing the aims of this research, there was the need to develop an 

algorithm for abstract word sense tagging of nouns. The implementation of this 

algorithm resulted in the extraction of lexical semantic information for 

nouns/pronouns from the online lexical resource, WordNet [17]. While maintaining 

the neural network and corpus-based nature of the parsing model, the lexical 

semantic representation realised from the algorithm was integrated into the 

existing syntactic representation already developed for sentences in the Wall Street 

Journal Corpus. That is, rather than expecting the parser to learn syntactic 

structure from sequences of part-of-speech (POS) word tags (e.g. noun, verb), the 
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parser will be expected to deduce syntactic structure from sequences of 

linguistically richer word tags containing syntactic and semantic information. This 

demonstrates the inherent ability of the parser to combine multiple types of 

linguistic information. It also helps determine to what extent non-syntactic 

information plays a role during the syntactic parsing process.                                                                    

 

1.3  Structure of the Thesis 

Chapter 2 of this dissertation presents a literature survey of the field of syntactic 

parsing. Different types of connectionist parsing models are reviewed in this 

chapter. Chapter 3 reports the aims, process and outcome of investigations carried 

out to optimise the temporal sequence processing modules of the original parser. In 

chapter 4, the processes and results of adapting the original parser to the Wall 

Street Journal Corpus are presented. Chapter 5 looks at the processes and results 

involved in combining lexical semantic representation with the syntactic 

representation of the parsing model. The sentence level performance of the parser 

on the Wall Street Journal Corpus is looked at in detail in chapter 6. This chapter 

also presents the effects of integrating lexical semantic representation into the 

syntactic representation of the parsing model. In chapter 7, the dissertation is 

concluded with a presentation of the key contributions of this research and further 

work that have arisen from it. 
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2. Literature Survey 

2.1 Introduction 

Natural language, such as English, French, Russian and Japanese, is fundamental to 

human cognition and culture. It serves as the main medium by which humans 

communicate and record information. Used as text or speech, it wields enormous 

power and influence in our lives. Getting computers to automatically process and 

understand natural language enables them to capture, to some extent, this power 

and influence. 

 

Natural language understanding systems are built with the aim of making them 

generate and/or interpret natural language. Such systems have been employed in 

tasks such as machine translation, information retrieval, human-machine 

interfaces, text analysis, and knowledge acquisition. Language analysis is an 

important aspect of these systems. This could take the form of sentence analysis, 

which involves the processing of individual sentences, or discourse and dialog 

structure analysis, which involves the processing of a group of sentences. Analysing 

discourse structure would still require sentence analysis. A crucial component of 

sentence analysis is syntactic parsing. 

 

This chapter presents syntactic parsing and its role in natural language 

understanding in section 2.2. Different parsing methods and the different 

approaches by which these methods are implemented are also treated in this 

section. Localist, distributed, and hybrid and modular parsing models are reviewed 

in sections 2.3, 2.4, and 2.5 respectively. In reviewing these models, a critical look 

is taken at the complexity of language structure they can handle, their ability to 

automatically learn, and their scalability to realistic language subsets. Attention is 

also paid to their representational capacity and their ability to combine other types 
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of linguistic information (like semantic constraints) into parsing. Various semantic 

annotation schemes are reviewed in section 2.6. 

 

2.2 Syntactic Parsing 

2.2.1 Introduction 

Syntactic analysis or parsing [3] is the process of producing the structural 

description of a sentence. This is done with a view to recognising the structural 

relationships between words with respect to phrases, clauses and sentences. It 

plays a major role in accurately interpreting a sentence and is at the centre of most 

automatic language processing systems [1]. 

 

Automatic natural language processing systems need to represent language and 

often look to hypothesised representations of the brain. The mental representation 

of language and how it translates to text and speech therefore becomes an issue. 

The question of how much prior knowledge should be built into parsing (and other 

NLP) systems comes to the fore. In this respect, two main approaches have 

dominated in recent years. These are the rationalist and empiricist approaches 

[21]. 

 

The rationalist approach to language processing has dominated the field largely due 

to the work of Noam Chomsky [23, 24, 25, 26, 27]. It places the focus of analysis 

of natural language on the intuition of the native speaker. It is of the view that a 

major part of the knowledge in the human mind is fixed early in life, possibly at 

birth, and not derived by the sense organs. This view of the knowledge in the 

human mind extends to natural language and suggests that significant parts of 

language are fixed in the brain at birth. This suggestion by Chomsky stems from 

the difficulty he finds in envisioning how children can learn natural language, 
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considering its complexity, from the limited input that their senses pick up during 

their early years; the problem of the “poverty of the stimulus” [27]. 

 

The rationalist approach, also known as generative (or Chomskyan) linguistics [2, 

21] therefore seeks to study the abstract mental structures that form a basis for 

linguistic ability (referred to by Chomsky [27] as I-language – “internal” language) 

while not considering actual mental processes (referred to by Chomsky [27] as E-

language – “external” language) such as text or recording of utterances. In 

championing this approach, Chomsky [26] distinguishes between linguistic 

competence and linguistic performance. Linguistic competence is an abstract 

characterisation of the knowledge of language structure that is assumed to be in 

the native speaker’s mind while linguistic performance refers to the processes that 

actually determine what a language user will say (or write) or how he will 

understand an utterance (or text) given a particular context. 

 

The empiricist approach to language processing (also known as structural linguistics 

[2]) bases linguistic analysis on the observation of language behaviour. While 

agreeing with the rationalist approach on the presence of some initial knowledge 

structure in the human brain at birth, this approach, however, disagrees with the 

level of knowledge present. It assumes that the structure of knowledge available in 

the human mind at birth is of a general form, catering for activities such as pattern 

recognition, generalisation and association, rather than being of a detailed form, as 

espoused by proponents of the rationalist approach. This approach further suggests 

that the detailed structure of natural language is learnt by children when they 

combine the general structure of knowledge with the sensory input they are 

exposed to. The empiricist approach therefore subscribes to the description of the 

actual use of language (E-language) in linguistic studies. This is done with the use 

of a collected corpus of naturally occurring text (or utterance). These corpora are 

assumed to be representative of language in a real world context.  
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In order to understand the problem of syntactic parsing, a brief review of the basic 

concepts of formal language theory and phrase-structure grammar [24] is 

necessary.  

 

A language is a set of sentences. This set could be finite or infinite depending on 

the language. Natural languages have infinite sets. A sentence is a string of one or 

more symbols (words) from the vocabulary of the language. A grammar is a finite 

and formal specification of a language. A widely adopted method to specify formal 

and natural languages is the use of the phrase-structure grammar (also known as 

production grammar [28]). 

 

A phrase-structure grammar is described by four parts: a set of non-terminal 

symbols (the non-terminal vocabulary consisting of syntactic category labels and 

used in specifying the grammar); a set of terminal symbols (the terminal 

vocabulary of the language being defined); a special member of the set of non-

terminal symbols designated as the start symbol of the grammar; and the 

production set of the grammar (set of re-write rules). The re-write rules are used 

for the basic operation of a phrase-structure grammar which involves rewriting a 

string of symbols as another. 

 

Mathematically, a phrase-structure grammar, G, is an ordered quadruple of the 

form: 

G = (VN, VT, S, P) 

Where 

  VN = non-terminal vocabulary of G 

  VT = terminal vocabulary of G 

  S = Starting symbol of G 

  P = Production set of G  



Chapter 2 - Literature Survey 

 

 

  10 

 

Phrase-structure grammars may be classified according to their descriptive power. 

This considers the variety of languages a grammar can be used to define. More 

powerful grammars can be used to define and describe a wider variety of languages 

than weaker ones. This descriptive power (level of language that can be described 

by a particular grammar type) corresponds to the type of automata that can 

process it. Automata are abstract mathematical models of machines that perform 

computations on an input by moving through a series of states or configurations.  

For a parser to process a particular type of language, it must therefore simulate or 

adopt the computational properties of the appropriate type of automata. 

 

The conventional classification scheme for phrase-structure grammars is the 

Chomsky hierarchy [23, 25]. This scheme identifies four types of phrase-structure 

grammar in order of their descriptive power. They are: unrestricted (type 0), 

context-sensitive (type 1), context-free (type 2) and finite-state or regular 

grammars (type 3). Higher numbered types are less powerful (more constrained) 

than lower numbered types; type 0 is the most powerful type, and type 3 is the 

weakest. 

 

Type 0 grammars describe languages that are recursively enumerable. This is a 

type of language for which a program could be written to list out the sentences of 

the language one after the other. They have productions of the form: 

 α       β 

where α and β denote strings of terminals and non-terminals 

There are no restrictions on their productions. 

 

Type 0 grammars have equivalent computational power to Turing machines (TM) 

[29]. A Turing machine is an abstract machine (or, computer) introduced by Alan 

Turing to give a mathematically precise definition of algorithm or mechanical 
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procedure. It is the most general automaton that assumes an infinite memory 

capacity. 

 

Type 1 grammars describe context-sensitive languages and have their production 

sets constrained such that the right hand side (RHS) of each re-write rule has, at 

least, the same number of symbols as its left hand side (LHS). Each rule specifies 

the replacement of only one non-terminal in its LHS. Re-writing symbols depend on 

context as different rules may re-write a particular non-terminal symbol to different 

values depending on its surrounding symbols. Their productions are of the form: 

  α1Aα2          α1βα2 

 where A is a non-terminal 

 and α1, α2, and β are strings of terminals and non-terminals 

 

This type of grammars has equivalent computational power to linear bounded 

automata (LBA). An LBA is a restricted form (in terms of tape length or memory) of 

a Turing machine; it consists of a tape with cells that can contain symbols from a 

finite alphabet, a head that can read from or write to one cell on the tape at a time 

and can be moved, and a finite number of states. 

 

Type 2 grammars describe context-free languages and have their production sets 

restricted such that the LHS of each re-write rule is a single non-terminal symbol 

while its RHS is a string of one or more terminals and non-terminals. Their 

production rules are of the form: 

 A         β 

 Where A is a non-terminal 

 and β is a string of terminals and non-terminals 

 

This type of grammars has equivalent computational power to push-down automata 

(PDA). A push-down automaton is equivalent to a finite state automaton (FSA) with 
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a stack-like memory. A finite state automaton is a finite collection of states and 

transitions, with certain states designated as start and end states. The addition of a 

stack-like memory enables states to be stored whilst intermediate states are being 

processed. While context-free grammars alone are inadequate in describing natural 

languages, they can be extended with complex linguistic categories to do so. 

However, the number of categories must not be restricted [30]. The resulting 

grammar from this type of extension is referred to as an index grammar. Index 

grammars have equivalent computational power to nested stack automata [31]; 

their descriptive power is greater than that of context-free grammars but less than 

that of context-sensitive grammars.  

 

Type 3 grammars describe regular languages. They have their production sets 

constrained such that the LHS of each re-write rule is a single non-terminal symbol 

while its RHS is either a single terminal symbol or a terminal symbol and a non-

terminal symbol. Their productions are of the form: 

 A        a, or,  A        aB 

 Where A and B are non-terminals 

and a is a terminal 

 

This type of grammars has equivalent computational power to finite state automata 

(FSA). 

 

Several grammatical frameworks have been employed in the syntactic analysis and 

generation of natural languages. Among these are generative grammars which are 

the most traditionally used grammatical framework in natural language processing 

systems. This group of linguistic formalisms include Transformational Grammar 

(TG) [26], Government Binding Theory (GB) [136], and Generalised Phrase 

Structure Grammar (GPSG) [137, 139]. Both TG and GB theory consist of deep and 

surface syntactic structures. GPSG, on the other hand, consists of only surface 
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structure. GPSG augments phrase structure grammar such that linguistic 

constructions beyond the reach of phrase structure grammar can be handled. 

 

Also within the generative grammar ambit are lexicalised frameworks which encode 

syntactic and semantic information in the lexicon. This group of frameworks also 

produce parse trees that comprise lexical items and direct relationships between 

them.  They include Lexical Functional Grammar (LFG) [138], Head-Driven Phrase 

Structure Grammar (HPSG) [140], Dependency Grammar [141], Categorial 

Grammar [142], Lexicalised Tree-adjoining Grammar (LTAG) [143].  

 

Besides generative grammar, there are semantic-based grammars which seek to 

create semantic representation of sentences. This group of grammatical framework 

include Semantic Grammar [146] and Case Grammars [144, 145]. Aside from 

generative and semantic-based grammars, there are stochastic grammar such as 

Probabilistic Phrase Structure Grammar, and functional grammar such as Role and 

Reference Grammar [148]. 

 

A key problem that designers of syntactic parsing systems for natural language 

have to contend with is ambiguity. Ambiguity increases the range of possible parse 

trees for a given sentence. There are various types of ambiguity such as lexical 

ambiguity, structural ambiguity, and referential ambiguity. Lexical (or categorical) 

ambiguity arises when a word in a sentence can be assigned to more than one 

syntactic category depending on its linguistic context. It is usually resolved at the 

tagging phase, where input to a parser consists of syntactic tags. 

 

Structural ambiguity could be local or global. It is local ambiguity when part (and 

not the whole) of a sentence such as a phrase can be assigned to various structures 

and meanings if taken out of context. An example is: The man who accompanied 

the lady paid the bill. Here, the phrase, the lady paid the bill has a meaning that is 
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different from that of the whole sentence.  Global ambiguity arises when a whole 

sentence has more than one possible interpretation. An example is: Visiting 

lecturers can be expensive. 

 

Referential ambiguity arises when more than one object is being referred to by a 

noun phrase. An example is: When they had finished writing their test, the students 

and lecturers left. Here, “they” could refer to only the students, only the lecturers 

or both groups. 

 

   

2.2.2 Role of parsing in Natural Language Understanding 

Syntactic parsing is an essential part of the process of understanding natural 

language texts. In assigning tree structures to sentences in a text, parsing 

identifies the roles of words in a sentence. A parse of the following sentences, 

James bit Jane and Jane bit James, would identify the noun phrase/subject and 

enable the understanding of who did what to whom in each case. Besides, parsing 

highlights the structural relationships between words and phrases in a sentence. A 

parse of the following sentences, Visiting lecturers ARE exciting and Visiting 

lecturers IS exciting, would identify the subject – verb agreement and enable an 

understanding of the different meanings conveyed by each of these two sentences. 

Parsing can also identify relationship between words in neighbouring sentences. 

 

However, most successful natural language analyses do not consider syntax alone. 

Other aspects of analysis considered include semantics, pragmatics and discourse 

integration. In adopting these components for the realisation of successful syntactic 

parsing systems, psycholinguistic researchers have used two different approaches: 

treating parsing as a two-stage model [10, 11, 12] and as a multiple constraint-

based model [13, 14, 15, 16, 22]. 
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The two-stage parsing model (also known as the Garden-Path or “Fodorian” model) 

considers parsing to be a two-stage process with syntactic information playing a 

crucial role in the first stage. The second stage, which acts as a post-processing 

stage independent of the first, uses other linguistic information (semantics, 

pragmatics, discourse, etc) to evaluate and possibly revise the analysis done at the 

first stage. Any structural ambiguity that arose at the first stage is likely to be 

resolved at the second stage. 

 

Multiple constraint-based models implement parsing by allowing various 

components of linguistic information (syntax, semantics, pragmatics, discourse, 

etc) to interact simultaneously during online processing. They restrict the use of 

particular components of linguistic information in sentence processing and allow for 

parallel evaluation of alternative syntactic analyses. 

  

2.2.3 Parsing Methods 

The two main methods of parsing are top-down and bottom-up parsing. Top-down 

parsers construct parse trees by working from the start symbol (the root of the 

parse tree) to the terminals (the leaves of the parse tree) that make up the input 

sentence. Bottom-up parsers construct parse trees, beginning from the terminals 

that make up the input sentence and work up to the start symbol. Apart from this 

main classification, parsing techniques can also be grouped based on directionality 

[32]. 

 

Focusing on the directionality classification, parsing techniques can be directional or 

non-directional. Non-directional parsers construct parse trees by processing the 

terminals in the input string in an arbitrary order. This method needs the entire 

input to be in working memory before parsing can commence. An example of a 
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non-directional parser is the Unger parser [33]. The Unger parser can also be 

classified as a top-down parser. Another non-directional parser, which is also a 

bottom-up parser, is the CYK parser [34, 35, 36, 37]. 

 

Directional parsers construct parse trees by processing the terminals in the input 

string from left to right (or, from right to left). With this method, and as with the 

human sentence processor (HSP), the entire input does not need to be in working 

memory as parsing can commence, and progress, before the last symbol (or the 

first symbol if parsing from right to left) in the input string is seen. This group of 

parsers could be further grouped into non-deterministic and deterministic parsers. 

Non-deterministic directional parsers often have several moves to choose from, in 

their bid to solve parsing problems, with the particular choice not being 

predetermined.  Search for the solution could either be depth-first or breadth-first. 

Recursive descent parsers, which are top-down, depth-first parsers, are examples 

of non-deterministic directional parsers. Other examples are Earley parsers [38] 

and Tomita parsers [39, 40] which are both bottom-up parsers that employ the 

breadth-first search technique. 

 

Deterministic directional parsers are restricted to one possible move in each 

decision case, while solving parsing problems. The moves to be made are 

determined by the input string. An example of this group of parsers is the LL(k) 

(Left-to-right, “identifying the Left-most production”; k is the number of look-

ahead symbols) parser [41], which is also a top-down parser. Examples of bottom-

up parsers which belong to this group are LR(k) [42], LALR [43, 44], and SLR 

(Simple LR) parsers. 

 

All the parsing methods treated above could be classified as top-down or bottom-

up. However, a method of parsing that can not be classified into one of these two 

main groups, because it is a hybrid between them, is left-corner parsing [45]. Left-
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corner parsers have the right-hand-side of each production rule split into two parts, 

the left part (called the left corner) and the right part. The left corner is identified 

with a bottom-up method. When the left-corner has been identified, the right part 

is then parsed with a top-down method. 

 

In implementing these methods of parsing, symbolic, statistical and connectionist 

approaches have variously been employed. Hybrids of these approaches have also 

been used. 

2.2.4 Connectionist Parsing 

Connectionist (or, artificial neural network-based) parsing systems make use of 

parallel distributed processors which consist of simple processing units that interact 

to acquire and store linguistic knowledge and make this knowledge available for 

solving parsing problems. These networks are presented with representations of 

sentence examples, from which linguistic knowledge is acquired through a learning 

process. The knowledge acquired is stored in the networks’ synaptic weights, which 

link the simple processing units (or, nodes) together. 

 

Knowledge representation in connectionist networks could either be localist or 

distributed. Localist networks are designed in such a way that individual units 

denote particular concepts or features. These individual units are clearly labelled 

making their roles in such networks obvious. However, information is not shared 

among the different components of the network, creating inefficiency in terms of 

connections and nodes. Distributed networks are designed in such a way that 

concepts or features are denoted as patterns of activation distributed across several 

units in the network. They exhibit a high fault-tolerance as the loss of one or more 

units may not necessarily lead to the network losing all of its representation of a 

particular concept. 
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2.3  Localist Parsing Models 

Localist models were the earliest connectionist attempts at parsing. Parsing models 

developed by Small [46], Cottrell [48] (an extension of word-sense disambiguation 

work done by Small, Cottrell, and Shastri [47] and implemented by Cottrell [49]), 

Howells [50], and Waltz and Pollack [51] are multiple constraint based localist 

models that allow syntactic and lexical-semantic constraints to interact in attempts 

to solve parsing problems. These models, apart from [50] and [51], accommodate 

only fixed-length sentences and, therefore find it difficult to deal with recursive, 

context-free structure which is likely to lead to long sentences. 

 

Fanty [52] and Rager’s [53] models are localist models that implement the CYK 

parser [34, 35, 36, 37], while Selman and Hirst’s [54, 55] model implements a 

variation of the Boltzman machine [56]. These models can only deal with fixed-

length sentences; they therefore rely on redundant structure. This reduces the 

complexity of language structure they can handle. They, also, do not incorporate 

other types of linguistic information into parsing. 

 

Charniak and Santos’ parsing model [57] uses a sliding input window on a localist 

network. This makes it able to process sentences of unbounded length. However, it 

is unable to process long-distance dependencies. Generally, localist networks 

manifest difficulty in functioning as language processors because of the manner of 

their input representation [9, 109, 110]. 

 

2.4  Distributed Parsing Models 

Distributed parsing models exhibit the fault-tolerance associated with neural 

networks that use distributed representations. Early distributed models employed in 

language processing [58, 59, 60] used feed-forward multi-layer perceptrons (FF-
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MLP) architectures for their networks. These networks were mostly trained with 

Back-propagation algorithm. These early models were able to learn and, given their 

distributed representation, had the potential to combine several types of linguistic 

information into their input vectors. However, these models were limited by fixed 

length restrictions on their input vectors. In designing these models, maximum 

sentence lengths had to be pre-determined so that the number of input units could 

be fixed. This meant that apart from the redundancy that would result in processing 

sentences of lengths lower than the maximum, sentences with lengths above the 

maximum could not be processed. These models were, therefore, not well equipped 

for linguistic inputs which require sequential processing. 

 

In a bid to erase the limitation from the fixed inputs, several distributed parsing 

models [61, 62, 63] adopted sliding input windows. With these windows, a fixed 

number of sentence tokens were presented to the networks per time step, instead 

of presenting whole sentences at once. This ensured that sentence lengths were not 

restricted. However, input window sizes limited temporal context and, therefore, 

restrained the disambiguation capability of the models. 

 

In view of the temporal sequence processing needs of language, language 

processing models [18, 19, 64, 65] have increasingly turned to recurrent neural 

networks [66, 67, 68, 69].  A modified version of backpropagation, referred to as 

Backpropagation Through Time (BPTT) [104], is commonly used to train recurrent 

networks to better learn temporal dependencies using gradient-based information. 

Although marginal improvements have been reported, these are very limited due to 

gradient information about previous input items diminishing rapidly as sequence 

length increases [105]. It has also been recently reported that although BPTT may 

not be suitable for learning complex temporal problems, recurrent neural network 

architectures are themselves capable of representing the solution [106] – a more 

effective learning algorithm is required to determine the optimum weight values. 
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Subsequently, there is much research on either improving gradient descent learning 

[107, 108] or searching for alternative learning algorithms.  

 

2.5  Hybrid and Modular Parsing Models 

To contend with the complexity of processing natural language, connectionist 

parsers have had modularity and hybridity introduced into them. The modularity 

feature in connectionist parsers involves breaking the parsing problem into simpler 

tasks and employing specialist modules (some of which may be non-connectionist) 

to solve these tasks. In doing this, the learning task is simplified and different 

connectionist network architectures (e.g. Feed forward Multilayer Perceptron (FF-

MLP), Simple Recurrent Network (SRN) [66] and Recursive Auto-associative 

Memory (RAAM) [70]) are used to their strengths. Modular connectionist parsing 

models could be pure (with all the modules being connectionist) or hybrid 

connectionist parsers. 

 

Hybrid connectionist parsers involve the combination of connectionist and non-

connectionist (like symbolic, statistical) modules in a parser. Symbolic modules 

have generally been employed in such parsers to provide storage, symbol 

manipulation and control [8]. The storage provided by the symbolic modules could 

be made to temporarily hold input states, intermediate parse states and full 

sentential parses. They could also be made to permanently hold structured 

knowledge about the language being processed. 

 

Modular/hybrid connectionist networks [18, 63, 71, 72, 73, 74, 75, 76, 77, 78, 79, 

80, 81, 82, 83, 84, 85, 86, 87, 88, 89] have exhibited a better ability to learn than 

single network parsing models. They have also exhibited a greater potential to 

handle more complex language structure and continue to make progress [18, 72, 

81]. 
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The parsing model used in this work [18, 19] is a modular/hybrid, shift-reduce 

parser that integrates three connectionist modules with three symbolic modules to 

automatically learn syntactic structure from a subset of the Lancaster Parsed 

Corpus [20]. The process of parsing employed by this model involves two stages: 

delimitation of phrases and recognition of phrase structure. The phrase delimitation 

process is further broken down into two sub-processes: right-to-left delimiter (RLD) 

process and left-to-right delimiter (LRD) process. Each of these two delimiter sub-

processes is implemented with the Temporal Auto-associative Simple Recurrent 

Network (TASRN) [68]. The phrase structure recognition (PSR) process is 

implemented with a feed-forward Multilayer Perceptron (FF-MLP). The three 

symbolic modules in this parser are used to store tag and parse state information, 

the resulting parse tree and the current input state. The parser has shown good 

learning ability by achieving an average labelled precision/recall of 72.5% on a test 

set of sentences from the Lancaster Parsed Corpus that were not used during 

training. It is also adaptable to other corpora and for other syntactic and semantic 

annotations without biasing its architecture; in this work, it has been adapted to 

the BLLIP 1987-89 WSJ Corpus [90] and its input representation has also been 

further adapted to include semantic information. 

 

2.6 Semantic Annotation Schemes 

Reported work that made use of WordNet have been reviewed with the aim of 

noting how the WordNet taxonomy is applied. Paul Buitelaar and his colleagues 

[124] describe an unsupervised semantic tagger, applied to German, but which 

could be used with any language for which a corresponding “XNet” (WordNet, 

Germanet, etc), POS tagger and morphological analyzer are available. Their system 

treats all synsets and their hypernyms as semantic classes to which a word may 

belong. The evaluation corpus used was manually annotated by two annotators with 
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differences in annotation solved by arbitration. In cases where annotators were 

unable to distinguish between senses, they had the option of choosing more than 

one sense. This follows from Buitelaar’s earlier work [117]. In reporting this earlier 

work, Buitelaar suggests that semantic tagging should be viewed as more than 

disambiguation between senses. He suggests further that some senses may be 

systematically related (systematic polysemy) and should therefore not be 

disambiguated; rather, they should be left underspecified. To support this, a “new” 

type of lexicon, “CoreLex” was created through a design based on systematic 

polysemous classes. “Corelex”, which uses a set of 442 polysemous classes, was 

also used in annotation work reported by Pustejovsky and colleagues (including 

Buitelaar) [125]. 

 

Fellbaum [126], Palmer [127], Kingsbury[128] and Miller [129] report on sense 

tagging tasks that involved the annotation of content words with WordNet synsets. 

Miller’s [129] work is the WordNet group’s annotation of a subset of the Brown 

Corpus; it is the basis for the determination of frequencies for senses in WordNet. 

Semantic annotation work done by Fellbaum [126], Palmer [127], and Kingsbury 

[128] are on the Wall Street Journal Corpus. However, they are geared towards the 

representation of predicate-argument structure, rather than classical surface 

grammatical analysis. Resnik [120] reports on a method for automatic sense 

disambiguation of nouns, using WordNet senses. His method also permits the 

assignment of higher-level WordNet categories rather than sense labels.  

 

The semantic annotation work reported above made use of sense distinctions that 

are too fine-grained for practical use, considering there are approximately 48,800 

noun synsets (word meanings) in WordNet. Chang [130] present work that assigns 

domain tags to WordNet entries, using a domain taxonomy which they established 

(from a combination of WordNet and The Far East Dictionary). Their reported work 

was still at a preliminary stage. 
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Reported work not based on WordNet include that by Ceusters [123] which 

presents the “Cassandra II” syntactic-semantic tagging system, a bracketing 

technique combining phrase structure tagging with semantic tagging. It is used to 

annotate parallel corpora of medical texts in different languages for marking 

similarities independent of a specific grammar formalism. Its technique is akin to 

thematic case role assignment. Dill and his IBM colleagues [131] report on 

“SemTag”, an application written on the “Seeker” platform (a platform for large-

scale text analytics) to perform automated semantic tagging of large corpora. Berg 

[77] presents “XERIC” networks which parse and represent sentence structure 

while also performing number-person and lexical disambiguation. Mayberry, III and 

Miikkulainen [122] present “INSOMNET”, a connectionist model trained on semantic 

representations from LINGO Redwoods HPSG Treebank of annotated sentences. 

Zelle and Mooney [132] present a system that employs inductive logic 

programming to learn a shift-reduce parser that integrates syntactic and semantic 

constraints to produce case-role representations. 

 

Lowe and colleagues [133] present a frame-semantic approach to semantic 

annotation. They argue that the number and arrangement of semantic tags must be 

constrained, lest the size and complexity of the tag sets used for semantic 

annotation become unwieldy both for humans and computers. 

 

2.7  Summary 

Syntactic parsing is fundamental to automatic natural language processing 

systems. The two main methods of parsing are top-down and bottom-up. Parsing 

techniques can also be classified in terms of directionality – directional and non-

directional parsers. All parsing techniques can be grouped as either top-down or 

bottom-up, apart from, left-corner parsing which is a hybrid of both classes. 
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Symbolic, statistical and connectionist approaches have been used to implement 

the various parsing techniques. Hybrids of these approaches have also been used. 

Connectionist (or, artificial neural network-based) parsing systems could be localist, 

distributed or modular/hybrid. Modular/hybrid connectionist parsing models have 

exhibited superiority over the other types of connectionist parsers because of their 

better ability to learn and their competence in handling complex language 

structure. They have also been used to combine several types of linguistic 

information and continue to make significant progress. 
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3. PRELIMINARY ANALYSIS OF THE EXISTING 

CONNECTIONIST PARSING MODEL 

3.1  Introduction 

The existing parsing model [18, 19] used in this work employs a parsing process 

that involves two stages: delimitation of phrases and recognition of phrase 

structure. The phrase delimitation process is further broken down into two sub-

processes: a right-to-left delimiter (RLD) process to discover the beginning of a 

phrase and a left-to-right delimiter (LRD) process to discover the corresponding 

end of the phrase. Each of these two delimiter sub-processes is implemented with 

the Temporal Auto-associative Simple Recurrent Network (TASRN) [68]; training of 

the networks is done with the standard back-propagation algorithm. This network, 

given its sequential input and feedback to context nodes, is architecturally better 

equipped than feed forward multilayer perceptrons (which are well-equipped for 

general-purpose pattern recognition and function approximation) in dealing with the 

temporal sequential nature of language and the dependencies that exist between 

words/phrases in sentences [66, 111]. 

 

As part of the preliminary stage of this project, experiments were set up to improve 

the performance of back-propagation learning by the delimiters, considering their 

vital temporal sequence processing role in the parser. The aims of these 

experiments were to reduce the tendency for the hidden neurons to be driven into 

saturation and to obtain optimal learning rates, momentum constants and network 

sizes for the two modified delimiter networks. With the same motive of improving 

learning by the delimiter networks, cross-validation was introduced to determine 

the stopping criterion during training. The generalisation performance of the refined 

delimiter modules were compared with that of the existing parser’s [18, 19] 

delimiter modules. Their average labelled precision/recall measure (defined in 
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section 3.7) was also compared. To enable this comparison, all experiments in this 

chapter were run with training/test data sets drawn from the Lancaster Parsed 

Corpus. These experiments are covered in the following sections of this chapter.    

 

3.2  The Existing Parsing Model 

The existing parsing model [18, 19, 111] used for the investigations in this work is 

a hybrid shift-reduce, syntactic parser that integrates modular connectionist 

architectures with symbolic structures to automatically learn syntactic structure 

from annotated sentence examples. These sentence examples were extracted from 

the Lancaster Parsed Corpus (LPC) [20]. The LPC is therefore used as the 

fundamental basis of linguistic knowledge for this parsing model. Using this corpus, 

instead of strict grammar rules, enables the connectionist networks employed to 

learn less constraining grammars implicitly.  

 

The process of parsing employed by this parsing model involves two stages: 

delimitation of phrases and recognition of phrase structure. The phrase delimitation 

process is further broken down into two sub-processes: right-to-left delimiter (RLD) 

process and left-to-right delimiter (LRD) process. Each of these two delimiter 

processes is implemented with the Temporal Auto-associative Simple Recurrent 

Network (TASRN) [68]. The phrase structure recognition process is implemented 

with a feed-forward Multilayer Perceptron (MLP). 

 

The model also uses three core symbolic structures to store input symbols (word 

and constituent tags), properties of these input symbols and the phrase structure 

tree. These are: a linked list used to store tag information, a stack to store parse 

state and another stack to store the current input state. 
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This model achieved an average labelled precision/recall of 73% on a test set of 

sentences that were not used during training. 

 

3.2.1 The Lancaster Parsed Corpus (LPC) 

The Lancaster Parsed Corpus (LPC), a sub-set of the Lancaster-Oslo/Bergen (LOB) 

Corpus [112], is a corpus of British English sentences selected from printed 

publications of the year 1961. Each word in the LPC is tagged with its syntactic 

category using the CLAWS [113] word tagger. Each sentence in the corpus has 

been syntactically analysed in the form of labelled bracketing. This syntactic 

analysis has been done by computer, using a HMM-based probabilistic parser [114]. 

The syntactic analysis is completed using manual correction by several researchers. 

 

The LPC contains 134,740 words, distributed in 11,827 sentences (13.29% of the 

LOB corpus); an average of 11.39 words per sentence. Most sentences over 20-25 

words in length found in the LOB corpus were omitted from the LPC; in setting up 

the LPC, the prototype probabilistic parser developed to automatically parse the 

whole of the LOB corpus was unable to achieve a parse of most sentences over 20-

25 words in length. There are samples, in the LPC, from each of the 15 genre 

categories in the LOB corpus. These categories are Press (Reportage), Press 

(Editorial), Press (Reviews), Reviews, and Skills, Trades and Hobbies. Other 

categories are Popular Lore, Belles Lettres, Biography and Essays, Miscellaneous 

(government documents, etc), General Fiction and Learned and Scientific Writing. 

The remaining categories are Humour, Science Fiction, Mystery and Detective 

Fiction, Adventure and Western Fiction, and Romance and Love Story. 
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3.2.2 Tag Representation 

In order to adapt the parsing model to the pre-tagged LPC, an input representation 

was designed. This input representation was designed in such a way as to enhance 

the training process by reflecting similarities between symbols into their coding. To 

attain this, the input space is separated into regions; each region represents a 

group of symbols of the same type. 12 different symbol groups (5 terminal symbol 

groups and 7 non-terminal symbol groups) exist. The 5 terminal symbol groups 

are: punctuation, conjunctions, nouns, verbs, and prepositions. The 7 non-terminal 

groups are sentences, finite clauses, non-finite clauses, major phrase types, minor 

phrase types, slash tag phrases and coordinated phrases. These groups are 

represented using separate fields of the input vector. 

 

Linear binary coding is used to represent the symbols within their respective group 

fields. An additional bit is used in the field to denote a symbol of that particular 

group type. This implies that the number of bits in each field is the minimum 

number required to represent all the symbols in the particular group plus 1.This 

representation scheme, shown in figure 3.1, ensures that patterns for symbols in 

different groups are always orthogonal to one another; patterns for symbols within 

a group are not orthogonal to one another. 
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Figure 3.1: Word tag and constituent representation  

 

A total of 61 bits are used, in this tag representation scheme, to encode all possible 

input symbols. 

 

3.2.3 Parsing Architecture and Algorithm 

3.2.3.1 The Architecture 

This parsing model employs a modular, hybrid parsing architecture comprising 

three connectionist and three symbolic modules. The connectionist modules are 

used for the two fundamental processes involved in syntactic parsing: phrase 

boundary identification and phrase structure recognition. The symbolic modules are 

used for storage and to enhance the flow of information between different 

connectionist modules. 
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3.2.3.2 Phrase Delimitation 

The phrase boundary identification, or phrase delimitation process is further broken 

down into two sub-processes; phrase delimitation requires the identification of both 

the beginning and end of a phrase or clause. These two sub-processes 

(implemented by two of the three available connectionist networks) are the right-

to-left delimiter (RLD) process to identify the beginning of a phrase, and the left-to-

right delimiter (LRD) process to identify the corresponding end of the phrase. 

 

Since the number of input symbols processed by the each of the delimiter networks 

before the beginning (or end) of a phrase is encountered is variable and not known 

a priori, a recurrent neural network that is able to sequentially process linguistic 

input is assigned to each of the delimiter processes. The recurrent network 

assigned to these tasks is the Temporal Auto-associative Simple Recurrent Network 

(TASRN) [68]. This network is shown in figure 3.2. 

 

 

Figure 3.2: The TASRN architecture used for the LRD and RLD modules  
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The TASRN architecture has recurrent connections feeding back from the hidden 

units (these represent the internal reduced description of the input representation) 

back to the input units. The network also has, as elements of its output vector, the 

phrase boundary indicator (a bit in the output vector) and all the elements of the 

previous hidden and current input vectors. This architecture is set up to achieve 

auto-associative learning of the current input and hidden state during each stage of 

processing. It provides for temporal processing of linguistic input. Its memory limit 

is also enhanced by the availability of targets at every processing stage (input 

symbol and previous hidden state are produced as part of the output vector for 

every processing stage). 

 

The phrase boundary indicator bit in the output vector of the delimiter networks 

uses a value between 0 and 1 to indicate when a phrase boundary has been 

encountered by the delimiters. A ramp followed by a step function is used to train 

this output unit; this indicates the phrase boundary when it is encountered while 

also indicating the proximity to the phrase boundary at each stage of processing a 

sequence. The output for the first symbol in a sequence is a ‘don’t care’. The output 

for the next symbol is 0. This ramps up to 0.4 for the penultimate symbol, and 

finally outputs 1 for the last symbol (beginning or end of phrase). 

 

3.2.3.3 Phrase Structure Recognition 

The Phrase Structure Recognition (PSR) module is used in the parsing model to 

classify collections of word and constituent tags as syntactic phrases, denoting each 

of these collections with a single syntactic tag. The collections of word and 

constituent symbols fed into the PSR module as input are derived from processing 

carried out by the two delimiter modules on the input sequences to the parser. 
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The PSR module is implemented using a feed-forward, Multilayer Perceptron (MLP) 

architecture, with a single hidden layer. 

 

3.2.3.4 Symbolic Parse Organisation 

While the connectionist modules cater for the linguistic constraints and actions to 

be carried out by the parser, the symbolic modules of this parser enable simple 

communication between the connectionist networks. These symbolic structures also 

allow the interpretation of the parser’s actions as a whole. Three core symbolic 

structures, a linked list and two stacks, are used for storage in this parser. A linked 

list is used to hold tag information for the words and constituents, as provided in 

the used corpus. The Parse-stack is used to store parse state information and the 

resulting parse tree for each sentence. The Input-stack holds the current input 

state. 

 

Apart from the core symbolic structures, temporary stacks are used to hold data 

passing between the RLD and LRD modules, and between the LRD and PSR 

modules. 

 

3.2.3.5 The Algorithm 

A supervisory code, the Scheduler, controls the interaction and flow of information 

between the connectionist and symbolic modules of this parsing model. The 

scheduler implements a deterministic shift-reduce parsing strategy which parses 

from right to left. The shift-reduce algorithm implemented by this parser is similar 

to that defined by Shieber [115, 116]. 

 

The parser accepts, as input, word tags and constituent tags used to annotate the 

Lancaster Parsed Corpus (LPC). Word tags represent the grammatical class of the 
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word. Constituent tags represent the syntactic phrases or clauses for a particular 

group of words and/or phrases. 

 

With this model, the parsing of each sentence commences by passing its word tags 

sequentially to the Right-to-Left delimiter (RLD) module. The passing of these word 

tags to the RLD begins with the last tag of the sentence and shifts to the left; this 

goes on until the output of the RLD triggers to indicate the beginning (left-hand 

phrase boundary) of the first phrase to be reduced. The word tags are then passed 

sequentially to the Left-to-Right (LRD) delimiter module, beginning with the left-

hand boundary tag, but now shifting to the right; this continues until the output of 

the LRD triggers to indicate the end (right-hand phrase boundary) of the first 

phrase  to be reduced. The identification of the phrase boundaries provides the 

Scheduler with enough information to define the position and width of the reduction 

window; the tags within these boundaries are passed as input to the Phrase 

Structure Recogniser (PSR) modules. The output of the PSR, a constituent tag, is a 

reduction which is then substituted for the phrase in the sentence sequence on the 

Input-stack. After these, delimitation begins again. The delimiters are reset, and 

the RLD input is drawn once again beginning from the end of the sentence stored 

on the Input-stack. This time, the input sequence to the RLD will include one non-

terminal symbol (constituent tag) amongst the remaining terminal symbols (word 

tags). 

 

The process of delimitation, followed by reduction and substitution is repeated, 

thereby continuing the parse, until the reduction produces the sentence symbol. 

The output of the parser after each shift-reduce processing stage is a phrase or 

clause represented in the labelled bracketing format. The final parser output is a 

labelled bracketing structure that encodes the parse tree for the entire sentence. 
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3.3  Reducing Saturation 

The TASRN architecture used for the delimiters, as shown in figure 3.2 [18, 19], 

has, as elements of its output vector, the phrase boundary indicator and all the 

elements of the previous hidden and current input vectors. Its target vector 

(desired response) has a similar composition. The values of the target vector 

elements need to be kept within the range of the logistic activation function, 0 to 1. 

This is to curb the tendency of the back-propagation algorithm to drive the free 

parameters of the delimiter network to infinity, thereby slowing down the learning 

process by driving the hidden neurons into saturation [94]. The purpose of this 

experiment was to select a set of input values that would reduce the tendency for 

the delimiter hidden nodes to be driven into saturation. 

 

The experiment was carried out with two sets of input values. The first set had 

input vector element values, 0 and 1. The second set involved offsetting the input 

vector element values from the first set by 0.2. That is, 0 was offset to 0.2 and 1 

was offset to 0.8. Training sessions were run with input values of 0.2 and 0.8 and 

the results were compared with sessions run with input values of 0 and 1. Training 

sessions were run till the rate of learning (rate of decrease of the RMSE) was 

empirically observed to have minimised. 2500 epochs were run with the right-to-

left delimiter (RLD) while 3500 epochs were run with the left-to-right delimiter 

(LRD). 

 

The root mean square error (RMSE) for the two sets of inputs was plotted against 

the number of epochs for the LRD and RLD as shown in figures 3.3 and 3.4. For 

both delimiters, the 0.2_0.8 inputs produced smoother RMSE curves although the 

0_1 inputs produced a lower final RMSE. The high spikes observed on the RMSE 

curves with the 0_1 inputs, compared to the very low spikes (almost smooth) 

observed with the 0.2_0.8 inputs can be attributed to the difference between the 
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low (0 and 0.2) and high (1 and 0.8) values of the input sets and the impact of this 

difference on the error calculated after each forward pass. 

 

Generalisation tests were also run for the RLD and LRD with the two sets of inputs, 

using a pure test set (this sample set is disjoint with the training set). For the RLD, 

after 2500 epochs the 0.2_0.8 input produced a sequence generalisation of 

83.4397% compared to 85.5051% produced by the 0_1 inputs. 

For the LRD, after 3500 epochs the 0.2_0.8 input produced a sequence 

generalisation of 90.445% compared to 84.1623% produced by the 0_1 inputs. 

 

From the sequence generalisation results of the experiments, the 0.2_0.8 inputs 

displayed better performance for the LRD while the 0_1 inputs displayed better 

performance for the RLD (having also displayed better RMSE values). Because of 

the difference in generalisation performance of the two input sets on the LRD and 

RLD, the 0.2_0.8 input was only temporarily chosen for the optimal learning 

rate/momentum constant experiment (This did not affect the outcome of the 

investigations as all the parameters used were the same apart from the different 

learning rate/ momentum constant cases). The 0_1 input was, however, selected 

after it still came out with better performance when trained with optimal learning 

rate/momentum constant. 
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LRD RMSE Comparison (0_1 Vs 0.2_0.8 Inputs) over 3500 epochs
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Figure 3.3: Plot of RMSE Against Number of Epochs (LRD)  

 

RLD RMSE Comparison (0_1 Vs 0.2_0.8 Inputs) over 2500 epochs

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 92 183 274 365 456 547 638 729 820 911 1002 1093 1184 1275 1366 1457 1548 1639 1730 1821 1912 2003 2094 2185 2276 2367 2458

Number of Epochs

R
M

S
E

0_1 Input

0.2_0.8 input

 

Figure 3.4: Plot of RMSE Against Number of Epochs (RLD)  
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3.4  Optimal Learning Rate/Momentum Constant 

This set of the experiments aims to improve back-propagation learning on the 

delimiters by selecting the optimal combination of learning rate type, learning rate 

(or initial learning rate) and momentum term. 

 

Three learning rate types were considered – fixed learning rate, search-then-

converge learning rate [91], and delta-bar-delta learning rate [92]. Two 

momentum constants were used; 0.9 and 0.5. The training data set, which was 

scaled down (10167 patterns and 1354 sequences) to limit training time, had 

inputs of 0.2 and 0.8. All training sessions were done with 60 hidden nodes (chosen 

because of the reduced data set) and run for 2000 epochs (uniform training 

duration for all the learning rate type/momentum constant cases). With each 

momentum constant, training sessions were carried out with learning rate, η, fixed 

at 0.01, 0.1, 0.2, 0.3, 0.35 and 0.4. After that, for each momentum constant, α, 

training sessions were carried out using the search-then-converge learning rate 

with initial learning rates of 0.01, 0.1, 0.2, 0.3, 0.35 and 0.4. 

 

Using the fixed learning rate schedule, the learning rate, η in the weight adaptation 

rule for standard back-propagation remained constant throughout the duration of 

training. The weight change, at time t+1, for weight ωij is as follows: 

∆ωij(t+1) = ηδjoi + α∆ωij(t) 

Where δj is the local gradient of node j 

 oi is the output signal of node i 

With the search-then-converge schedule, the learning rate, η in the weight 

adaptation rule above changes every time step as follows: 

 η(t) = η0/(1 + (t/τ)) 

 where η0 and τ are user-selected constants. 
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Training sessions were also run using the delta-bar-delta learning rate algorithm. 

This algorithm comprises a weight update rule and a learning rate update rule, and 

allows each weight to have its own learning rate. Each weight’s learning rate varies 

with time as training progresses. The direction of learning rate change for each 

weight depends on the direction of the weight change; if the weight change is in 

the same direction over several time steps, the learning rate for that weight is 

increased, otherwise, it is decreased. The new learning rate for each weight at 

time, t + 1, is given by:  

 ηjk(t) + κ  if ∆ωjk(t – 1) ∆ωjk(t) > 0, 

ηjk(t + 1) (1 – γ) ηjk(t)  if ∆ωjk(t – 1) ∆ωjk(t) > 0, 

 

{ 
ηjk(t)  otherwise. 

 

Where ∆ωjk(t) is the weight change, at time t, for weight ωjk 

and, κ and γ are constants 

Apart from requiring more processing time than the other two learning rate types 

considered, this learning rate type did not produce better generalisation 

performance than the other two and, so its results were not considered in the final 

performance ranking.  From the plots of RMSE against Number of epochs for the 

different learning rates/ momentum constants, the learning rate and momentum 

constant combination that gave the best outcomes (assessed by the curves that 

converged at the lowest RMSE in fewer epochs and that produced the lowest RMSE) 

are shown in table 3.1. 
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Table 3.1: Training performance for combinations of learning rate /momentum term 

Momentum 

Term 

Learning 

Rate Type 

(Initial) 

Learning 

Rate 

RMSE Epoch Rank 

0.9 Search-

then-

converge 

0.3 0.100639 1301 1 

0.9 Search-

then-

converge 

0.4 0.101999 1303 2 

0.5 Search-

then-

converge 

0.4 0.100865 1335 3 

0.5 Fixed 0.4 0.111686 1895 4 

 

The pattern and sequence generalisations (using a natural test set) for the four 

listed parameter combinations were also the best. Their generalisation 

performances are as shown in table 3.2. 

Based on the results shown in table 3.2, the search-then-converge learning rate 

with an initial rate of 0.4 and a momentum term of 0.9 were selected as the 

optimal combination. The difference in the top two ranking positions for the training 

and generalisation performance indices is because the RMSE values are calculated 

on a pattern by pattern basis (on-line mode) rather than at the sequence level. 
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 Table 3.2: Generalisation performance for combinations of learning rate/momentum 

term 

Momentum 

Term 

Learning 

Rate Type 

(Initial) 

Learning 

Rate 

% Sequence 

Generalisation 

% Pattern 

Generalisation 

Generalisation 

Performance 

Rank 

0.9 Search-

then-

converge 

0.4 72.5366 95.5343 1 

0.9 Search-

then-

converge 

0.3 72.2727 95.3443 2 

0.5 Search-

then-

converge 

0.4 71.1718 95.1693 3 

0.5 Fixed 0.4 67.3301 94.4783 4 
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3.5  Optimal Network Size 

With the number of input layer neurons already fixed by the representation 

technique used, the network size of an artificial neural network depends on the 

number of neurons in its hidden layer. This makes hidden layer neurons responsible 

for properties of the network such as the ability to learn and to generalise. If the 

number of hidden layer neurons is too small, the network will be unable to learn. If 

the number is too large, the network will over-fit its training data and therefore be 

unable to generalise. The purpose of these experiments was to determine optimal 

network sizes (this is vital for optimal network performance [93, 94]) for the right-

to-left (RLD) and left-to-right (LRD) networks by adopting, for each network, the 

number of hidden layer nodes that produced the best generalisation performance 

during training. The number of hidden layer neurons adopted for the RLD and LRD 

networks used in the existing parsing model [18, 19] were 165 and 110, 

respectively. These network sizes were chosen ahead of others because they 

produced the lowest root mean square errors during training [18, 19]. 

 

Cross-validation (as described in section 3.6) was used in this set of experiments. 

Training the delimiter networks involved halting the standard training process every 

50 epochs to run generalisation tests with the validation sets during the following 

three consecutive training epochs to obtain a gradient for generalisation 

performance. Cross-validation was also used to detect the beginning of over-fitting 

during training; training was then stopped before convergence to check for over-

fitting. Each training session was restricted to 2000 epochs to cater for cases where 

training was not stopped automatically. 

 

In choosing the optimal number of hidden layer nodes for the delimiter networks, a 

theoretical “optimal” number of hidden nodes was calculated for each delimiter by 

equating the number of its weights to the sum of the products of sequence lengths 
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and their frequencies. Hidden node values were then selected between these 

“optimal” number of hidden nodes and the number of hidden nodes used in the 

existing parser. 77 and 61 hidden nodes were derived for the RLD and LRD, 

respectively. For the RLD, six sizes were considered: 77, 88, 107, 126, 145 and 

165 hidden nodes. The maximum test generalisation and training performance 

exhibited by each hidden layer size in the course of training was recorded and 

plotted as shown in fig. 3.5.  

 

For the LRD, three sizes were considered: 61, 85 and 110 hidden nodes. The 

maximum test generalisation and training performance exhibited by each hidden 

node in the course of training was recorded and plotted as shown in fig. 3.6.  

 

For the RLD, as shown in fig. 3.5, the network size with 145 hidden nodes produced 

the best test generalisation (87.91%) and was therefore chosen as the optimal 

network size for the RLD. 

 

For the LRD, as shown in fig. 3.6, the network size with 85 hidden nodes produced 

the best test generalisation (89.18%) and was therefore chosen as the optimal 

network size for the RLD. 
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Figure 3.5: Training/Generalisation performance for different RLD network sizes 
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Figure 3.6: Training/Generalisation performance for different LRD network sizes 
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3.6  Using Cross-validation for Automatic Early Stopping 

During supervised training of neural networks, the objective is usually to achieve 

optimal generalisation performance. Generalisation performance is the performance 

of the network when presented with examples it has not seen before. However, 

with training factors such as large parameter space, trained networks stand the risk 

of over-fitting [95]. This is a situation during network training where the training 

performance gets better while the generalisation performance gets worse.  

 

Over-fitting can be checked with the use of cross-validation, which is a standard 

technique in statistics [96]. An approach of cross-validation, known as the hold-out 

method [94], involves dividing the available data set into two sets, a training set 

and a test set. The training set is further split into two disjoint sets, an estimation 

set and a validation set.  The idea is to train the network only on the estimation set 

and occasionally evaluate it on the validation set. 

 

To curb over-fitting, a cross-validation procedure known as the early stopping 

method of training [94] is used. This procedure is used to detect when over-fitting 

starts during training; training is then stopped before convergence to check the 

over-fitting. In carrying out this procedure, the synaptic weights of the neural 

network are fixed after a period of estimation (training). A forward pass of the 

network is then run, using the validation set. After error measurements have been 

taken for all examples of the validation set, the training resumes for another period 

and the process continues. Training is then stopped based, not on the performance 

of the training data but on the performance of the validation data. 

 

For this work, network training and test samples were drawn from the Lancaster 

Parsed Corpus [20]. Data from the LPC was passed through some complexity 

constraint [18, 19] before the training and test data were chosen. After the 
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complexity constraint was applied, every 8th sentence was extracted for the training 

(estimation) set. To ensure that the validation and test sets do not have sentences 

that are present in the training set (this is essential), every 8th + 1 sentence was 

extracted for the validation set and every 8th + 2 sentence was extracted for the 

test set. After the training and test data had been processed to RLD and LRD 

training and test sequences, the estimation set was compared with the validation 

set and any sequence that occurred in both sets was removed from the validation 

set, making both sets disjoint. The same process was carried out for the estimation 

and test sets and the validation and test sets. All three sets, were, therefore, 

disjoint. For the Left-to-right delimiter (LRD), the estimation set had 4068 

sequences, while the validation set had 2292 sequences and the test set, 1871 

sequences. For the Right-to-left delimiter (RLD), the estimation set had 4060 

sequences while the validation set had 2663 sequences and the test set, 2262 

sequences. 

 

 Training the delimiters involved halting standard training every 50 epochs to run 

generalisation tests (with the validation sets) for a further three consecutive 

training epochs. Again, the purpose here is to determine a gradient for the 

generalisation performance. This implies that generalisation tests were carried out 

at epochs 50, 51, 52, 100, 101, 102, 150, 151, 152 and so on. If the cross-

validation test generalisation decreased over 5 successive generalisation tests, 

training was stopped automatically. The result of the training would be the set of 

weights that came out with the best test generalisation; only one duplicate weight 

set is needed for this [102]. 
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3.7  Sentence Parse Performance 

On completion of the experiments to optimise the temporal sequence processing 

modules of the original parsing model [18, 19], the delimiter module and sentence 

level performances for the original and refined models were compared. 

 

For the delimiter module performance, the optimal weight sets obtained for the RLD 

and LRD, were used to run a test on a test set not seen by the delimiters during 

training. This same test set was used to test the original delimiter modules, using 

the original weight sets. 

 

The results obtained from these tests are as shown in table 3.3. 

Table 3.3: Module-level performance for refined parser 

Module Original Model 

Delimiter (Test 

Generalisation) 

Refined Model 

Delimiter  (Test 

Generalisation) 

Right-to-Left Delimiter 84.8806% 83.8638% 

Left-to-Right Delimiter 88.5088% 87.6537% 

 

 

For the sentence level tests, the optimal weight sets for the delimiters were 

plugged into the whole parser. PARSEVAL measures, a widely used standard for 

assessing the performance of statistical broad coverage parsing models [103], was 

used. This involved measuring the parsers’ labelled precision and labelled recall. 

Labelled precision is the ratio of the number of correct constituents output by the 

parser to the number of constituents output by the parser. Labelled recall is the 

ratio of correct constituents output by the parser to the number of constituents in 

the Treebank parse. 
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Labelled Precision = (no. of correct constituents)/(no. of constituents output by 

parser) 

 

Labelled Recall = (no. of correct constituents output by parser)/(no. of constituents 

in Treebank parse) 

 

The average labelled precision/recall obtained for the original and refined parsers 

are shown in table 3.4. 

 

Table 3.4: Sentence-level performance for refined parser 

Original Parser (Average Labelled 

Precision/Recall) 

Refined Parser (Average Labelled 

Precision/Recall) 

73.3% 72.5% 

 

From the module and sentence level performance results obtained, the refinements 

on the temporal sequence processing modules of the parser did not yield any 

significant improvement in the parsers performance. However, the parser has 

maintained its ability to learn and it is envisaged that it is adaptable to other 

corpora (given its representation and modular architecture which should make it 

independent of individual corpora).  To confirm its adaptability to other corpora, the 

parser will be extended to the widely used Wall Street Journal Corpus in the next 

chapter. 
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4. THE CORPUS-BASED PARSING MODEL: 

ADAPTED TO THE WALL STREET JOURNAL 

CORPUS 

4.1 Introduction 

As part of the aims of this work, investigations have been carried out into the 

generic nature of the corpus-based, connectionist parsing model [18, 19, 111] used 

for this project. This investigation has been with a view to demonstrating that the 

parsing model is adaptable to other corpora and for other syntactic and semantic 

annotations without its architecture or its algorithm being changed. This parser has 

been trained and successfully evaluated on the Lancaster Parsed Corpus (LPC) [20]. 

However, the widely used Wall Street Journal (WSJ) sections of the Penn Treebank 

Corpus [101] have become the internationally accepted benchmark corpus for 

parsing models [5, 6, 7, 98, 99, 100]. This has informed the need to adapt the 

parser to the WSJ corpus. The WSJ corpus used is the BLLIP (Brown Laboratory for 

Linguistic Information Processing) 1987-89 Corpus [90] which overlaps the WSJ 

portion of the Penn Treebank Corpus. 

 

Adapting the existing parsing model to the WSJ Corpus required the extraction and 

syntactic grouping of all tags used in the corpus. Binary input representations were 

then designed for the tags to make them compatible with the parser. Training, 

cross-validation and test data were generated from the 1989 section of the corpus 

for the left-to-right delimiter (LRD), right-to-left delimiter (RLD) and phrase 

structure recogniser (PSR) modules of the parser. These modules, which are the 

connectionist modules of the hybrid parser, were then trained and the optimal 

weight sets obtained for the sentence level evaluation of the parser. 

 

Section 4.2 presents the nature of the BLLIP 1987-89 WSJ Corpus; its content and 

tagging convention. Section 4.3 deals with the input representations designed for 
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the WSJ tags. In section 4.4, a parsing example of a sentence from the WSJ Corpus 

is presented. Section 4.5 focuses on the training, cross-validation and test data sets 

generated for the left-to-right delimiter (LRD), right-to-left delimiter (RLD) and 

phrase structure recogniser (PSR) modules of the parser. In section 4.6, the 

training and generalisation performances of the delimiter networks are assessed. 

The training and generalisation performances of the phrase recognition network are 

assessed in section 4.7 while the sentence level performance of the parsing model 

on the WSJ Corpus is dealt with in section 4.8. The outcome of adapting the parsing 

model to the WSJ Corpus is discussed in section 4.9. 

 

 

4.2 The BLLIP 1987-89 Wall Street Journal CORPUS 

4.2.1 Corpus Content 

The BLLIP 1987-89 Wall Street Journal (WSJ) Corpus [90] is a pre-parsed newswire 

corpus which contains a complete, Penn Treebank II-style [101, 119] parsing of the 

three-year Wall Street Journal archive (provided by Dow Jones, Inc.) from the 

ACL/DCI (Association for Computational Linguistics/ Data Collection Initiative) 

Corpus of American English. This corpus contains about thirty million words of text, 

and its parsing and part-of-speech (POS) annotation were done using statistically-

based methods developed by Eugene Charniak, Don Blaheta, Niyu Ge, Keith Hall, 

John Hale and Mark Johnson [90]  of the Brown Laboratory for Linguistic 

Information Processing. All the processing for this corpus was implemented by 

machine. The processing comprised basic parsing, grammatical/functional tag 

assignment, full noun-phrase co-reference identification, pronoun reference 

identification, and empty node insertion. 
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The BLLIP 1987-89 WSJ Corpus both overlaps and supplements the one million-

word, 1989 Wall Street Journal section of the Penn Treebank Corpus. In a bid to 

save on parsing time, sentences of length greater than 70 words (including 

punctuations) were not included in this corpus. The developers report that in about 

one news story in a thousand, there was some parser error. These parser errors 

imply that stories in which they occur get cut short; errors led to partial parses. 

 

4.2.2 Tagging Convention 

4.2.2.1 The Penn Treebank II Convention 

The Penn Treebank II bracketing convention was implemented during the second 

phase of the Penn Treebank Project at the University of Pennsylvania, U.S.A. The 

syntactic annotation scheme used is designed to allow the extraction of simple 

predicate/argument structure. 

 

In addition to the standard syntactic constituent tags (e.g. NP, PP, VP, etc.) 

functional tags are also assigned to constituents under this scheme. These 

functional tags denote text categories (list markers, titles, headlines and datelines), 

grammatical functions (surface subject, logical subjects in passives, true clefts, non 

NPs that function as NPs, clausal and NP adverbials, non VP predicates, topicalized 

and fronted constituents, closely related – adjuncts -) and semantic roles 

(vocatives, direction and trajectory, location, manner, purpose and reason, 

temporal phrases). For this work, as with other reported work on the WSJ Corpus 

[5, 6, 7, 98, 99, 100], only the standard syntactic constituent tags are used; this is 

all that is needed for skeletal syntactic analysis. 

 

This scheme also annotates null elements in a wide range of cases. 
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4.2.2.2 Exceptions to the Penn Treebank II Convention 

All parsing in the BLLIP 1987-89 WSJ Corpus is done using the Penn Treebank II 

conventions with four exceptions. The first exception is that certain auxiliary verbs 

(e.g. “have”, “been”, etc.) are deterministically labelled AUX or AUXG (e.g., 

“having”).  

 

The next exception to the Penn Treebank II scheme in this corpus is that root nodes 

are given the new non-terminal label S1 (as opposed to the empty string in the 

Penn Treebank).  

 

Another exception is that numbers attached to non-terminals indicating co-

reference are preceded by “#” (as opposed to “-” in the Penn Treebank).  

 

The fourth exception is that two new grammatical function tags, PLE (denoting 

pleonastic, a form of non-coreferential pronouns) and DEI (denoting deictic, a form 

of non-coreferential pronouns) have been added. 

 

In setting up this corpus, sentences of length greater than 70 words (including 

punctuations) were ignored. 

 

4.2.3 The BLLIP 1987-89 WSJ Corpus Vs The Lancaster Parsed 

Corpus 

Like the Lancaster Parsed Corpus (LPC), the syntactic part of the Penn Treebank-II 

tagset (used in tagging the Wall Street Journal – WSJ -) is based on that of the 

Brown Corpus. However, the annotation scheme used for the WSJ Corpus is an 

extended and somewhat modified form of that used for the LPC [119].  
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Whereas word tags in the LPC are quite detailed and unique to particular lexical 

items, the Penn Treebank tag-set is designed in such a way to eliminate lexical 

redundancy. For example, the LPC distinguishes five different forms of main verbs 

(VB – base form of lexical verb (uninflected present tense, infinitive); VBD – past 

tense of lexical verb; VBG – present participle or gerund of lexical verb; VBN – past 

participle of lexical verb; VBZ – 3rd person singular of verb). This same paradigm is 

also used in the LPC for the word, have, irrespective of whether it is used as a main 

or auxiliary verb (i.e. HV, HVD, HVG, HVN, HVZ). The LPC also provides tags for 

three forms of do (DO – base form; DOD – past tense; DOZ – third person singular 

present) and eight forms of be (BE - be; BED - were; BEDZ - was; BEG - being; 

BEM - am; BEN - been; BER – are, ‘re; BEZ – is, ‘s). On the contrary, since the 

distinctions between the forms of VB on the one hand and the forms of HV, DO and 

BE on the other hand are lexically recoverable, they are eliminated in the tag-set 

for the WSJ; only the five forms of VB are used as shown in table 4.1 below. 
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Table 4.1: Elimination of lexically recoverable distinctions in verbs 

Word Word tag 

Drink VB 

Drinks VBZ 

Drank VBD 

Drinking VBG 

Drunk VBN 

Be VB 

Is VBZ 

Was VBD 

Being VBG 

Been VBN 

Do VB 

Does VBZ 

Did VBD 

Doing VBG 

Done VBN 

Have VB 

Has VBZ 

Had VBD 

Having VBG 

Had VBD 

 

Another example of the elimination of lexical redundancy in the WSJ Corpus, as 

opposed to the LPC, is the case of tagging words that precede articles in noun 

phrases. In the LPC, the tags ABL, ABN and ABX are used to denote pre-qualifiers 
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(quite, rather, such), pre-quantifiers (all, half, many, nary) and both, respectively. 

However, in the WSJ Corpus, a single tag, PDT is used to denote all these words (all 

categorised as pre-determiners). 

 

Null tags are used in the WSJ Corpus in cases such as WH-movement, 

topicalization, indicating which lexical NP is to be interpreted as the null subject of 

an infinitive complement clause and aiding the interpretation of other grammatical 

structure where constituents do not appear in their default positions. Null tags are 

not used in the LPC. Also, the tags, AUX and AUXG are used for auxiliary verbs in 

the BLLIP WSJ Corpus. Auxiliary verbs are not denoted in the LPC. 

 

Compared to the 184 tags (143 tags for words and punctuations; 41 tags for 

constituents) used in the LPC, 84 (57 tags for words and punctuations; 27 tags for 

constituents – excluding the functional tags -) are used in the BLLIP WSJ Corpus. 

The Penn Treebank II tags, therefore represent coarser syntactic categories, 

compared to the syntactic categories represented by the LPC tags. 

 

The BLLIP WSJ Corpus consists of longer sentences than the LPC. Sentences of 

length greater than 70 words (including punctuations) were not included in the 

BLLIP WSJ Corpus. Most sentences over 20-25 words in length found in the LOB 

corpus were omitted from the LPC. 

 

4.3 Tag Representations 

The first step in adapting the original parsing model [18, 19, 111] (which was 

trained on the Lancaster Parsed Corpus) to the BLLIP WSJ Corpus was to design 

binary input representations for the word and constituent tags used in the corpus. 

The same technique used for LPC tag representation [18, 19, 111] in the existing 

parser was adopted because of its success. This technique sees the creation of 
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input representations that aid the training process by segmenting the input space 

into different regions that correspond to different word and constituent tag types.  

 

Each segment has an associated signalling bit (its first bit) that is only active when 

an input symbol belongs to a syntactic group represented by that sub-section. The 

remaining bits in the segment are used to represent the particular input symbol. 

This ensures that the representation of any two symbols in different syntactic 

groups will be orthogonal to each other. 

 

The fifty-seven word tags encoded were placed into five syntactic groups: 

punctuations, co-ordinate conjunction, preposition/sub-ordinate conjunction, nouns 

and verb groups. 19 bits of the 46-bit input space were used to represent word 

tags. As an example, the word tag, NNP (Proper noun, singular) is represented as 

follows: 

0000000100011000000000000000000000000000000000   

 

Punctuations, which were removed in the processing of LPC sentences are included 

here, and treated the same as words. Although they add to the complexity of the 

parsing task, they are expected to provide linguistic cues. This should aid decision 

making during parsing. 

  

The constituent tags were placed into thirteen groups according to their syntactic 

categories: adjective phrase, adverb phrase, conjunction phrase, fragment, phrase 

containing an interjection, noun phrase, prepositional phrase, phrase within 

parentheses, reduced relative clause, sentence/clause, unlike co-ordinated phrase, 

verb phrase, and unknown/uncertain category. 27 bits of the 46-bit input space 

were used to represent constituent tags. As an example, the constituent tag, NP 

(Noun phrase) is represented as follows: 

0000000000000000000000000000000001001000000000 
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The organisation of the input representation space is as shown in figure 4.1. 
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Figure 4.1: Word tag and constituent tag representation 

 

4.4 A Parsing Example 

A high level description of the parsing process, using the Wall Street Journal Corpus 

is presented in this section. The following sentence is used to facilitate this 

description: 

The rate will increase 0.25 point each quarter beginning in the third 

quarter of the financing. 

The input to the parser is a sequence of word tags that correspond to the words of 

the sentence. Therefore, the input to the parser is as follows: 

DT NN MD VB CD NN DT NN VBG IN DT JJ NN IN DT NN . 

For clarity, the actual words of the sentence will be used for description in this 

section. 
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On being presented with each sentence for parsing, the Scheduler first delimits the 

sentence with asterisks. These asterisks are used as begin and end markers before 

all the input symbols are pushed onto the Input-stack from left-to-right. For this 

sentence the initial content of the Input-stack is: 

* The rate will increase 0.25 point each quarter beginning in the third 

quarter of the financing. * 

Table 4.2: A parsing example 

 Input-stack Extracted 

Phrase 

Reduction Parse-stack 

Entries 

1 * The rate will increase 0.25 

point each quarter beginning 

in the third quarter of the 

financing. * 

the 

financing 

NP (NP the financing) 

2 * The rate will increase 0.25 

point each quarter beginning 

in the third quarter of NP. * 

of NP PP (PP of (NP the 

financing)) 

3 * The rate will increase 0.25 

point each quarter beginning 

in the third quarter PP. * 

the third 

quarter 

NP (NP the third 

quarter) (PP of 

(NP the 

financing)) 

4 * The rate will increase 0.25 

point each quarter beginning 

in NP PP. * 

NP PP NP (NP (NP the third 

quarter) (PP of 

(NP the 

financing))) 

5 * The rate will increase 0.25 

point each quarter beginning 

in NP. * 

in NP PP (PP in (NP (NP the 

third quarter) (PP 

of (NP the 

financing)))) 

6 * The rate will increase 0.25 

point each quarter beginning 

PP. * 

beginning 

PP 

PP (PP beginning (PP 

in (NP (NP the 

third quarter) (PP 

of (NP the 

financing))))) 

7 * The rate will increase 0.25 

point each quarter PP. * 

each 

quarter 

NP (NP each quarter) 

(PP beginning (PP 

in (NP (NP the 

third quarter) (PP 
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of (NP the 

financing))))) 

8 * The rate will increase 0.25 

point NP PP. * 

0.25 point NP (NP 0.25 point) 

(NP each quarter) 

(PP beginning (PP 

in (NP (NP the 

third quarter) (PP 

of (NP the 

financing))))) 

9 * The rate will increase NP 

NP PP. * 

increase NP 

NP PP 

VP (VP increase (NP 

0.25 point) (NP 

each quarter) (PP 

beginning (PP in 

(NP (NP the third 

quarter) (PP of 

(NP the 

financing)))))) 

10 * The rate will VP. * will VP VP (VP will (VP 

increase (NP 0.25 

point) (NP each 

quarter) (PP 

beginning (PP in 

(NP (NP the third 

quarter) (PP of 

(NP the 

financing))))))) 

11 * The rate VP. * The rate NP (NP The rate) (VP 

will (VP increase 

(NP 0.25 point) 

(NP each quarter) 

(PP beginning (PP 

in (NP (NP the 

third quarter) (PP 

of (NP the 

financing))))))) 

12 * NP VP. * NP VP. S (S (NP The rate) 

(VP will (VP 

increase (NP 0.25 
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point) (NP each 

quarter) (PP 

beginning (PP in 

(NP (NP the third 

quarter) (PP of 

(NP the 

financing))))))) .) 

13 * S * S S1 (S1 (S (NP The 

rate) (VP will (VP 

increase (NP 0.25 

point) (NP each 

quarter) (PP 

beginning (PP in 

(NP (NP the third 

quarter) (PP of 

(NP the 

financing))))))) .)) 

 

As indicated in Table 4.2 above, at stage one of the parsing process for the given 

sentence, the RLD and LRD have extracted the financing as the first valid syntactic 

phrase. This phrase consists of two symbols; the PSR network requires a phrase 

length of ten symbols, in addition to the six look-back and one look-ahead symbols. 

An additional eight null symbols are therefore added to the extracted phrase to pad 

it out to the ten symbol requirement. The input to the recogniser is therefore: 

beginning in the third quarter of the financing ^ ^ ^ ^ ^ ^ ^ ^ . 

The actual phrase to be recognised is emphasized in bold and underlined as well. 

The six symbols (seen above as words, but presented to the parser as part-of-

speech tags) to the left of the actual phrase are the look-back symbols, as 

extracted by the RLD. The symbol to the right of the actual phrase is the look-

ahead symbol, as extracted by the LRD. The PSR network performs a forward-pass 

computation and the corresponding Euclidean distances between the resulting 
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output vector and the binary representations of all the constituent tags in the tag 

database indicates NP to be the nearest match. NP is attached to the financing and 

the following bracketing sequence is pushed onto the Parse-stack: 

(NP the financing) 

The Input-stack is then updated to reflect this ‘reduction’ by pushing back on the 

six look-back symbols, the constituent tag, NP, and the look-ahead symbol. The 

Input-stack now holds the following sequence: 

* The rate will increase 0.25 point each quarter beginning in the third quarter of 

NP. * 

As shown in table 4.1, at processing stage two, the RLD and LRD have extracted of 

NP as the next valid phrase. Again, an additional eight null symbols are required to 

pad out the phrase. At this stage, the input to the recogniser is: 

quarter beginning in the third quarter of NP ^ ^ ^ ^ ^ ^ ^ ^ . 

The Recogniser network performs a forward-pass computation and PP is selected as 

the nearest matching constituent tag. The content of the Parse-stack now becomes: 

(PP of (NP the financing)) 

The Input-stack is then updated to reflect this ‘reduction’ by pushing back on the 

six look-back symbols, the constituent tag, PP, and the look-ahead symbol. The 

Input-stack now holds the following symbols: 

* The rate will increase 0.25 point each quarter beginning in the third quarter PP. * 

At the third processing stage, the RLD and LRD extract the phrase, the third 

quarter. This phrase is padded out with seven additional null symbols to meet the 

ten-symbol input requirement for the Recogniser. The input to the Recogniser is: 

0.25 point each quarter beginning in  the third quarter ^ ^ ^ ^ ^ ^ ^ PP 

The Recogniser network performs a forward-pass computation and NP is selected as 

the nearest matching constituent tag. The content of the Parse-stack now becomes: 

(NP the third quarter) (PP of (NP the financing)) 
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The Input-stack is then updated by pushing back on the six look-back symbols, the 

constituent tag, NP, and the look-ahead symbol. The reduction has now been 

implemented and the Input-stack now holds the following symbols: 

* The rate will increase 0.25 point each quarter beginning in NP PP. * 

The fourth phrase to be extracted from the sentence, by the RLD and LRD, is NP 

PP. This phrase is padded out with eight null symbols before the six look-back and 

one look-ahead symbols are added to make up the Recogniser input. The 

Recogniser input at this stage is: 

0.25 point each quarter beginning in  NP PP ^ ^ ^ ^ ^ ^ ^ ^ . 

The Recogniser network then performs a forward-pass computation in response to 

the input above. NP is selected as the nearest match constituent tag. The content 

of the Parse-stack therefore changes to the following: 

(NP (NP the third quarter) (PP of (NP the financing))) 

The Input-stack is then updated to reflect this ‘reduction’ by pushing back on the 

six look-back symbols, the constituent tag, NP, and the look-ahead symbol. The 

Input-stack now holds the following symbols: 

* The rate will increase 0.25 point each quarter beginning in NP. * 

At the fifth processing stage, the phrase, in NP is extracted by the RLD and LRD. 

Again, an additional eight null symbols are required to pad out the phrase. At this 

stage, the input to the recogniser is: 

increase 0.25 point each quarter beginning in NP ^ ^ ^ ^ ^ ^ ^ ^ . 

The Recogniser network then performs a forward-pass computation in response to 

the input above. PP is selected as the nearest match constituent tag. The content of 

the Parse-stack therefore changes to the following: 

(PP in (NP (NP the third quarter) (PP of (NP the financing)))) 

The Input-stack is then updated by pushing back on the six look-back symbols, the 

constituent tag, PP, and the look-ahead symbol. The reduction has now been 

performed and the Input-stack now holds the following symbols: 

* The rate will increase 0.25 point each quarter beginning PP. * 
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The sixth phrase to be extracted from the sentence, by the RLD and LRD, is 

beginning PP. This phrase is padded out with eight null symbols before the six look-

back and one look-ahead symbols are added to make up the Recogniser input. The 

Recogniser input at this stage is: 

will increase 0.25 point each quarter beginning PP ^ ^ ^ ^ ^ ^ ^ ^ . 

The Recogniser network then performs a forward-pass computation in response to 

the input above. PP is selected as the nearest match constituent tag. The content of 

the Parse-stack therefore changes to the following: 

(PP beginning (PP in (NP (NP the third quarter) (PP of (NP the financing))))) 

The Input-stack is then updated by pushing back on the six look-back symbols, the 

constituent tag, PP, and the look-ahead symbol. The reduction has now been 

performed and the Input-stack now holds the following symbols: 

* The rate will increase 0.25 point each quarter PP. * 

At the seventh processing stage, the phrase, each quarter is extracted by the RLD 

and LRD. Again, an additional eight null symbols are required to pad out the 

phrase. At this stage, the input to the recogniser is: 

The rate will increase 0.25 point each quarter ^ ^ ^ ^ ^ ^ ^ ^ PP 

The Recogniser network then performs a forward-pass computation in response to 

the input above. NP is selected as the nearest match constituent tag. The content 

of the Parse-stack therefore changes to the following: 

(NP each quarter) (PP beginning (PP in (NP (NP the third quarter) (PP of (NP the 

financing))))) 

The Input-stack is then updated by pushing back on the six look-back symbols, the 

constituent tag, NP, and the look-ahead symbol. The reduction has now been 

performed and the Input-stack now holds the following symbols: 

* The rate will increase 0.25 point NP PP. * 

The eighth phrase extracted by the RLD and LRD is 0.25 point. Eight additional null 

symbols are required to pad out the phrase. As there were not enough available 

input symbols on the left of the phrase to make up the required six look-back 
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symbols, the RLD network would have used an additional null symbol to pad the 

number of look-back symbols to the desired length. At this stage, the input to the 

recogniser is: 

* The rate will increase ^ 0.25 point ^ ^ ^ ^ ^ ^ ^ ^ NP 

The Scheduler arranges the null padding to the right of the look-back symbols. This 

ensures that the look-back symbols are positioned further away from the phase. 

The Recogniser network then performs a forward-pass computation in response to 

the input above. NP is selected as the nearest match constituent tag. The content 

of the Parse-stack therefore changes to the following: 

(NP 0.25 point) (NP each quarter) (PP beginning (PP in (NP (NP the third quarter) 

(PP of (NP the financing))))) 

The Input-stack is then updated by pushing back on the look-back symbols, the 

constituent tag, NP, and the look-ahead symbol. The reduction has now been 

performed and the Input-stack now holds the following symbols: 

* The rate will increase NP NP PP. * 

At the ninth processing stage, the phrase, increase NP NP PP is extracted by the 

RLD and LRD networks. This time, an additional six null symbols are required to 

pad out the phrase. Again, there were not enough available input symbols on the 

left of the phrase to make up the required six look-back symbols; the RLD network 

would have used two additional null symbols to pad the number of look-back 

symbols to the desired length. At this stage, the input to the recogniser is: 

* The rate will ^ ^ increase NP NP PP ^ ^ ^ ^ ^ ^ . 

The Recogniser network then performs a forward-pass computation in response to 

the input above. VP is selected as the nearest match constituent tag. The content of 

the Parse-stack therefore changes to the following: 

(VP increase (NP 0.25 point) (NP each quarter) (PP beginning (PP in (NP (NP the 

third quarter) (PP of (NP the financing)))))) 
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The Input-stack is then updated by pushing back on the look-back symbols, the 

constituent tag, VP, and the look-ahead symbol. The reduction has now been 

performed and the Input-stack now holds the following symbols: 

* The rate will VP. * 

At the tenth processing stage, the phrase, will VP is extracted by the RLD and LRD 

networks. Additional eight null symbols are required to pad out the phrase. Again, 

there were not enough available input symbols on the left of the phrase to make up 

the required six look-back symbols; the RLD network would have used three 

additional null symbols to pad the number of look-back symbols to the desired 

length. At this stage, the input to the recogniser is: 

* The rate ^ ^ ^ will VP ^ ^ ^ ^ ^ ^ ^ ^ . 

The Recogniser network then performs a forward-pass computation in response to 

the input above. VP is selected as the nearest match constituent tag. The content of 

the Parse-stack therefore changes to the following: 

(VP will (VP increase (NP 0.25 point) (NP each quarter) (PP beginning (PP in (NP 

(NP the third quarter) (PP of (NP the financing))))))) 

The Input-stack is then updated by pushing back on the look-back symbols, the 

constituent tag, VP, and the look-ahead symbol. The reduction has now been 

performed and the Input-stack now holds the following symbols: 

* The rate VP. * 

The eleventh phrase to be extracted by the RLD and LRD networks is The rate. 

Eight additional null symbols are required to pad out the phrase. As there were not 

enough available input symbols on the left of the phrase to make up the required 

six look-back symbols, the RLD network would have used five additional null 

symbols to pad the number of look-back symbols to the desired length. At this 

stage, the input to the recogniser is: 

* ^ ^ ^ ^ ^ The rate ^ ^ ^ ^ ^ ^ ^ ^ VP 
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The Recogniser network then performs a forward-pass computation in response to 

the input above. NP is selected as the nearest match constituent tag. The content 

of the Parse-stack therefore changes to the following: 

(NP The rate) (VP will (VP increase (NP 0.25 point) (NP each quarter) (PP beginning 

(PP in (NP (NP the third quarter) (PP of (NP the financing))))))) 

The Input-stack is then updated by pushing back on the look-back symbol, the 

constituent tag, VP, and the look-ahead symbol. The reduction has now been 

performed and the Input-stack now holds the following symbols: 

* NP VP. * 

The twelfth phrase to be extracted by the RLD and LRD networks is NP VP.. Seven 

additional null symbols are required to pad out the phrase. As there were not 

enough available input symbols on the left of the phrase to make up the required 

six look-back symbols, the RLD network would have used five additional null 

symbols to pad the number of look-back symbols to the desired length. At this 

stage, the input to the recogniser is: 

* ^ ^ ^ ^ ^ NP VP . ^ ^ ^ ^ ^ ^ ^ * 

The Recogniser network then performs a forward-pass computation in response to 

the input above. S is selected as the nearest match constituent tag. The content of 

the Parse-stack therefore changes to the following: 

(S (NP The rate) (VP will (VP increase (NP 0.25 point) (NP each quarter) (PP 

beginning (PP in (NP (NP the third quarter) (PP of (NP the financing)))))))) 

The Input-stack is then updated by pushing back on the look-back symbol, the 

constituent tag, S, and the look-ahead symbol. The reduction has now been 

performed and the Input-stack now holds the following symbols: 

* S * 

At the thirteenth processing stage, the phrase S is extracted by the RLD and LRD 

networks. Nine additional null symbols are required to pad out the phrase. Again, 

there were not enough available input symbols on the left of the phrase to make up 

the required six look-back symbols; the RLD network would have used five 
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additional null symbols to pad the number of look-back symbols to the desired 

length. At this stage, the input to the recogniser is: 

* ^ ^ ^ ^ ^ S ^ ^ ^ ^ ^ ^ ^ ^ ^ * 

The Recogniser network then performs a forward-pass computation in response to 

the input above. S1 is selected as the nearest match constituent tag. The content of 

the Parse-stack therefore changes to the following: 

(S1 (S (NP The rate) (VP will (VP increase (NP 0.25 point) (NP each quarter) (PP 

beginning (PP in (NP (NP the third quarter) (PP of (NP the financing))))))))) 

As the constituent tag, S1 represents the entire sentence structure (the ‘root’ of the 

parse tree), its selection by the Recogniser denotes the end of the ‘shift-reduce’ 

parsing process. The last state of the Parse-tree becomes the final parse state. This 

state corresponds to the traditional tree representation illustrated in figure 4.2. 

S1 

 

S 

 

 

NP  VP 

 

VP 

 

NP NP PP 

      PP 

     NP 

 

      NP        PP 

 

NP 

 

 

DT  NN MD VB    CD  NN   DT  NN    VBG    IN DT    JJ    NN        IN DT  NN        . 

The rate will increase 0.25 point each quarter beginning in the   third quarter       of  the  financing   .  

Figure 4.2: Parse tree denoting an example parse from the WSJC 
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4.5  Training, Validation and Test Samples 

Training, cross-validation and test data sets have been selected from the 1989 

section of the corpus (The BLLIP WSJ Corpus consists of 3 sections: 1987, 1988 

and 1989). This has been done to align them with the WSJ section of the Penn 

Treebank which consists of material from the 1989 archive of the journal.  

 

The 1989 section of the BLLIP WSJ Corpus comprises 32 sub-sections (10 – 41). 

Pre-parsed sentences from all the sub-sections have been used to provide data to 

the different sets; all the sub-sections were collapsed into one file. There are 

40,043 pre-parsed sentences in the 1989 section of the BLLIP WSJ Corpus. 

 

In sampling data for the training set, every 800th sentence, beginning from the first 

sentence, was extracted from the corpus. 206 sentences (0.51% of the 1989 

section of the BLLIP WSJ Corpus) were selected for the training data sets. The 

number of sentences in the training set was arrived at after attempts to incorporate 

more sentences led to impractically long training times, given the computer 

resource used (Intel Pentium 4 CPU 1.70 GHz; 1.70GHz, 1 GB of RAM). Every 160th 

sentence, beginning from the second sentence (i.e. the 160th + 1 sentence), was 

extracted for the test set. 1059 sentences (2.64% of the 1989 section of the BLLIP 

WSJ Corpus) were selected for the test data sets. Every 2400th sentence, beginning 

from the third sentence (i.e. the 2400th + 2 sentence), was picked for the cross-

validation set. 74 sentences (0.18% of the 1989 section of the BLLIP WSJ Corpus) 

were selected for the cross-validation data sets. This provides the needed 

generalisation test for the cross-validation and test data sets, as the data are 

extracted in such a way that the different data sets are independent samples of the 

corpus. Complexity constraints were placed on these data to make them compatible 
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with data used in reported work [5]. To restrict the complexity of the data, only 

sentences of 40 words or less have been picked for all 3 data sets. Another 

complexity constraint imposed has been to restrict the valence of the right-to-left 

delimiter to 17 words; if the RLD has to process more than 17 symbols before the 

beginning of a phrase is found, the sentence containing that phrase is not used in 

training, cross-validation or testing. 

Table 4.3: RLD, LRD and PSR data generation 

  

RLD Input 

Sequence 

LRD Input 

Sequence 

Recogniser Input 

Pattern 

Recogniser 

Output Pattern 

1 

* . CD , CD NNP 

VBD NNS NNP CC , 

VBD 

NNP NNS VBD 

NNP CD , CD . * 

^ 

VBD , CC NNP NNS 

VBD NNP CD , CD ^ 

^ ^ ^ ^ ^ . NP 

2 

* . NP VBD NNS 

NNP CC , VBD RB 

CC NNP NNS 

VBD NP . * ^ 

RB VBD , CC NNP NNS 

VBD NP ^ ^ ^ ^ ^ ^ 

^ ^ . VP 

3 

* . VP NNS NNP CC 

, VBD RB NN DT 

VBD , CC NNP 

NNS VP . * 

DT NN RB VBD , CC 

NNP NNS ^ ^ ^ ^ ^ 

^ ^ ^ VP NP 

4 

* . VP NP CC , VBD 

RB NN DT 

VBD , CC NP VP 

. * ^ 

DT NN RB VBD , CC 

NP VP ^ ^ ^ ^ ^ ^ 

^ ^ . S 

5 

* . S CC , VBD RB 

NN DT CC * ^ 

DT NN RB VBD , 

CC S 

* CC DT NN RB ^ 

VBD ^ ^ ^ ^ ^ ^ ^ 

^ ^ , VP 

6 

* . S CC , VP RB NN 

DT CC * ^ ^ 

CC DT NN RB VP 

, CC 

* CC DT NN ^ ^ RB ^ 

^ ^ ^ ^ ^ ^ ^ ^ VP ADVP 

7 

* . S CC , VP ADVP 

NN DT CC * ^ ^ ^ 

^ 

^ * CC DT NN 

ADVP VP , 

* CC ^ ^ ^ ^ DT NN 

^ ^ ^ ^ ^ ^ ^ ^ 

ADVP NP 

8 

* . S CC , VP ADVP 

NP CC * ^ ^ ^ ^ ^ 

^ ^ * CC NP 

ADVP VP , CC S 

* ^ ^ ^ ^ ^ CC NP 

ADVP VP ^ ^ ^ ^ ^ 

^ , S 

9 

* . S CC , S * ^ ^ ^ 

^ ^ 

^ ^ * S , CC S . 

* ^ ^ 

* ^ ^ ^ ^ ^ S , CC S 

. ^ ^ ^ ^ ^ * S 

10 * S * ^ ^ ^ ^ ^ ^ ^ * S * ^ ^ 

* ^ ^ ^ ^ ^ S ^ ^ ^ 

^ ^ ^ ^ ^ ^ * S1 

11 * S1 * ^ ^ ^ ^ ^ ^ ^ * S1 * ^ ^     
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Pre-processing the sentences from the corpus involved generating data sets for the 

left-to-right delimiter (LRD), right-to-left delimiter (RLD) and phrase structure 

recogniser (PSR) modules. So, the training, cross-validation and test sets each had 

LRD, RLD and PSR data sets generated from it (an example is shown in table 4.3). 

Each of these generated data sets had any replicated sequences within it removed. 

Structural replication would occur in cases where sentences shared the same phase 

structure. For example, all the sentences will generate *S1*^^^^^ for the RLD 

network and ^^*S1*^^ for the LRD network. Most sentences will also generate 

*S*^^^^^ for the RLD network and ^^*S*^^ for the LRD network. The 

occurrence of replicated sequences is enhanced by the use of word tags, rather 

than the words themselves, as input representation to the different parser 

networks. The presence of these replicated sequences creates an imbalance with 

some sequences occurring more frequently than others in the training set. If the 

training set is used in this state, network learning would be skewed in favour of the 

replicated sequences; at the expense of the less frequently occurring sequences.  

 

The data sets with non-replicated sequences were processed to remove any 

conflicting sequences. An input sequence for the RLD or LRD network is considered 

to be in conflict with another if it is a sub-set of that other sequence. An input 

pattern for the Recogniser network would be in conflict if it occurred more than 

once in a training set and one or more occurrences have different target outputs 

associated with it. Conflicts within the data sets can be reduced by adding further 

contextual information to resolve the sequence ambiguity. This implies adding look-

back symbols to the RLD data and, look-back and look-ahead data to the LRD data. 

The cost of reducing the number of conflicts with further contextual information is 

an increase in the length of input sequences which increases training times. It is 

therefore necessary to determine the optimum number of look-back and look-ahead 

symbols for the RLD and LRD networks.  
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Optimum Number of Look-back and Look-ahead 

Prior to pre-processing the data sets, experiments were carried out to determine 

the optimum number of look-back and look-ahead for the LRD, and look-back for 

the RLD (the RLD only requires look-back because sentences are processed from 

right to left and the RLD always starts processing sequences from the end of a 

sentence). Look-back symbols are those symbols to the left of a phrase. Look-

ahead symbols are the symbols to the right of a phrase. Although look-back and 

look-ahead symbols are not part of a phrase, they play an essential role in the 

phrase delimitation process by providing context, which enables the phrase 

delimitation networks of the parser to resolve sequence ambiguities. RLD and LRD 

data sets were extracted from 652 sentences (1989 section of the BLLIP WSJ 

Corpus) for these experiments. 

 

In determining the optimum number of look-back and look-ahead symbols for the 

LRD, different look-back/look-ahead combinations were considered (Table 4.4) and 

the combination (3 look-back symbols, 3 look-ahead symbols) with the lowest level 

of conflicting sequences was chosen as the optimum combination. The other 

combinations that had the same (or slightly lower) levels of conflicting sequences 

were not considered because they would make the sequences longer, thereby 

adding complexity to them with little gain in terms of conflicting sequence 

reduction. 

 

 

 

 

 



Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus 

 

 

  71 

 

Table 4.4: Optimising LRD Look-back and Look-ahead Symbols 

Look-Back 

Symbols 

Look-Ahead 

Symbols 

Conflicting 

Sequences 

Training 

Sentences 

Affected 

% Training 

Corpus 

Affected 

1 1 83 265 40.6 

1 2 17 59 9.0 

1 3 18 57 8.7 

1 4 18 57 8.7 

2 1 33 75 11.5 

2 2 8 17 2.6 

2 3 7 12 1.8 

2 4 7 12 1.8 

3 1 17 33 5.1 

3 2 2 6 0.9 

3 3 2 5 0.8 

3 4 2 5 0.8 

4 1 8 17 2.6 

4 2 1 5 0.8 

4 3 1 4 0.6 

4 4 1 4 0.6 

 

 

In determining the optimum number of look-back symbols for the RLD, different 

look-back symbols were considered (Table 4.5) and the number of look-back 

symbols (6 look-back symbols) with the lowest level of conflicting sequences was 

chosen as the optimum look-back symbol. 
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Table 4.5: Optimising RLD Look-Back Symbols 

Look-Back 

Symbols 

Conflicting 

Sequences 

Training 

Sequences 

Affected 

% Training 

Corpus Affected 

1 147 634 97.2 

2 91 225 34.5 

3 49 90 13.8 

4 24 34 5.2 

5 9 9 1.4 

6 6 6 0.9 

 

 

Balancing the Training Data 

At this stage of pre-processing, the cross-validation and test data sets for the RLD, 

LRD and PSR networks are ready to be used. The training data for the PSR network 

is also ready to be used. However, the training data sets for the RLD and LRD 

networks need to be balanced according to the different sequence lengths (The LRD 

has 8 different sequence lengths ranging from length 7 to length 13, while the RLD 

has 10 different sequence lengths ranging from length 8 to length 17). Balancing is 

done to aid learning by ensuring that the frequency of occurrence of sequence 

lengths is the same for all lengths. 

 

For each of these two data sets, the frequency of the most frequent sequence 

length (length 9 for the RLD, and length 8 for the LRD) is used as a standard; all 

other sequence lengths are made up to this standard using sequence replication. 

The sequences with sequence length used as a standard for balancing are not 
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replicated during balancing; this skews training to their disadvantage. To curtail this 

new imbalance, the unbalanced data set is added to the balanced data set to create 

the final training data set. This way every sequence is replicated, at least once. In 

order to determine the number of unbalanced data sets to be added to the 

balanced data set to create an optimum final data set, experiments were carried 

out on different combinations of balanced and unbalanced data sets for both 

delimiter networks. The data sets experimented on comprised an unbalanced set, a 

balanced set and a combination of a balanced set and one unbalanced set. Also 

experimented on were a combination of a balanced set and two unbalanced set and 

a combination of an unbalanced set and three unbalanced set.  

 

The RLD was trained with the five different data sets for 300 epochs. Overall 

training performance, in terms of sequences learnt, and training performances on 

sequences of particular sequence lengths were compared for each data set (as 

shown in table 4.6). Learning progress, using a plot of root mean square error 

against number of epochs (figure 4.3) was also compared for the different data set 

combinations. Considering these performance indices, the final training data set for 

the RLD network is represented as shown in equation 4.1 below. 

 

 

Nf = Nb + Nubl    (4.1) 

Where  Nf = final training data set 

      Nb = Balanced training data set 

Nubl = Unbalanced training data set 
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Table 4.6: Optimising RLD Training Data Set (Balanced and Unbalanced Sets 

Combination) 

Data Set Unbalanced 

Set 

Balanced 

Set 

Balanced + 

UnBalanced 

Set 

Balanced + 

2 * 

UnBalanced 

Balanced + 

3 *  

UnBalanced 

Number of 

Unbalanced 

Sequences 

% 

Sequences 

Learnt 

75.943 93.5848 94.4747 94.1438 91.708 - 

Length 8 70.5263 100 100 97.9198 98.9899 95 

Length 9 80.9854 78.368 87.9908 92.6097 87.4519 1299 

Length 10 71.2247 82.679 86.6355 85.0721 84.4846 841 

Length 11 77.7244 86.2972 91.0556 91.7943 88.9625 624 

Length 12 80.2469 96.6128 96.9193 95.9938 93.2188 324 

Length 13 62.931 98.3064 99.1519 100 99.15 116 

Length 14 35.2941 100 100 98.0014 98.0716 51 

Length 15 27.2727 100 100 100 100 11 

Length 16 0 100 100 100 100 6 

% 

Patterns 

Learnt 

87.5557 91.1249 90.8686 90.6391 90.2659 - 
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RLD RMSE Comparison for Different Combinations of Balanced and Unbalanced Data Sets
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Figure 4.3: RLD RMSE for Combinations of Balanced and Unbalanced Data Sets 

 

 

The LRD was trained with the five different data sets for 500 epochs. As with the 

RLD, overall training performance, in terms of sequences learnt and training 

performances on sequences of particular sequence lengths were compared for each 

data set (as shown in table 4.7). Learning progress, using a plot of root mean 

square error against number of epochs (figure 4.4) was also compared for the 

different data set combinations. Considering these performance indices, the final 

training data set for the LRD network is represented as shown in equation 4.2 

below. 

 

 

Nf = Nb + 2 X Nubl    (4.2) 

Where  Nf = final training data set 

      Nb = Balanced training data set 

Nubl = Unbalanced training data set 
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Table 4.7: Optimising LRD Training Data Set (Balanced and Unbalanced Sets 

Combination) 

Data Set Unbalanced 

Set 

Balanced 

Set 

Balanced + 

UnBalanced 

Set 

Balanced + 

2 * 

UnBalanced 

Balanced + 

3 *  

UnBalanced 

Number 

of Unbal. 

Seq.s 

% Seq. 

Learnt 

93.8917 95.5078 94.5029 97.6048 94.2593 - 

Length 7 90.2439 91.0464 90.5976 96.3992 91.8629 656 

Length 8 96.548 85.2211 89.9173 97.0874 93.1499 1854 

Length 9 91.3655 92.2869 90.5612 94.4912 88.7993 498 

Length 10 86.4286 100 97.1916 98.5942 95.6904 140 

Length 11 78.9474 100 100 100 100 19 

Length 12 100 100 100 100 100 7 

Length 13 100 100 100 100 100 2 

% 

Patterns 

Learnt 

86.8371 89.55 89.0158 89.0615 88.4673 - 
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LRD RMSE Comparison for Different Combinations of Balanced and Unbalanced Data Sets
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Figure 4.4: LRD RMSE for Combinations of Balanced and Unbalanced Data Sets 

 

 

On completion of pre-processing, the training data set for the LRD consisted of 

14,839 sequences and 142,840 patterns. The training data set for the RLD had 

14,268 sequences and 175,115 patterns. The training data set for the PSR was 

made up of 3,103 patterns. 

 

The cross-validation data set for the LRD had 1169 sequences and 9584 patterns, 

while that for the RLD comprised 1201 sequences and 13,846 patterns. The cross-

validation data set for the PSR had 1191 patterns. 

 

The test data set generated for the LRD was made up of 13,383 sequences and 

109,494 patterns. The test data set for the RLD had 15,605 sequences and 178,507 

patterns. The test data set for the PSR consisted of 15,317 patterns. 

 



Chapter 4 - The Corpus-based Parsing Model: Adapted to the Wall Street Journal Corpus 

 

 

  78 

4.6  Phrase Segmentation Performance 

The training data generated were trained and tested (for training and generalisation 

performances) to determine whether the delimiter modules of the parser could be 

successfully adapted to the Wall Street Journal Corpus. The sentences used in 

generating these data included punctuations, which were treated the same as 

words (punctuations were removed in the processing of LPC sentences). Although 

including punctuations add to the complexity of the parsing task, they are expected 

to provide linguistic cues. Corresponding training data were therefore generated 

from the same sentences used in generating the main training data, but with 

punctuations removed. These corresponding training data (from sentences with 

punctuations removed) were used to investigate if the inclusion of punctuations in 

the training data aids decision making during parsing 

 

The LRD was trained, with an empirically determined network size of 105 hidden 

nodes for 500 epochs. 96.97% of the 14,839 sequences were learnt. Details of the 

LRD training result are displayed in table 4.8. Table 4.9 indicates the training 

performance of the LRD network on sequences of different lengths. When the 

corresponding training data without punctuations were used in training the LRD 

(using the same network configuration and number of epochs), 94.50% of 

sequences were learnt.  

 

A plot (figure 4.5) of the root mean square error (RMSE) for the LRD at each of the 

500 epochs is observed. Also plotted, in this figure, is the RMSE for the LRD at 

these 500 epochs, using corresponding training data with punctuations removed 

from the training sentences. These plots detail the learning process for the LRD, 

showing RMSE curves (in both cases) with negative gradients; this indicates that 

the network is learning with each periodic presentation of the given data. The plots 
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also show that the LRD performed better when punctuations were included in the 

sentences that when punctuations were removed. 

 

 

 

Table 4.8: Training Results for the LRD and RLD 

 

Hidden 

Nodes Connections 

No. of 

Patterns 

No. of 

Sequences Epochs RMS Error 

% Pat. 

Learnt 

% 

Seq. 

Learnt 

RLD 165 70,172 175,115 14,268 360 0.0407269 91.55 96.31 

LRD 105 32,072 142,840 14,839 500 0.0457812 89.29 96.97 

 

 

 

 

Table 4.9: Training Results (for sequences of different lengths) for the LRD 

Sequence 

Length 

7 8 9 10 11 12 13 

No. of 

Sequences 

2290 3384 2179 1839 1731 1712 1704 

% 

Sequences 

Learnt 

96.68 92.38 95.27 99.35 100 100 100 
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RMSE Vs Number of Epochs for LRD (with and without Punctuations)
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Figure 4.5: Plot of RMSE Against Number of Epochs for the LRD (WSJ Data) 

 

To validate the RMSE training result for the LRD network, the network was tested 

after the 500th epoch. The test was carried out using both the cross-validation 

(containing 1169 sequences generated from 74 sentences) and the test (containing 

13383 sequences generated from 1059 sentences) data sets. Results from this test 

indicate that the network came up with a sequence generalisation performance of 

84% and 80.05% on the cross-validation and test data sets, respectively. 

  

The RLD was trained, with an empirically determined network size of 165 hidden 

nodes for 360 epochs. 96.31% of the 14,268 sequences were learnt. Details of the 

RLD training result are displayed in table 4.8. Table 4.10 indicates the training 

performance of the LRD network on sequences of different lengths. When the 

corresponding training data without punctuations were used in training the RLD 

(using the same network configuration and number of epochs), 94.68% of 

sequences were learnt. 
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A plot (figure 4.6) of the root mean square error (RMSE) for the RLD at each of the 

360 epochs is observed. Also plotted, in this figure, is the RMSE for the RLD at 

these 360 epochs, using corresponding training data with punctuations removed 

from the training sentences. These plots detail the learning process for the RLD, 

showing RMSE curves (in both cases) with negative gradients; this indicates that 

the network is learning with each periodic presentation of the given data. The plots 

also show that the RLD performed better when punctuations were included in the 

sentences that when punctuations were removed. 

 

 

 

Table 4.10: Training Results (for sequences of different lengths) for the RLD 

Length of 

Sequence 

8 9 10 11 12 13 14 15 16 17 

No. of 

Sequences 

1119 1119 2222 1780 1585 1460 1386 1231 1159 1127 

% 

Sequences 

Learnt 

100 100 92.44 90.62 95.14 93.50 98.56 100 100 100 
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RMSE Vs Number of Epochs for RLD (with and without Punctuations)
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Figure 4.6: Plot of RMSE Against Number of Epochs for the RLD (WSJ Data) 

   

To validate the RMSE training result for the RLD network, the network was tested 

after the 360th epoch. The test was carried out using both the cross-validation 

(containing 1201 sequences generated from 74 sentences) and the test (containing 

15605 sequences generated from 1059 sentences) data sets. Results from this test 

indicate that the network came up with a sequence generalisation performance of 

73.02% and 74.44% on the cross-validation and test data sets, respectively. 

 

4.7 Phrase Recognition Performance 

Training the PSR, with a network size of 50 hidden nodes for 500 epochs resulted in 

99.84% of the 3103 patterns presented to the network being learnt. When the 

corresponding training data without punctuations were used in training the PSR 

(using the same network configuration and number of epochs), 99.70% of patterns 

were learnt.  
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A plot (figure 4.7) of the root mean square error (RMSE) for the PSR at each of the 

500 epochs is observed. Also plotted, in this figure, is the RMSE for the PSR at 

these 500 epochs, using corresponding training data with punctuations removed 

from the training sentences. The comparison of these two cases (performance of 

the LRD on training sentences with punctuations and those with punctuations 

removed) is to highlight the effect of punctuations in the learning process. These 

plots detail the learning process for the PSR, showing RMSE curves (in both cases) 

with negative gradients; this indicates that the network is learning with each 

periodic presentation of the given data. The plots also show that the PSR performed 

better when punctuations were included in the sentences that when punctuations 

were. 

 

RMSE Vs Number of Epochs for PSR (with and without Punctuations)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241 256 271 286 301 316 331 346 361 376 391 406 421 436 451 466 481 496

Epochs

R
M

S
E

with Punctuations

Punctuations Removed

 

Figure 4.7: Plot of RMSE Against Number of Epochs for the PSR (WSJ Data) 

 

To validate the RMSE training result for the PSR network, the network was tested 

after the 500th epoch. The test was carried out using both the cross-validation 

(consisting of 1191 patterns generated from 74 sentences) and the test (consisting 
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of 15317 patterns generated from 1059 sentences) data sets. Results from this test 

indicate that the network came up with a pattern generalisation performance of 

95.05% and 93.36% on the cross-validation and test data sets, respectively. 

 

 

4.8 Sentence Level Performance 

Weights derived from the network training of the LRD, RLD and PSR were used in 

the parsing model to parse the three sentence sets: the training, cross-validation 

and test sets. 

In addition to the PARSEVAL measures, Labelled Precision and Labelled Recall, used 

to assess sentence level performance, the F-Measure (the harmonic mean of 

labelled precision and labelled recall) is also used. 

 

 

F-Measure =    (2 × Labelled_Precision × Labelled_Recall) 
(Labelled_Precision + Labelled_Recall) 

 

Details of the sentence level results derived from the parser are shown in table 4.9.  

Table 4.11: Sentence Level Results for the WSJ Corpus 

Sentence Level Results 

  Sentences Words Parsed 

Exact 

Matches 

Labelled 

Precision 

Labelled 

Recall 

F-

Measure 

Training 

Set 202 3572 88.12% 20.30% 76.73 74.81 75.76% 

Cross-

validation 

Set 74 1382 87.84% 8.11% 60.16% 57.99% 59.06% 

Test Set 1059 18722 85.74% 5.85% 60.21% 58.83% 59.51% 
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4.9  Discussion 

After this parsing model was refined (in Chapter 3), trained and tested (with 

sentences that were not used in training) on the LPC, the parser performed with an 

average labelled precision/recall of 72.5%. On adapting this parser to the WSJ 

Corpus, it performed with an average labelled precision/recall of 59.52% when 

presented with test sentences not used during training (this set of test sentences 

being five times the size of the set of training sentences). It performed with an 

average labelled precision/recall of 75.77% when presented with the sentences 

used during training. 

 

In digesting these results, the composition of longer sentences in the WSJ Corpus, 

compared to those in the LPC, is considered; on the average, sentences from the 

WSJ corpus generate nine times the number of LRD/RLD sequences generated from 

LPC sentences. Besides, syntactic tags used in annotating the WSJ corpus are of a 

coarser nature than those used for the LPC. Also considered is the fact that 

whereas punctuations were included in the WSJ Corpus sentences during training 

and testing, the data used from the LPC had all punctuations removed to simplify 

the parsing problem. Including punctuations add to the complexity of the parsing 

task. However, training results (as shown in sections 4.6 and 4.7) indicate that 

punctuations actually improve the performances of the three connectionist modules 

(LRD, RLD and PSR), thereby aiding decision making during parsing.  

 

The reduced performance can therefore be attributed to the longer sentences in the 

WSJ corpus and the less coarse nature of the LPC tags, compared to the WSJ 

Corpus tags. This finer-grained nature of the LPC tags implies that they presented 

the parser with more information to make decisions with, during the parsing 

process. With these factors in mind, the parsing results for the WSJ Corpus 
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demonstrate that this parsing model is adaptable to the Wall Street Journal Corpus 

without its architecture or algorithm being changed.  

 

By this adaptation, the parsing model takes advantage of its connectionism. Given 

its representation and modular architecture, which makes it independent of 

individual corpora, this parsing model should be adaptable to other corpora. 
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5. THE CORPUS-BASED PARSING MODEL: 

INTRODUCING LEXICAL SEMANTIC 

INFORMATION FOR NOUNS 

5.1  Introduction 

Semantic information is important in the resolution of common syntactic 

ambiguities during syntactic parsing [120]. However, contrasting theories on the 

use of semantic information during syntactic parsing exist. One body of research 

adopts the two-stage ‘Fodorian’ approach whereby semantic information (with other 

linguistic information) is considered during a second independent post-processing 

stage, after the syntactic information-only stage [10, 11, 12]; the other body of 

research, citing psycholinguistic evidence, adopts the multiple constraint-

satisfaction process whereby syntactic and semantic information (as well as other 

linguistic information) are allowed to simultaneously interact (to varying degrees) 

during online syntactic processing[13, 14, 15, 16]. Considering the importance of 

semantic information during sentence processing and to gain an insight into these 

two contrasting theories of syntactic parsing, this chapter reports on the effect on 

the performance of full syntactic parsers, of integrating lexical semantic information 

with syntactic information in the parsing process. This integration of lexical 

semantic information with syntactic information is thought to be necessary for 

large-scale parsing of unconstrained natural language to be truly realisable and 

useful for practical applications. 

 

In a bid to integrate lexical semantic information with syntactic information during 

parsing, it is necessary to extract lexical semantic features from large-scale 

resources. A host of lexical semantic resources exist. These include the Longman 

Dictionary of Contemporary English, the Longman Lexicon of Contemporary English, 

the Core Lexical Engine, Euro WordNet, CYC, EDL, WordNet, Cycorp, etc. WordNet 

[17], a generic lexical semantic network developed at Princeton University, U.S.A, 
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is used for the extraction of lexical semantic information needed for the 

investigation in this project. WordNet was chosen because of its availability, large 

coverage and taxonomy. In the course of this work, an algorithm has been 

developed to annotate nouns in the BLLIP (Brown Laboratory for Linguistic 

Information Processing) 1987-89 Wall Street Journal Corpus [90] with lexical 

semantic information extracted from WordNet. This algorithm defines a semi-

automatic semantic tagging process. 

 

The adaptability of the connectionist shift-reduce parsing model used in this project 

has been exploited in the process of integrating lexical semantic information with 

syntactic information. The parser (which has been shown in previous chapters to 

have been used successfully on both the Lancaster Parsed Corpus and the BLLIP 

1987-89 Wall Street Journal Corpus [90]) has been extended to allow the 

combination of lexical semantic and syntactic representation in its input. When 

integrating the new lexical semantic tag representations (developed from the word 

sense tagging process) with the existing syntactic representations of the parser, the 

architecture of the parser has remained unchanged. Its three connectionist modules 

(Left-to-Right Delimiter network, Right-to-Left Delimiter network and Phrase 

Structure Recogniser network) remain in conjunction with its symbolic modules. 

 

Data was generated for the different connectionist modules, with the combined 

linguistic information. The modules were then trained and tested. Linguistic 

knowledge, in the form of network weights, garnered from the network training 

processes was then used by the parser to syntactically analyse sentences. 

 

Section 5.2 provides a description of WordNet, the on-line lexical reference system 

used for lexical semantic tagging. The new algorithm for the extraction of lexical 

semantic information from WordNet and the semantic annotation of nouns in the 
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BLLIP WSJ Corpus is described in section 5.3. In section 5.4, the tag representation 

scheme developed for the combination of semantic and syntactic knowledge and 

used as input to the parser is presented. Section 5.5 focuses on the performance of 

the connectionist modules of the parser, given the combination of lexical semantic 

and syntactic information. This performance is compared with the performance of 

the modules using only syntactic information as input in section 5.6. This 

comparison is done in a bid to assess the impact of each different piece of linguistic 

knowledge. Section 5.7 shows the performance of the phrase structure recogniser 

module of the parser, given the combination of lexical semantic and syntactic 

information. Again, the performance is compared with that obtained for the module 

without the combination. In section 5.8, the sentence-level performance of the 

parser is detailed. A comparison is made between this performance and the parser’s 

performance before the combination of semantic and syntactic information. Section 

5.9 presents a comparison of this work with other work that parses the Wall Street 

Journal corpus. The various performances are discussed in section 5.10.   

 

5.2  WordNet 

Wordnet [17] is an on-line lexical reference system which organises lexical 

information in terms of word meanings, rather than word forms. Word forms refer 

to the physical utterances or inscriptions of words; they are represented in WordNet 

in their familiar orthography. Word meanings refer to the lexicalised concept that a 

word can be used to express; they are represented in WordNet by synonym sets 

(synsets). In this reference system, English nouns, verbs, adjectives and adverbs 

are organised into synonym sets, each representing an underlying lexical concept. 

 

Each synset in WordNet contains synonymous word forms, relational pointers, and 

other information. Different relations link the synonym sets. The relations 
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represented by the pointers in the synsets include hypernymy/hyponymy, 

antonymy, entailment, and meronymy/holonymy. Words that make up a synset are 

words which are equal or very close in meaning, for example, {plant, flora}. 

Hyperonyms are synsets which are the more general class of other synsets, for 

example, {mouth, muzzle} is a hyperonym of {beak, bill, neb}. Hyponyms are 

synsets which are particular kinds of a synset, for example, {beak, bill, neb} is an 

hyponym of {mouth, muzzle}. Antonyms are synsets which are opposite in 

meaning, for example, {man, adult man} and {woman, adult woman} are 

antonyms. Holonyms are synsets which are the whole of which another synset is a 

part, for example, {face, countenance} is a holonym of {mouth, muzzle}. 

Meronyms are synsets which are the parts of a synset, for example {flower, bloom, 

blossom} is a meronym of {angiosperm, flowering plant}. 

 

The hypernymy/hyponymy relation provides the basis for the hierarchical semantic 

organisation of nouns in WordNet. This organisation takes into consideration the 

fact that definitions of common nouns typically provide a super-ordinate term and 

distinguishing features. Hyponyms are linked to their super-ordinates, and vice 

versa, in the WordNet database. WordNet is, therefore, a lexical inheritance 

system. 

 

At the inception of the WordNet project about sixteen years ago, there were 

approximately 57,000 noun word forms organised into approximately 48,800 

synsets. These numbers have grown since then; WordNet being an online database. 

 

Nouns in WordNet are partitioned into a set of 25 generic semantic concepts, each 

treated as the unique beginner of a separate semantic hierarchy. These 25 

hierarchies correspond to relatively distinct semantic fields, each having its own 

vocabulary. They vary widely in size and cover distinct conceptual and lexical 
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domains. The unique beginners are: {act, action, activity}, {animal, fauna}, 

{artefact}, {attribute, property}, {body, corpus}, {cognition, knowledge}, 

{communication}, {event, happening}, {feeling, emotion}, {food}, {group, 

collection}, {location, place}, {motive}, {natural object}, {natural phenomenon}, 

{person, human being}, {plant, flora}, {possession}, {process}, {quantity, 

amount}, {relation}, {shape}, {state, condition}, {substance}, and {time}. A 

description of these unique beginners is given in table 5.1. 

 

All the nouns belonging to each of the 25 unique beginners are placed in one file. 

Three of these unique beginners: {animal, fauna}; {person, human being}; and 

{plant, flora}, are concerned with living things and can be grouped under {living 

thing, organism}. Four others: {artefact}; {food}; {natural object}; and 

{substance}, are concerned with non-living things and can be grouped under {non-

living thing, object}. These two semantic concepts could be further converged 

under {thing, entity}. A 26th ‘Tops’ file is created in WordNet to include this 

extended semantic hierarchy.  
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Table 5.1: Unique Beginners for Nouns in WordNet 

Unique Beginners Category 

Act Nouns denoting acts or actions 

Animal Nouns denoting animals 

Artefact Nouns denoting man-made objects 

Attribute Nouns denoting attributes of people and objects 

Body Nouns denoting body parts 

Cognition Nouns denoting cognitive processes and contents 

Communication Nouns denoting communicative processes and contents 

Event Nouns denoting natural events 

Feeling Nouns denoting feelings and emotions 

Food Nouns denoting foods and drinks 

Group Nouns denoting groupings of people or objects 

Location Nouns denoting spatial position 

Motive Nouns denoting goals 

Object Nouns denoting natural objects (not man-made) 

Person Nouns denoting people 

Phenomenon Nouns denoting natural phenomena 

Plant Nouns denoting plants 

Possession Nouns denoting possession and transfer of possession 

Process Nouns denoting natural processes 

Quantity Nouns denoting quantities and units of measure 

Relation Nouns denoting relations between people or things or ideas 

Shape Nouns denoting two or three dimensional shapes 

State Nouns denoting stable states of affairs 

Substance Nouns denoting substances 

Time Nouns denoting time and temporal relations 
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5.3 Semantic Annotation of Nouns in The BLLIP WSJ Corpus 

An important part of the process of investigating the effect on syntactic parsing, of 

providing shallow semantic information for nouns, is the semantic annotation of 

these nouns. In annotating the nouns in the BLLIP WSJ corpus, advantage was 

taken of the lexical inheritance system provided by WordNet: each noun in the WSJ 

sentence sets had information extracted from WordNet as to which of the topmost 

generic levels (unique beginners) it belonged.  

 

A lot of the nouns are polysemous, and could have senses that belong to more than 

one of the unique beginners. In such cases, a maximum of four of the most 

frequently used senses are extracted from WordNet. The frequency of use for each 

sense (determined by the number of times a sense is tagged in the various 

semantic concordance texts built up as part of the WordNet project) is also 

extracted. 

 

An algorithm, as depicted in the flow chart in figure 5.1, has been developed for the 

semantic annotation of nouns in the BLLIP WSJ corpus. Nouns in all the three 

sentence sets (training, cross-validation and test sets) that were previously set 

aside from the BLLIP WSJ Corpus have been semantically tagged. This annotation 

algorithm maps out a semi-automatic semantic tagging procedure.  

 

As shown in figure 5.1, for each set of WSJ corpus sentences, one sentence is dealt 

with at a time. For each sentence, each word (and its tag) is picked up and  
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Figure 5.1: A flow-chart depicting the semantic annotation process for nouns from the 

BLLIP WSJ Corpus, using WordNet 
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evaluated sequentially until all the words in the sentence have been looked up. The 

syntactic tag for each word picked up is first checked to determine if the word is a 

noun or a pronoun. If a word is neither a noun nor a pronoun, it is ignored, and the 

next word in the sentence is evaluated. If the word looked up is a pronoun, it is 

stored (together with its tag and sentence number) in a dedicated file for manual 

tagging after the automatic phase of the annotation. If the word looked up is a 

noun, it is passed through a program to WordNet. This noun undergoes a search in 

WordNet, culminating in WordNet returning the unique beginner(s) (the topmost 

category where the noun’s sense(s) is placed) for that noun. This retrieval of 

information from is implemented with the aid of a program which has been created 

in the course of this work to interface WordNet’s library of functions, which in turn 

interface the WordNet database. Up to four unique beginners (senses) can be 

returned for each noun. WordNet also returns the frequency of use of each sense 

associated with the noun. Nouns with more than one sense have their categories 

returned in order of frequency (from the most frequent to the least frequent). If 

there is no entry in WordNet for a particular WSJ noun, it is stored (together with 

its tag and sentence number) in a dedicated file for manual tagging after the 

automatic phase of the annotation. Nouns with no corresponding senses in WordNet 

could be names of people, places or establishments. They could also be 

abbreviations.  Wrongly spelt words would also not have any entries in WordNet 

(unless, the wrong spellings turned out to be correct spellings for some other 

word). Besides, words in combination words like “New” in “New York” have no 

senses in the noun section of WordNet, as they are not nouns. Most of these words 

(set aside to be tagged manually) can be easily tagged and the most common 

categories they fall into are “person”, “location” or “group”. 

 

At the next processing stage in the semantic annotation procedure, nouns for which 

unique beginners are returned by WordNet have these unique beginners checked. If 
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any of the unique beginners returned for the noun is the “Top” category, it is stored 

(together with its syntactic tag and sentence number) in a dedicated file for manual 

re-tagging after the automatic phase of the annotation. The “Top” category is the 

“26th category” for nouns in WordNet; it is a vague abstraction that attempts to pull 

all nouns into a single hierarchical memory structure. It has as its immediate 

hyponyms, senses (synsets) that are at the top of the other categories (unique 

beginners), like: {natural object}; {artefact}; {plant}; and {food}. The “Top” tag 

for each word is converted to any of the 25 categories which is the immediate 

hyponym in each case. 

 

As part of the automatic phase of processing, all the proper nouns passed to 

WordNet are stored (together with their tags and sentence numbers) in a dedicated 

file. This enables them to be later manually assessed (and re-tagged, if need be). 

This is because proper nouns like names of people, places or organisations (e.g. Mr. 

Bank, Miss Stone) could easily be assigned wrong categories by WordNet. 

 

After the automatic phase of semantic tagging, the four files containing nouns that 

need re-assessing and possible re-tagging are used to manually assess and tag 

some nouns. These four files contain, separately, nouns from the WSJ corpus 

(together with their tags and sentence numbers) without any entries in WordNet, 

nouns with the “Top” tag assigned as their semantic category, proper nouns and 

pronouns. 

 

At this stage, the semantic tags (as shown in table 5.2) would be attached to the 

syntactic tags in the form “NN_act*5*_art*2*_pos*1*_qua*0*”. This is the 

annotation for the noun “yield”. It indicates that “yield” is polysemous and has the 

following senses: {act, action, activity} – frequency of 5; {artefact} – frequency of 
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2; {possession} – frequency of 1; and {quantity} – no occurrence in the semantic 

concordance texts. The tags are attached in order of frequency. 

 

The semantic tags derived for the nouns are then ready to be converted to a binary 

form; to provide compatibility with the connectionist parser. 

 

Table 5.2: Semantic Tags Used to Represent WordNet Unique Beginners 

Unique Beginners Tags 

Act act 

Animal ani 

Artefact art 

Attribute att 

Body bod 

Cognition cog 

Communication com 

Event eve 

Feeling fee 

Food foo 

Group gro 

Location loc 

Motive mot 

Object obj 

Person per 

Phenomenon phe 

Plant pla 

Possession pos 

Process pro 

Quantity qua 

Relation rel 

Shape sha 

State sta 

Substance sub 

Time tim 
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5.4  Tag Representation 

The semantic tags assigned to the nouns from the implementation of the 

annotation algorithm described in section 5.3 are symbolic tags. To enable the 

integration of the semantic information inherent in these tags into the existing 

syntactic information used by the connectionist parser, these symbolic word sense 

tags need to be converted to binary vector representations. The parser’s input also 

needs to be adapted to accommodate the semantic representation together with 

the syntactic information it already receives. 

 

5.4.1 Semantic Tag Representation 

In designing binary input representations for the word senses (unique beginners), 

the number of high-level sense categories to be represented (twenty-five) and the 

frequency of each sense (for polysemous words) are considered. 25 bits are used to 

represent this lexical semantic information. Each of the 25 high-level sense 

categories is assigned its “bit space”, as shown in figure 5.2. 
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Figure 5.2: Bit Space Allocation to WordNet Senses 
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For each noun, the value for the bit corresponding to each sense is 0, unless the 

sense is one of the senses that define the noun. The values for the senses that 

define the given noun range from 0.25 to 1, depending on the frequency of the 

sense for the given noun. The values are, however, initially represented with the 

letters ‘A’, ‘B’, ‘C’, and ‘D’ (with ‘A’ indicating the most frequent category and ‘D’, 

the least frequent). The values that these bit representation symbols denote are 

shown in table 5.3. The actual values, as shown in table 5.3, are fed as input to the 

neural networks. 

 

Table 5.3: Semantic Representation Values 

Semantic Bit Representation Symbol Value 

A 1 

B 0.75 

C 0.5 

D 0.25 

 

 

Before assigning the ‘A’ – ‘D’ symbols, the extracted frequency value for each sense 

is compared with the value for the next most frequent sense. A frequency 

difference measure, FDM is calculated as follows: 

 

 FDM = (1 – fv / fnext) × 100% 

 where  fv  = frequency value 

 and  fnext  = frequency value of next most frequent sense 

 

This measure has been designed to capture cases where the frequencies of 

occurrence of different senses for a word are very close to each other. If the FDM is 
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less than 10%, the sense with the frequency value being assessed is assigned the 

same frequency symbol, say ‘A’, as that assigned the next most frequent sense. 

 

For the “yield” example first given in section 5.3, the semantic tag annotation is 

then changed from the form, “NN_act*5*_art*2*_pos*1*_qua*0*” into the form 

NN_A0B00000000000000C0D00000. 

 

The semantic representation is, at this stage, ready to be integrated with the 

syntactic representation for the nouns. 

 

5.4.2 Integrating Syntactic and Semantic Representation 

The binary input representation adopted for denoting the BLLIP WSJ syntactic tags 

in this work uses 46 bits with bit spaces created for terminal and non-terminal tags. 

The first 19 bits of the 46-bit input space are used to represent word tags, while 

the next 27 bits are used to represent constituent tags. To incorporate the 

extracted lexical semantic information into this word tag representation, 25 

additional bit spaces were added to the input bit representation. These 25 bit 

spaces (placed immediately after the 27 bit spaces used for constituent tags) cater 

for the 25-bit semantic representation adopted in sub-section 5.4.1 above. This 

results in a 71-bit input space for all word and constituent tags. Non-noun tags 

have all 0’s as their last 25 bits.  

 

The representation for the word tag, NN_A0B00000000000000C0D00000 for “yield” 

would then be: 

0000000100001000000000000000000000000000000000A0B00000000000000C0D00000  

 

The semantic tags for nouns, pronouns, noun phrases and preposition phrases that 

constitute noun (NP) or preposition phrases (PP) are then incorporated into parent 
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noun and preposition phrases. This is to ensure that the semantic properties are 

not lost during the initial stages of shift-reduce parsing. It is envisaged that this 

stage of the process will help resolve preposition attachment cases in sentences 

such as “the boy ate the pasta with the sauce” and “the boy ate the pasta with the 

fork”. In the first sentence, the {food} category returned by WordNet for “sauce” is 

transferred to the noun phrase, “the sauce” and further on to the preposition 

phrase, “with the sauce”.  There would, therefore, be a difference in input 

representations to the parser for the prepositional phrases, “with the sauce” and 

“with the fork”. 

 

In semantically tagging a noun or preposition phrase, the configuration of the 25-

bit section of its tag representation depends on the configurations of the semantic 

sections of the tag representations that denote the nouns, pronouns, noun phrases 

and preposition phrases that constitute the given noun or preposition phrase. For 

each bit space in the semantic tag representation of the given noun or preposition 

phrase, if the values of all the constituting tags in a similar bit position are all ‘0’, 

the bit value for that position would be ‘0’. If the value for any of the constituting 

tags in a similar position is ‘A’, ‘B’, ‘C’ or ‘D’, the highest value (‘A’ > ‘B’ > ‘C’ > ‘D’ 

> ‘0’) becomes the value for that position. 

 

To further aid decision making during parsing, the head nouns of all noun phrases 

are attached to the noun phrases during the shift-reduce parsing process. In cases 

where the head noun of a noun phrase is itself a noun phrase, the head noun of the 

head noun constituent is carried along. 

 

With the semantic representations integrated into the syntactic representations for 

the WSJ corpus, the left-to-right and right-to-left delimiter and phrase structure 

recogniser data sets were generated, trained and tested. 
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5.5 Phrase Segmentation Performance 

The training data generated from the integration of lexical semantic and syntactic 

tag representations were trained and tested (for training and generalisation 

performances) for the delimiter modules of the parser. Given that the delimiter 

modules handle the most complex aspects of the parsing problem, temporal 

sequence processing, their performance with the integrated input is critical to the 

ability of the parser to analyse the new data. 

 

The LRD network was initially trained for 1800 epochs, with an empirically 

determined network size of 165 hidden nodes. In determining the network size, 

training was initially attempted with the same number of hidden nodes (105 hidden 

nodes) that was used to train the LRD with an input representation that contained 

only syntactic information. As expected, given the increased complexity of the 

training data, the network with these initial hidden nodes could not learn. The 

number of hidden nodes was then successively increased by 20 until the network 

started learning. The initial number of hidden nodes (165 hidden nodes) used for 

training is therefore the minimum number of hidden nodes at which the fully-

connected TASRN network started learning. After 1800 epochs of training the LRD 

network, 95.53% of the 16,492 sequences in the training set had been learnt. To 

improve the training performance of the network, it was trained for 200 more 

epochs.  After 2000 epochs, 95.66% of the 16,492 sequences in the training set 

had been learnt. However, generalisation performance on the cross-validation set 

was 79.94% and 80.17% for both training times. 

 

In a bid to search for the optimal network size for the LRD network, the number of 

hidden nodes was increased to 205. The content of the LRD data set was also 
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reconfigured using equation 4.2 (a combination of one balanced set and two 

unbalanced sets), set out in section 4.5. The enlarged network was initially trained 

for 600 epochs, and then to 800 epochs in an attempt to achieve some improved 

training performance. Of the 19,845 sequences in the reconfigured training set, 

94.69% and 95.13% were learnt by the LRD after 600 and 800 epochs, 

respectively.  

 

A plot (figure 5.3) of the root mean square error (RMSE) for the LRD network is 

observed for training carried out with the two different network sizes. This plot 

shows the network needing fewer epochs to converge with the larger network size 

(205 hidden nodes). However, in determining the best weight vector to be used as 

the LRD component of the parser, the performance measure used was the 

sequence generalisation performances of the five weight vectors obtained on the 

cross-validation set. These generalisation performances are shown in figure 5.4. 

The weight vector obtained from the network trained with 205 hidden nodes after 

700 epochs was the best available weight vector with a sequence generalisation of 

82.3949%; it was therefore chosen as the LRD component of the parser. 
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Plot of RMSE Against Number of Epochs for LRD
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Figure 5.3: Plot of RMSE Against Number of Epochs for the LRD (WSJ Data) 
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Figure 5.4: RLD Generalisation Performance for Different Number of Hidden 

Nodes and Training Times (WSJ Data) 
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Details of the training results (including number of connections, hidden nodes and 

% sequences learnt) for the chosen LRD network, are displayed, alongside those of 

the RLD, in table 5.7. Table 5.4 indicates a breakdown of the training performance 

of the LRD network according to sequences of different lengths. While the LRD 

network learnt all of the sequences of length 11 to length 13, it had short-comings 

in learning sequences of length 7 to length 10. Sequences of length 7 were the 

ones where the LRD network had the greatest learning challenge, with only 86.99% 

of the 3137 of such sequences learnt. 

 

Apart from being tested on the cross-validation data set (containing 1261 

sequences generated from 74 sentences), LRD network was also tested on the test 

data set (containing 16786 sequences generated from 1059 sentences). Results 

from this test indicate that the network came up with a sequence generalisation of 

82.04% on the test data sets, compared to the sequence generalisation of 82.39% 

it achieved on the smaller cross-validation data set. Considering the difference in 

size of the two sentence samples used in generating the data sets, this difference in 

performance of only 0.35% indicates that the network could possibly generalise at 

the same level to any data set not used in training but generated from the corpus 

used in training, irrespective of the size of the data set. 

 

Table 5.4: Training Results (for sequences of different lengths) for the LRD 

Sequence 

Length 

7 8 9 10 11 12 13 

No. of 

Sequences 

3137 5631 3017 2225 2005 1921 1909 

% 

Sequences 

Learnt 

86.99 93.23 94.90 98.92 100 100 100 

 



Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for 

Nouns 

 

 

  106 

Further attempts at optimising the number of hidden nodes for the LRD network 

would require experimenting with higher number of hidden nodes than 205. 

However, due to the computational complexity of training the Temporal Auto-

Associative Simple Recurrent Network used for the LRD (given the size of the 

training data sets, number of parameters and the case that the rate of convergence 

in back-propagation learning tends to be relatively slow; making it computationally 

excruciating [94, 134]) and the computer resource (Intel Pentium 4 CPU 1.70 GHz; 

1.70GHz, 1 GB of RAM) available for this project, it is not feasible to exhaustively 

optimise the network. Attempts to further increase the number of synaptic weights 

for this network would lead to impractical training times (table 5.5).  

 

 

Table 5.5: Training Times for the LRD Network 

Number 

of 

Hidden 

Nodes 

Number of 

Network 

Connections 

(Weights) 

Number of 

Training 

Sequences 

Number of 

Training 

Patterns 

Time 

needed 

for 

training 

(days) 

Approximate 

Number of 

Epochs 

165 78447 16492 158862 95 2000 

205 113847 19845 186334 285* 2000 

225 133947 19845 186334 335† 2000 

*  Estimated from training carried out with 205 hidden nodes 

†  Estimated for training yet to be undertaken (using training times for other network 

configurations) 

 

 

The RLD network was initially trained, with an empirically determined network size 

of 265 hidden nodes for 500 epochs. As with the LRD network, in determining the 

initial network size for the RLD network, training was firstly attempted with the 

same number of hidden nodes (165 hidden nodes) that was used to train the RLD 

network with an input representation that contained only syntactic information. As 
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envisaged, given the increased complexity of the training data, the network with 

these initial hidden nodes could not learn. The number of hidden nodes was then 

successively increased by 20 until the network started learning. The number of 

hidden nodes used (265 hidden nodes) is therefore the initial minimum number of 

hidden nodes at which the fully-connected TASRN network started learning the 

right-to-left delimitation task. 

 

After 500 epochs of training the RLD network, 91.61% of the 15,308 sequences 

were learnt. In a bid to determine the optimal network size for the RLD network, 

the number of hidden nodes was increased twice to 285 and 305. The network 

training with 285 hidden nodes had to be truncated early after 152 epochs when it 

was observed that its training performance was not significantly different from that 

of the network with 265 hidden nodes. Training of the RLD network with 305 

epochs led to 94.78% of the 15,308 sequences being learnt, after 400 epochs of 

training. 

 

A plot (figure 5.5) of the root mean square error (RMSE) for the RLD network is 

observed for training carried out with the three different network sizes. This plot 

shows the networks displaying better training ability (lower RMSE) the larger the 

network size. However, in determining the best weight vector to be used as the 

RLD component of the parser, the performance measure used was the sequence 

generalisation performances of the two weight vectors (for hidden node sizes of 

265 and 305) obtained on the cross-validation set; the network with 285 hidden 

nodes was not trained for long enough to be considered. These generalisation 

performances are shown in figure 5.6. The weight vector obtained from the network 

trained with 305 hidden nodes after 400 epochs was the best available weight 

vector with a sequence generalisation of 74.29%; it was therefore chosen as the 

RLD component of the parser. 
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Plot of RMSE Against Number of Epochs for RLD

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289 305 321 337 353 369 385 401 417 433 449 465 481 497

Number of Epochs

R
M

S
E

265 Hidden Nodes

285 Hidden Nodes

305 Hidden Nodes

 

Figure 5.5: Plot of RMSE Against Number of Epochs for the RLD (WSJ Data) 
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Figure 5.6: RLD Generalisation Performance for Different Number of Hidden Nodes 
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Details of the training results (including number of connections, hidden nodes and 

% sequences learnt) for the chosen RLD network, are displayed, alongside those of 

the LRD, in table 5.7. Table 5.6 indicates a breakdown of the training performance 

of the RLD network according to sequences of different lengths. While the RLD 

network learnt all of the sequences of lengths 8, 16 and 17, it had short-comings in 

learning sequences of length 9 to length 15. Sequences of lengths 10 and 11 were 

the ones where the RLD network had the greatest learning challenge; only 86.84% 

of the 2386 sequences with length 10 were learnt while 88.93% of the 1915 

sequences with length 11 were learnt. 

 

Besides being tested on the cross-validation data set (containing 1264 sequences 

generated from 74 sentences), the RLD network was also tested on the test data 

set (containing 17221 sequences generated from 1059 sentences). Results from 

this test indicate that the network came up with a sequence generalisation of 

72.67% on the test data sets, compared to the sequence generalisation of 74.29% 

it achieved on the smaller cross-validation data set. Considering the difference in 

size of the two sentence samples used in generating the data sets, this difference in 

performance of 1.62% indicates that the network could possibly generalise at the 

same level to any data set not used in training but generated from the corpus used 

in training, irrespective of the size of the data set. 

 

Table 5.6: Training Results (for sequences of different lengths) for the RLD 

Length of 

Sequence 

8 9 10 11 12 13 14 15 16 17 

No. of 

Sequences 

1207 1281 2386 1915 1699 1575 1482 1313 1241 1209 

% 

Sequences 

Learnt 

100 97.74 86.84 88.93 94.11 94.86 97.23 98.32 100 100 
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Table 5.7: Training Results for the LRD and RLD 

 Hidden 

Nodes Connections 

No. of 

Patterns 

No. of 

Sequences Epochs RMS Error 

% Pat. 

Learnt 

% Seq. 

Learnt 

RLD 305 230,347 187,825 15,308 400 0.0381275 91.42 94.78 

LRD 205 113,847 186,334 19,845 800 0.048689 88.83 95.13 

 

As with the LRD network, further attempts at optimising the number of hidden 

nodes for the LRD network would require experimenting with higher number of 

hidden nodes than 305. However, due to the computational complexity of training 

the network and the computer resource (Intel Pentium M CPU 1.73 GHz; 1.73GHz, 

1 GB of RAM) available for this project, it is not feasible to exhaustively optimise 

the network. Attempts to further increase the number of synaptic weights for this 

network would lead to impractical training times (table 5.8). 

 

Table 5.8: Training Times for the RLD Network 

Number 

of 

Hidden 

Nodes 

Number of 

Network 

Connections 

(Weights) 

Number of 

Training 

Sequences 

Number of 

Training 

Patterns 

Time 

needed 

for 

training 

(days) 

Approximate 

Number of 

Epochs 

265 178947 15308 187825 43 500 

285 203847 15308 187825 78* 500 

305 230347 15308 187825 118* 500 

325 258447 15308 187825 133† 500 

*  Estimated from training carried out with 285 and 305 hidden nodes 

†  Estimated for training yet to be undertaken (using training times for other network 

configurations) 
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5.6 Effect of Integrating Lexical Semantic and Syntactic 

Representation on Phrase Segmentation Performance  

 

Table 5.9 shows a comparison of training results for the delimiter networks 

(LRD and RLD). This compares training results achieved using a combination of 

lexical semantic and syntactic input representation with training results achieved 

using only syntactic input representation. Larger network sizes were required to 

train the delimiter networks using the combined linguistic information because of 

the additional information they had to process. 

 

For both delimiters, the networks trained on the combination of lexical semantic 

and syntactic input representation (compared to the networks trained on only 

syntactic input representations) dealt with more complex tasks (using a greater 

number of network connections) and had to be trained for longer periods in terms 

of number of epochs and actual training time. They also learnt slightly lower 

proportions of the sequences presented to them, with both the LRD and RLD 

networks learning over 94.5% of these sequences in both input representation 

cases. The differences in proportions of patterns learnt between the networks 

trained on the combination of semantic and syntactic input representation and 

those trained on only syntactic input representation was very slight (less than 0.5% 

in both cases – 0.46% for the LRD and 0.13% for the RLD). The training data sets 

(with the integrated semantic and syntactic input representation) for both delimiter 

networks were larger than the sets generated with only syntactic input 

representation; the integration of lexical semantic and syntactic information having 

resulted in fewer sequence replications and conflicts.  
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Table 5.9: Comparison – Training Results for the Delimiter Networks for Input 

Representations with Syntactic-only and a Combination of Semantic and Syntactic 

Information 

 LRD RLD 

 Syntactic-

Only 

Semantic + 

Syntactic 

Syntactic-

Only 

Semantic + 

Syntactic 

No. of 

Hidden 

Nodes 

105 205 165 305 

No. of 

Connections 
32,072 113,847 70,172 230,347 

No. of 

Patterns 
142,840 186,334 175,115 187,825 

No. of 

Sequences 
14,839 19,845 14,268 15,308 

No. of 

Epochs 
500 800 360 400 

RMS Error 0.0457812 0.0486.89 0.0407269 0.0381275 

% Pattern 

Learnt 
89.29 88.83 91.55 91.42 

% Sequence 

Learnt 
96.97 95.13 96.31 94.78 

 

 

A breakdown (based on sequence lengths) of training comparison between the two 

different input representations fed to the LRD (as shown in table 5.10) indicate that 

with sequence lengths of 8 to 13, both input representations achieve about the 

same training performances. However, with sequences of length 7, there is 9.69% 

difference in training performance; the LRD network with a combination of lexical 

semantic and syntactic input representation learns only 86.99% of these 

sequences. Given that LRD sequences make use three look-back symbols and three 
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look-ahead symbols, sequences of length 7 would normally be phrases with only 

one word or constituent. 

 

Table 5.10: Comparison – LRD Training Results (for sequences of different lengths) for 

the Delimiter Networks for Input Representations with Syntactic-only and a Combination 

of Semantic and Syntactic Information 

No. of sequences % Sequences Learnt Sequence 

Length Syntactic-

Only 

Semantic + 

Syntactic 

Syntactic-

Only 

Semantic + 

Syntactic 

7 2290 3137 96.68 86.99 

8 3384 5631 92.38 93.23 

9 2179 3017 95.27 94.90 

10 1839 2225 99.35 98.92 

11 1731 2005 100 100 

12 1712 1921 100 100 

13 1704 1909 100 100 

 

 

A plot (figure 5.7) of the root mean square error (RMSE) for the LRD network is 

observed for training carried out with the two different input representations. This 

plot shows the network needing fewer epochs to converge when syntactic-only 

input is used. This indicates that the LRD network with syntactic-only input has 

parameters that enable it to deal more comfortably with its task, compared to the 

network with a combination of lexical semantic and syntactic input representation. 
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LRD - Comparison of Training Performance Given Syntactic-Only and Semantic+Syntactic 

Information
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Figure 5.7: Plot Comparison of Training Performance for the LRD, Given Syntactic-Only 

and Semantic + Syntactic Information 

 

 

 

 

A breakdown (based on sequence lengths) of training comparison between the two 

different input representations fed to the RLD (as shown in table 5.11) shows that 

learnt sequences of length 8, 16 and 17 irrespective of the input representation. 

Apart from sequences of these three sequence lengths, the RLD network trained on 

syntactic-only input performed better on sequences of all but one (sequence length 

13) sequence lengths. On the whole, the performances of the RLD network on 

sequences of different lengths given the two input representations followed a very 

similar trend.  
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Table 5.11: Comparison – RLD Training Results (for sequences of different lengths) for 

the Delimiter Networks for Input Representations with Syntactic-only and a Combination 

of Semantic and Syntactic Information 

No. of sequences % Sequences Learnt Sequence 

Length Syntactic-

Only 

Semantic + 

Syntactic 

Syntactic-

Only 

Semantic + 

Syntactic 

8 1119 1207 100 100 

9 1119 1281 100 97.74 

10 2222 2386 92.44 86.84 

11 1780 1915 90.62 88.93 

12 1585 1699 95.14 94.11 

13 1460 1575 93.50 94.86 

14 1386 1482 98.56 97.23 

15 1231 1313 100 98.32 

16 1159 1241 100 100 

17 1127 1209 100 100 

 

 

 

A plot (figure 5.8) of the root mean square error (RMSE) for the RLD network is 

observed for training carried out with the two different input representations. 

Although the network seems to have a slight edge when syntactic-only input is 

used, this plot shows the network having a similar learning pattern with both input 

representations during training.  
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RLD - Comparison of Training Performance Given Syntactic-Only and Semantic+Syntactic 

Information
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Figure 5.8: Plot Comparison of Training Performance for the RLD, Given Syntactic-Only 

and Semantic + Syntactic Information 

 

A comparison of the generalisation performances (table 5.12) of the delimiter 

networks, using two test sets, reveals very close performances when both sets of 

input representations are used. The LRD network with syntactic-only input has a 

1.61% better generalisation performance on the cross-validation set (generated 

from 74 sentences) than the same network with a combination of lexical semantic 

and syntactic input representation. However, with the test set (generated from 

1059 sentences), the LRD network with a combination of lexical semantic and 

syntactic input representation produces a 1.99% better performance than the same 

network with syntactic-only input representation. With the RLD, the network with a 

combination of lexical semantic and syntactic input representation has a 1.27% 

better generalisation than the same network with syntactic-only representation 

when tested on the cross-validation set. On the other and, the RLD network with 

syntactic-only representation has a 1.77% better performance when the test set is 

used for testing. From the foregoing, for each of the delimiter networks, the use of 



Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for 

Nouns 

 

 

  117 

a particular set of input representations produces slightly better generalisation 

performance depending on which of the two test sets is used. The generalisation 

performance of each delimiter network when lexical semantic information is added 

appears to be at par with its performance when only syntactic information is used 

 

Table 5.12: Comparison – Generalisation Performance for the Delimiter Networks for 

Input Representations with Syntactic-only and a Combination of Semantic and Syntactic 

Information 

 LRD RLD 

 Syntactic-

Only 

Semantic + 

Syntactic 

Syntactic-

Only 

Semantic + 

Syntactic 

% 

Generalisation 

on Cross-

validation Set 

(from 74 

sentences) 

84.00 82.39 73.02 74.29 

% 

Generalisation 

on Test Set 

(from 1059 

sentences) 

80.05 82.04 74.44 72.67 

 

 

 

 

5.7 Phrase Recognition Performance 

The training data generated from the integration of lexical semantic and syntactic 

tag representations were also trained and tested (for training and generalisation 

performances) for the phrase recognition module of the parser. Training the PSR, 

with an initial network size of 50 hidden nodes for 2000 epochs resulted in 99.91% 

of the 3349 patterns presented to the network being learnt. In a search for an 
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optimal network size for the PSR, three more network sizes (60, 70 and 90 hidden 

nodes) were experimented with. The PSR networks with 60, 70, and 90 hidden 

nodes learnt 99.88, 99.94, and 99.91 of the 3349 patterns presented to them, 

respectively. A plot (figure 5.9) of the root mean square error (RMSE) for the four 

PSR networks shows a similar convergence, with the network made of 90 hidden 

nodes exhibiting lower root mean square error. However, in determining the best 

weight vector to be used as the PSR component of the parser, the performance 

measure used was the pattern generalisation performances of the four weight 

vectors obtained on the cross-validation set. These generalisation performances are 

shown in figure 5.10. The weight vector obtained from the network trained with 70 

hidden nodes produced the best pattern generalisation of 90.71%; it was therefore 

chosen as the PSR component of the parser. 

 

Plot of RMSE Against Number of Epochs for PSR
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Figure 5.9: Plot of RMSE Against Number of Epochs for the PSR (WSJ Data) 
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Besides being tested on the cross-validation data set (consisting of 1259 patterns 

generated from 74 sentences), the PSR network was also tested on the test data 

set (consisting of 16890 patterns generated from 1059 sentences). Results from 

this test indicate that the network came up with a pattern generalisation of 88.93% 

on the test data set, compared to the pattern generalisation of 90.71% it achieved 

on the smaller cross-validation data set; a small difference of 1.78% when the 

differences in sizes of the two data sets are considered. 

 

PSR Generalisation Performance for Different Number of Hidden Nodes
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Figure 5.10: PSR Generalisation Performance for Different Number of Hidden Nodes 

 

 

Figure 5.11 shows a plot comparing the learning curve of the PSR network when 

fed with a combination of lexical semantic and syntactic input representation and 

when fed with only syntactic input representation. Although the PSR network with 

syntactic-only input representation converges much faster (in terms of number of 

epochs), the network with a combination of lexical semantic and syntactic input 

representation gradually achieves the same minimum error. 
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PSR - Comparison of Training Performance Given Syntactic-Only and Semantic+Syntactic 

Information
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Figure 5.11: Plot Comparison of Training Performance for the PSR, Given Syntactic-Only 

and Semantic + Syntactic Information 

 

A comparison of the generalisation performance (table 5.13) of the phrase 

recognition network, using two test sets, shows that the PSR performs better when 

only syntactic information is used than when a combination of lexical semantic and 

syntactic information is used. 

 

Table 5.13: Comparison – Generalisation Performance for the PSR Network for Input 

Representations with Syntactic-only and a Combination of Semantic and Syntactic 

Information 

 PSR 

 Syntactic-Only Semantic + Syntactic 

% Generalisation on Cross-

validation Set (from 74 

sentences) 

95.05 90.71 

% Generalisation on Test 

Set (from 1059 sentences) 
93.36 88.93 
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5.8 Sentence Level Performance 

 

Synaptic weights derived from the network training of the LRD, RLD and PSR store 

the linguistic knowledge acquired by the connectionist parser. They were used in 

the parsing model to parse the three sentence sets: the training, cross-validation 

and test sets. 

 

Details of the sentence level results derived from the parser are shown in table 

5.13. Table 5.14 shows a comparison of these results with those obtained using 

only syntactic information.  

 

 

Table 5.14: Sentence Level Results for the WSJ Corpus (Lexical Semantic + Syntactic 

Input Representations) 

Sentence Level Results 

  Sentences Words Parsed 

Exact 

Matches 

Labelled 

Precision 

Labelled 

Recall F-Measure 

Training 

Set 
206 2903 68.45% 17.48% 73.06% 74.14% 73.60% 

Cross-

validation 

Set 

74 1092 54.05% 8.11% 57.44% 58.93% 58.17% 

Test Set 1059 12551 60.72% 5.19% 55.78% 57.76% 56.75% 

  

 

The sentence level results have kept improving with positive modifications to the 

component connectionist modules. When sentences from the training set were 

parsed with a connectionist module configuration that comprised an LRD (165 

hidden nodes after 1800 epochs), RLD (265 hidden nodes) and PSR (50 hidden 
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nodes), an F-Measure of 69.26% was achieved. This rose to 73.45% when the 

configuration was changed to [LRD (165 hidden nodes after 2000epochs), RLD (305 

hidden nodes), PSR (70 hidden nodes)]. The F-Measure improved further to 

73.60% with the present connectionist module configuration [LRD (205 hidden 

nodes), RLD (305 hidden nodes), PSR (70 hidden nodes)]. This indicates a lot of 

room for improvement of the sentence level performance if the connectionist 

modules are further optimised. 

 

As with the training set, when sentences from the cross-validation set were parsed 

with a connectionist module configuration that comprised an LRD (165 hidden 

nodes after 1800 epochs), RLD (265 hidden nodes) and PSR (50 hidden nodes), an 

F-Measure of 52.79% was achieved. This went up to 54.57% when the 

configuration was changed to [LRD (165 hidden nodes after 2000epochs), RLD (305 

hidden nodes), PSR (70 hidden nodes)]. The F-Measure improved further to 

58.17% with the present connectionist module configuration [LRD (205 hidden 

nodes), RLD (305 hidden nodes), PSR (70 hidden nodes)]. 

 

When sentences from the test set were parsed with a connectionist module 

configuration that comprised an LRD (165 hidden nodes after 1800 epochs), RLD 

(265 hidden nodes) and PSR (50 hidden nodes), an F-Measure of 55.06% was 

achieved. This improved to 55.15% when the configuration was changed to [LRD 

(165 hidden nodes after 2000epochs), RLD (305 hidden nodes), PSR (70 hidden 

nodes)]. The F-Measure improved further to 56.75% with the present connectionist 

module configuration [LRD (205 hidden nodes), RLD (305 hidden nodes), PSR (70 

hidden nodes)]. 
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Table 5.15: Sentence Level Comparison for the WSJ Corpus (Syntactic-Only Vs Lexical 

Semantic + Syntactic Input Representations) 

Sentence Level Comparison 

  Sentences Words Parsed 

Exact 

Matches 

Labelled 

Precision 

Labelled 

Recall F-Measure 

Training Set( 

Semantic + 

Syntactic) 

206 2903 68.45% 17.48% 73.06% 74.14% 73.60% 

Training 

Set(Syntactic 

Only) 

202 3572 88.12% 20.30% 76.73% 74.81% 75.76% 

Cross-

Validation 

Set(Semantic 

+ Syntactic) 

74 1092 54.05% 8.11% 57.44% 58.93% 58.17% 

Cross-

validation 

Set(Syntactic 

Only) 

74 1382 87.84% 8.11% 60.16% 57.99% 59.06% 

Test 

Set(Semantic 

+ Syntactic) 

1059 12551 60.72% 5.19% 55.78% 57.76% 56.75% 

Test 

Set(Syntactic 

Only) 

1059 18722 85.74% 5.85% 60.21% 58.83% 59.51% 

 

5.9 Comparison with Other WSJ Parsers 

Parsing models that have used the Wall Street Journal Corpus have focused on two 

main tasks: full syntactic parsing [5, 7, 98, 100, 121], which the parsing model 

presented in this work does, and Semantic Role Labelling [147, 149, 150, 151, 

152]. Reported work on full syntactic parsing has mostly involved traditional 

statistical parsing models which continue to represent the state-of-the-art for broad 

coverage natural language parsing (table 5.15). While this connectionist parsing 
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model does not yet compare favourably with the statistical parsers in terms of 

performance, it has achieved its performance with a far smaller training data set 

size. Its training to test data set ratio is 1:5.14. 

 

 

Table 5.16: Comparison of Syntactic Parser Results on the WSJ Corpus 

Full 

Syntactic 

Parser 

Training 

Data Set 

Test 

Data 

Set 

Training 

To Test 

Data 

Ratio 

Precision Recall F-

Measure 

This Parser 

(Syntactic 

only input) 

202 1059 

(74) 

1:5.14 

(2.73:1) 

60.21 

(60.16) 

58.83 

(57.99) 

59.51 

(59.06) 

This Parser 

(Syntactic + 

Lexical 

semantics 

input) 

206 1059 

(74) 

17.74:1 

(2.78:1) 

55.78 

(57.44) 

57.76 

(58.93) 

56.75 

(58.17) 

Charniak & 

Johnson 

(2005)[121] 

39832 2245 17.74:1 91.3 90.6 90.9 

Bod 

(2003)[7] 

39832 2245 17.74:1 90.8 90.7 90.7 

Charniak 

(2000)[5] 

39832 2245 17.74:1 89.5 89.6 89.5 

Collins 

(2000)[98] 

39832 2245 17.74:1 89.9 89.6 89.7 

Ratnaparkhi 

(1997)[100] 

39832 2245 17.74:1 87.5 86.3 86.9 

 

 



Chapter 5 - The Corpus-based Parsing Model: Introducing Lexical Semantic Information for 

Nouns 

 

 

  125 

5.10  Discussion 

To enable the combination of lexical semantic information with syntactic knowledge 

as input to the parser, an algorithm, involving a semi-automatic semantic tagging 

procedure, has been developed for the semantic annotation of nouns in the BLLIP 

WSJ corpus. A manual parse of semantically tagged sentences from the WSJ corpus 

shows that the noun classes obtained from WordNet provide sufficient information 

to aid the disambiguation of preposition attachment cases. They have also been 

found to be sufficient in the preposition attachment resolution for the following 

sentence pairs (POS tags for the first three pairs are the same; including the lexical 

semantic information provides useful additional knowledge): 

 

1a) The boy ate the pasta with the sauce. 

1b) The boy ate the pasta with he fork. 

2a) The boy broke the window with the curtain. 

2b) The boy broke the window with the rock. 

3a) The policeman chased the boy with a limp. 

3b) The policeman chased the boy with a truncheon. 

4a) I examined the man with a stethoscope. 

4b) I examined the man with a broken leg.  

 

For all three connectionist modules of this parser, the networks trained on the 

combination of lexical semantic and syntactic input representation (compared to the 

networks trained on only syntactic input representations) dealt with more complex 

tasks (using a greater number of network connections) and had to be trained for 

longer periods in terms of number of epochs and actual training time. The delimiter 

networks learnt slightly lower proportions of the sequences presented to them 

when trained on a combination of lexical semantic and syntactic input 

representation, with both the LRD and RLD networks learning over 94.5% of 
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sequences in both input representation cases. However, a comparison of the 

generalisation performances of the delimiter networks, using two test sets, reveals 

very close performances when both sets of input representations are used. The 

generalisation performance of each delimiter network when lexical semantic 

information is added appears to be at par with its performance when only syntactic 

information is used. 

 

In comparing the performances of the delimiters at sequence length level, there 

was a similar trend in learning performance for sequences of the same length, apart 

from one case. This is the case with LRD sequences of length 7, there is 9.69% 

difference in training performance between both input representation instances; the 

LRD network with a combination of lexical semantic and syntactic input 

representation learns only 86.99% of these sequences. Given that LRD sequences 

make use of three look-back and three look-ahead symbols, sequences of length 7 

would normally be phrases with only one word or constituent, for example a single 

noun forming a noun phrase. The introduction of additional information seems to 

have made the parsing of phrases like this a more difficult task. This could be 

solved by fitting the network better to its training examples (longer training times 

and more optimal networks).   

 

For the RLD, sequences with sequence lengths of 10, 11, 12 and 13 did not perform 

as well as sequences of other lengths (8, 9, 14, 15, 16 and 17). Sequences with 

these four least performing sequence lengths are the four most frequent 

sequences, in terms of sequence length. The RLD sequences include six look-back 

symbols. They also always include the end-of-sentence symbol, ‘*’ and possibly 

symbols that do not belong to the phrase for which they set out to find the 

beginning of. The phrases involved with the sequence lengths of 10, 11, 12 and 13 

would therefore be short phrases with the same phrase composition variety and 
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balancing issues as raised for the LRD. It is worth noting that for the RLD, 

sequences with the shortest sequence lengths (8 and 9) are among the high 

performers. Considering the presence of number of look-back symbols (6) and the 

end-of-sentence symbol, ‘*’, phrases involved here would usually have one or two 

symbols; there are not very many of these phrases. 

 

Another similarity in results obtained for the two different set of input 

representations is the consistency in the generalisation result on test sets 

generated from sentences of very different sample sizes. Generalisation 

performances were about the same for test data generated from 74 sentences and 

for those generated from 1059 sentences. This shows that the generalisation 

performance in these cases is not deeply affected by test sample size. 

 

On the whole, the module level performances of the delimiter networks seemed to 

be at par, irrespective of the set of input representation used. The module level 

performance of the phrase recognition network that used only syntactic input 

representation appeared to perform better than when a combination of lexical 

semantic and syntactic information was used. This also seemed the case with 

performances at the sentence level. However, when using a combination of lexical 

semantic and syntactic information, the sentence level results have kept improving 

with positive modifications to the component connectionist modules. Its F-Measure 

has improved from 69.26% to 73.45% and up to 73.60% with training 

improvement to different component connectionist modules. This indicates a lot of 

room for improvement of the sentence level performance if the connectionist 

modules are further optimised. To fully grasp the effect of combining lexical 

semantic and syntactic input representation on the parser, an examination of the 

parser’s behaviour on the two sets of input representations is necessary. This is 

done in the next chapter. 
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6. SENTENCE LEVEL EVALUATION 

6.1 Introduction 

Having been adapted to syntactically analyse sentences from the Wall Street 

Journal Corpus, and further adapted to integrate lexical semantic and syntactic 

representations in this analysis, the sentence level results achieved by the parser 

are presented in chapters 4 and 5. There is the need to analyse these results in 

detail in order to get an insight into the parser’s behavioural characteristics and 

structural preferences. This analysis should also reveal the effect of integrating 

lexical semantic and syntactic representations on the capabilities of the parser. 

 

In section 6.2, the performance of the parser on the Wall Street Journal Corpus, 

given only syntactic information as input, is examined in detail. A similar analysis is 

done on the parser, given a combination of lexical semantic and syntactic 

information as input, in section 6.3. Section 6.3 also contains a comparison of the 

parser’s behaviour and structural preferences when presented with the two sets of 

input representations. A summary of the findings in the analyses carried out in this 

chapter is presented in section 6.4.           

 

6.2 Parser with Syntactic-Only Input Representation 

As shown in table 5.14 in the last chapter, of the 202 training sentences 

syntactically analysed by the parser (using only syntactic information in its input 

representation), 178 (88.12%) were successfully parsed, with an F-measure of 

75.76%. 41 (20.30%) of the parse trees produced by the parser from analysing the 

202 training sentences were exact matches of the target parse trees. The parser 

failed to produce complete parse trees for 24 (11.88%) of these sentences. 
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For each sentence analysed by the parser, the parser could fail to produce a 

complete parse if, during the process of building up the parse tree for the sentence, 

any of its connectionist modules (RLD, LRD, and PSR networks) failed to carry out 

its function. In other words, if the right-to-left delimiter network failed to identify 

the beginning of a phrase, having seen all the word or constituent tags in the 

sentence, then the parser would fail for that particular sentence. This is 

notwithstanding how far the parser had gone in the parsing process for that 

sentence. Similarly, if the left-to-right delimiter network failed to identify the end of 

a phrase, having seen all the word or constituent tags to the right of the 

word/constituent tag identified as the beginning of phrase by the right-to-left 

delimiter network, the parser would fail for that particular sentence. Also, after the 

delimiter networks have identified a sequence of tags that constitute a phrase, if 

the phrase structure recogniser network fails to find a parent for that sequence, the 

parser would fail for that particular sentence. For the 24 failed parses, 1 (4.17%) 

failed parse was due to the right-to-left delimiter network’s inability to find the 

beginning of a phrase. 5 (20.83%) failed parses were due to the left-to-right 

delimiter network’s inability to find the ends of certain phrases. 18 (75%) failed 

parses were due to the phrase recogniser network’s inability to create the valid 

phrase classification from the sequence passed to it by the delimiter networks. 

 

Despite 75% of failed parses being due to the inability of the phrase recogniser 

network to create a valid phrase from the sequences passed to it by the delimiter 

networks, most of the failed parses can be attributed to incorrect phrase boundary 

identifications by the delimiter networks. This is because if the beginning and/or 

end of a phrase are incorrectly indicated by any or both of the delimiter networks, 

the phrase recogniser network receives an incorrect sequence of tokens to create a 

valid phrase for. In most cases, the PSR network creates a valid parent for such 

sequences; however, the error only accumulates in the shift-reduce process. In the 

cases where the PSR network failed to create valid phrases from the sequences 
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passed to it, all of these sequences have been identified to be single constituent 

tags (14 ‘NP’s, 2 ‘S1’s, 1 ‘VP and 1’FRAG’). The phrase structure recogniser network 

is designed to result in a failed parse if, at any point in the parsing process, the 

‘daughter’ (sequence of word/constituent tags input to the PSR network to be 

classified as a phrase) is the same as the ‘mother’ (constituent tag to be identified 

by the PSR network as denoting the phrase for the input sequence of tags). This 

design is to prevent the parser from shifting and reducing indefinitely at a particular 

stage in the shift-reduce parsing process where the ‘daughter’ and ‘mother’ are the 

same. 

 

The 24 sentences which the parser failed to completely parse had RLD and LRD 

data generated from them. These data were then used to test the different 

delimiter modules to determine how much of this group of sentences they had 

learnt during training. Results from these tests, shown in table 6.1 (detailed 

sequence level results are shown in tables 6.4 and 6.7) indicate a strong learning 

performance at module level. These modular results for the failed sentences 

compare favourably with those for the mismatched sentences, as shown in table 

6.3 (detailed sequence results for the mismatched sentences are shown in tables 

6.6 and 6.9). Modular results (shown in tables 6.2, 6.5 and 6.8) for the sentences 

whose parses matched the target parses indicate, expectedly, that all, but 9 RLD 

sequences were learnt during training. 

 

The strong modular performances of the failed/mismatched sentences, compared to 

their sentence level performance highlights a limitation of the modular model that is 

due to the knock-on effects that occur throughout the shift-reduce parsing process. 

During the parsing process, the parser’s connectionist modules operate in cascade. 

The RLD first processes the sequences and passes its results, including any errors, 

if available, to the LRD. The LRD passes its own results, including any errors, if 

available to the PSR. 
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Table 6.1: Training Results for the LRD and RLD Data Generated from Failed Sentences 

 

Hidden 

Nodes Connections 

No. of 

Patterns 

No. of 

Sequences RMS Error 

% 

Pat. 

Learnt 

% 

Seq. 

Learnt 

RLD 165 70,172 6535 580 0.0489381 90.60 94.31 

LRD 105 32,072 4691 580 0.0648378 86.72 92.59 

 

 

 

 

Table 6.2: Training Results for the LRD and RLD Data Generated from Matching 

Sentences 

 

Hidden 

Nodes Connections 

No. of 

Patterns 

No. of 

Sequences RMS Error 

% 

Pat. 

Learnt 

% 

Seq. 

Learnt 

RLD 165 70,172 4507 420 0.027647 90.66 97.76 

LRD 105 32,072 3370 420 0.0440867 87.54 100 

 

 

 

 

Table 6.3: Training Results for the LRD and RLD Data Generated from Mismatching 

Sentences 

 

Hidden 

Nodes Connections 

No. of 

Patterns 

No. of 

Sequences RMS Error 

% 

Pat. 

Learnt 

% 

Seq. 

Learnt 

RLD 165 70,172 30,496 2,747 0.0486726 90.45 94.03 

LRD 105 32,072 22,193 2,747 0.0577466 87.03 95.30 
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Table 6.4: Training Results (for sequences of different lengths) for the LRD Data 

Generated from Failed Sentences 

Sequence 

Length 

7 8 9 10 11 12 13 

No. of 

Sequences 

148 297 92 28 11 2 2 

% 

Sequences 

Learnt 

95.95 89.56 93.48 100 100 100 100 

 

 

Table 6.5: Training Results (for sequences of different lengths) for the LRD Data 

Generated from Matching Sentences 

Sequence 

Length 

7 8 9 10 11 12 13 

No. of 

Sequences 

148 171 66 22 8 1 4 

% 

Sequences 

Learnt 

100 100 100 100 100 100 100 

 

 

Table 6.6: Training Results (for sequences of different lengths) for the LRD Data 

Generated from Mismatching Sentences 

Sequence 

Length 

7 8 9 10 11 12 13 

No. of 

Sequences 

732 1394 418 122 49 20 12 

% 

Sequences 

Learnt 

98.09 92.97 96.41 98.36 100 100 100 

 



Chapter 6 – Sentence Level Evaluation 

 

 

  133 

 

Table 6.7: Trained Results (for sequences of different lengths) for the RLD Data 

Generated from Failed Sentences 

Length of 

Sequence 

8 9 10 11 12 13 14 15 16 17 

No. of 

Sequences 

48 23 138 136 93 76 38 17 10 1 

% 

Sequences 

Learnt 

100 100 92.75 89.71 95.70 93.42 100 100 100 100 

                   

                                                                                                                                          

Table 6.8: Training Results (for sequences of different lengths) for the RLD data 

Generated from Matching Sentences 

Length of 

Sequence 

8 9 10 11 12 13 14 15 16 17 

No. of 

Sequences 

87 13 125 60 44 42 30 15 3 1 

% 

Sequences 

Learnt 

100 100 100 100 97.73 100 100 100 100 100 

 

 

 

Table 6.9: Training Results (for sequences of different lengths) for the RLD data 

Generated from Mismatching Sentences 

Length of 

Sequence 

8 9 10 11 12 13 14 15 16 17 

No. of 

Sequences 

274 51 939 510 360 255 223 86 35 14 

% 

Sequences 

Learnt 

100 100 92.11 90.39 94.72 92.94 98.21 100 100 100 
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In the course of the training session, the parser would have acquired linguistic 

knowledge from the training data presented to it. This linguistic knowledge is stored 

in the synaptic weights for the different connectionist modules of the parser. In 

order for this parser to be useful in any automatic natural language application, it 

should be able to syntactically analyse sentences not presented to it during 

training, using its acquired linguistic knowledge. Two sets of test sentences were 

presented to the parser; one consisting of 74 sentences, the other comprising 1059 

sentences.  

 

As shown in table 5.14 in the last chapter, of the 74 test sentences (from the first 

test set) syntactically analysed by the parser (using only syntactic information in its 

input representation), 65 (87.84%) were successfully parsed, with an F-measure of 

59.06%. 6 (8.11%) of the parse trees produced by the parser from analysing the 

74 test sentences were exact matches of the target parse trees. The parser failed 

to produce complete parse trees for 9 (12.16%) of these sentences. 

 

As also shown in table 5.14 in the last chapter, of the 1059 test sentences (from 

the second test set whose sentence composition is different from that of the first 

test set) syntactically analysed by the parser (using only syntactic information in its 

input representation), 908 (85.74%) were successfully parsed, with an F-measure 

of 59.51%. 62 (5.85%) of the parse trees produced by the parser from analysing 

the 1059 test sentences were exact matches of the target parse trees. The parser 

failed to produce complete parse trees for 151 (14.26%) of these sentences. 

 

The parser’s performance on these test sets shows its ability to generalise to 

sentences not seen during training. The parser has been able to do this because of 

linguistic knowledge derived during training. The parser’s performance was also 
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consistent, irrespective of the size of the test set. In most cases, where the parser 

could not achieve the target parse for a test sentence, it was able to make useful 

approximations. However, the inadequacies noticed in the parser during training, 

also affect its generalisation performance. Its performance is also hindered in part 

by inconsistencies in the pre-parsed corpus.     

 

In examining the behaviour of the parser, a sample of 12 matching parse trees 

produced by the parser from sentences belonging to the large test set (1059 

sentences) has been extracted and presented below. The sentences whose parse 

trees are shown below are of varying structural complexity. Figures 6.1, 6.2 and 

6.3 display the parser’s ability to generalise to sentences with simple syntactic 

structures. The parser is able to analyse the determiner and two nouns that 

constitute the object noun phrase in figure 6.1. It is also able to deal with the 

modifying adjectives in the subject noun phrase as well as the case that there is no 

object noun phrase in figure 6.2. In figure 6.3, the parser is shown to be able to 

handle the cardinal number and noun that constitute the object noun phrase.  

 

  

S1 

S 

 

VP  

 

NP    NP 

 

NN   AUX  DT  NN   NN  . 

Ametek  is  an  instrument  maker . 

Figure 6.1: Matching parse tree for the sentence, Amatek is an instrument maker. (Using 

only syntactic information) 
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   S1 

   S 

    VP 

NP      ADJP 

 

JJ  JJ  NNS   VBP   JJ   . 

Many  small  investors  remain  cautious . 

Figure 6.2: Matching parse tree for the sentence, Many small investors remain cautious. 

(Using only syntactic information) 

 

 

 

 

    S1 

    S 

      

     VB 

NP      NP 

 

DT  JJ   NN  VBZ   CD   NNS  . 

A  metric  ton  equals   2,204.62  pounds . 

Figure 6.3: Matching parse tree for the sentence, A metric ton equals 2,204.62 pounds. 

(Using only syntactic information) 
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S1 

S   

NP  

PP    VP 

NP    NP    NP 

 

DT  NN  IN  DT  NN   AUX  DT  NN    . 

The  rest  of  the  world   was  an  afterthought  . 

Figure 6.4: Matching parse tree for the sentence, The rest of the world was an afterthought. 

(Using only syntactic information) 

 

 

S1 

     S 

      VP 

NP 

PP 

NP     NP           NP 

 

NN  VBZ        JJ   NN   NNS       IN      NNP    NNP  . 

SUIT  SEEKS       equal  insurance  benefits    for     manic  depression . 

Figure 6.5: Matching parse tree for the sentence, SUIT SEEKS equal insurance benefits for 

manic depression. (Using only syntactic information) 

 

 

Figures 6.4 and 6.5 show the parser’s ability to analyse sentences containing more 

complex noun phrases, while dealing with cases requiring the attachment of 

preposition phrases. The parser is also seen to be able to handle recursivity in 

sentence structure. In figures 6.6 and 6.7 the parser is shown to be able to parse 

sentence structures containing right-embedded clauses. The parser is also able to 
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handle centre-embedding as seen in figures 6.8 and 6.9. Figures 6.10, 6.11 and 

6.12 show the parser’s handling of more structurally complex sentences. 

 

 

S1 

S 

VP 

S 

VP 

VP 

PP 

NP    NP    NP    NP 

NNP    NNP  VBZ    NNP   NNP  TO  VB       DT NN         IN  NNS      . 

Mr.       Gray  wants     Mr.     Penn    to  provide     an  example        for  others   . 

Figure 6.6: Matching parse tree for the sentence, Mr. Gray wants Mr. Penn to provide an 

example for others. (Using only syntactic information) 

 

S1 

S 

VP 

VP 

VP 

S 

NP        VP 

NP      NP          NP 

DT  NN  POS NN   AUX AUX  VBG      JJ           NNS          VB         NN      NNS    . 

The yen  ’s     slide  has   been helping  Japanese companies  improve   export      profits  . 

Figure 6.7: Matching parse tree for the sentence, The yen’s slide has been helping Japanese 

companies improve export profits. (Using only syntactic information) 
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  S1 

   S 

NP    VP 

NP    NP           NP 

NNP    NNP    ,  DT JJ  NN     NN    ,   VBZ         NNS    CC   NNS        . 

Donald   Leach   ,   a  retired  court    clerk   ,   suspects   workmen       and  tourists     . 

Figure 6.8: Matching parse tree for the sentence, Donald Leach, a retired court clerk, 

suspects workmen and tourists. (Using only syntactic information) 

 

 

S1 

S 

NP 

PP 

NP    VP 

PP         PP 

NP   NP        NP    NP 

DT    NN    IN   DT    NNPS        IN   DT   NNP   AUX  IN  JJ           NN        . 

The    bulk   of     the    Hispanics    in     the   U.S.   are     of   Mexican    origin     . 

Figure 6.9: Matching parse tree for the sentence, The bulk of the Hispanics in the U.S. are 

of Mexican origin. (Using only syntactic information) 
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  S1 

   S 

PP       VP 

NP     NP     NP 

 

IN   NNP      CD     ,   DT    NN           VBD          DT    NN          . 

In    November     1985  ,    the   company     suspended     the    payout      . 

Figure 6.10: Matching parse tree for the sentence, In November 1985, the company 

suspended the payout. (Using only syntactic information) 

 

 

 

 

 

S1 

S 

   NP   VP 

PP             PP   PP 

NP        NP   NP    NP 

 

IN     DT  JJ        NN           ,  DT NN    IN NN       VBZ  IN     NN       NN       . 

Near  the  distant   farmhouse ,   a    wisp   of smoke    rises  from   burning stubble  . 

Figure 6.11: Matching parse tree for the sentence, Near the distant farmhouse, a wisp of 

smoke rises from burning stubble. (Using only syntactic information) 
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S1 

S 

      VP 

S 

  VP 

    PP      PP          PP 

      NP     NP       NP        NP         NP         NP 

IN NNP  , JJ JJ NN NNP NNP  VBD  IN NNP  ,  -NONE-  VBG  CD NNS  IN NN   .  

[1] [2]  [3][4][5][6] [7]   [8]     [9]   [10] [11] [13] [14]     [15] [16] [17]  [18][19][20] 

Figure 6.12: Matching parse tree for the sentence, In[1] Namibia[2],[3] a[4] black[5] 

nationalist[6] leader[7] Sam[8] Nujoma[9] arrived[10] in[11] Windhoek[12],[13] *-7[14] 

ending[15] three[16] decades[17] in[18] exile[19].[20]  

 

 

6.3 Parser with a Combination of Lexical Semantic and 

Syntactic Input Representation 

As shown in table 5.14 in the last chapter, of the 206 training sentences 

syntactically analysed by the parser (using a combination of lexical semantic and 

syntactic information in its input representation), 141 (68.45%%) were successfully 

parsed, with an F-Measure of 73.60%. 36 (17.48%) of the parse trees produced by 

the parser from analysing the 206 training sentences were exact matches of the 

target parse trees. The parser failed to produce complete parse trees for 65 

(31.55%) of these sentences. 

 

For the 65 failed parses, 4 (6.15%) failed parses were triggered off by the right-to-

left delimiter network’s inability to find the beginnings of some phrases. 20 

(30.77%) failed parses were triggered off by the left-to-right delimiter network’s 

inability to find the ends of certain phrases. 41 (63.08%) failed parses were 
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triggered off by the phrase recogniser network’s inability to create a valid phrase 

from the sequence passed to it by the delimiter networks. 

 

Despite 63.08% of failed parses being triggered off by the inability of the phrase 

recogniser network to create a valid phrase from the sequences passed to it by the 

delimiter networks, most of the failed parses can be attributed to incorrect phrase 

boundary identifications by the delimiter networks. This is a similar situation to that 

when the parser had only syntactic information in its input representation. In the 

cases where the PSR network failed to create valid phrases from the sequences 

passed to it, all of these sequences have been identified to be single constituent 

tags (30 ‘NP’s, 1 ‘S1’, 2 ‘VP’s, 1 ‘S’, 1 ‘ADVP’, 2 ‘PRN’s, 1 ‘INTJ’, 1 ‘WHAVDP’, 1 ‘QP’ 

and 1 ‘UCP’). This is deduced from the fact that the parser’s average precision and 

recall (where phrase ‘daughters’ are correctly identified but the ‘mother’ is not) on 

the training set compares favourably with its average labelled precision and recall 

(average precision = 73.76%; average recall = 74.85%; average labelled precision 

=73.06%; average labelled recall = 74.14%). 

 

The parser’s “knock-on effect” limitation (due to its connectionist modules operating 

in cascade), seen when it had only syntactic information in its input representation, 

still affects its performance with the combined input representation. The number of 

sentences successfully parsed and F-measure were lower than when the parser had 

only syntactic information in its input. It is envisaged that further optimising the 

network sizes for the delimiter modules would optimise this shortfall; although the 

number of hidden nodes had been increased to cope with the increased complexity 

of combining lexical semantic and syntactic information, there seems to be some 

room for improvement. 

 

To test the modified parser’s ability to syntactically analyse sentences not 

presented to it during training, two sets of test sentences were presented to it. 
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These are the same sets of test sentences earlier presented to the parser when it 

had only syntactic information in its input representation. 

 

Of the 74 test sentences (from the first test set - as shown in table 5.14 in the last 

chapter -) syntactically analysed by the parser (using a combination of lexical 

semantic and syntactic information in its input representation), 40 (54.05%) were 

successfully parsed, with an F-measure of 58.17%. 6 (8.11%) of the parse trees 

produced by the parser from analysing the 74 test sentences were exact matches of 

the target parse trees. The parser failed to produce complete parse trees for 34 

(45.95%) of these sentences. 

 

Of the 1059 test sentences (from the second test set whose sentence composition 

is different from that of the first test set - as also shown in table 5.14 in the last 

chapter -) syntactically analysed by the parser (using a combination of lexical 

semantic and syntactic information in its input representation), 643 (60.72%) were 

successfully parsed, with an F-Measure of 56.75%. 55 (5.19%) of the parse trees 

produced by the parser from analysing the 1059 test sentences were exact matches 

of the target parse trees. The parser failed to produce complete parse trees for 416 

(39.28%) of these sentences. 

 

The parser’s performance on the test set (compared to its performance using only 

syntactic information in its input representation) reflects its training results. Its 

generalisation performance on the test sentences was, however, consistent, 

irrespective of the size of the test set.  

 

In order to observe the effects, if any, of combining lexical semantic and syntactic 

information in the parser’s input representation, it is pertinent to compare the 

parser’s analytic behaviour, given the two sets of input representations. All 

matching and mismatched parses were examined. A sample of eight pairs of parse 
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trees is presented here. Each pair comprises a matching (to the target Treebank 

parse tree) parse tree constructed by the parser using the combined linguistic 

information and a mismatching parse tree constructed, for the same sentence, by 

the parser with only syntactic information.  Another sample comprising three 

mismatching parse trees constructed by the parser using the combined linguistic 

information is presented, in comparison with matching parse trees constructed by 

the parser for the same sentences using only syntactic information. 

 

S1 

S 

VP 

NP        ADJP 

PRP  AUX  JJ   . 

It  is  fruitless . 

Figure 6.13: Matching Parse tree for the sentence, It is fruitless. (Using combined linguistic 

information) 

 

 

S1 

S 

VP 

NP   NP 

PRP  AUX  JJ   . 

It  is  fruitless . 

Figure 6.14: Mismatching parse tree for the sentence, It is fruitless. (Using only syntactic 

information) 

 

Figures 6.13 and 6.14 show two parse trees for the sentence, It is fruitless., where 

the parser used a combination of linguistic information to make better judgement 

on analysing the given structure. Using a combination of lexical semantic and 
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syntactic, compared to its use of only syntactic information in its input 

representation, the parser also made better parsing decisions in the structural 

analysis of the sentences shown in figures 6.15 to 6.28. Worthy of note is the 

parser’s consistent better decision making (when using a combination of lexical 

semantic and syntactic information in its input representation) in the attachment of 

preposition phrases (figures 6.21 to 6.28).   

 

S1 

S 

VP 

NP    NP 

“  PRP  AUX  JJ  JJ  NNS   . 

“  They  ‘re  such  fine  boys   . 

Figure 6.15: Matching Parse tree for the sentence, “They’re such fine boys. (Using 

combined linguistic information) 

 

 

 

S1 

S 

       NP        VP 

“  PRP  AUX  JJ  JJ  NNS   . 

“  They  ‘re  such  fine  boys   . 

Figure 6.16: Mismatching parse tree for the sentence, “They’re such fine boys. (Using only 

syntactic information) 
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S1 

S 

VP 

NP          NP         ADVP 

NNP  NNS   VBD   DT  NNS   RB  . 

U.S.  officials  confirmed  these  reports  too  . 

Figure 6.17: Matching Parse tree for the sentence, U.S. officials confirmed these reports 

too. (Using combined linguistic information) 

 

 

 

S1 

NP 

VP 

     NP         ADVP 

NNP  NNS   VBD   DT  NNS   RB  . 

U.S.  officials  confirmed  these  reports  too  . 

Figure 6.18: Mismatching parse tree for the sentence, U.S. officials confirmed these 

reports too. (Using only syntactic information) 

 

 

S1 

S 

VP 

NP       NP 

DT  NN   VBZ   NNP  CD  ,  CD  . 

The  authorisation  expires  July  31 ,  1990  . 

Figure 6.19: Matching Parse tree for the sentence, The authorisation expires July 31, 1990. 

(Using combined linguistic information) 
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S1 

S 

VP 

NP      NP   NP 

DT  NN   VBZ   NNP  CD  ,  CD  . 

The  authorisation  expires  July  31 ,  1990  . 

Figure 6.20: Mismatching parse tree for the sentence, The authorisation expires July 31, 

1990. (Using only syntactic information) 

S1 

S 

VP 

NP 

PP 

NP   ADVP          NP    NP 

JJ   NNS  RB  VBP     CD  NN         IN      DT      NN  . 

Conventional  chips  only  process   one  instruction   at       a  time . 

Figure 6.21: Matching Parse tree for the sentence, Conventional chips only process one 

instruction at a time. (Using combined linguistic information) 

 

 

S1 

NP 

VP 

   PP 

ADVP    NP      NP 

JJ   NNS  RB  VBP       CD       NN  IN  DT  NN . 

Conventional  chips  only  process    one     instruction at  a  time     . 

Figure 6.22: Mismatching parse tree for the sentence, Conventional chips only process one 

instruction at a time. (Using only syntactic information) 
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S1 

S 

VP 

NP 

PP 

       NP    NP     NP 

NNP   NNP      AUX JJ              NN        NN             IN  DT  NNP       NNP  . 

Mr.    Upton    is    associate    finance  spokesman for the  National Party . 

Figure 6.23: Matching Parse tree for the sentence, Mr. Upton is associate finance 

spokesman for the National Party. (Using combined linguistic information) 

S1 

S 

      VP 

PP 

       NP    NP     NP 

NNP  NNP    AUX   JJ            NN       NN             IN  DT   NNP       NNP  . 

Mr.   Upton  is       associate finance spokesman for  the  National Party . 

Figure 6.24: Mismatching parse tree for the sentence, Mr. Upton is associate finance 

spokeman for the National Party. (Using only syntactic information) 

S1 

S 

VP 

NP 

PP 

       NP    NP        NP 

NNP NNP         AUX  DT  JJ          NN       IN DT  NNP        NNP         NNP            . 

Mr.  Muravchik is      a    resident scholar at the American Enterprise Institute     . 

Figure 6.25: Matching Parse tree for the sentence, Mr. Muravchik is a resident scholar at 

the American Enterprise Institute. (Using combined linguistic information) 
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S1 

S 

VP 

     PP 

        NP    NP     NP 

NNP  NNP          AUX   DT  JJ          NN       IN  DT  NNP         NNP         NNP      . 

Mr.    Muravchik is      a     resident scholar at  the  American Enterprise Institute. 

Figure 6.26: Mismatching parse tree for the sentence, Mr. Muravchik is a resident scholar 

at the American Enterprise Institute. (Using only syntactic information) 

 

S1 

S 

VP 

VP 

S 

NP 

     PP 

NP 

NP              PP 

NP     NP         NP  NP   NP    NP 

NNP NNP NNP , CD , AUX VBN –NONE- DT JJ NN NN , IN NNS IN NN CC NN NN . 

1        2     3       4  5   6  7       8        9            10  11  12  13   14 15  16    17  18   19  20   21  22 

Figure 6.27: Matching Parse tree for the sentence, Marshall[1] N.[2] Norton[3],[4 ]44[5],[6] 

was[7] elected[8] *-1[9] a[10] senior[11] vice[12] president[13],[14] with[15] 

responsibilities[16] in[17] finance[18] and[19] data[20] processing[21].[22] (Using combined 

linguistic information) 
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S1 

S 

 

      PP 

VP    NP 

  PRN       VP     PP 

NP     NP       NP   NP          NP 

NNP NNP NNP , CD , AUX VBN –NONE- DT JJ NN NN , IN NNS IN NN CC NN NN . 

1        2     3       4  5   6  7       8        9            10  11  12  13   14 15  16    17  18   19  20   21  22 

Figure 6.28: Mismatching parse tree for the sentence, Marshall[1] N.[2] Norton[3],[4 

]44[5],[6] was[7] elected[8] *-1[9] a[10] senior[11] vice[12] president[13],[14] with[15] 

responsibilities[16] in[17] finance[18] and[19] data[20] processing[21].[22] (Using only 

syntactic information) 

 

 

S1 

S 

  VP 

PP 

NP     NP            NP  

 

NN  VBZ        JJ   NN   NNS       IN      NNP    NNP  . 

SUIT  SEEKS       equal  insurance  benefits    for     manic  depression . 

Figure 6.29: Mismatching parse tree for the sentence, SUIT SEEKS equal insurance 

benefits for manic depression., using combined linguistic information (see fig. 6.5 for 

matching parse) 

 

Mismatched parsed trees produced by the parser, using a combination of linguistic 

information in its output is also compared with matching parse trees produced by 

the parser with only syntactic information. Figure 6.29 shows the mismatched parse 
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(using a combination of lexical semantic and syntactic information) of the same 

sentence whose parse tree (using only syntactic information) is depicted in figure 

6.5. Although this parse (figure 6.29), where the parser prefers the high 

attachment (with the VP) for the proposition phrase, does not match the target 

parse, it is a plausible sentence analysis. It also shows that the parser (using the 

combined linguistic information) can make decisions on attaching preposition 

phrases to verb phrases (high attachment), as well as noun phrases (low 

attachment). 

 

Figure 6.30 shows the mismatched parse (using a combination of lexical semantic 

and syntactic information) of the same sentence whose parse tree (using only 

syntactic information) is depicted in figure 6.4. Here the parser (using the 

combined linguistic information) erroneously identifies the world was an 

afterthought as a reduced relative clause. 

 

S1 

SBAR 

S 

    VP 

      NP        NP         NP 

DT  NN  IN  DT  NN   AUX  DT  NN    . 

The  rest  of  the  world   was  an  afterthought  . 

Figure 6.30: Mismatching parse tree for the sentence, The rest of the world was an 

afterthought., using combined linguistic information (see fig. 6.4 for matching parse) 

 

Of all the matched parses (labelled precision/recall = 100%/100%) achieved by the 

parser, 16 had preposition phrase attachment issues and were exclusively attained 

with only one set of input representation. When it used a combination of lexical 

semantic and syntactic information in its input representation, the parser 

successfully parsed 62.5% of these cases. On the other hand, when it used only 

syntactic information in its input representation, the parser was only able to parse 
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37.5% of these cases.  The parser therefore appeared to be able to make better 

decisions concerning preposition phrase attachment when it used a combination of 

lexical semantic and syntactic information than when it used only syntactic 

information in its input representation. 

 

6.4 Summary 

The parser has successfully acquired a degree of linguistic knowledge inherent in 

the BLLIP WSJ Corpus by learning to syntactically analyse sentences from this 

corpus. Although there is still room for improvement on its learning and 

generalisation performance, the parser is able to generalise to sentences of the 

same structural complexity as the training sample. In generalising to test sets that 

were not used during training, the parser’s generalisation performance has been 

consistent, irrespective of test sample size. 

 

In exploiting the connectionist nature of the parser, and by extension, its ability to 

make use of multiple constraints during sentence processing, lexical semantic 

information was combined with syntactic information in the parser’s input 

representation. In terms of the number of successfully parsed sentences, this 

combination of linguistic information did not yield better performance for the 

parser. It is envisaged that a further optimisation of the network size used in 

training with the combination of linguistic information could lead to better 

performance. However, an in-depth look at the parser’s analysis revealed that the 

parser appeared to be able to make better decisions concerning preposition phrase 

attachment when it used a combination of lexical semantic and syntactic 

information than when it used only syntactic information in its input representation; 

of the 16 matched parses (involving preposition phrase attachment resolution) that 

were exclusively parsed using either set of input representation, the parser 

successfully parsed 62.5% of these cases when it used a combination of lexical 

semantic and syntactic information in its input representation. 
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7. CONCLUSIONS 

7.1 Introduction 

The research project presented in this dissertation, has focused on two main 

characteristics of connectionist models for natural language processing. These 

characteristics are their adaptability to different tagging conventions, and their 

ability to use multiple linguistic constraints in parallel during sentence processing. 

In focusing on these key characteristics, an existing parsing model has been 

modified. This model is a hybrid connectionist, shift-reduce corpus-based parser. 

         

This parser, which had earlier been trained to acquire some level of linguistic 

knowledge from the Lancaster Parsed Corpus, has been adapted to learn a degree 

of linguistic knowledge from the BLLIP Wall Street Journal Corpus. This adaptation 

is a novel demonstration that this connectionist parser, and possibly, other similar 

connectionist models, is able to adapt to more than one tagging convention; this 

implies their ability to adapt to the underlying linguistic theories used to annotate 

different corpora. 

  

Another characteristic of connectionist systems is their inherent ability to use 

multiple constraints in decision making. In further exploiting this aspect of the 

connectionist nature of this parsing model, it has been adapted to integrate shallow 

lexical semantic information with syntactic information for full syntactic parsing. 

This novel approach to the integration of lexical semantic and syntactic information 

was used to investigate the effect of shallow lexical semantic information on full 

syntactic parsing. 

 

A challenge encountered in the attempt to integrate shallow lexical semantic 

information with syntactic information for full syntactic parsing is the scarcity of 
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large-scale, pre-parsed corpora with lexical semantic annotation, as well as part of 

speech annotation. This challenge was surmounted with the development of a novel 

algorithm for semantic tagging of nouns in the BLLIP Wall Street Journal Corpus. 

The lexical semantic information used in this semantic annotation algorithm was 

extracted from WordNet, an online lexical resource. WordNet provides a lexical 

inheritance system for nouns. 

 

Using only syntactic information in making parsing decisions, this parsing model 

was tested on test sets of sentences that were not used during training. The parser 

generalised to parse these test sentences with an F-measure of 72.5% and 59.5% 

on sentences from the Lancaster Parsed Corpus and Wall Street Journal Corpus, 

respectively. On the integration of shallow lexical semantic information with 

syntactic information in its input representation, the parser generalised to parse 

test sentences from the Wall Street Journal Corpus with an F-measure of 56.75%. 

Although the integration of shallow lexical semantic information with syntactic 

information has not seemed to improve the parser’s overall training/generalisation 

performance yet, given its present configuration, it did appear to improve the 

parser’s decision making in preposition phrase attachment cases. 

 

The demonstrations and findings from investigations conducted in the course of this 

work contribute to the field of Connectionist Parsing in particular and the field of 

Artificial Intelligence in general. 

 

Section 7.2 presents details of specific contributions made to the field of 

Connectionist Parsing by this work. In section 7.3, further lines of investigation and 

improvements to the parsing model are suggested as future work to the research. 
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7.2 Contributions 

7.2.1  Adaptation of Parsing Model to the BLLIP WSJ Corpus      

Most previous connectionist parsers have been trained on hand-made or artificial 

grammars. Most of the few that have ventured into analysing natural language are 

yet to be trained and tested on a large scale, using broad-coverage corpora such as 

the Wall Street Journal Corpus. The generic nature of the connectionist, corpus-

based, shift-reduce parsing model used for this project has been demonstrated with 

the model being successfully trained to acquire linguistic knowledge from two 

different corpora, the Lancaster Parsed Corpus and the BLLIP Wall Street Journal 

Corpus. 

 

After the parser had been used to learn the underlying linguistic theory used to pre-

parse the Lancaster Parsed Corpus, its adaptation to the Wall Street Journal Corpus 

was without a change to its architecture or algorithm. However, new binary input 

representations were designed for the parser, to cater for the different word and 

constituent tags used in the new corpus. 

 

When used with the Lancaster Parsed Corpus, the parser was trained with a set 

comprising 654 sentences. The test set used had 687 sentences which were not 

used during training. The parser analysed sentences from the test set with an F-

measure of 72.5%. On being adapted to the BLLIP Wall Street Journal Corpus, the 

training set used consisted of 202 sentences. There were two test sets of sentences 

that had not been used during training; one had 74 sentences while the other held 

1059 sentences. The parser analysed sentences from the 74-sentence test set with 

an F-measure of 59.1%. It analysed sentences from the 1059-sentence test set 

with an F-measure of 59.5%.  
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7.2.2  Semantic Annotation of Nouns in the BLLIP Corpus      

An important part of the process of integrating shallow lexical semantic information 

with syntactic information for full syntactic parsing is the semantic annotation of 

words in sentences. However, there is a scarcity of large-scale, pre-parsed corpora 

with lexical semantic annotation as well as part of speech annotation. Also, the 

lexical semantic tagging models available are too fine-grained for practical use. The 

need therefore arose for the development of a semi-automatic algorithm for 

semantic tagging of nouns in the BLLIP Wall Street Journal Corpus. The lexical 

semantic information used in this semantic annotation algorithm was extracted 

from WordNet, an online lexical resource. WordNet provides a lexical inheritance 

system for nouns. Each noun (and pronoun) in the training and test samples from 

the BLLIP Wall Street Journal Corpus was semantically annotated using the 

developed algorithm. The semantic classes used for this annotation are the 25 top-

level classes (called unique beginners) in WordNet’s lexical inheritance system for 

nouns. 

 

A lot of the nouns annotated are polysemous and could have senses that belong to 

more than one of the unique beginners. In such cases, the views of Buitelaar [117] 

are shared in the design of this annotation scheme; there is no disambiguation 

between the senses, rather they are left underspecified. However, this algorithm 

allowed a maximum of four of the most frequently used senses to be extracted 

from WordNet for each noun in BLLIP Wall Street Journal Corpus samples. The 

frequency of use for each sense (determined by the number of times a sense is 

tagged in the various semantic concordance texts built up as part of the WordNet 

project) is also extracted. This frequency forms part of the semantic tags for the 

nouns. 
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The semantic tags for nouns and pronouns are extended to noun phrases and 

preposition phrases which the nouns are part of.  

 

7.2.3  Integration of Shallow Lexical Semantic Information 

with Syntactic Information in Full Syntactic Parsing                 

In introducing shallow lexical semantic information to the syntactic parsing process, 

the main aim of this work is not to improve parsing accuracy per se. Rather, the 

main aim is to investigate the role that lexical semantic information (of vary levels 

of abstraction) plays in the syntactic parsing process. This investigation has also 

provided some insight into two contrasting parsing theories; i.e. whether syntactic 

parsing should be modelled as a two-stage “Fodorian” process with a lot of stress 

on compartmentalism and serial processing, or as an integrated constraint-

satisfaction process which stresses the importance of interaction between syntactic 

information and semantics.  

 

On the integration of shallow lexical semantic information with syntactic information 

in its input representation, the parser learnt with a training set of 206 sentences. 

Two test sets consisting of 74 and 1059 sentences each were used to test the 

parsers generalisation performance. Sentences in the test set were not used during 

training. When presented with sentences from the training set, the parser analysed 

them with an F-measure of 73.6%. On being presented with the test sentences, the 

parser generalised to parse 1059 test sentences from the Wall Street Journal 

Corpus with an F-measure of 56.75%. It analysed the 74-sentence set with an F-

measure of 58.17%.  

 

Although the integration of shallow lexical semantic information with syntactic 

information did not seem to improve the parser’s overall training/generalisation 

performance, given its present configuration, an examination of the parser’s 
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behaviour showed that it did appear to improve the parser’s decision concerning 

preposition phrase attachment. 

 

On the whole, this connectionist parsing model provides a plausible account of 

natural language acquisition. This is considering its ability to process sentences 

sequentially and learn the underlying linguistic theory used to annotate the 

Lancaster Parsed and Wall Street Journal Copora. It is able to handle recursive 

structure and the potentially long sentences, including complex, multi-clause 

sentences that result from it.  It is able to process long-distance dependencies, 

such as centre-embeddings.  Apart from being able to learn and make use of 

multiple linguistic constraints, it includes contextual constraints, in the form of look-

backs and look-aheads, in its decision making process. Unlike, other parsing 

models, especially the statistical models (most use test sets that are 6% the size of 

their training data sets) which need very large training data compared to their test 

data, this connectionist model is able to generalise to test sets that are larger than 

its training data set. Its generalisation performance is not deeply affected by test 

data size. 

 

7.3  Future Work 

Work on the connectionist model used in this project suggests that there is a lot of 

room for improvement. To begin with, a re-structuring of the modular architecture 

used by this parser could lead to better sentence level performance. Findings show 

that strong modular performances by the connectionist modules on the 

failed/mismatched sentences were matched with weak sentence level performance. 

This brings to the fore a limitation of the modular model, the knock-on effects that 

occur throughout the shift-reduce parsing process. During the parsing process, the 

parser’s connectionist modules operate in cascade. The right-to-left delimiter (RLD) 

module first processes the sequences and passes its results, including any errors, if 
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available, to the left-to-right delimiter (LRD) module. The LRD passes its own 

results, including any errors, if available to the phrase structure recogniser (PSR) 

module. To eradicate or drastically reduce the effects of this limitation, it would be 

necessary to use one recurrent network for the delimitation process. This would 

result in two connectionist modules, one for delimitation, and the other for phrase 

structure recognition. Alternatively, the whole parsing process could be assigned to 

one network, a recurrent network which is capable of handling the sequential and 

unbounded nature of natural language processing. 

 

Improvement in parsing performance could also be achieved by increasing the size 

of the training set. This is considering that the parser had better training/test 

performance on the Lancaster Parsed Corpus (LPC) than on the Wall Street Journal 

Corpus (WSJC). The training set used to train the parser on the LPC contained 654 

sentences. That used to train the parser on the WSLC had 202 sentences. However, 

in towing this line, the limitations of training set sizes, networks sizes and training 

times are bound to re-surface. A way around this would be to make use of faster 

computer resources; research in Artificial Intelligence has over the years been 

enhanced by growth in computer power and speed. News of the emergence of Tesla 

supercomputers from NVIDIA Corporation may provide the solution for optimising 

these neural networks on a large scale in the future. Another way around this would 

be to explore the use of less computationally excruciating recurrent neural network 

architectures, such as Echo State Networks [135]. In addition to increasing the 

training data size, a further optimisation of the network size would be necessary for 

improved performance. In ensuring the improvement of generalisation performance 

during network optimisation, weight regularisation techniques [94, 118] such as 

weight decay, weight elimination and approximate smoother may come in handy.   

 

A re-structuring of the training programme for the parser’s modules could also lead 

to improvement in parsing performance. This would involve a situation where the 
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parser’s modules are re-trained only on data generated from the failed/non-

matching sentences. After this session of re-training on these failed/non-matching 

data, the parser would again be trained on data from the whole test set. In re-

structuring the training programme in this way, it would be necessary to avoid 

over-fitting. This can be done by using the early stopping method of cross-

validation [94, 95, 96]. 

 

The above recommendations are aimed at improvement in the parser’s 

performance. They would also lead to a better exposure of the effects of integrating 

lexical semantic information with syntactic information in full syntactic parsing. 

Further effects of this integration might also be observed with the use of deeper 

levels of semantic abstraction for the annotated nouns. To be useful for practical 

use, the level of semantic abstraction should balance the need for additional 

information whilst ensuring that the sense distinctions are not too fine-grained. 
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Appendix A: The Penn Treebank II Word Tags 

 

 

The word tags can be sub-divided into five separate groups: nouns, verbs, 

prepositions, conjunctions and punctuation. The following tables list the tag, 

description and bit representation within the encoding scheme defined in Chapter 4 

for each tag in each group: 

 

Tag    Description    Bit Representation 

NN    Noun, singular or mass  100001 

NNS    Noun, plural    100010 

NNP   Proper noun, singular  100011 

NNPS   Proper noun, plural   100100 

PRP    Personal pronoun   100101 

PRP-DEI  Personal pronoun, deictic  100110 

PRP-PLE  Personal pronoun, pleonastic 100111 

PRP$   Possessive pronoun    101000 

PRP$-DEI   Possessive pronoun, deictic  101001 

PRP$-PLE  Possessive pronoun, pleonastic 101010 

JJ   Adjective    101011 

JJR   Adjective, comparative  101100 

JJS   Adjective, superlative  101101 

CD   Cardinal number   101110 

DT   Determiner    101111 

EX   Existential there   110000 

FW   Foreign word    110001 

LS   List item marker   110010 

PDT   Pre-determiner   110011 

POS   Possessive ending   110100 

SYM   Symbol    110101 

WDT   wh-determiner   110110 

WP   wh-pronoun    110111 

WP$   Possessive wh-pronoun  111000 

 

 

Tag   Description    Bit Representation 

IN   Preposition/subord. Conjunction 11 
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Tag   Description    Bit Representation 

CC   Coordinating conjunction  11 

 

 

Tag   Description    Bit Representation 

VB   Verb, base form   100001 

VBD   Verb, past tense   100010 

VBG   Verb, gerund/present participle 100011 

VBN   Verb, past participle   100100 

VBP   Verb, non-3rd ps. Sing. present  100101 

VBZ   Verb, 3rd ps. Sing. Present  100110 

AUX   Verb, auxilliary e.g. have, been 100111 

AUXG   Verb, auxilliary e.g. having, etc 101000 

RB   Adverb    101001 

RBR   Adverb, comparative   101010 

RBS   Adverb, superlative    101011 

RP   Particle    101100 

MD   Modal     101101 

TO   to     101110 

UH   Interjection    101111 

WRB   wh-adverb    110000 

 

Tag   Description    Bit Representation 

£   Pound sign    10001 

$   Dollar sign    10010 

.   Sentence-final punctuation  10011 

,   Comma    10100 

:   Colon     10101 

;   Semi-colon    10110 

-LRB-   Left bracket character  10111 

-RRB-   Right bracket character  11000 

``   Straight double quote  11001 

‘   Single open/close quote   11010 

“   Double open/close quote  11011 

-NONE-  Null element    10000
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Appendix B: The Penn Treebank II Constituent Tags 

 

 

Tag    Description   Bit Representation 

ADJP    Adjective phrase    101 

WHADJP   Wh-adjective phrase   110 

QP    Quantifier phrase   111 

 

Tag    Description   Bit Representation 

ADVP    Adverb phrase   101 

WHADVP   Wh-adverb phrase   110 

 

Tag    Description   Bit Representation 

CONJP   Conjunction phrase    1 

 

Tag    Description   Bit Representation 

FRAG    Fragment    1 

 

Tag    Description   Bit Representation 

INTJ    Interjection    1 

 

Tag    Description   Bit Representation 

NP    Noun phrase    1001 

NX    Head of complex NP   1010 

NAC    Not a constituent   1011 

LST    List marker    1100 

WHNP    Wh-noun phrase   1101 

 

Tag    Description   Bit Representation 

PP    Prepositional phrase   101 

WHPP    Wh-prepositional phrase  110 

   

Tag    Description   Bit Representation 

PRN    Parenthesis    1 

 

Tag    Description   Bit Representation 

RRC    Reduced relative clause  1 
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Tag    Description   Bit Representation 

S1    Root node    1001 

S    Simple declarative clause  1010  

SBAR    Clause introd. by surbor. Conj. 1011 

SBARQ   Direct quest. introd. by wh-word 1100 

SINV    Declar. sent. with subj-aux inversion1101 

SQ    Sub-constituent of SBARQ  1110 

 

Tag    Description   Bit Representation 

UCP    Unlike coordinated phrase  1 

 

Tag    Description   Bit Representation 

VP    Verb phrase    101 

PRT    Particle    110 

 

Tag    Description   Bit Representation 

X    Unknown/uncertain category 1 
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Appendix C: The Word Tags Used In The LPC 

 

The word tags can be sub-divided into five separate groups: nouns, verbs, 

prepositions, conjunctions and punctuation. The following tables lists the tag, 

description and bit representation within the encoding scheme used in this work 

for each tag in each group. 

 

83 Word Tags for Nouns 

Tag  Description        Bit Rep. 

ABL  pre-qualifier in a noun phrase (QUITE, RATHER, SUCH)  1 0 0 0 0 0 0 1 

ABN  pre-quantifier in a noun phrase (ALL, HALF)   1 0 0 0 0 0 1 0 

AP  post-determiner (FEW, FEWER, FORMER)    1 0 0 0 0 0 1 1 

AP$  OTHER'S        1 0 0 0 0 1 0 0 

APS  OTHERS        1 0 0 0 0 1 0 1 

APS$  OTHERS'        1 0 0 0 0 1 1 0 

AT  singular article (A, AN, EVERY)     1 0 0 0 0 1 1 1 

ATI  singular or plural article (THE, NO)    1 0 0 0 1 0 0 0 

CD  cardinal number (2, 3, etc; TWO, THREE, THOUSAND)  1 0 0 0 1 0 0 1 

CS$  cardinal number + genitive      1 0 0 0 1 0 1 0 

CD-CD hyphenated pair of cardinal numbers (e.g. 1988-90)  1 0 0 0 1 0 1 1 

CD1  ONE         1 0 0 0 1 1 0 0 

CD1$  ONE'S         1 0 0 0 1 1 0 1 

CD1S  ONES         1 0 0 0 1 1 1 0 

CDS  cardinal number+plural(TENS, MILLIONS, DOZENS, etc) 1 0 0 0 1 1 1 1 

DT  singular determiner (ANOTHER, EACH, THAT, THIS)  1 0 0 1 0 0 0 0 

DT$  singular determiner + genitive (ANOTHER'S)   1 0 0 1 0 0 0 1 

DTI  determiner neutral for number (ANY, ENOUGH, SOME)  1 0 0 1 0 0 1 0 

DTS  plural determiner (THESE, THOSE)    1 0 0 1 0 0 1 1 

DTX  determiner / double conjunction (EITHER, NEITHER)  1 0 0 1 0 1 0 0 

EX  existential THERE       1 0 0 1 0 1 0 1 

JJ  adjective (general)       1 0 0 1 0 1 1 0 

JJB  attributive adjective       1 0 0 1 0 1 1 1 

JNP  adjective with word-initial cap; e.g. WELSH, KEYNESIAN 1 0 0 1 1 0 0 0 

JJR  comparative adjective      1 0 0 1 1 0 0 1 

JJT  superlative adjective      1 0 0 1 1 0 1 0 

NC  cited word as singular noun (e.g. "LED is a verb")  1 0 0 1 1 0 1 1 
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NN  singular common noun      1 0 0 1 1 1 0 0 

NNP  sing. common noun; word-initial cap; e.g. LONDONER  1 0 0 1 1 1 0 1 

NNPS plural common noun; word-initial cap; e.g. LONDONERS 1 0 0 1 1 1 1 0 

NNPS$ plu. common noun; word-init. cap; gen. : LONDONERS' 1 0 0 1 1 1 1 1 

NNP$  sing. common noun; word-init.cap; gen.:  LONDONER'S 1 0 1 0 0 0 0 0 

NNS  plural common noun      1 0 1 0 0 0 0 1 

NNS$  plural common noun + genitive     1 0 1 0 0 0 1 0 

NNU  singular unit of measurement (e.g. IN. KG.)   1 0 1 0 0 0 1 1 

NNUS  plural unit of measurement (e.g. INS. KGS.)   1 0 1 0 0 1 0 0 

NNUS$ plural unit of measurement + genitive    1 0 1 0 0 1 0 1 

NP  singular proper noun      1 0 1 0 0 1 1 0 

NPS  plural proper noun       1 0 1 0 0 1 1 1 

NPS$  plural proper noun + genitive     1 0 1 0 1 0 0 0 

NP$  singular proper noun + genitive     1 0 1 0 1 0 0 1 

NPL  singular locative noun; word-initial cap.; e.g. ISLAND  1 0 1 0 1 0 1 0 

NPLS  plural locative noun; word-initial cap.; e.g. ISLANDS  1 0 1 0 1 0 1 1 

NPLS$ plu. locative noun; word-init. cap; + gen.; e.g. ISLANDS'1 0 1 0 1 1 0 0 

NPL$  sing. locative noun; word-init. cap; + gen.: ISLAND'S  1 0 1 0 1 1 0 1 

NPT  singular titular noun; word-initial cap.; e.g. DR.   1 0 1 0 1 1 1 0 

NPTS  plural titular noun; word-initial cap.; e.g. MESSRS.  1 0 1 0 1 1 1 1 

NPTS$ plu. titular noun; word-init. cap.; + gen.; e.g. QUEENS' 1 0 1 1 0 0 0 0 

NR  singular adverbial noun (JANUARY, MONDAY, EAST)  1 0 1 1 0 0 0 1 

NR$  singular adverbial noun + genitive     1 0 1 1 0 0 1 0 

NRS plural adverbial noun      1 0 1 1 0 0 1 1 

OD  ordinal number (1ST, 2ND, etc; FIRST, SECOND, etc)  1 0 1 1 0 1 0 0 

PN  nominal pronoun (ANYBODY, ANYONE, EVERYONE etc)  1 0 1 1 0 1 0 1 

PN$  nominal pronoun + genitive     1 0 1 1 0 1 1 0 

PP$  possessive determiner (MY, YOUR, etc)    1 0 1 1 0 1 1 1 

PPS$  possessive pronoun (MINE, YOURS, etc)    1 0 1 1 1 0 0 0 

PP1A  personal pronoun, 1st pers sing nom (I)    1 0 1 1 1 0 0 1 

PP1AS  personal pronoun, 1st pers plur nom (WE)  1 0 1 1 1 0 1 0 

PP1O  personal pronoun, 1st pers sing acc (ME)    1 0 1 1 1 0 1 1 

PP1OS personal pronoun, 1st pers plur acc (US, 'S)   1 0 1 1 1 1 0 0 

PP2  personal pronoun, 2nd pers (YOU, THOU, THEE, YE)  1 0 1 1 1 1 0 1 

PP3  personal pronoun, 3rd pers sing nom+acc (IT)   1 0 1 1 1 1 1 0 

PP3A  personal pronoun, 3rd pers sing nom (HE, SHE)   1 0 1 1 1 1 1 1 

PP3AS personal pronoun, 3rd pers plur nom (THEY)   1 1 0 0 0 0 0 0 

PP3O personal pronoun, 3rd pers plur acc (HIM, HER)   1 1 0 0 0 0 0 1 
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PP3OS personal pronoun, 3rd pers plur acc (THEM, 'EM)  1 1 0 0 0 0 1 0 

PPL  singular reflexive pronoun      1 1 0 0 0 0 1 1 

PPLS  plural reflexive pronoun      1 1 0 0 0 1 0 0 

QL  qualifier (AS, AWFULLY, LESS, MORE, SO, TOO, VERY, etc) 1 1 0 0 0 1 0 1 

QLP  post-qualifier (ENOUGH, INDEED)     1 1 0 0 0 1 1 0 

WDT  WH-determiner (WHAT, WHATEVER,WHICH)   1 1 0 0 0 1 1 1 

WP  WH-pronoun, nom+acc (WHO, WHOEVER, THAT)  1 1 0 0 1 0 0 0 

WP$  WH-pronoun, genitive (WHOSE)     1 1 0 0 1 0 0 1 

WPA  WH-pronoun, nom (WHOSOEVER)     1 1 0 0 1 0 1 0 

WPO  WH-pronoun, acc (WHOM, WHOMSOEVER)   1 1 0 0 1 0 1 1 

PP$$  possessive pronoun (MINE,YOURS etc)    1 1 0 0 1 1 0 0 

NN$  singular common noun + genitive     1 1 0 0 1 1 0 1 

NPT$  titular noun with w.i.c + genitive     1 1 0 0 1 1 1 0 

WDTR  WH-determiner - relative e.g. WHICH    1 1 0 0 1 1 1 1 

WP$R  WH-pronoun - relative - gen e.g. WHOSE    1 1 0 1 0 0 0 0 

WPOR  WH-pronoun - relative - acc e.g. WHOM    1 1 0 1 0 0 0 1 

WPR  WH-pronoun - relative - nom+acc e.g. THAT,relative WHO 1 1 0 1 0 0 1 0 

WRB  WH-verb (HOW,WHEN)      1 1 0 1 0 0 1 1 

 

4 Word Tags for Prepositions 

Tag  Description       Bit Representation 

IN  preposition (general)      1 0 0 1 

INF  FOR as a preposition      1 0 1 0 

INO  OF as a preposition       1 0 1 1 

INW  WITH as a preposition      1 1 0 0 

 

33 Word Tags for Verbs 

Tag  Description       Bit Representation 

BE  BE         1 0 0 0 0 0 1 

BED  WERE         1 0 0 0 0 1 0 

BEDZ  WAS         1 0 0 0 0 1 1 

BEG  BEING        1 0 0 0 1 0 0 

BEM  AM         1 0 0 0 1 0 1 

BEN  BEEN         1 0 0 0 1 1 0 

BER  ARE, 'RE        1 0 0 0 1 1 1 

BEZ  IS, 'S         1 0 0 1 0 0 0 

DO  DO         1 0 0 1 0 0 1 

DOD  DID         1 0 0 1 0 1 0 
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DOZ  DOES         1 0 0 1 0 1 1 

HV  HAVE         1 0 0 1 1 0 0 

HVD  HAD, 'D (past tense)      1 0 0 1 1 0 1 

HVG  HAVING        1 0 0 1 1 1 0 

HVN  HAD (past participle)      1 0 0 1 1 1 1 

HVZ  HAS, 'S        1 0 1 0 0 0 0 

MD  modal auxiliary       1 0 1 0 0 0 1 

RB  adverb (general)       1 0 1 0 0 1 0 

RB$  adverb + genitive (ELSE'S)      1 0 1 0 0 1 1 

RBR  comparative adverb       1 0 1 0 1 0 0 

RBT  superlative adverb       1 0 1 0 1 0 1 

RI  adverb (homograph of preposition: BELOW, NEAR, etc)  1 0 1 0 1 1 0 

RN  nominal adverb (HERE, NOW, THERE, THEN, etc)  1 0 1 0 1 1 1 

RP  adverbial particle (BACK, DOWN, OFF, etc)   1 0 1 1 0 0 0 

TO  infinitival TO        1 0 1 1 0 0 1 

UH  interjection        1 0 1 1 0 1 0 

VB  base form of lexi. verb (uninflected pres. tense, infinitive)1 0 1 1 0 1 1 

VBD  past tense of lexical verb      1 0 1 1 1 0 0 

VBG  present participle or gerund of lexical verb   1 0 1 1 1 0 1 

VBN  past participle of lexical verb     1 0 1 1 1 1 0 

VBZ  3rd person singular of verb      1 0 1 1 1 1 1 

WRB  WH-adverb (HOW, WHEN, WHERE, etc)    1 1 0 0 0 0 0 

XNOT  NOT, N'T        1 1 0 0 0 0 1 

 

3 Word Tags for Conjunctions 

Tag  Description       Bit Representation 

ABX  pre-quantifier / double conjunction (e.g. BOTH)    1 0 1 

CC  coordinating conjunction (e.g. AND, AND/OR, BUT, OR, YET)  1 1 0 

CS  subordinating conjunction (e.g. AFTER, ALTHOUGH, etc)  1 1 1 

 

20 Word Tags for Punctuation 

Tag  Description       Bit Representation 

^  null          0 0 0 0 0 

ZZ  letter of the alphabet (E, X, etc).      1 0 0 0 1 

!  exclamation mark (!)       1 0 0 1 0 

&FO  formula         1 0 0 1 1 

&FW  foreign word         1 0 1 0 0 

(  left bracket         1 0 1 0 1 
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[  left bracket         1 0 1 0 1 

)  right bracket         1 0 1 1 0 

]  right bracket         1 0 1 1 0 

*'  begin quote         1 0 1 1 1 

*"  begin quote         1 0 1 1 1 

**'  end quote         1 1 0 0 0 

**"  end quote         1 1 0 0 0 

-  dash          1 1 0 0 1 

,  comma         1 1 0 1 0 

?  question mark        1 1 0 1 1 

...  ellipsis         1 1 1 0 0 

:  colon          1 1 1 0 1 

;  semicolon         1 1 1 1 0 

.  full stop         1 1 1 1 1 
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Appendix D: The Constituent Tags Used In The LPC 
 

The constituent tags can be sub-divided into five main groups : sentence tags, 

finite clause tags, non-finite and verbless clause tags, major phrase tags, and minor 

phrase tags. The following table lists the tag, description and 

bit representation within the encoding scheme used in this work. 

 

3 Sentence Tags 

Tag  Description       Bit Representation 

S  sentence.        1 0 1 

Sq  piece of direct quotation.      1 1 0 

Si  interpolated sentence.      1 1 1 

 

5 Finite Clause Tags 

Tag  Description       Bit Representation 

F  finite subor. clause i.e. a clause which contains a finite verb. 1 0 0 1 

Fa  finite adverbial clause(e.g. finite subordinate clause of time etc)1 0 1 0 

Fc  comparative clause, normally beginning with `than' or `as'.  1 0 1 1 

Fn  finite nominal clause (subord clause func in pos of Noun PH)  1 1 0 0 

Fr  relative clause - whether restrictive or non-restrictive.   1 1 0 1 

 

9 Non-finite And Verbless Clause Tags 

Tag  Description       Bit Representation 

T  nonfinite clause.       1 0 0 0 1 

Ti  to-infinitive clause.       1 0 0 1 0 

Tg  -ing clause.        1 0 0 1 1 

Tn  past participle clause.      1 0 1 0 0 

Tb ` bare infinitive clause'.      1 0 1 0 1 

Tf  subject of the infinitive which is introduced by `for'.  1 0 1 1 0 

W  nonfinite or verbless clause that is introduced by with.  1 0 1 1 1 

L  verbless clause that is not intro. by subordinating conjunction. 1 1 0 0 0 

 

17 Major Phrase Tags 

Tag  Description       Bit Representation 

V  A finite “verb phrase” i.e. one that excludes objects,  

complements        1 0 0 0 0 1 

Vo  Used when a verb phrase is split into two parts by subj-aux inv. 
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o=operator        1 0 0 0 1 0 

Vr  Used when a verb phrase is split into two parts by subj-aux inversion. 

r=remaindr        1 0 0 0 1 1 

Vi  Label for nonfinite verb phrases(VP). i.e VP's that are 

VP's of Ti,Tg and Tn.      1 0 0 1 0 0 

Vg  Label for nonfinite verb phrases(VP). i.e VP's that are VP's of 

Ti,Tg and Tn.       1 0 0 1 0 1 

Vn  Label for nonfinite verb phrases(VP). i.e VP's that are VP's of 

Ti,Tg and Tn.       1 0 0 1 1 0 

N  Label for a noun phrase, whether it is a single word or a sequence 

of words.        1 0 0 1 1 1 

Na  A noun phrase marked as subject of the verb.   1 0 1 0 0 0 

Nq  A wh- noun phrase, such as `who', `which', `which car',  

`what time'.        1 0 1 0 0 1 

J  An adjective phrase such as `happy', `very tall' etc.  1 0 1 0 1 0 

Jq  A phrase beginning with a wh-word e.g. `How old'.  1 0 1 0 1 1 

P  A prepositional phrase, e.g. `in London' or `on arriving  

at the station'.      1 0 1 1 0 0 

Pq  A prepositional phrase with a wh-word, e.g. `on whose behalf', 

`in which case'.       1 0 1 1 0 1 

Po  A prepositional phrase beginning with the preposition 'of'. 1 0 1 1 1 0 

Poq  A prepositional phrase beginning with the preposition 'of' 

with wh-word?       1 1 0 0 0 1 

R  An adverb phrase, e.g. `there',`quickly' or a sequence such as `quite 

often' etc        1 0 1 1 1 1 

Rq  an adverb phrase beginning with a wh-word, e.g. `How do you feel?', 

or `how long'       1 1 0 0 0 0 

 

7 Minor Phrase Tags 

Tag  Description       Bit Representation 

M  `numeric phrase' when such an expression is part of a  

noun phrase.        1 0 0 1 

D  `determiner phrase'.      1 0 1 0 

Dq  determiner phrase beginning with a wh-word.   1 0 1 1 

G  genitive phrase - phrase with two or more words acting as the 

genitive in a noun.       1 1 0 0 

X  negative word 'not' when acting as an independent element of 

a clause.        1 1 0 1 
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E  label used for existential `there' i.e 'There' is nothing  

wrong.        1 1 1 0 

U  tag used for an exclamatory word such as `Oh','yes',  

or 'no'.        1 1 1 1 
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Appendix E:  Parse Failures made on the WSJ Corpus 

Training Set (Using Syntactic 

Information Only) 
 

 

 

Parse failed - could not create a valid parent for NP 

 

Desired parse : (S1 (S (NP (NP (NP NNP NNPS POS) NNP NN NN) (PP IN (NP NNP 

NNP))) (VP VBD (PP IN (NP CD NN)) (PP IN (ADVP (NP DT NN) RBR)) , (PP VBG (PP 

TO (NP (NP DT NNP) (PP IN (NP NNP NNP)))))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP NNP NNP) 

Description : Noun phrase 

 

State 2    : (PP IN (NP NNP NNP)) 

Description : Prepositional phrase 

 

State 3    : (NP DT NNP) 

Description : Noun phrase 

 

State 4    : (NP (NP DT NNP) (PP IN (NP NNP NNP))) 

Description : Noun phrase 

 

State 5    : (PP TO (NP (NP DT NNP) (PP IN (NP NNP NNP)))) 

Description : Prepositional phrase 

 

State 6    : (PP VBG (PP TO (NP (NP DT NNP) (PP IN (NP NNP NNP))))) 

Description : Prepositional phrase 

 

State 7    : (NP DT NN) 

Description : Noun phrase 
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Parse failed - could not create a valid parent for NP 

 

Desired parse : (S1 (S (PP IN (PP TO (S (NP -NONE-) (VP VBG (NP DT NN) (PP IN 

(NP CD)))))) , (NP PRP) (VP VBD (SBAR -NONE- (S (NP DT NNP) `` (VP AUX RB 

(VP VB (S (NP -NONE-) (VP TO (VP VB (S (NP -NONE-) (VP VBG (NP DT NN) (PP 

(ADVP RB) IN (NP (NP DT NN) (PP IN (NP NN)))))))))))))) . '')) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP NN) 

Description : Noun phrase 

 

State 2    : (PP IN (NP NN)) 

Description : Prepositional phrase 

 

State 3    : (NP DT NN) 

Description : Noun phrase 

 

State 4    : (VP IN (NP DT NN) (PP IN (NP NN))) 

Description : Verb phrase 

 

State 5    : (ADVP RB) 

Description : Adverb phrase 

 

State 6    : (NP DT NN) 

Description : Noun phrase 

 

State 7    : (VP VBG (NP DT NN) (ADVP RB) (VP IN (NP DT NN) (PP IN 

(NP NN))) .) 

Description : Verb phrase 

 

State 8    : (NP -NONE-) 

Description : Noun phrase 

 

State 9    : (S (NP -NONE-) (VP VBG (NP DT NN) (ADVP RB) (VP IN (NP 

DT NN) (PP IN (NP NN))) .)) 

Description : Simple declarative clause 
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State 10    : (VP VB (S (NP -NONE-) (VP VBG (NP DT NN) (ADVP RB) (VP 

IN (NP DT NN) (PP IN (NP NN))) .))) 

Description : Verb phrase 

 

State 11    : (VP TO (VP VB (S (NP -NONE-) (VP VBG (NP DT NN) (ADVP 

RB) (VP IN (NP DT NN) (PP IN (NP NN))) .)))) 

Description : Verb phrase 

 

State 12    : (NP -NONE-) 

Description : Noun phrase 

 

State 13    : (S (NP -NONE-) (VP TO (VP VB (S (NP -NONE-) (VP VBG 

(NP DT NN) (ADVP RB) (VP IN (NP DT NN) (PP IN (NP NN))) .))))) 

Description : Simple declarative clause 

 

State 14    : (VP VB (S (NP -NONE-) (VP TO (VP VB (S (NP -NONE-) (VP 

VBG (NP DT NN) (ADVP RB) (VP IN (NP DT NN) (PP IN (NP NN))) .)))))) 

Description : Verb phrase 

 

State 15    : (VP RB (VP VB (S (NP -NONE-) (VP TO (VP VB (S (NP -

NONE-) (VP VBG (NP DT NN) (ADVP RB) (VP IN (NP DT NN) (PP IN (NP NN))) 

.))))))) 

Description : Verb phrase 

 

State 16    : (VP AUX (VP RB (VP VB (S (NP -NONE-) (VP TO (VP VB (S 

(NP -NONE-) (VP VBG (NP DT NN) (ADVP RB) (VP IN (NP DT NN) (PP IN (NP NN))) 

.))))))) '') 

Description : Verb phrase 

 

State 17    : (NP DT NNP) 

Description : Noun phrase 

 

State 18    : (NP -NONE- (NP DT NNP) ``) 

Description : Noun phrase 
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Parse failed - could not create a valid parent for NP 

 

Desired parse : (S1 (S (PP IN (NP NNP)) , (NP NN NNS) (VP (VP VBD (NP (NP DT 

NN) (PP IN (NP NN NNS)))) CC (VP (ADVP RB) VBD (NP (NP DT NN) (PP IN (NP (NP 

NNS) (PP TO (NP NNP))))) (PP IN (NP (NP DT NN) (PP IN (NP NNP NNS)))))))) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP NNP NNS) 

Description : Noun phrase 

 

State 2    : (PP IN (NP NNP NNS)) 

Description : Prepositional phrase 

 

State 3    : (NP DT NN) 

Description : Noun phrase 

 

 

 

Parse failed - could not create a valid parent for NP 

 

Desired parse : (S1 (S (NP DT NNP NN) (VP VBD (NP NNP NNPS) (SBAR IN (S (NP 

(NP DT NNP NNP) (PP IN (NP NNP NNP))) (VP MD RB (VP VB (NP (NP NNS) (PP IN 

(NP (NP JJ NNS) (VP VBD (NP NNP NNP)))))))))))) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP NNP NNP) 

Description : Noun phrase 

 

State 2    : (VP VBD (NP NNP NNP)) 

Description : Verb phrase 

 

State 3    : (NP JJ NNS) 

Description : Noun phrase 
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Parse failed - could not create a valid parent for NP 

 

Desired parse : (S1 (PRN -LRB- (VP VBP (NP (NP VBN NN) : `` (S (NP (NP NNP 

POS) NNP) (VP VBZ (S (NP NNP NNP POS) (VP VBG '' (S (NP -NONE-) (VP TO (VP 

VB (NP DT JJ NN NN)))))))) '' : (NP (NP NNP) (NP NNP CD , CD)))) -RRB-)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP NNP CD , CD) 

Description : Noun phrase 

 

State 2    : (ADVP '') 

Description : Adverb phrase 

 

State 3    : (NP NNP) 

Description : Noun phrase 

 

State 4    : (NP (NP NNP) (NP NNP CD , CD)) 

Description : Noun phrase 

 

State 5    : (NP DT JJ NN NN) 

Description : Noun phrase 

 

State 6    : (VP VB (NP DT JJ NN NN) (ADVP '')) 

Description : Verb phrase 

 

State 7    : (VP TO (VP VB (NP DT JJ NN NN) (ADVP '')) :) 

Description : Verb phrase 

 

State 8    : (VP VBG) 

Description : Verb phrase 

 

State 9    : (VP (VP VBG) '' -NONE- (VP TO (VP VB (NP DT JJ NN NN) 

(ADVP '')) :) (NP (NP NNP) (NP NNP CD , CD))) 

Description : Verb phrase 
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State 10    : (NP NNP NNP) 

Description : Noun phrase 

 

State 11    : (NP POS) 

Description : Noun phrase 

 

State 12    : (NP (NP POS) (NP NNP NNP)) 

Description : Noun phrase 

 

State 13    : (S (NP (NP POS) (NP NNP NNP)) (VP (VP VBG) '' -NONE- 

(VP TO (VP VB (NP DT JJ NN NN) (ADVP '')) :) (NP (NP NNP) (NP NNP CD , CD)))) 

Description : Simple declarative clause 

 

State 14    : (VP VBZ (S (NP (NP POS) (NP NNP NNP)) (VP (VP VBG) '' -

NONE- (VP TO (VP VB (NP DT JJ NN NN) (ADVP '')) :) (NP (NP NNP) (NP NNP CD , 

CD)))) -RRB-) 

Description : Verb phrase 

 

State 15    : (NP NNP POS) 

Description : Noun phrase 

 

State 16    : (NP `` (NP NNP POS) NNP) 

Description : Noun phrase 

 

 

 

Parse failed - could not create a valid parent for S1 

 

Desired parse : (S1 (S (PP IN (NP JJ NNS)) , (NP (NP NNS) (PP IN (NP NNP))) (VP 

AUX (VP VBN (NP (NP NNS) (PP IN (NP NN))) (PP IN (NP (NP DT NN NNS) (PP IN 

(NP (NP NNS) (VP VBN (S (NP -NONE-) (ADJP JJ (PP IN (NP NN))))))))))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP NN) 

Description : Noun phrase 
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State 2    : (PP IN (NP NN)) 

Description : Prepositional phrase 

 

State 3    : (UCP JJ) 

Description : Unlike coordinated phrase 

 

State 4    : (S1 .) 

Description : Root node 

 

 

 

Parse failed - could not create a valid parent for NP 

 

Desired parse : (S1 (S CC (NP DT NN (S (NP -NONE-) (VP TO (VP VB (NP (NP (NP 

DT NN POS) JJ NNS NN) (PRN : (SBAR (WHNP WDT) (S (NP -NONE-) (VP MD (VP 

VB (NP DT NNS) (PP IN (NP NN)))))) :)))))) (VP AUX (VP VBG (NP NN))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP NN) 

Description : Noun phrase 

 

State 2    : (VP VBG (NP NN)) 

Description : Verb phrase 

 

State 3    : (VP AUX (VP VBG (NP NN))) 

Description : Verb phrase 

 

State 4    : (NP NN) 

Description : Noun phrase 

 

State 5    : (PP IN (NP NN)) 

Description : Prepositional phrase 

 

State 6    : (NP DT NNS) 

Description : Noun phrase 
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State 7    : (VP VB (NP DT NNS) (PP IN (NP NN))) 

Description : Verb phrase 

 

State 8    : (VP MD (VP VB (NP DT NNS) (PP IN (NP NN)))) 

Description : Verb phrase 

 

State 9    : (NP -NONE-) 

Description : Noun phrase 

 

State 10    : (S (NP -NONE-) (VP MD (VP VB (NP DT NNS) (PP IN (NP 

NN))))) 

Description : Simple declarative clause 

 

State 11    : (WHNP WDT) 

Description : Wh-noun phrase 

 

State 12    : (SBAR (WHNP WDT) (S (NP -NONE-) (VP MD (VP VB (NP DT 

NNS) (PP IN (NP NN)))))) 

Description : Clause introduced by sub-ordinating conjunction 

 

State 13    : (PRN : (SBAR (WHNP WDT) (S (NP -NONE-) (VP MD (VP VB 

(NP DT NNS) (PP IN (NP NN)))))) :) 

Description : Parenthetical 

 

State 14    : (NP DT NN POS) 

Description : Noun phrase 

 

State 15    : (NP (NP DT NN POS) JJ NNS NN) 

Description : Noun phrase 

 

 

 

Parse failed - could not create a valid parent for NP 

 

Desired parse : (S1 (S (NP DT NN) (ADVP RB) (VP VBD (NP (NP DT NN NN) (PP IN 

(NP (QP $ CD CD) -NONE-)) (PP IN (NP JJ JJ NNS)))) .)) 
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wsj_Concord-II's attempt .... 

 

State 1    : (NP JJ JJ NNS) 

Description : Noun phrase 

 

State 2    : (PP IN (NP JJ JJ NNS)) 

Description : Prepositional phrase 

 

State 3    : (QP $ CD CD) 

Description : Adjective phrase (Quantitative) 

 

State 4    : (PP IN) 

Description : Prepositional phrase 

 

State 5    : (NP DT NN NN) 

Description : Noun phrase 

 

State 6    : (NP (NP DT NN NN) (PP IN)) 

Description : Noun phrase 

 

 

 

Parse failed - could not create a valid parent for NP 

 

Desired parse : (S1 (S (PP IN (PP IN (NP (NP (NP DT NN POS) NN NN) (PP TO (NP 

JJ NNS))))) , (NP DT NN) (VP VBD : `` (S (NP JJS NNS) (VP VBP (PP IN (NP PRP$ 

NNS)) (PP IN (NP (NP DT NN) (PP IN (NP (NP (ADJP JJ CC JJ) NNS) (ADJP JJ)))))))) 

.)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (ADJP JJ) 

Description : Adjective phrase 

 

State 2    : (ADJP JJ CC JJ) 

Description : Adjective phrase 



Appendix E – Parse Failures made on the WSJ Corpus Training Set (Using Syntactic 

Information Only) 

 

 

  182 

 

State 3    : (NP (ADJP JJ CC JJ) NNS) 

Description : Noun phrase 

 

State 4    : (NP (NP (ADJP JJ CC JJ) NNS) (ADJP JJ)) 

Description : Noun phrase 

 

State 5    : (PP IN (NP (NP (ADJP JJ CC JJ) NNS) (ADJP JJ))) 

Description : Prepositional phrase 

 

State 6    : (NP DT NN) 

Description : Noun phrase 

 

State 7    : (NP (NP DT NN) (PP IN (NP (NP (ADJP JJ CC JJ) NNS) (ADJP 

JJ)))) 

Description : Noun phrase 

 

State 8    : (PP IN (NP (NP DT NN) (PP IN (NP (NP (ADJP JJ CC JJ) 

NNS) (ADJP JJ))))) 

Description : Prepositional phrase 

 

State 9    : (NP PRP$ NNS) 

Description : Noun phrase 

 

State 10    : (NP (NP PRP$ NNS) (PP IN (NP (NP DT NN) (PP IN (NP (NP 

(ADJP JJ CC JJ) NNS) (ADJP JJ)))))) 

Description : Noun phrase 

 

 

 

NNS , VBP . 

Parse failed - the tail of a phrase could not be found! 

Desired parse : (S1 (S (NP NNS) , (VP VBP) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (VP VBP) 
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Description : Verb phrase 

 

State 2    : (VP NNS , (VP VBP) .) 

Description : Verb phrase 

 

 

 

`` DT AUX DT JJ NN , '' VBD -NONE- NNP NNP NNP , CD IN DT NN POS NNS .Parse 

failed - the head of a phrase could not be found! 

Desired parse : (S1 (SINV `` (S (NP DT) (VP AUX (NP DT JJ NN))) , '' (VP VBD (S -

NONE-)) (NP (NP NNP NNP NNP) , (NP (NP CD) (PP IN (NP (NP DT NN POS) NNS)))) 

.)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP DT NN POS) 

Description : Noun phrase 

 

State 2    : (PP IN (NP DT NN POS) NNS) 

Description : Prepositional phrase 

 

State 3    : (NP CD) 

Description : Noun phrase 

 

State 4    : (NP (NP CD) (PP IN (NP DT NN POS) NNS)) 

Description : Noun phrase 

 

State 5    : (NP NNP NNP NNP) 

Description : Noun phrase 

 

State 6    : (NP (NP NNP NNP NNP) , (NP (NP CD) (PP IN (NP DT NN 

POS) NNS))) 

Description : Noun phrase 

 

State 7    : (S -NONE-) 

Description : Simple declarative clause 
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State 8    : (VP VBD (S -NONE-) (NP (NP NNP NNP NNP) , (NP (NP CD) 

(PP IN (NP DT NN POS) NNS)))) 

Description : Verb phrase 

 

State 9    : (NP DT JJ NN) 

Description : Noun phrase 

 

State 10    : (VP AUX (NP DT JJ NN)) 

Description : Verb phrase 

 

State 11    : (NP DT) 

Description : Noun phrase 

 

 

 

Parse failed - could not create a valid parent for NP 

 

Desired parse : (S1 (S (S (NP -NONE-) (VP VBG (PP IN (NP (NP DT NN) (PP IN (NP 

PRP$ NNP NNP NN)))) (PP (NP DT JJ NNS) IN (NP NN NN)))) , (NP NNP) (VP AUX 

(ADJP JJ (PP IN (S (NP -NONE-) (VP VBG (PRT RP) (NP (NP DT NNS) (SBAR (WHNP 

WDT) (S (NP -NONE-) (PRN , (S (NP PRP) (VP VBZ (SBAR -NONE- (S -NONE-)))) ,) 

(NP -NONE-) (VP VBP (NP NNP)))))))))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP NNP) 

Description : Noun phrase 

 

State 2    : (VP VBP (NP NNP)) 

Description : Verb phrase 

 

State 3    : (NP -NONE-) 

Description : Noun phrase 

 

State 4    : (S -NONE-) 

Description : Simple declarative clause 
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State 5    : (S -NONE- (S -NONE-) ,) 

Description : Simple declarative clause 

 

State 6    : (VP VBZ (S -NONE- (S -NONE-) ,)) 

Description : Verb phrase 

 

State 7    : (NP PRP) 

Description : Noun phrase 

 

State 8    : (S (NP PRP) (VP VBZ (S -NONE- (S -NONE-) ,)) (NP -NONE-

)) 

Description : Simple declarative clause 

 

State 9    : (NP WDT) 

Description : Noun phrase 

 

State 10    : (NP DT NNS) 

Description : Noun phrase 

 

State 11    : (NP (NP DT NNS) (NP WDT)) 

Description : Noun phrase 

 

State 12    : (PRT RP) 

Description : Particle; category for words that should be tagged RP 

 

State 13    : (VP VBG (PRT RP) (NP (NP DT NNS) (NP WDT))) 

Description : Verb phrase 

 

State 14    : (NP -NONE-) 

Description : Noun phrase 

 

State 15    : (S (NP -NONE-) (VP VBG (PRT RP) (NP (NP DT NNS) (NP 

WDT)))) 

Description : Simple declarative clause 

 

State 16    : (PP IN (S (NP -NONE-) (VP VBG (PRT RP) (NP (NP DT NNS) 

(NP WDT))))) 
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Description : Prepositional phrase 

 

State 17    : (NP JJ) 

Description : Noun phrase 

 

State 18    : (VP AUX (NP JJ) (PP IN (S (NP -NONE-) (VP VBG (PRT RP) 

(NP (NP DT NNS) (NP WDT)))))) 

Description : Verb phrase 

 

State 19    : (NP NNP) 

Description : Noun phrase 

 

State 20    : (S (NP NNP) (VP AUX (NP JJ) (PP IN (S (NP -NONE-) (VP 

VBG (PRT RP) (NP (NP DT NNS) (NP WDT))))))) 

Description : Simple declarative clause 

 

State 21    : (NP NN NN) 

Description : Noun phrase 

 

State 22    : (NP (NP NN NN) , (S (NP NNP) (VP AUX (NP JJ) (PP IN (S 

(NP -NONE-) (VP VBG (PRT RP) (NP (NP DT NNS) (NP WDT)))))))) 

Description : Noun phrase 

 

 

 

Parse failed - could not create a valid parent for VP 

 

Desired parse : (S1 (S (NP DT NN) (VP MD (VP VB (S (NP NNP) (VP TO (VP VB (NP 

(NP DT (ADJP CD NN) NN NN) (VP VBN (NP -NONE-) (PP IN (NP PRP$ NN (S (NP -

NONE-) (VP TO (VP VB)))))))))) , (SBAR RB IN (S (NP NNP CC NNP) (VP AUX RB 

(VP VB (NP PRP$ NN))))))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP PRP$ NN) 

Description : Noun phrase 
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State 2    : (VP VB (NP PRP$ NN)) 

Description : Verb phrase 

 

State 3    : (VP AUX RB (VP VB (NP PRP$ NN))) 

Description : Verb phrase 

 

State 4    : (NP NNP CC NNP) 

Description : Noun phrase 

 

State 5    : (S (NP NNP CC NNP) (VP AUX RB (VP VB (NP PRP$ NN)))) 

Description : Simple declarative clause 

 

State 6    : (PP IN (S (NP NNP CC NNP) (VP AUX RB (VP VB (NP PRP$ 

NN))))) 

Description : Prepositional phrase 

 

State 7    : (UCP RB (PP IN (S (NP NNP CC NNP) (VP AUX RB (VP VB 

(NP PRP$ NN)))))) 

Description : Unlike coordinated phrase 

 

State 8    : (VP VB) 

Description : Verb phrase 

 

 

 

Parse failed - could not create a valid parent for NP 

 

Desired parse : (S1 (S (NP DT NN) (VP MD (VP AUX (VP VBN (NP -NONE-) (PP IN 

(NP (NP RB CD) CC (NP DT JJ))) (PP IN IN (NP (NP DT NN) (PP IN (NP NN 

NNS))))))) . '')) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP NN NNS) 

Description : Noun phrase 

 

State 2    : (PP IN (NP NN NNS)) 
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Description : Prepositional phrase 

 

State 3    : (NP DT NN) 

Description : Noun phrase 

 

State 4    : (PP IN (NP DT NN) (PP IN (NP NN NNS))) 

Description : Prepositional phrase 

 

State 5    : (PP IN (PP IN (NP DT NN) (PP IN (NP NN NNS)))) 

Description : Prepositional phrase 

 

State 6    : (NP DT JJ) 

Description : Noun phrase 

 

State 7    : (NP RB CD) 

Description : Noun phrase 

 

State 8    : (NP (NP RB CD) CC (NP DT JJ)) 

Description : Noun phrase 

 

State 9    : (PP IN (NP (NP RB CD) CC (NP DT JJ)) (PP IN (PP IN (NP DT 

NN) (PP IN (NP NN NNS))))) 

Description : Prepositional phrase 

 

State 10    : (NP -NONE-) 

Description : Noun phrase 

 

State 11    : (VP VBN (NP -NONE-) (PP IN (NP (NP RB CD) CC (NP DT 

JJ)) (PP IN (PP IN (NP DT NN) (PP IN (NP NN NNS))))) .) 

Description : Verb phrase 

 

State 12    : (VP AUX (VP VBN (NP -NONE-) (PP IN (NP (NP RB CD) CC 

(NP DT JJ)) (PP IN (PP IN (NP DT NN) (PP IN (NP NN NNS))))) .) '') 

Description : Verb phrase 

 

State 13    : (ADVP MD) 

Description : Adverb phrase 
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State 14    : (NP (ADVP MD)) 

Description : Noun phrase 

 

 

 

PRP RB VBZ IN NN : IN DT NN IN JJ , JJ NNS JJ IN NNP NNP : AUX VBG DT JJ NN IN 

IN NNP NNP CC NNP NN . 

Parse failed - the tail of a phrase could not be found! 

Desired parse : (S1 (S (NP PRP) (ADVP RB) (VP VBZ (SBAR IN (S (NP (NP NN) (PRN 

: (PP IN (NP (NP DT NN) (PP IN (NP (NP JJ , JJ NNS) (PP JJ IN (NP NNP NNP)))))) 

:)) (VP AUX (VP VBG (NP DT JJ NN) (PP IN (PP IN (NP NNP NNP CC NNP NN)))))))) 

.)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP NNP NNP CC NNP NN) 

Description : Noun phrase 

 

State 2    : (PP IN (NP NNP NNP CC NNP NN)) 

Description : Prepositional phrase 

 

State 3    : (PP IN (PP IN (NP NNP NNP CC NNP NN))) 

Description : Prepositional phrase 

 

State 4    : (NP DT JJ NN) 

Description : Noun phrase 

 

State 5    : (VP VBG (NP DT JJ NN) (PP IN (PP IN (NP NNP NNP CC NNP 

NN)))) 

Description : Verb phrase 

 

State 6    : (VP AUX (VP VBG (NP DT JJ NN) (PP IN (PP IN (NP NNP NNP 

CC NNP NN))))) 

Description : Verb phrase 

 

State 7    : (NP NNP NNP) 
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Description : Noun phrase 

 

State 8    : (PP IN (NP NNP NNP)) 

Description : Prepositional phrase 

 

State 9    : (NP JJ NNS JJ) 

Description : Noun phrase 

 

State 10    : (S (NP JJ NNS JJ) (PP IN (NP NNP NNP)) : (VP AUX (VP VBG 

(NP DT JJ NN) (PP IN (PP IN (NP NNP NNP CC NNP NN))))) .) 

Description : Simple declarative clause 

 

State 11    : (SBAR , (S (NP JJ NNS JJ) (PP IN (NP NNP NNP)) : (VP AUX 

(VP VBG (NP DT JJ NN) (PP IN (PP IN (NP NNP NNP CC NNP NN))))) .)) 

Description : Clause introduced by sub-ordinating conjunction 

 

State 12    : (ADJP JJ) 

Description : Adjective phrase 

 

State 13    : (NP DT NN) 

Description : Noun phrase 

 

State 14    : (PP IN (NP DT NN)) 

Description : Prepositional phrase 

 

State 15    : (PP IN) 

Description : Prepositional phrase 

 

State 16    : (NP NN) 

Description : Noun phrase 

 

State 17    : (NP (NP NN) : (PP IN) (PP IN (NP DT NN)) (ADJP JJ) (SBAR 

, (S (NP JJ NNS JJ) (PP IN (NP NNP NNP)) : (VP AUX (VP VBG (NP DT JJ NN) (PP IN 

(PP IN (NP NNP NNP CC NNP NN))))) .))) 

Description : Noun phrase 

 

State 18    : (PP IN) 
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Description : Prepositional phrase 

 

State 19    : (VP VBZ (PP IN) (NP (NP NN) : (PP IN) (PP IN (NP DT NN)) 

(ADJP JJ) (SBAR , (S (NP JJ NNS JJ) (PP IN (NP NNP NNP)) : (VP AUX (VP VBG (NP 

DT JJ NN) (PP IN (PP IN (NP NNP NNP CC NNP NN))))) .)))) 

Description : Verb phrase 

 

State 20    : (ADVP RB) 

Description : Adverb phrase 

 

State 21    : (NP PRP) 

Description : Noun phrase 

 

 

 

Parse failed - could not create a valid parent for NP 

 

Desired parse : (S1 (S (NP (NP NNP POS) NNP NNP NNS) (VP VBD (NP (NP CD JJ 

NN) (PRN -LRB- (NP $ CD -NONE-) -RRB-)) (PP TO (NP (NP CD) (PRN -LRB- (NP $ 

CD -NONE-) -RRB-))) (NP NN) , (SBAR IN (S (NP NNP NNS) (VP VBD (NP CD) (PP 

TO (NP CD)))))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP CD) 

Description : Noun phrase 

 

State 2    : (PP TO (NP CD)) 

Description : Prepositional phrase 

 

State 3    : (NP CD) 

Description : Noun phrase 

 

State 4    : (VP VBD (NP CD) (PP TO (NP CD))) 

Description : Verb phrase 

 

State 5    : (NP NNP NNS) 
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Description : Noun phrase 

 

State 6    : (S (NP NNP NNS) (VP VBD (NP CD) (PP TO (NP CD)))) 

Description : Simple declarative clause 

 

State 7    : (SBAR IN (S (NP NNP NNS) (VP VBD (NP CD) (PP TO (NP 

CD))))) 

Description : Clause introduced by sub-ordinating conjunction 

 

State 8    : (NP $ CD -NONE- -RRB- NN , (SBAR IN (S (NP NNP NNS) 

(VP VBD (NP CD) (PP TO (NP CD)))))) 

Description : Noun phrase 

 

State 9    : (NP CD) 

Description : Noun phrase 

 

State 10    : (PP TO (NP CD) -LRB-) 

Description : Prepositional phrase 

 

State 11    : (NP $ CD -NONE-) 

Description : Noun phrase 

 

State 12    : (NP CD JJ NN) 

Description : Noun phrase 

 

State 13    : (NP NNP NNP NNS) 

Description : Noun phrase 

 

State 14    : (NP POS (NP NNP NNP NNS)) 

Description : Noun phrase 

 

 

 

Parse failed - could not create a valid parent for NP 

 

Desired parse : (S1 (S (NP PRP) (VP VBP (NP (NP DT JJ NN) (PP IN (NP (NP DT JJ JJ 

NNS) , (VP (ADVP RB) VBN (NP -NONE-) (S (NP -NONE-) (VP TO (VP VB (PP IN (NP 
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(NP CD NN) (PP IN (NP CD)))) (PP TO (NP (NP CD NN) (PP IN (NP CD CC 

CD)))))))))))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP CD CC CD) 

Description : Noun phrase 

 

State 2    : (PP IN (NP CD CC CD)) 

Description : Prepositional phrase 

 

State 3    : (ADJP TO CD NN) 

Description : Adjective phrase 

 

State 4    : (NP CD) 

Description : Noun phrase 

 

State 5    : (PP IN (NP CD)) 

Description : Prepositional phrase 

 

State 6    : (NP CD NN) 

Description : Noun phrase 

 

State 7    : (VP VB IN) 

Description : Verb phrase 

 

State 8    : (VP TO (VP VB IN)) 

Description : Verb phrase 

 

State 9    : (NP -NONE-) 

Description : Noun phrase 

 

State 10    : (S (NP -NONE-) (VP TO (VP VB IN))) 

Description : Simple declarative clause 

 

State 11    : (S -NONE- (S (NP -NONE-) (VP TO (VP VB IN)))) 

Description : Simple declarative clause 
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State 12    : (NP (NP CD NN) (PP IN (NP CD))) 

Description : Noun phrase 

 

 

 

NN NNS VBP PRP AUX VBG IN JJ JJ NN WDT -NONE- MD VB DT NN NN , CC JJS VBP 

-NONE- DT CD NNP NNS VBN -NONE- IN NN NN MD RB VB PRP$ NNS . 

Parse failed - the tail of a phrase could not be found! 

Desired parse : (S1 (S (S (NP NN NNS) (VP VBP (S (NP PRP) (VP AUX (VP VBG (PP 

IN (NP (NP JJ JJ NN) (SBAR (WHNP WDT) (S (NP -NONE-) (VP MD (VP VB (NP DT 

NN) (NP NN)))))))))))) , CC (S (NP JJS) (VP VBP (SBAR -NONE- (S (NP (NP DT CD 

NNP NNS) (VP VBN (NP -NONE-) (PP IN (NP NN)) (NP NN))) (VP MD RB (VP VB (NP 

PRP$ NNS))))))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP PRP$ NNS) 

Description : Noun phrase 

 

State 2    : (VP VB (NP PRP$ NNS)) 

Description : Verb phrase 

 

State 3    : (ADVP RB) 

Description : Adverb phrase 

 

State 4    : (VP MD (ADVP RB) (VP VB (NP PRP$ NNS)) .) 

Description : Verb phrase 

 

State 5    : (NP NN NN) 

Description : Noun phrase 

 

State 6    : (PP IN (NP NN NN)) 

Description : Prepositional phrase 

 

State 7    : (NP -NONE-) 

Description : Noun phrase 
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State 8    : (VP VBN (NP -NONE-)) 

Description : Verb phrase 

 

State 9    : (NP DT CD NNP NNS) 

Description : Noun phrase 

 

State 10    : (FRAG (VP VBN (NP -NONE-))) 

Description : Fragment 

 

State 11    : (NP (NP DT CD NNP NNS) (FRAG (VP VBN (NP -NONE-)))) 

Description : Noun phrase 

 

State 12    : (NP -NONE- (NP (NP DT CD NNP NNS) (FRAG (VP VBN (NP -

NONE-)))) (PP IN (NP NN NN))) 

Description : Noun phrase 

 

State 13    : (VP VBP (NP -NONE- (NP (NP DT CD NNP NNS) (FRAG (VP 

VBN (NP -NONE-)))) (PP IN (NP NN NN)))) 

Description : Verb phrase 

 

State 14    : (NP JJS) 

Description : Noun phrase 

 

State 15    : (S (NP JJS) (VP VBP (NP -NONE- (NP (NP DT CD NNP NNS) 

(FRAG (VP VBN (NP -NONE-)))) (PP IN (NP NN NN))))) 

Description : Simple declarative clause 

 

State 16    : (NP DT NN NN) 

Description : Noun phrase 

 

State 17    : (VP MD VB (NP DT NN NN)) 

Description : Verb phrase 

 

State 18    : (VP (VP MD VB (NP DT NN NN)) , CC (S (NP JJS) (VP VBP 

(NP -NONE- (NP (NP DT CD NNP NNS) (FRAG (VP VBN (NP -NONE-)))) (PP IN (NP 

NN NN)))))) 
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Description : Verb phrase 

 

 

 

Parse failed - could not create a valid parent for FRAG 

 

Desired parse : (S1 (S (SBAR (WHADVP WRB RB) (S (NP (NP DT NN POS) NN NN) 

(VP VBZ (NP DT NN) (ADVP -NONE-)))) (VP VBZ (PP IN (S (NP (NP NNS) (PP IN (NP 

DT JJ NN))) (VP VBG (ADVP RB))))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (ADVP RB) 

Description : Adverb phrase 

 

State 2    : (VP VBG) 

Description : Verb phrase 

 

State 3    : (NP DT JJ NN) 

Description : Noun phrase 

 

State 4    : (PP IN (NP DT JJ NN)) 

Description : Prepositional phrase 

 

State 5    : (NP NNS) 

Description : Noun phrase 

 

State 6    : (NP (NP NNS) (PP IN (NP DT JJ NN))) 

Description : Noun phrase 

 

State 7    : (S (NP (NP NNS) (PP IN (NP DT JJ NN))) (VP VBG)) 

Description : Simple declarative clause 

 

State 8    : (FRAG (S (NP (NP NNS) (PP IN (NP DT JJ NN))) (VP VBG))) 

Description : Fragment 
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`` PRP AUX RB RB NN -NONE- PRP VBP -NONE- TO VB -NONE- RP CC VB . '' 

Parse failed - the tail of a phrase could not be found! 

Desired parse : (S1 (S `` (NP PRP) (VP AUX (ADVP RB) RB (NP (NP NN) (SBAR 

(WHNP -NONE-) (S (NP PRP) (VP VBP (S (NP -NONE-) (VP TO (VP (VP VB (NP -

NONE-) (PRT RP)) CC (VP VB))))))))) . '')) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (VP VB .) 

Description : Verb phrase 

 

State 2    : (PRT RP CC (VP VB .)) 

Description : Particle; category for words that should be tagged RP 

 

State 3    : (NP -NONE-) 

Description : Noun phrase 

 

State 4    : (VP VB (NP -NONE-) (PRT RP CC (VP VB .))) 

Description : Verb phrase 

 

State 5    : (VP TO (VP VB (NP -NONE-) (PRT RP CC (VP VB .)))) 

Description : Verb phrase 

 

State 6    : (NP -NONE-) 

Description : Noun phrase 

 

State 7    : (S (NP -NONE-) (VP TO (VP VB (NP -NONE-) (PRT RP CC 

(VP VB .))))) 

Description : Simple declarative clause 

 

State 8    : (VP VBP (S (NP -NONE-) (VP TO (VP VB (NP -NONE-) (PRT 

RP CC (VP VB .)))))) 

Description : Verb phrase 

 

State 9    : (ADJP -NONE-) 

Description : Adjective phrase 
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State 10    : (NP PRP) 

Description : Noun phrase 

 

State 11    : (ADVP RB RB) 

Description : Adverb phrase 

 

State 12    : (NP NN (ADJP -NONE-) (NP PRP)) 

Description : Noun phrase 

 

State 13    : (S (NP NN (ADJP -NONE-) (NP PRP)) (VP VBP (S (NP -

NONE-) (VP TO (VP VB (NP -NONE-) (PRT RP CC (VP VB .))))))) 

Description : Simple declarative clause 

 

State 14    : (VP AUX (ADVP RB RB) (S (NP NN (ADJP -NONE-) (NP 

PRP)) (VP VBP (S (NP -NONE-) (VP TO (VP VB (NP -NONE-) (PRT RP CC (VP VB 

.)))))))) 

Description : Verb phrase 

 

State 15    : (NP PRP) 

Description : Noun phrase 

 

 

 

DT NNP POS JJ JJ NN AUX VBN -NONE- IN DT NN IN CD CD -NONE- -NONE- TO VB 

CD NN VBN IN DT NN IN CD CD CC NN IN CD NN NNP . 

Parse failed - the tail of a phrase could not be found! 

Desired parse : (S1 (S (NP (NP DT NNP POS) JJ JJ NN) (VP AUX (VP VBN (NP -

NONE-) (PP IN (NP (NP DT NN) (PP IN (NP (NP (QP CD CD)) (SBAR (WHNP -NONE-) 

(S (NP -NONE-) (VP TO (VP VB (NP CD NN) (PP VBN (PP IN (NP (NP (NP (NP DT 

NN) (PP IN (NP (QP CD CD)))) CC (NP NN)) (PP IN (NP (NP CD NN) (NP 

NNP)))))))))))))))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP NNP) 

Description : Noun phrase 
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State 2    : (NP CD NN) 

Description : Noun phrase 

 

State 3    : (NP (NP CD NN) (NP NNP)) 

Description : Noun phrase 

 

State 4    : (PP IN (NP (NP CD NN) (NP NNP))) 

Description : Prepositional phrase 

 

State 5    : (QP CD CD CC NN) 

Description : Adjective phrase (Quantitative) 

 

State 6    : (NP (QP CD CD CC NN) (PP IN (NP (NP CD NN) (NP NNP)))) 

Description : Noun phrase 

 

State 7    : (PP IN (NP (QP CD CD CC NN) (PP IN (NP (NP CD NN) (NP 

NNP))))) 

Description : Prepositional phrase 

 

State 8    : (NP DT NN) 

Description : Noun phrase 

 

State 9    : (NP (NP DT NN) (PP IN (NP (QP CD CD CC NN) (PP IN (NP 

(NP CD NN) (NP NNP)))))) 

Description : Noun phrase 

 

State 10    : (PP IN (NP (NP DT NN) (PP IN (NP (QP CD CD CC NN) (PP 

IN (NP (NP CD NN) (NP NNP))))))) 

Description : Prepositional phrase 

 

State 11    : (PP VBN (PP IN (NP (NP DT NN) (PP IN (NP (QP CD CD CC 

NN) (PP IN (NP (NP CD NN) (NP NNP)))))))) 

Description : Prepositional phrase 

 

State 12    : (NP CD NN) 

Description : Noun phrase 
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State 13    : (VP VB (NP CD NN) (PP VBN (PP IN (NP (NP DT NN) (PP IN 

(NP (QP CD CD CC NN) (PP IN (NP (NP CD NN) (NP NNP))))))))) 

Description : Verb phrase 

 

State 14    : (VP TO (VP VB (NP CD NN) (PP VBN (PP IN (NP (NP DT NN) 

(PP IN (NP (QP CD CD CC NN) (PP IN (NP (NP CD NN) (NP NNP)))))))))) 

Description : Verb phrase 

 

State 15    : (NP -NONE-) 

Description : Noun phrase 

 

State 16    : (S (NP -NONE-) (VP TO (VP VB (NP CD NN) (PP VBN (PP IN 

(NP (NP DT NN) (PP IN (NP (QP CD CD CC NN) (PP IN (NP (NP CD NN) (NP 

NNP))))))))))) 

Description : Simple declarative clause 

 

State 17    : (QP CD CD) 

Description : Adjective phrase (Quantitative) 

 

State 18    : (NP DT NN) 

Description : Noun phrase 

 

State 19    : (PP IN (NP DT NN)) 

Description : Prepositional phrase 

 

State 20    : (NP -NONE-) 

Description : Noun phrase 

 

State 21    : (NP (NP -NONE-) (PP IN (NP DT NN))) 

Description : Noun phrase 

 

State 22    : (WHNP -NONE-) 

Description : Wh-noun phrase 
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State 23    : (SBAR (WHNP -NONE-) (S (NP -NONE-) (VP TO (VP VB (NP 

CD NN) (PP VBN (PP IN (NP (NP DT NN) (PP IN (NP (QP CD CD CC NN) (PP IN (NP 

(NP CD NN) (NP NNP)))))))))))) 

Description : Clause introduced by sub-ordinating conjunction 

 

State 24    : (NP (NP (NP -NONE-) (PP IN (NP DT NN))) IN) 

Description : Noun phrase 

 

State 25    : (VP VBN (NP (NP (NP -NONE-) (PP IN (NP DT NN))) IN)) 

Description : Verb phrase 

 

 

 

Parse failed - could not create a valid parent for NP 

 

Desired parse : (S1 (SBARQ `` (WHNP WP) (SQ (NP PRP) (VP AUX (S (NP -NONE-) 

(VP TO (VP AUX (S (NP -NONE-) (ADVP RB) (VP AUX (S (NP -NONE-) (VP VB (ADJP 

JJ (SBAR (SBAR IN (S (NP (NP DT JJ NN) (PP IN (NP NN NN CC NNS))) (VP AUX (VP 

VBD)))) CC (SBAR IN (S (NP PRP) (VP MD (VP VB (NP DT JJR NN)))))))))))))))) . '')) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP DT JJR NN) 

Description : Noun phrase 

 

State 2    : (VP VB (NP DT JJR NN)) 

Description : Verb phrase 

 

State 3    : (VP MD (VP VB (NP DT JJR NN)) .) 

Description : Verb phrase 

 

State 4    : (NP PRP) 

Description : Noun phrase 

 

State 5    : (PP IN (NP PRP)) 

Description : Prepositional phrase 
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State 6    : (VP VBD CC (PP IN (NP PRP))) 

Description : Verb phrase 

 

State 7    : (VP (VP VBD CC (PP IN (NP PRP))) (VP MD (VP VB (NP DT 

JJR NN)) .) '') 

Description : Verb phrase 

 

State 8    : (VP AUX) 

Description : Verb phrase 

 

State 9    : (NP NN CC NNS) 

Description : Noun phrase 

 

State 10    : (S (NP NN CC NNS) (VP AUX)) 

Description : Simple declarative clause 

 

State 11    : (NP NN) 

Description : Noun phrase 

 

State 12    : (NP (NP NN) (S (NP NN CC NNS) (VP AUX))) 

Description : Noun phrase 

 

State 13    : (PP IN (NP (NP NN) (S (NP NN CC NNS) (VP AUX)))) 

Description : Prepositional phrase 

 

State 14    : (NP DT JJ NN) 

Description : Noun phrase 

 

State 15    : (NP (NP DT JJ NN) (PP IN (NP (NP NN) (S (NP NN CC NNS) 

(VP AUX))))) 

Description : Noun phrase 

 

 

 

Parse failed - could not create a valid parent for S1 
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Desired parse : (S1 (S `` (NP (NP PRP) (PP IN (NP DT NNS))) (VP MD (VP VB 

(SBAR -NONE- (S -LRB- (NP WDT) -RRB- (NP (NP DT NNS) (PP IN (NP NN CC NN))) 

(VP MD (VP AUX (VP VBN (NP -NONE-) (PP IN (NP NN CC NN)) , (PP RB IN (NP (NP 

DT JJ NN) (PP IN (NP NNP))))))))))) . '')) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP NNP) 

Description : Noun phrase 

 

State 2    : (PP IN (NP NNP)) 

Description : Prepositional phrase 

 

State 3    : (NP DT JJ NN) 

Description : Noun phrase 

 

State 4    : (NP (NP DT JJ NN) (PP IN (NP NNP))) 

Description : Noun phrase 

 

State 5    : (PP RB IN (NP (NP DT JJ NN) (PP IN (NP NNP)))) 

Description : Prepositional phrase 

 

State 6    : (NP NN CC NN) 

Description : Noun phrase 

 

State 7    : (PP IN (NP NN CC NN)) 

Description : Prepositional phrase 

 

State 8    : (NP -NONE-) 

Description : Noun phrase 

 

State 9    : (VP VBN (NP -NONE-) (PP IN (NP NN CC NN)) , (PP RB IN 

(NP (NP DT JJ NN) (PP IN (NP NNP))))) 

Description : Verb phrase 

 

State 10    : (VP AUX (VP VBN (NP -NONE-) (PP IN (NP NN CC NN)) , (PP 

RB IN (NP (NP DT JJ NN) (PP IN (NP NNP)))))) 
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Description : Verb phrase 

 

State 11    : (VP MD (VP AUX (VP VBN (NP -NONE-) (PP IN (NP NN CC 

NN)) , (PP RB IN (NP (NP DT JJ NN) (PP IN (NP NNP))))))) 

Description : Verb phrase 

 

State 12    : (NP NN CC NN) 

Description : Noun phrase 

 

State 13    : (PP IN (NP NN CC NN)) 

Description : Prepositional phrase 

 

State 14    : (NP DT NNS) 

Description : Noun phrase 

 

State 15    : (NP (NP DT NNS) (PP IN (NP NN CC NN))) 

Description : Noun phrase 

 

State 16    : (NP WDT -RRB-) 

Description : Noun phrase 

 

State 17    : (S (NP WDT -RRB-) (NP (NP DT NNS) (PP IN (NP NN CC 

NN))) (VP MD (VP AUX (VP VBN (NP -NONE-) (PP IN (NP NN CC NN)) , (PP RB IN 

(NP (NP DT JJ NN) (PP IN (NP NNP)))))))) 

Description : Simple declarative clause 

 

State 18    : (VP MD VB) 

Description : Verb phrase 

 

State 19    : (NP DT NNS) 

Description : Noun phrase 

 

State 20    : (PP IN (NP DT NNS)) 

Description : Prepositional phrase 
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State 21    : (S1 (S (NP WDT -RRB-) (NP (NP DT NNS) (PP IN (NP NN CC 

NN))) (VP MD (VP AUX (VP VBN (NP -NONE-) (PP IN (NP NN CC NN)) , (PP RB IN 

(NP (NP DT JJ NN) (PP IN (NP NNP)))))))) .) 

Description : Root node 

 

 

 

Parse failed - could not create a valid parent for NP 

 

Desired parse : (S1 (S (NP DT NNP NN) (VP VBD (SBAR -NONE- (S (NP NNS) (VP 

VBD (PP IN (NP DT (ADJP (QP $ CD CD) -NONE-) JJ NN)) , (ADVP RB (PP IN (NP DT 

(ADJP (QP $ CD CD) -NONE-) NN) (PP IN (NP DT JJ NN)))))))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP DT JJ NN) 

Description : Noun phrase 

 

State 2    : (PP IN (NP DT JJ NN)) 

Description : Prepositional phrase 

 

State 3    : (QP $ CD CD) 

Description : Adjective phrase (Quantitative) 

 

State 4    : (NP DT (QP $ CD CD) -NONE- NN) 

Description : Noun phrase 

 

State 5    : (PP IN (NP DT (QP $ CD CD) -NONE- NN) (PP IN (NP DT JJ 

NN))) 

Description : Prepositional phrase 

 

State 6    : (ADVP RB) 

Description : Adverb phrase 

 

State 7    : (FRAG (ADVP RB) (PP IN (NP DT (QP $ CD CD) -NONE- NN) 

(PP IN (NP DT JJ NN)))) 

Description : Fragment 
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State 8    : (NP CD CD -NONE- JJ NN) 

Description : Noun phrase 

 

State 9    : (S (NP CD CD -NONE- JJ NN) , (FRAG (ADVP RB) (PP IN (NP 

DT (QP $ CD CD) -NONE- NN) (PP IN (NP DT JJ NN)))) .) 

Description : Simple declarative clause 

 

State 10    : (NP DT) 

Description : Noun phrase 

 

State 11    : (PP IN (NP DT) $ (S (NP CD CD -NONE- JJ NN) , (FRAG 

(ADVP RB) (PP IN (NP DT (QP $ CD CD) -NONE- NN) (PP IN (NP DT JJ NN)))) .)) 

Description : Prepositional phrase 

 

State 12    : (VP VBD (PP IN (NP DT) $ (S (NP CD CD -NONE- JJ NN) , 

(FRAG (ADVP RB) (PP IN (NP DT (QP $ CD CD) -NONE- NN) (PP IN (NP DT JJ NN)))) 

.))) 

Description : Verb phrase 

 

State 13    : (NP -NONE- NNS) 

Description : Noun phrase 
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Appendix F:  A Sample of Parse Failures made on the 

WSJ Corpus Training Set (Using Lexical 

Semantic and Syntactic Information) 
 

 

Parse failed - could not create a valid parent for 

NP_00000000000000000000A000A~NN 

 

Desired parse : (S1 (S (NP (NP (NP NNP NNPS POS) NNP NN NN) (PP IN (NP NNP 

NNP))) (VP VBD (PP IN (NP CD NN)) (PP IN (ADVP (NP DT NN) RBR)) , (PP VBG (PP 

TO (NP (NP DT NNP) (PP IN (NP NNP NNP)))))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP_0000000000A00000000000000~NNP 

NNP_0000000000A00000000000000 NNP_0000000000A00000000000000) 

Description : Noun phrase 

 

State 2    : (PP_0000000000A00000000000000 IN 

(NP_0000000000A00000000000000~NNP NNP_0000000000A00000000000000 

NNP_0000000000A00000000000000)) 

Description : Prepositional phrase 

 

State 3    : (NP_0000000000A00000000000000~NNP DT 

NNP_0000000000A00000000000000) 

Description : Noun phrase 

 

State 4    : (PP_0000000000A00000000000000 TO 

(NP_0000000000A00000000000000~NNP DT 

NNP_0000000000A00000000000000)) 

Description : Prepositional phrase 

 

State 5    : (NP_0000000000B00000000000000~-NONE- 

(PP_0000000000A00000000000000 TO (NP_0000000000A00000000000000~NNP 

DT NNP_0000000000A00000000000000))) 

Description : Noun phrase 
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State 6    : (VP VBG (NP_0000000000B00000000000000~-NONE- 

(PP_0000000000A00000000000000 TO (NP_0000000000A00000000000000~NNP 

DT NNP_0000000000A00000000000000))) (PP_0000000000A00000000000000 IN 

(NP_0000000000A00000000000000~NNP NNP_0000000000A00000000000000 

NNP_0000000000A00000000000000))) 

Description : Verb phrase 

 

State 7    : (ADVP RBR) 

Description : Adverb phrase 

 

State 8    : (NP_000000000000000000000000A~NN DT 

NN_0000000000D0000000000000A) 

Description : Noun phrase 

 

State 9    : (PP_000000000000000000000000A IN 

(NP_000000000000000000000000A~NN DT NN_0000000000D0000000000000A)) 

Description : Prepositional phrase 

 

State 10    : (NP_00000000000000000000A000A~NN CD 

NN_00000000000000000000A0000 (PP_000000000000000000000000A IN 

(NP_000000000000000000000000A~NN DT NN_0000000000D0000000000000A))) 

Description : Noun phrase 

 

State 11    : (NP_00000000000000000000A000A~NN 

(NP_00000000000000000000A000A~NN CD NN_00000000000000000000A0000 

(PP_000000000000000000000000A IN (NP_000000000000000000000000A~NN 

DT NN_0000000000D0000000000000A))) (ADVP RBR)) 

Description : Noun phrase 

 

State 12    : (NP_00000000000000000000B000A~NN 

(NP_00000000000000000000A000A~NN (NP_00000000000000000000A000A~NN 

CD NN_00000000000000000000A0000 (PP_000000000000000000000000A IN 

(NP_000000000000000000000000A~NN DT NN_0000000000D0000000000000A))) 

(ADVP RBR)) , (VP VBG (NP_0000000000B00000000000000~-NONE- 

(PP_0000000000A00000000000000 TO (NP_0000000000A00000000000000~NNP 

DT NNP_0000000000A00000000000000))) (PP_0000000000A00000000000000 IN 
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(NP_0000000000A00000000000000~NNP NNP_0000000000A00000000000000 

NNP_0000000000A00000000000000)))) 

Description : Noun phrase 

 

State 13    : (NP_00000000000000000000A000A~NN 

(NP_00000000000000000000B000A~NN (NP_00000000000000000000A000A~NN 

(NP_00000000000000000000A000A~NN CD NN_00000000000000000000A0000 

(PP_000000000000000000000000A IN (NP_000000000000000000000000A~NN 

DT NN_0000000000D0000000000000A))) (ADVP RBR)) , (VP VBG 

(NP_0000000000B00000000000000~-NONE- (PP_0000000000A00000000000000 

TO (NP_0000000000A00000000000000~NNP DT 

NNP_0000000000A00000000000000))) (PP_0000000000A00000000000000 IN 

(NP_0000000000A00000000000000~NNP NNP_0000000000A00000000000000 

NNP_0000000000A00000000000000))))) 

Description : Noun phrase 

 

 

 

Parse failed - could not create a valid parent for 

NP_00000000000000000000A000A~NN 

 

Desired parse : (S1 (S (NP DT JJ NN) (VP AUX (ADJP JJ) (PP IN (NP (NP CD NN) (PP 

IN (NP DT JJ CD NNS)) (PP IN (NP NNP))))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP_000000000000000000000000A~NNP 

NNP_000000000000000000000000A) 

Description : Noun phrase 

 

State 2    : (PP_000000000000000000000000A IN 

(NP_000000000000000000000000A~NNP NNP_000000000000000000000000A)) 

Description : Prepositional phrase 

 

State 3    : (NP_000000000000000000000000A~NNS DT JJ CD 

NNS_000000000000000000000000A) 

Description : Noun phrase 
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State 4    : (PP_000000000000000000000000A IN 

(NP_000000000000000000000000A~NNS DT JJ CD 

NNS_000000000000000000000000A)) 

Description : Prepositional phrase 

 

State 5    : (NP_00000000000000000000A0000~NN CD 

NN_00000000000000000000A0000) 

Description : Noun phrase 

 

State 6    : (NP_00000000000000000000A000A~NN 

(NP_00000000000000000000A0000~NN CD NN_00000000000000000000A0000) 

(PP_000000000000000000000000A IN (NP_000000000000000000000000A~NNS 

DT JJ CD NNS_000000000000000000000000A)) 

(PP_000000000000000000000000A IN (NP_000000000000000000000000A~NNP 

NNP_000000000000000000000000A))) 

Description : Noun phrase 

 

 

 

IN NNP_00000000000A0000000000000 NNP_00000000000A0000000000000 , 

NNP_00000000000A0000000000000 , DT NN_00000000000000A0000000000 IN 

PRP_0000000000A00000000000000 NNP_0000000000A00000000000000 

NNPS_0000000000A00000000000000 NNP_0000000000A00000000000000 , DT 

NN_00000D0000C00000000AB0000 IN NNP_0000000000A00000000000000 

NNPS_0000000000A00000000000000 NNP_0000000000A00000000000000 VBD -

NONE- DT JJ NN_000000A000000000000000000 

NN_00A00000000000A00000000D0 MD RB VB DT 

NN_A000000000000000000000000 . 

Parse failed - the tail of a phrase could not be found! 

Desired parse : (S1 (S (PP IN (NP (NP NNP NNP) , (NP NNP))) , (NP (NP DT NN) (PP 

IN (NP PRP))) (NP (NP NNP NNPS NNP) , (NP (NP DT NN) (PP IN (NP NNP NNPS 

NNP)))) (VP VBD (SBAR -NONE- (S (NP DT JJ NN NN) (VP MD (ADVP RB) (VP VB 

(NP DT NN)))))) .)) 

 

wsj_Concord-II's attempt .... 
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State 1    : (NP_A000000000000000000000000~NN DT 

NN_A000000000000000000000000) 

Description : Noun phrase 

 

State 2    : (VP VB (NP_A000000000000000000000000~NN DT 

NN_A000000000000000000000000)) 

Description : Verb phrase 

 

State 3    : (ADVP RB) 

Description : Adverb phrase 

 

State 4    : (VP (ADVP RB) (VP VB 

(NP_A000000000000000000000000~NN DT NN_A000000000000000000000000))) 

Description : Verb phrase 

 

State 5    : (VP MD (VP (ADVP RB) (VP VB 

(NP_A000000000000000000000000~NN DT 

NN_A000000000000000000000000)))) 

Description : Verb phrase 

 

State 6    : (NP_00A000A0000000A00000000D0~NN DT JJ 

NN_000000A000000000000000000 NN_00A00000000000A00000000D0) 

Description : Noun phrase 

 

State 7    : (S (NP_00A000A0000000A00000000D0~NN DT JJ 

NN_000000A000000000000000000 NN_00A00000000000A00000000D0) (VP MD 

(VP (ADVP RB) (VP VB (NP_A000000000000000000000000~NN DT 

NN_A000000000000000000000000))))) 

Description : Simple declarative clause 

 

State 8    : (NP~-NONE- -NONE-) 

Description : Noun phrase 

 

State 9    : (SBAR (NP~-NONE- -NONE-) (S 

(NP_00A000A0000000A00000000D0~NN DT JJ NN_000000A000000000000000000 

NN_00A00000000000A00000000D0) (VP MD (VP (ADVP RB) (VP VB 
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(NP_A000000000000000000000000~NN DT 

NN_A000000000000000000000000)))))) 

Description : Clause introduced by sub-ordinating conjunction 

 

State 10    : (VP VBD (SBAR (NP~-NONE- -NONE-) (S 

(NP_00A000A0000000A00000000D0~NN DT JJ NN_000000A000000000000000000 

NN_00A00000000000A00000000D0) (VP MD (VP (ADVP RB) (VP VB 

(NP_A000000000000000000000000~NN DT 

NN_A000000000000000000000000))))))) 

Description : Verb phrase 

 

State 11    : (NP_0000000000A00000000000000~NNP 

NNP_0000000000A00000000000000) 

Description : Noun phrase 

 

State 12    : (NP_0000000000A00000000000000~NN 

NNP_0000000000A00000000000000) 

Description : Noun phrase 

 

State 13    : (PP_0000000000A00000000000000 IN 

(NP_0000000000A00000000000000~NN NNP_0000000000A00000000000000)) 

Description : Prepositional phrase 

 

State 14    : (NP_0000000000000000000C00000~NN 

NN_00000D0000C00000000AB0000) 

Description : Noun phrase 

 

State 15    : (ADJP (NP_0000000000000000000C00000~NN 

NN_00000D0000C00000000AB0000) (PP_0000000000A00000000000000 IN 

(NP_0000000000A00000000000000~NN NNP_0000000000A00000000000000))) 

Description : Adjective phrase 

 

State 16    : (NP_0000000000A00000000000000~PRP-PLE 

NNPS_0000000000A00000000000000 (NP_0000000000A00000000000000~NNP 

NNP_0000000000A00000000000000)) 

Description : Noun phrase 
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State 17    : (NP~NN DT) 

Description : Noun phrase 

 

State 18    : (NP_0000000000A00000000000000~NN (NP~NN DT) 

(ADJP (NP_0000000000000000000C00000~NN 

NN_00000D0000C00000000AB0000) (PP_0000000000A00000000000000 IN 

(NP_0000000000A00000000000000~NN NNP_0000000000A00000000000000))) 

(NP_0000000000A00000000000000~PRP-PLE 

NNPS_0000000000A00000000000000 (NP_0000000000A00000000000000~NNP 

NNP_0000000000A00000000000000))) 

Description : Noun phrase 

 

State 19    : (NP_0000000000A00000000000000~NNP 

NNP_0000000000A00000000000000 NNPS_0000000000A00000000000000 

NNP_0000000000A00000000000000) 

Description : Noun phrase 

 

State 20    : (NP_0000000000A00000000000000~PRP 

PRP_0000000000A00000000000000 (NP_0000000000A00000000000000~NNP 

NNP_0000000000A00000000000000 NNPS_0000000000A00000000000000 

NNP_0000000000A00000000000000)) 

Description : Noun phrase 

 

State 21    : (PP_0000000000A00000000000000 IN 

(NP_0000000000A00000000000000~PRP PRP_0000000000A00000000000000 

(NP_0000000000A00000000000000~NNP NNP_0000000000A00000000000000 

NNPS_0000000000A00000000000000 NNP_0000000000A00000000000000))) 

Description : Prepositional phrase 

 

State 22    : (NP_00000000000000A0000000000~NN DT 

NN_00000000000000A0000000000) 

Description : Noun phrase 

 

State 23    : (NP_0000000000A000A0000000000~NN 

(NP_00000000000000A0000000000~NN DT NN_00000000000000A0000000000) 

(PP_0000000000A00000000000000 IN (NP_0000000000A00000000000000~PRP 

PRP_0000000000A00000000000000 (NP_0000000000A00000000000000~NNP 
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NNP_0000000000A00000000000000 NNPS_0000000000A00000000000000 

NNP_0000000000A00000000000000)))) 

Description : Noun phrase 

 

State 24    : (NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000) 

Description : Noun phrase 

 

State 25    : (NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000) 

Description : Noun phrase 

 

State 26    : (NP_00000000000A0000000000000~NNP 

(NP_00000000000A0000000000000~NNP NNP_00000000000A0000000000000) , 

(NP_00000000000A0000000000000~NNP NNP_00000000000A0000000000000)) 

Description : Noun phrase 

 

State 27    : (NP_00000000000A0000000000000~NN 

(NP_00000000000A0000000000000~NNP 

(NP_00000000000A0000000000000~NNP NNP_00000000000A0000000000000) , 

(NP_00000000000A0000000000000~NNP NNP_00000000000A0000000000000)) ,) 

Description : Noun phrase 

 

State 28    : (NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000) 

Description : Noun phrase 

 

State 29    : (UCP (NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000) (NP_00000000000A0000000000000~NN 

(NP_00000000000A0000000000000~NNP 

(NP_00000000000A0000000000000~NNP NNP_00000000000A0000000000000) , 

(NP_00000000000A0000000000000~NNP NNP_00000000000A0000000000000)) 

,)) 

Description : Unlike coordinated phrase 
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DT JJ NN_000A0B0000000000000000000 AUX WRB RB 

PRP_0000000A00000000000000000 MD AUX DT 

NN_000B00000000000A000000D00 -NONE- . '' 

Parse failed - the tail of a phrase could not be found! 

Desired parse : (S1 (S (NP DT JJ NN) (VP AUX (SBAR (WHADVP WRB RB) (S (NP 

PRP) (VP MD (VP AUX (NP DT NN) (ADVP -NONE-)))))) . '')) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (ADVP -NONE-) 

Description : Adverb phrase 

 

State 2    : (NP_000B00000000000A000000D00~NN DT 

NN_000B00000000000A000000D00) 

Description : Noun phrase 

 

State 3    : (VP AUX (NP_000B00000000000A000000D00~NN DT 

NN_000B00000000000A000000D00) (ADVP -NONE-)) 

Description : Verb phrase 

 

State 4    : (VP MD (VP AUX (NP_000B00000000000A000000D00~NN 

DT NN_000B00000000000A000000D00) (ADVP -NONE-))) 

Description : Verb phrase 

 

State 5    : (NP_0000000A00000000000000000~PRP 

PRP_0000000A00000000000000000) 

Description : Noun phrase 

 

State 6    : (S (NP_0000000A00000000000000000~PRP 

PRP_0000000A00000000000000000) (VP MD (VP AUX 

(NP_000B00000000000A000000D00~NN DT NN_000B00000000000A000000D00) 

(ADVP -NONE-)))) 

Description : Simple declarative clause 

 

State 7    : (PRN RB (S (NP_0000000A00000000000000000~PRP 

PRP_0000000A00000000000000000) (VP MD (VP AUX 
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(NP_000B00000000000A000000D00~NN DT NN_000B00000000000A000000D00) 

(ADVP -NONE-))))) 

Description : Parenthetical 

 

State 8    : (VP AUX WRB (PRN RB (S 

(NP_0000000A00000000000000000~PRP PRP_0000000A00000000000000000) (VP 

MD (VP AUX (NP_000B00000000000A000000D00~NN DT 

NN_000B00000000000A000000D00) (ADVP -NONE-)))))) 

Description : Verb phrase 

 

 

 

Parse failed - could not create a valid parent for 

NP_00000000000A0000000000000~NN 

 

Desired parse : (S1 (S (NP (NP DT JJ NN) (PP IN (NP NNP))) (VP AUX (NP (NP CD 

NN) (PP IN (NP DT NNP NNP NNP NN)) , (SBAR (WHNP WDT) (S (NP -NONE-) (VP 

VBZ (NP (NP (NP NNP NNP) , (NP NNP NNP) CC (NP (NP NNP) , (NP NNP) , CC (NP 

NNP))) CC (NP (NP NNP NNP) , (NP NNP)))))))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000) 

Description : Noun phrase 

 

State 2    : (NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000 NNP_00000000000A0000000000000) 

Description : Noun phrase 

 

State 3    : (NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000) 

Description : Noun phrase 

 

State 4    : (NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000) 

Description : Noun phrase 
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State 5    : (NP_00000000000A0000000000000~NN 

(NP_00000000000A0000000000000~NNP NNP_00000000000A0000000000000) , 

CC (NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000) CC 

(NP_00000000000A0000000000000~NNP NNP_00000000000A0000000000000 

NNP_00000000000A0000000000000)) 

Description : Noun phrase 

 

State 6    : (NP_00000000000A0000000000000~NN CC 

NNP_00000000000A0000000000000) 

Description : Noun phrase 

 

State 7    : (NP_00000000000A00D0000000000~NNP 

NNP_00000000000A0000000000000 NNP_00000000000A0000000000000 

(NP_00000000000A0000000000000~NN CC NNP_00000000000A0000000000000) 

, (NP_00000000000A0000000000000~NN 

(NP_00000000000A0000000000000~NNP NNP_00000000000A0000000000000) , 

CC (NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000) CC 

(NP_00000000000A0000000000000~NNP NNP_00000000000A0000000000000 

NNP_00000000000A0000000000000))) 

Description : Noun phrase 

 

State 8    : (NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000 NNP_00000000000A0000000000000) 

Description : Noun phrase 

 

State 9    : (VP VBZ (NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000 NNP_00000000000A0000000000000) ,) 

Description : Verb phrase 

 

State 10    : (WHNP WDT) 

Description : Wh-noun phrase 

 

State 11    : (NP~-NONE- (WHNP WDT) -NONE-) 

Description : Noun phrase 
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State 12    : (NP_00000000000A0000000000000~IN 

NNP_00000000000A0000000000000) 

Description : Noun phrase 

 

State 13    : (NP_00000000000A0000000000000~NN 

NN_0000B000000A0000000D00000) 

Description : Noun phrase 

 

 

 

Parse failed - could not create a valid parent for UCP 

 

Desired parse : (S1 (S (NP NNP NNP NNP NNP NNP) (VP VBD (SBAR -NONE- (S (NP 

NN NN) (VP VBD (NP CD NN) (PP TO (NP (NP (QP CD CD) NNS) (PRN -LRB- (NP (QP 

$ CD CD) -NONE-) -RRB-))) (PP IN (NP DT JJ NN)) (PP IN (NP (QP CD CD) NNS) 

(ADVP (NP DT NN) RBR)))))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (ADVP RBR) 

Description : Adverb phrase 

 

State 2    : (NP_000000000000000000000000A~NN DT 

NN_0000000000D0000000000000A) 

Description : Noun phrase 

 

State 3    : (QP CD CD) 

Description : Adjective phrase (Quantitative) 

 

State 4    : (PP IN (QP CD CD)) 

Description : Prepositional phrase 

 

State 5    : (NP_0000000000000000000B0000D~NN JJ 

NN_0000000000000000000A0000B (PP IN (QP CD CD)) 

NNS_0000000000000000000A00000) 

Description : Noun phrase 
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State 6    : (NP_0000000000000000000B00000~NN DT 

(NP_0000000000000000000B0000D~NN JJ NN_0000000000000000000A0000B 

(PP IN (QP CD CD)) NNS_0000000000000000000A00000)) 

Description : Noun phrase 

 

State 7    : (PP_0000000000000000000B00000 IN 

(NP_0000000000000000000B00000~NN DT 

(NP_0000000000000000000B0000D~NN JJ NN_0000000000000000000A0000B 

(PP IN (QP CD CD)) NNS_0000000000000000000A00000))) 

Description : Prepositional phrase 

 

State 8    : (UCP (PP_0000000000000000000B00000 IN 

(NP_0000000000000000000B00000~NN DT 

(NP_0000000000000000000B0000D~NN JJ NN_0000000000000000000A0000B 

(PP IN (QP CD CD)) NNS_0000000000000000000A00000))) 

(NP_000000000000000000000000A~NN DT NN_0000000000D0000000000000A)) 

Description : Unlike coordinated phrase 

 

State 9    : (NP~CD CD CD) 

Description : Noun phrase 

 

State 10    : (PP $ (NP~CD CD CD)) 

Description : Prepositional phrase 

 

State 11    : (UCP (PP $ (NP~CD CD CD))) 

Description : Unlike coordinated phrase 

 

State 12    : (NP~-NONE- (UCP (PP $ (NP~CD CD CD))) -NONE-) 

Description : Noun phrase 

 

State 13    : (UCP -LRB- (NP~-NONE- (UCP (PP $ (NP~CD CD CD))) -

NONE-) -RRB-) 

Description : Unlike coordinated phrase 

 

State 14    : (PRN (UCP -LRB- (NP~-NONE- (UCP (PP $ (NP~CD CD 

CD))) -NONE-) -RRB-) (ADVP RBR)) 
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Description : Parenthetical 

 

 

 

DT NNP_00000000000000A0000000000 NN_A000000000B0000000000000D VBD 

NNP_00000000000000A0000000000 NNPS_00000000000000A0000000000 IN DT 

NNP_00A0000000B00000000000000 NNP_00A0000000B00000000000000 IN 

NNP_00000000000A0000000000000 NNP_00000000000A0000000000000 MD RB 

VB NNS_B000000A00000000000000000 IN JJ NNS_00000000000000A0000000000 

VBD NNP_0000000000000000000000A00 NNP_0000000000000000000000A00 

Parse failed - the tail of a phrase could not be found! 

Desired parse : (S1 (S (NP DT NNP NN) (VP VBD (NP NNP NNPS) (SBAR IN (S (NP 

(NP DT NNP NNP) (PP IN (NP NNP NNP))) (VP MD RB (VP VB (NP (NP NNS) (PP IN 

(NP (NP JJ NNS) (VP VBD (NP NNP NNP)))))))))))) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (ADJP NNP_0000000000000000000000A00) 

Description : Adjective phrase 

 

State 2    : (NP~NNP NNP_0000000000000000000000A00) 

Description : Noun phrase 

 

State 3    : (INTJ (ADJP NNP_0000000000000000000000A00) 

(NP~NNP NNP_0000000000000000000000A00)) 

Description : Interjection - corresponds approximately to the word tag 'UH' 

 

State 4    : (VP VBD) 

Description : Verb phrase 

 

State 5    : (NP_00000000000000A0000000000~NNS 

NNS_00000000000000A0000000000) 

Description : Noun phrase 

 

State 6    : (RRC (NP_00000000000000A0000000000~NNS 

NNS_00000000000000A0000000000) (VP VBD)) 

Description : Reduced relative clause 
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Parse failed - could not create a valid parent for 

NP_000000A000000000000000000~NNS 

 

Desired parse : (S1 (S (NP DT NNS) (VP VBP (SBAR IN (S (NP NNP CC NNP) (ADVP 

RB) (VP VBZ (NP DT JJ NN) (PP TO (NP DT NN)) (SBAR RB IN (S (NP (NP DT NN) 

(NP PRP)) (VP VBZ (NP PRP) (ADVP RB RB) (PP IN (NP PRP$ NNS))))))))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP_D00000A0000000000C0000000~NNS PRP$ 

NNS_D00000A0000000000C0000000) 

Description : Noun phrase 

 

State 2    : (NP_000000A000000000000000000~NNS 

(NP_D00000A0000000000C0000000~NNS PRP$ 

NNS_D00000A0000000000C0000000)) 

Description : Noun phrase 

 

 

 

Parse failed - could not create a valid parent for 

NP_000000000000000000000000A~NN 

 

Desired parse : (S1 (S (NP (NP NNP NNP NNP) , (NP (NP NN) (PP IN (NP NNP 

NNP))) ,) (ADVP RB) (VP VBD (SBAR -NONE- (S (NP NNS) (VP MD (VP VB (PP TO 

(NP (QP RB CD CD) NNS)) (NP JJ NN)))))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (QP CD CD NNS_00A000B000000C000000000C0 JJ) 

Description : Adjective phrase (Quantitative) 

 

State 2    : (NP_000000000000000000000000A~NN (QP CD CD 

NNS_00A000B000000C000000000C0 JJ) NN_0000000000D0000000000000A) 
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Description : Noun phrase 

 

 

 

DT NN_00D0B0A000000000000C00000 AUX VBN IN $ CD CD -NONE- IN DT CD 

NNS_000000000000000000000000A IN NNP_000000000000000000000000A CD , 

RB IN NNS_A00000000000000C0B0000000 IN 

NNS_00000000A0000000000B00000 CC NNS_00000BC0000000A0000000000 . 

Parse failed - the tail of a phrase could not be found! 

Desired parse : (S1 (S (NP DT NN) (VP AUX (VP VBN (PP IN (NP (QP $ CD CD) -

NONE-)) (PP IN (NP DT CD NNS)) (PP IN (NP NNP CD)) , (PP (ADVP RB) IN (NP (NP 

NNS) (PP IN (NP (NP NNS) CC (NP NNS))))))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP_00000BC0000000A0000000000~NNS 

NNS_00000BC0000000A0000000000) 

Description : Noun phrase 

 

State 2    : (NP_00000000A0000000000B00000~NNS 

NNS_00000000A0000000000B00000) 

Description : Noun phrase 

 

State 3    : (NP_00000BC0A00000A0000B00000~NNS 

(NP_00000000A0000000000B00000~NNS NNS_00000000A0000000000B00000) 

CC (NP_00000BC0000000A0000000000~NNS 

NNS_00000BC0000000A0000000000)) 

Description : Noun phrase 

 

State 4    : (PP_00000BC0A00000A0000B00000 IN 

(NP_00000BC0A00000A0000B00000~NNS 

(NP_00000000A0000000000B00000~NNS NNS_00000000A0000000000B00000) 

CC (NP_00000BC0000000A0000000000~NNS 

NNS_00000BC0000000A0000000000))) 

Description : Prepositional phrase 
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State 5    : (NP_A00000000000000C0B0000000~NNS 

NNS_A00000000000000C0B0000000) 

Description : Noun phrase 

 

State 6    : (PP_A0000000000000000D000000D IN 

(NP_A00000000000000C0B0000000~NNS NNS_A00000000000000C0B0000000)) 

Description : Prepositional phrase 

 

State 7    : (ADVP RB) 

Description : Adverb phrase 

 

State 8    : (NP_000000000000000000000000A~CD 

NNP_000000000000000000000000A CD) 

Description : Noun phrase 

 

State 9    : (NP_B00000000000000000000000A~DT 

(NP_000000000000000000000000A~CD NNP_000000000000000000000000A CD) 

, (ADVP RB) (PP_A0000000000000000D000000D IN 

(NP_A00000000000000C0B0000000~NNS NNS_A00000000000000C0B0000000))) 

Description : Noun phrase 

 

State 10    : (NP_AC000000A00000D0000A0000A~JJS 

(NP_B00000000000000000000000A~DT (NP_000000000000000000000000A~CD 

NNP_000000000000000000000000A CD) , (ADVP RB) 

(PP_A0000000000000000D000000D IN (NP_A00000000000000C0B0000000~NNS 

NNS_A00000000000000C0B0000000))) (PP_00000BC0A00000A0000B00000 IN 

(NP_00000BC0A00000A0000B00000~NNS 

(NP_00000000A0000000000B00000~NNS NNS_00000000A0000000000B00000) 

CC (NP_00000BC0000000A0000000000~NNS 

NNS_00000BC0000000A0000000000)))) 

Description : Noun phrase 

 

State 11    : (PP_B0000000A0000000000A0000A IN 

(NP_AC000000A00000D0000A0000A~JJS (NP_B00000000000000000000000A~DT 

(NP_000000000000000000000000A~CD NNP_000000000000000000000000A CD) 

, (ADVP RB) (PP_A0000000000000000D000000D IN 

(NP_A00000000000000C0B0000000~NNS NNS_A00000000000000C0B0000000))) 
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(PP_00000BC0A00000A0000B00000 IN (NP_00000BC0A00000A0000B00000~NNS 

(NP_00000000A0000000000B00000~NNS NNS_00000000A0000000000B00000) 

CC (NP_00000BC0000000A0000000000~NNS 

NNS_00000BC0000000A0000000000))))) 

Description : Prepositional phrase 

 

State 12    : (NP_000000000000000000000000A~NNS DT CD 

NNS_000000000000000000000000A) 

Description : Noun phrase 

 

 

 

Parse failed - could not create a valid parent for 

NP_A000000000000000000000000~NN 

 

Desired parse : (S1 (S (NP NNP) (VP VBD (SBAR IN (S (NP (NP NN) , (SBAR (WHNP 

WDT) (S (NP -NONE-) (VP AUX (PP IN (NP (NP DT JJ NNS) (PP IN (NP NN))))))) ,) 

(VP AUX (ADVP RB) (VP AUXG (VP VBN (PP IN (NP DT JJ NN)))))))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP_00000B00000000000000A0000~NN DT JJ 

NN_00000B00000000000000A0000) 

Description : Noun phrase 

 

State 2    : (NP_00000D00000000000000A0000~NN 

(NP_00000B00000000000000A0000~NN DT JJ 

NN_00000B00000000000000A0000)) 

Description : Noun phrase 

 

State 3    : (PP_00000000000000000000A0000 IN 

(NP_00000D00000000000000A0000~NN (NP_00000B00000000000000A0000~NN 

DT JJ NN_00000B00000000000000A0000))) 

Description : Prepositional phrase 
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State 4    : (VP VBN (PP_00000000000000000000A0000 IN 

(NP_00000D00000000000000A0000~NN (NP_00000B00000000000000A0000~NN 

DT JJ NN_00000B00000000000000A0000)))) 

Description : Verb phrase 

 

State 5    : (ADVP AUXG) 

Description : Adverb phrase 

 

State 6    : (VP (ADVP AUXG) (VP VBN 

(PP_00000000000000000000A0000 IN (NP_00000D00000000000000A0000~NN 

(NP_00000B00000000000000A0000~NN DT JJ 

NN_00000B00000000000000A0000))))) 

Description : Verb phrase 

 

State 7    : (ADVP RB) 

Description : Adverb phrase 

 

State 8    : (VP AUX (ADVP RB) (VP (ADVP AUXG) (VP VBN 

(PP_00000000000000000000A0000 IN (NP_00000D00000000000000A0000~NN 

(NP_00000B00000000000000A0000~NN DT JJ 

NN_00000B00000000000000A0000)))))) 

Description : Verb phrase 

 

State 9    : (NP_A000000C0000000000B000000~NN 

NN_A000000C0000000000B000000) 

Description : Noun phrase 

 

State 10    : (NP_B00000000000000000B000000~NN 

(NP_A000000C0000000000B000000~NN NN_A000000C0000000000B000000) , 

(VP AUX (ADVP RB) (VP (ADVP AUXG) (VP VBN (PP_00000000000000000000A0000 

IN (NP_00000D00000000000000A0000~NN 

(NP_00000B00000000000000A0000~NN DT JJ 

NN_00000B00000000000000A0000))))))) 

Description : Noun phrase 

 

State 11    : (NP_A00000000000000000D000000~NN 

(NP_B00000000000000000B000000~NN (NP_A000000C0000000000B000000~NN 
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NN_A000000C0000000000B000000) , (VP AUX (ADVP RB) (VP (ADVP AUXG) (VP 

VBN (PP_00000000000000000000A0000 IN 

(NP_00000D00000000000000A0000~NN (NP_00000B00000000000000A0000~NN 

DT JJ NN_00000B00000000000000A0000)))))))) 

Description : Noun phrase 

 

State 12    : (NP_A000000000000000000000000~NN 

(NP_A00000000000000000D000000~NN (NP_B00000000000000000B000000~NN 

(NP_A000000C0000000000B000000~NN NN_A000000C0000000000B000000) , 

(VP AUX (ADVP RB) (VP (ADVP AUXG) (VP VBN (PP_00000000000000000000A0000 

IN (NP_00000D00000000000000A0000~NN 

(NP_00000B00000000000000A0000~NN DT JJ 

NN_00000B00000000000000A0000))))))))) 

Description : Noun phrase 

 

 

 

CC DT NN_A0D0000000B00000000000000 RB VBD , CC 

NNP_000000000000000000000000A NNS_A00000B000000000000000000 VBD 

NNP_000000000000000000000000A CD , CD . 

Parse failed - the tail of a phrase could not be found! 

Desired parse : (S1 (S (S CC (NP DT NN) (ADVP RB) (VP VBD)) , CC (S (NP NNP 

NNS) (VP VBD (NP NNP CD , CD))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (UCP CD , CD) 

Description : Unlike coordinated phrase 

 

State 2    : (NP_000000000000000000000000A~NNP 

NNP_000000000000000000000000A) 

Description : Noun phrase 

 

State 3    : (NP_000000000000000000000000A~NNP 

(NP_000000000000000000000000A~NNP NNP_000000000000000000000000A) 

(UCP CD , CD)) 

Description : Noun phrase 
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State 4    : (VP VBD (NP_000000000000000000000000A~NNP 

(NP_000000000000000000000000A~NNP NNP_000000000000000000000000A) 

(UCP CD , CD))) 

Description : Verb phrase 

 

State 5    : (NP_A00000B00000000000000000A~NNS 

NNP_000000000000000000000000A NNS_A00000B000000000000000000) 

Description : Noun phrase 

 

State 6    : (S (NP_A00000B00000000000000000A~NNS 

NNP_000000000000000000000000A NNS_A00000B000000000000000000) (VP 

VBD (NP_000000000000000000000000A~NNP 

(NP_000000000000000000000000A~NNP NNP_000000000000000000000000A) 

(UCP CD , CD)))) 

Description : Simple declarative clause 

 

State 7    : (S ,) 

Description : Simple declarative clause 

 

State 8    : (LST (S ,) CC) 

Description : List marker phrase 

 

 

 

Parse failed - could not create a valid parent for S1 

 

Desired parse : (S1 (S (S (NP -NONE-) (VP NNS (NP NNP NNP))) , `` (NP (NP DT 

NNS) (PP IN (NP DT NNS))) (VP AUX (ADJP DT JJ CC JJ)) . '')) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (ADJP DT JJ CC JJ) 

Description : Adjective phrase 

 

State 2    : (VP AUX (ADJP DT JJ CC JJ)) 

Description : Verb phrase 
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State 3    : (NP_00000AC000000000000000000~NNS DT 

NNS_00000AC000000000000000000) 

Description : Noun phrase 

 

State 4    : (S (NP_00000AC000000000000000000~NNS DT 

NNS_00000AC000000000000000000) (VP AUX (ADJP DT JJ CC JJ))) 

Description : Simple declarative clause 

 

State 5    : (S1 IN (S (NP_00000AC000000000000000000~NNS DT 

NNS_00000AC000000000000000000) (VP AUX (ADJP DT JJ CC JJ)))) 

Description : Root node 

 

State 6    : (NP_D00000A000000000000000000~NNS DT 

NNS_C00000A000000000000000000) 

Description : Noun phrase 

 

State 7    : (NP_000000A0000000A0000000000~NNP 

NNP_000000A000000000000000000 NNP_00000000000000A0000000000) 

Description : Noun phrase 

 

State 8    : (VP NNS_00A0000000000000000000000 

(NP_000000A0000000A0000000000~NNP NNP_000000A000000000000000000 

NNP_00000000000000A0000000000)) 

Description : Verb phrase 

 

State 9    : (NP~-NONE- -NONE-) 

Description : Noun phrase 

 

State 10    : (S (NP~-NONE- -NONE-) (VP 

NNS_00A0000000000000000000000 (NP_000000A0000000A0000000000~NNP 

NNP_000000A000000000000000000 NNP_00000000000000A0000000000))) 

Description : Simple declarative clause 

 

State 11    : (S1 (S (NP~-NONE- -NONE-) (VP 

NNS_00A0000000000000000000000 (NP_000000A0000000A0000000000~NNP 

NNP_000000A000000000000000000 NNP_00000000000000A0000000000))) ,) 
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Description : Root node 

 

 

 

Parse failed - could not create a valid parent for VP 

 

Desired parse : (S1 (S (PP IN (NP CD NN)) (NP NNP NNP) (ADVP RB) (VP VBD (S 

(NP DT NN NN) (VP TO (VP VB (PP IN (NP (NP JJ NNS) , (NP JJ NNS) CC (NP (NP DT 

NN) (PP IN (NP (NP NNS) (PP IN (NP (NP DT NN) (SBAR (WHNP -NONE-) (S (NP 

PRP) (VP VBD (S (NP -NONE-) (VP TO (VP VB (NP -NONE-)))))))))))))))))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP~-NONE- -NONE-) 

Description : Noun phrase 

 

State 2    : (S (NP~-NONE- -NONE-)) 

Description : Simple declarative clause 

 

State 3    : (VP VB (S (NP~-NONE- -NONE-))) 

Description : Verb phrase 

 

State 4    : (VP (VP VB (S (NP~-NONE- -NONE-))) .) 

Description : Verb phrase 

 

 

 

Parse failed - could not create a valid parent for 

NP_000000A000000000000000000~NN 

 

Desired parse : (S1 (S (PP VBG (NP DT (UCP NN CC JJ) NN NNS)) , (NP (NP DT NN) 

(PP IN (NP (NP NNS) (VP VBG (NP NN NNS) (PP IN (NP (NP DT NN) (VP VBN (NP 

NNP CD)))))))) (VP VBD (PP TO (NP CD)) (PP IN (NP CD) (ADVP (NP DT NN) RBR))) 

.)) 

 

wsj_Concord-II's attempt .... 
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State 1    : (ADVP RBR) 

Description : Adverb phrase 

 

State 2    : (NP_000000000000000000000000A~PRP CD DT 

NN_000000000000000000000000A) 

Description : Noun phrase 

 

State 3    : (NP_000000000000000000000000A~JJS 

(NP_000000000000000000000000A~PRP CD DT 

NN_000000000000000000000000A) (ADVP RBR)) 

Description : Noun phrase 

 

State 4    : (PP_000000000000000000000000A IN 

(NP_000000000000000000000000A~JJS (NP_000000000000000000000000A~PRP 

CD DT NN_000000000000000000000000A) (ADVP RBR))) 

Description : Prepositional phrase 

 

State 5    : (NP~CD CD) 

Description : Noun phrase 

 

State 6    : (PP_000000000000000000000000D TO (NP~CD CD) 

(PP_000000000000000000000000A IN (NP_000000000000000000000000A~JJS 

(NP_000000000000000000000000A~PRP CD DT 

NN_000000000000000000000000A) (ADVP RBR)))) 

Description : Prepositional phrase 

 

State 7    : (VP VBD (PP_000000000000000000000000D TO (NP~CD 

CD) (PP_000000000000000000000000A IN 

(NP_000000000000000000000000A~JJS (NP_000000000000000000000000A~PRP 

CD DT NN_000000000000000000000000A) (ADVP RBR))))) 

Description : Verb phrase 

 

State 8    : (NP~NNS CD) 

Description : Noun phrase 

 

State 9    : (NP_000000000000000000000000A~NNS 

NNP_000000000000000000000000A (NP~NNS CD)) 
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Description : Noun phrase 

 

State 10    : (VP VBN (NP_000000000000000000000000A~NNS 

NNP_000000000000000000000000A (NP~NNS CD))) 

Description : Verb phrase 

 

State 11    : (NP_000000000000000000000000A~NN DT 

NN_000000000000000000000000A) 

Description : Noun phrase 

 

State 12    : (NP_000000000000000000000000A~NN 

(NP_000000000000000000000000A~NN DT NN_000000000000000000000000A) 

(VP VBN (NP_000000000000000000000000A~NNS 

NNP_000000000000000000000000A (NP~NNS CD)))) 

Description : Noun phrase 

 

State 13    : (NP_000000000000000000000000A~NN 

(NP_000000000000000000000000A~NN (NP_000000000000000000000000A~NN 

DT NN_000000000000000000000000A) (VP VBN 

(NP_000000000000000000000000A~NNS NNP_000000000000000000000000A 

(NP~NNS CD)))) (VP VBD (PP_000000000000000000000000D TO (NP~CD CD) 

(PP_000000000000000000000000A IN (NP_000000000000000000000000A~JJS 

(NP_000000000000000000000000A~PRP CD DT 

NN_000000000000000000000000A) (ADVP RBR)))))) 

Description : Noun phrase 

 

State 14    : (PP_000000000000000000000000A IN 

(NP_000000000000000000000000A~NN (NP_000000000000000000000000A~NN 

(NP_000000000000000000000000A~NN DT NN_000000000000000000000000A) 

(VP VBN (NP_000000000000000000000000A~NNS 

NNP_000000000000000000000000A (NP~NNS CD)))) (VP VBD 

(PP_000000000000000000000000D TO (NP~CD CD) 

(PP_000000000000000000000000A IN (NP_000000000000000000000000A~JJS 

(NP_000000000000000000000000A~PRP CD DT 

NN_000000000000000000000000A) (ADVP RBR))))))) 

Description : Prepositional phrase 
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State 15    : (NP_000A00C0000000000A0000A00~NNS 

NN_0000000000000000000000A00 NNS_000A00C0000000000A0000000) 

Description : Noun phrase 

 

State 16    : (NP_000A0000000000000A0000A00~NNS 

(NP_000A00C0000000000A0000A00~NNS NN_0000000000000000000000A00 

NNS_000A00C0000000000A0000000) (PP_000000000000000000000000A IN 

(NP_000000000000000000000000A~NN (NP_000000000000000000000000A~NN 

(NP_000000000000000000000000A~NN DT NN_000000000000000000000000A) 

(VP VBN (NP_000000000000000000000000A~NNS 

NNP_000000000000000000000000A (NP~NNS CD)))) (VP VBD 

(PP_000000000000000000000000D TO (NP~CD CD) 

(PP_000000000000000000000000A IN (NP_000000000000000000000000A~JJS 

(NP_000000000000000000000000A~PRP CD DT 

NN_000000000000000000000000A) (ADVP RBR)))))))) 

Description : Noun phrase 

 

State 17    : (VP VBG (NP_000A0000000000000A0000A00~NNS 

(NP_000A00C0000000000A0000A00~NNS NN_0000000000000000000000A00 

NNS_000A00C0000000000A0000000) (PP_000000000000000000000000A IN 

(NP_000000000000000000000000A~NN (NP_000000000000000000000000A~NN 

(NP_000000000000000000000000A~NN DT NN_000000000000000000000000A) 

(VP VBN (NP_000000000000000000000000A~NNS 

NNP_000000000000000000000000A (NP~NNS CD)))) (VP VBD 

(PP_000000000000000000000000D TO (NP~CD CD) 

(PP_000000000000000000000000A IN (NP_000000000000000000000000A~JJS 

(NP_000000000000000000000000A~PRP CD DT 

NN_000000000000000000000000A) (ADVP RBR))))))))) 

Description : Verb phrase 

 

State 18    : (NP_0000000000A00000000000000~NNS 

NNS_0000000000A00000000000000) 

Description : Noun phrase 

 

State 19    : (S (NP_0000000000A00000000000000~NNS 

NNS_0000000000A00000000000000) (VP VBG 

(NP_000A0000000000000A0000A00~NNS 
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(NP_000A00C0000000000A0000A00~NNS NN_0000000000000000000000A00 

NNS_000A00C0000000000A0000000) (PP_000000000000000000000000A IN 

(NP_000000000000000000000000A~NN (NP_000000000000000000000000A~NN 

(NP_000000000000000000000000A~NN DT NN_000000000000000000000000A) 

(VP VBN (NP_000000000000000000000000A~NNS 

NNP_000000000000000000000000A (NP~NNS CD)))) (VP VBD 

(PP_000000000000000000000000D TO (NP~CD CD) 

(PP_000000000000000000000000A IN (NP_000000000000000000000000A~JJS 

(NP_000000000000000000000000A~PRP CD DT 

NN_000000000000000000000000A) (ADVP RBR)))))))))) 

Description : Simple declarative clause 

 

State 20    : (SBAR IN (S (NP_0000000000A00000000000000~NNS 

NNS_0000000000A00000000000000) (VP VBG 

(NP_000A0000000000000A0000A00~NNS 

(NP_000A00C0000000000A0000A00~NNS NN_0000000000000000000000A00 

NNS_000A00C0000000000A0000000) (PP_000000000000000000000000A IN 

(NP_000000000000000000000000A~NN (NP_000000000000000000000000A~NN 

(NP_000000000000000000000000A~NN DT NN_000000000000000000000000A) 

(VP VBN (NP_000000000000000000000000A~NNS 

NNP_000000000000000000000000A (NP~NNS CD)))) (VP VBD 

(PP_000000000000000000000000D TO (NP~CD CD) 

(PP_000000000000000000000000A IN (NP_000000000000000000000000A~JJS 

(NP_000000000000000000000000A~PRP CD DT 

NN_000000000000000000000000A) (ADVP RBR))))))))))) 

Description : Clause introduced by sub-ordinating conjunction 

 

State 21    : (NP_000A00C000000000000D00000~NN DT 

NN_000A00C000000000000B00000) 

Description : Noun phrase 

 

State 22    : (ADJP JJ NN_000A00C0000000000A0000000) 

Description : Adjective phrase 

 

State 23    : (NP_000B00A000000000000000000~NN 

(NP_000A00C000000000000D00000~NN DT NN_000A00C000000000000B00000) 

(SBAR IN (S (NP_0000000000A00000000000000~NNS 
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NNS_0000000000A00000000000000) (VP VBG 

(NP_000A0000000000000A0000A00~NNS 

(NP_000A00C0000000000A0000A00~NNS NN_0000000000000000000000A00 

NNS_000A00C0000000000A0000000) (PP_000000000000000000000000A IN 

(NP_000000000000000000000000A~NN (NP_000000000000000000000000A~NN 

(NP_000000000000000000000000A~NN DT NN_000000000000000000000000A) 

(VP VBN (NP_000000000000000000000000A~NNS 

NNP_000000000000000000000000A (NP~NNS CD)))) (VP VBD 

(PP_000000000000000000000000D TO (NP~CD CD) 

(PP_000000000000000000000000A IN (NP_000000000000000000000000A~JJS 

(NP_000000000000000000000000A~PRP CD DT 

NN_000000000000000000000000A) (ADVP RBR)))))))))))) 

Description : Noun phrase 

 

State 24    : (NP_000000A000000000000000000~NN 

(NP_000B00A000000000000000000~NN (NP_000A00C000000000000D00000~NN 

DT NN_000A00C000000000000B00000) (SBAR IN (S 

(NP_0000000000A00000000000000~NNS NNS_0000000000A00000000000000) 

(VP VBG (NP_000A0000000000000A0000A00~NNS 

(NP_000A00C0000000000A0000A00~NNS NN_0000000000000000000000A00 

NNS_000A00C0000000000A0000000) (PP_000000000000000000000000A IN 

(NP_000000000000000000000000A~NN (NP_000000000000000000000000A~NN 

(NP_000000000000000000000000A~NN DT NN_000000000000000000000000A) 

(VP VBN (NP_000000000000000000000000A~NNS 

NNP_000000000000000000000000A (NP~NNS CD)))) (VP VBD 

(PP_000000000000000000000000D TO (NP~CD CD) 

(PP_000000000000000000000000A IN (NP_000000000000000000000000A~JJS 

(NP_000000000000000000000000A~PRP CD DT 

NN_000000000000000000000000A) (ADVP RBR)))))))))))) .) 

Description : Noun phrase 

 

 

 

Parse failed - could not create a valid parent for VP 
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Desired parse : (S1 (PRN -LRB- (VP VBP (NP (NP VBN NN) : `` (S (NP (NP NNP 

POS) NNP) (VP VBZ (S (NP NNP NNP POS) (VP VBG '' (S (NP -NONE-) (VP TO (VP 

VB (NP DT JJ NN NN)))))))) '' : (NP (NP NNP) (NP NNP CD , CD)))) -RRB-)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP_000000000000000000000000A~CD 

NNP_000000000000000000000000A CD , CD) 

Description : Noun phrase 

 

State 2    : (NP_0000000000A00000000000000~NNP 

NNP_0000000000A00000000000000) 

Description : Noun phrase 

 

State 3    : (NP_A0A000C000A00000000000000~NN DT JJ 

NN_A000000000000000000000000 NN_00A000C000A00000000000000) 

Description : Noun phrase 

 

State 4    : (VP TO) 

Description : Verb phrase 

 

 

 

Parse failed - could not create a valid parent for 

NP_000A000000000000000000B00~NNS 

 

Desired parse : (S1 (S (PP IN (NP JJ NNS)) , (NP (NP NNS) (PP IN (NP NNP))) (VP 

AUX (VP VBN (NP (NP NNS) (PP IN (NP NN))) (PP IN (NP (NP DT NN NNS) (PP IN 

(NP (NP NNS) (VP VBN (S (NP -NONE-) (ADJP JJ (PP IN (NP NN))))))))))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP_A00000000000000000B000B00~NN 

NN_A00000000000000000B000B00) 

Description : Noun phrase 
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State 2    : (PP_A00000000000000000B000B00 IN 

(NP_A00000000000000000B000B00~NN NN_A00000000000000000B000B00)) 

Description : Prepositional phrase 

 

State 3    : (ADJP JJ) 

Description : Adjective phrase 

 

State 4    : (NP~-NONE- -NONE-) 

Description : Noun phrase 

 

State 5    : (S (NP~-NONE- -NONE-) (ADJP JJ) 

(PP_A00000000000000000B000B00 IN (NP_A00000000000000000B000B00~NN 

NN_A00000000000000000B000B00))) 

Description : Simple declarative clause 

 

State 6    : (VP VBN (S (NP~-NONE- -NONE-) (ADJP JJ) 

(PP_A00000000000000000B000B00 IN (NP_A00000000000000000B000B00~NN 

NN_A00000000000000000B000B00)))) 

Description : Verb phrase 

 

State 7    : (NP_000A000000000000000000B00~NNS 

NNS_000A000000000000000000B00) 

Description : Noun phrase 

 

 

 

NN_A00000000000000000000000A IN DT NN_A000000000000000000000000 

NNS_000C0000000000000A0000000 AUX RB JJ IN JJ 

NN_00000000000000000A0000000 NN_00000CA000A00000000000000 . 

Parse failed - the tail of a phrase could not be found! 

Desired parse : (S1 (S (NP (NP NN) (PP IN (NP DT NN NNS))) (VP AUX (ADJP RB JJ) 

(PP IN (NP JJ NN NN))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP_00000CA000A000000A0000000~NN JJ 

NN_00000000000000000A0000000 NN_00000CA000A00000000000000) 
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Description : Noun phrase 

 

State 2    : (PP_00000CA000A000000A0000000 IN 

(NP_00000CA000A000000A0000000~NN JJ NN_00000000000000000A0000000 

NN_00000CA000A00000000000000)) 

Description : Prepositional phrase 

 

State 3    : (ADJP JJ (PP_00000CA000A000000A0000000 IN 

(NP_00000CA000A000000A0000000~NN JJ NN_00000000000000000A0000000 

NN_00000CA000A00000000000000))) 

Description : Adjective phrase 

 

State 4    : (ADVP RB) 

Description : Adverb phrase 

 

State 5    : (PRN (ADVP RB) (ADJP JJ 

(PP_00000CA000A000000A0000000 IN (NP_00000CA000A000000A0000000~NN JJ 

NN_00000000000000000A0000000 NN_00000CA000A00000000000000)))) 

Description : Parenthetical 

 

State 6    : (INTJ (PRN (ADVP RB) (ADJP JJ 

(PP_00000CA000A000000A0000000 IN (NP_00000CA000A000000A0000000~NN JJ 

NN_00000000000000000A0000000 NN_00000CA000A00000000000000))))) 

Description : Interjection - corresponds approximately to the word tag 'UH' 

 

State 7    : (PRN (INTJ (PRN (ADVP RB) (ADJP JJ 

(PP_00000CA000A000000A0000000 IN (NP_00000CA000A000000A0000000~NN JJ 

NN_00000000000000000A0000000 NN_00000CA000A00000000000000))))) .) 

Description : Parenthetical 

 

State 8    : (VP AUX) 

Description : Verb phrase 

 

State 9    : (NP_000D0000000000000A0000000~NNS 

NNS_000C0000000000000A0000000) 

Description : Noun phrase 
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State 10    : (S (NP_000D0000000000000A0000000~NNS 

NNS_000C0000000000000A0000000) (VP AUX)) 

Description : Simple declarative clause 

 

State 11    : (RRC DT NN_A000000000000000000000000 (S 

(NP_000D0000000000000A0000000~NNS NNS_000C0000000000000A0000000) 

(VP AUX))) 

Description : Reduced relative clause 

 

State 12    : (S1 IN (RRC DT NN_A000000000000000000000000 (S 

(NP_000D0000000000000A0000000~NNS NNS_000C0000000000000A0000000) 

(VP AUX))) (PRN (INTJ (PRN (ADVP RB) (ADJP JJ 

(PP_00000CA000A000000A0000000 IN (NP_00000CA000A000000A0000000~NN JJ 

NN_00000000000000000A0000000 NN_00000CA000A00000000000000))))) .)) 

Description : Root node 

 

State 13    : (NP_A00000000000000000000000A~PRP 

NN_A00000000000000000000000A) 

Description : Noun phrase 

 

 

 

Parse failed - could not create a valid parent for 

NP_0000000000A00000000000000~NNS 

 

Desired parse : (S1 (S (NP DT NN NNS) (VP VBD (PP IN (NP (NP NNP NNPS NNP) , 

(NP (NP DT JJ NN NN) (SBAR (WHNP WDT) (S (NP NNP) (ADVP RB) (VP VBD (NP -

NONE-)))))))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP~-NONE- -NONE-) 

Description : Noun phrase 

 

State 2    : (S (NP~-NONE- -NONE-) .) 

Description : Simple declarative clause 
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State 3    : (VP VBD) 

Description : Verb phrase 

 

State 4    : (ADVP RB) 

Description : Adverb phrase 

 

State 5    : (VP (ADVP RB) (VP VBD)) 

Description : Verb phrase 

 

State 6    : (NP_00000000000000A0000000000~NNP 

NNP_00000000000000A0000000000) 

Description : Noun phrase 

 

State 7    : (NP~NNPS WDT (NP_00000000000000A0000000000~NNP 

NNP_00000000000000A0000000000)) 

Description : Noun phrase 

 

State 8    : (S (NP~NNPS WDT 

(NP_00000000000000A0000000000~NNP NNP_00000000000000A0000000000)) 

(VP (ADVP RB) (VP VBD))) 

Description : Simple declarative clause 

 

State 9    : (WHADVP (S (NP~NNPS WDT 

(NP_00000000000000A0000000000~NNP NNP_00000000000000A0000000000)) 

(VP (ADVP RB) (VP VBD)))) 

Description : Wh-adverb phrase 

 

State 10    : (ADJP DT JJ) 

Description : Adjective phrase 

 

State 11    : (NP_000000D000A000A0000000D00~NN 

NN_000000B00A0000B0000000000 NN_0000000000A00000000000C00) 

Description : Noun phrase 

 

State 12    : (NP_0000000000A00000000000000~NNS 

NNPS_0000000000A00000000000000 NNP_0000000000A00000000000000) 

Description : Noun phrase 
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State 13    : (NP_0000000000A00000000000000~NNS 

(NP_0000000000A00000000000000~NNS NNPS_0000000000A00000000000000 

NNP_0000000000A00000000000000) ,) 

Description : Noun phrase 

 

State 14    : (NP_0000000000A00000000000000~NNS 

NNP_0000000000A00000000000000 (NP_0000000000A00000000000000~NNS 

(NP_0000000000A00000000000000~NNS NNPS_0000000000A00000000000000 

NNP_0000000000A00000000000000) ,)) 

Description : Noun phrase 

 

 

 

Parse failed - could not create a valid parent for 

NP_00A00000000A0000000000000~EX 

 

Desired parse : (S1 (S (NP (NP NNS) (PP IN (NP JJ NNS))) (VP VBD (NP (NP NNP 

POS) JJ NN) (SBAR IN (S (NP PRP) (VP VBD (PP TO (NP (NP NNP POS) NN)) (PP IN 

(S (NP -NONE-) (VP VBG (NP NNP NNP)))))))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (ADJP NNP_00000000000A0000000000000) 

Description : Adjective phrase 

 

State 2    : (NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000) 

Description : Noun phrase 

 

State 3    : (VP VBG (ADJP NNP_00000000000A0000000000000) 

(NP_00000000000A0000000000000~NNP NNP_00000000000A0000000000000)) 

Description : Verb phrase 

 

State 4    : (NP~-NONE- -NONE-) 

Description : Noun phrase 
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State 5    : (S (NP~-NONE- -NONE-) (VP VBG (ADJP 

NNP_00000000000A0000000000000) (NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000))) 

Description : Simple declarative clause 

 

State 6    : (PP IN (S (NP~-NONE- -NONE-) (VP VBG (ADJP 

NNP_00000000000A0000000000000) (NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000)))) 

Description : Prepositional phrase 

 

State 7    : (NP_00000000000A0000000000000~POS 

NNP_00000000000A0000000000000 POS) 

Description : Noun phrase 

 

State 8    : (NP_00D00000000A000000000B000~POS 

(NP_00000000000A0000000000000~POS NNP_00000000000A0000000000000 

POS) NN_00D00000000A000000000B000) 

Description : Noun phrase 

 

State 9    : (PP_00D00000000A000000000B000 TO 

(NP_00D00000000A000000000B000~POS 

(NP_00000000000A0000000000000~POS NNP_00000000000A0000000000000 

POS) NN_00D00000000A000000000B000)) 

Description : Prepositional phrase 

 

State 10    : (VP VBD (PP_00D00000000A000000000B000 TO 

(NP_00D00000000A000000000B000~POS 

(NP_00000000000A0000000000000~POS NNP_00000000000A0000000000000 

POS) NN_00D00000000A000000000B000)) (PP IN (S (NP~-NONE- -NONE-) (VP 

VBG (ADJP NNP_00000000000A0000000000000) 

(NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000))))) 

Description : Verb phrase 

 

State 11    : (NP_0000000000A00000000000000~PRP 

PRP_0000000000A00000000000000) 

Description : Noun phrase 
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State 12    : (S (NP_0000000000A00000000000000~PRP 

PRP_0000000000A00000000000000) (VP VBD (PP_00D00000000A000000000B000 

TO (NP_00D00000000A000000000B000~POS 

(NP_00000000000A0000000000000~POS NNP_00000000000A0000000000000 

POS) NN_00D00000000A000000000B000)) (PP IN (S (NP~-NONE- -NONE-) (VP 

VBG (ADJP NNP_00000000000A0000000000000) 

(NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000)))))) 

Description : Simple declarative clause 

 

State 13    : (SBAR IN (S (NP_0000000000A00000000000000~PRP 

PRP_0000000000A00000000000000) (VP VBD (PP_00D00000000A000000000B000 

TO (NP_00D00000000A000000000B000~POS 

(NP_00000000000A0000000000000~POS NNP_00000000000A0000000000000 

POS) NN_00D00000000A000000000B000)) (PP IN (S (NP~-NONE- -NONE-) (VP 

VBG (ADJP NNP_00000000000A0000000000000) 

(NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000))))))) 

Description : Clause introduced by sub-ordinating conjunction 

 

State 14    : (NP_00000000000A0000000000000~POS 

NNP_00000000000A0000000000000 POS) 

Description : Noun phrase 

 

State 15    : (NP_00A00000000A0000000000000~POS 

(NP_00000000000A0000000000000~POS NNP_00000000000A0000000000000 

POS) JJ NN_00A0000000000000000000000) 

Description : Noun phrase 

 

State 16    : (NP_00A00000000A0000000000000~EX 

(NP_00A00000000A0000000000000~POS 

(NP_00000000000A0000000000000~POS NNP_00000000000A0000000000000 

POS) JJ NN_00A0000000000000000000000) (SBAR IN (S 

(NP_0000000000A00000000000000~PRP PRP_0000000000A00000000000000) (VP 

VBD (PP_00D00000000A000000000B000 TO 

(NP_00D00000000A000000000B000~POS 
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(NP_00000000000A0000000000000~POS NNP_00000000000A0000000000000 

POS) NN_00D00000000A000000000B000)) (PP IN (S (NP~-NONE- -NONE-) (VP 

VBG (ADJP NNP_00000000000A0000000000000) 

(NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000)))))))) 

Description : Noun phrase 

 

 

 

Parse failed - could not create a valid parent for ADVP 

 

Desired parse : (S1 (S (NP PRP) (VP VBD (SBAR -NONE- (S (NP DT NNS) (VP AUX 

(VP VBN (NP (NP NN POS) NN)))))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (UCP POS) 

Description : Unlike coordinated phrase 

 

State 2    : (NP_000A000000000000000000000~NN (UCP POS) 

NN_000A000000000000000000000) 

Description : Noun phrase 

 

State 3    : (NP_A00D000000000000000000000~NN 

NN_A000000000B00000000000000 (NP_000A000000000000000000000~NN (UCP 

POS) NN_000A000000000000000000000)) 

Description : Noun phrase 

 

State 4    : (VP VBN (NP_A00D000000000000000000000~NN 

NN_A000000000B00000000000000 (NP_000A000000000000000000000~NN (UCP 

POS) NN_000A000000000000000000000))) 

Description : Verb phrase 

 

State 5    : (ADVP (VP VBN (NP_A00D000000000000000000000~NN 

NN_A000000000B00000000000000 (NP_000A000000000000000000000~NN (UCP 

POS) NN_000A000000000000000000000)))) 

Description : Adverb phrase 
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DT NN_0000000000A00000000000C00 RB VBD DT 

NN_A00B00B000B00000000000000 NN_000000A000000000000000000 IN $ CD 

CD -NONE- IN JJ JJ NNS_000C00A0000000000D0000000 . 

Parse failed - the tail of a phrase could not be found! 

Desired parse : (S1 (S (NP DT NN) (ADVP RB) (VP VBD (NP (NP DT NN NN) (PP IN 

(NP (QP $ CD CD) -NONE-)) (PP IN (NP JJ JJ NNS)))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP_000C00A0000000000D0000000~NNS JJ JJ 

NNS_000C00A0000000000D0000000) 

Description : Noun phrase 

 

State 2    : (PP_000C00A0000000000D0000000 IN 

(NP_000C00A0000000000D0000000~NNS JJ JJ 

NNS_000C00A0000000000D0000000)) 

Description : Prepositional phrase 

 

State 3    : (WHADJP CD CD) 

Description : Wh-adjective phrase 

 

State 4    : (S -NONE-) 

Description : Simple declarative clause 

 

State 5    : (UCP (S -NONE-) (PP_000C00A0000000000D0000000 IN 

(NP_000C00A0000000000D0000000~NNS JJ JJ 

NNS_000C00A0000000000D0000000))) 

Description : Unlike coordinated phrase 

 

State 6    : (INTJ (WHADJP CD CD) (UCP (S -NONE-) 

(PP_000C00A0000000000D0000000 IN (NP_000C00A0000000000D0000000~NNS 

JJ JJ NNS_000C00A0000000000D0000000)))) 

Description : Interjection - corresponds approximately to the word tag 'UH' 
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`` PRP_0000000000A00000000000000 AUX IN DT 

NN_000A0000000000000000B0B00 IN -NONE- VBG 

NN_00000000000000A0000000000 NNS_000A00C0000000000A0000000 , '' VBZ -

NONE- NNP_00000000000000A0000000000 NNP_00000000000000A0000000000 , 

JJ NN_B00A000000000000000000000 NN_00000000000000A0000000000 IN 

NNP_0000000000A00000000000000 NNP_0000000000A00000000000000 , 

NNP_00000000000A0000000000000 , NNP_00000000000A0000000000000 . 

Parse failed - the tail of a phrase could not be found! 

Desired parse : (S1 (SINV `` (S (NP PRP) (VP AUX (PP IN (NP (NP DT NN) (PP IN 

(S (NP -NONE-) (VP VBG (NP NN NNS)))))))) , '' (VP VBZ (S -NONE-)) (NP (NP NNP 

NNP) , (NP (NP JJ NN NN) (PP IN (NP (NP NNP NNP) , (NP (NP NNP) , (NP NNP)))))) 

.)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000) 

Description : Noun phrase 

 

State 2    : (NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000) 

Description : Noun phrase 

 

State 3    : (NP_0000000000A00000000000000~NNP 

NNP_0000000000A00000000000000 NNP_0000000000A00000000000000) 

Description : Noun phrase 

 

State 4    : (NP_0000000000AA0000000000000~NNP 

(NP_0000000000A00000000000000~NNP NNP_0000000000A00000000000000 

NNP_0000000000A00000000000000) , (NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000)) 

Description : Noun phrase 

 

State 5    : (NP_0000000000AA0000000000000~NNP 

(NP_0000000000AA0000000000000~NNP 
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(NP_0000000000A00000000000000~NNP NNP_0000000000A00000000000000 

NNP_0000000000A00000000000000) , (NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000)) , (NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000)) 

Description : Noun phrase 

 

State 6    : (PP_0000000000AA0000000000000 IN 

(NP_0000000000AA0000000000000~NNP 

(NP_0000000000AA0000000000000~NNP 

(NP_0000000000A00000000000000~NNP NNP_0000000000A00000000000000 

NNP_0000000000A00000000000000) , (NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000)) , (NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000))) 

Description : Prepositional phrase 

 

State 7    : (NP_B00A0000000000A0000000000~NN JJ 

NN_B00A000000000000000000000 NN_00000000000000A0000000000) 

Description : Noun phrase 

 

State 8    : (NP_00000000000000A0000000000~NNP 

NNP_00000000000000A0000000000 NNP_00000000000000A0000000000) 

Description : Noun phrase 

 

State 9    : (VP VBZ -NONE- (NP_00000000000000A0000000000~NNP 

NNP_00000000000000A0000000000 NNP_00000000000000A0000000000)) 

Description : Verb phrase 

 

State 10    : (INTJ ,) 

Description : Interjection - corresponds approximately to the word tag 'UH' 

 

State 11    : (S (INTJ ,) '' (VP VBZ -NONE- 

(NP_00000000000000A0000000000~NNP NNP_00000000000000A0000000000 

NNP_00000000000000A0000000000))) 

Description : Simple declarative clause 

 

State 12    : (FRAG , (NP_B00A0000000000A0000000000~NN JJ 

NN_B00A000000000000000000000 NN_00000000000000A0000000000) 
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(PP_0000000000AA0000000000000 IN (NP_0000000000AA0000000000000~NNP 

(NP_0000000000AA0000000000000~NNP 

(NP_0000000000A00000000000000~NNP NNP_0000000000A00000000000000 

NNP_0000000000A00000000000000) , (NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000)) , (NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000)))) 

Description : Fragment 

 

State 13    : (NP_000A00D0000000A00A0000000~NNS 

NN_00000000000000A0000000000 NNS_000A00C0000000000A0000000) 

Description : Noun phrase 

 

State 14    : (NP_000C0000000000000A0000000~NNS 

(NP_000A00D0000000A00A0000000~NNS NN_00000000000000A0000000000 

NNS_000A00C0000000000A0000000) (S (INTJ ,) '' (VP VBZ -NONE- 

(NP_00000000000000A0000000000~NNP NNP_00000000000000A0000000000 

NNP_00000000000000A0000000000)))) 

Description : Noun phrase 

 

State 15    : (S1 (NP_000C0000000000000A0000000~NNS 

(NP_000A00D0000000A00A0000000~NNS NN_00000000000000A0000000000 

NNS_000A00C0000000000A0000000) (S (INTJ ,) '' (VP VBZ -NONE- 

(NP_00000000000000A0000000000~NNP NNP_00000000000000A0000000000 

NNP_00000000000000A0000000000)))) (FRAG , 

(NP_B00A0000000000A0000000000~NN JJ NN_B00A000000000000000000000 

NN_00000000000000A0000000000) (PP_0000000000AA0000000000000 IN 

(NP_0000000000AA0000000000000~NNP 

(NP_0000000000AA0000000000000~NNP 

(NP_0000000000A00000000000000~NNP NNP_0000000000A00000000000000 

NNP_0000000000A00000000000000) , (NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000)) , (NP_00000000000A0000000000000~NNP 

NNP_00000000000A0000000000000))))) 

Description : Root node 
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Parse failed - could not create a valid parent for 

NP_00000000000A00000A0000B00~POS 

 

Desired parse : (S1 (S (S (PP IN (NP JJ NNP)) , (NP DT JJS) (VP NNP (NP -NONE-) 

(PP IN (NP NN)))) , (NP DT NN) (VP AUX (NP (NP DT NN POS) (ADJP (QP $ CD CD) 

-NONE-) JJ NN)) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (QP $ CD CD) 

Description : Adjective phrase (Quantitative) 

 

State 2    : (ADJP (QP $ CD CD) -NONE- JJ) 

Description : Adjective phrase 

 

State 3    : (NP_0000000000000000000D00000~POS POS) 

Description : Noun phrase 

 

State 4    : (NP_0000B000000A0000000000000~POS DT 

NN_0000B000000A0000000D00000 (NP_0000000000000000000D00000~POS 

POS) (ADJP (QP $ CD CD) -NONE- JJ)) 

Description : Noun phrase 

 

State 5    : (NP_0000CDC0000A00000A0000A00~POS 

(NP_0000B000000A0000000000000~POS DT NN_0000B000000A0000000D00000 

(NP_0000000000000000000D00000~POS POS) (ADJP (QP $ CD CD) -NONE- JJ)) 

NN_000000C0000000000A0000A00) 

Description : Noun phrase 

 

State 6    : (NP_000000D0000A00000A0000B00~POS 

(NP_0000CDC0000A00000A0000A00~POS 

(NP_0000B000000A0000000000000~POS DT NN_0000B000000A0000000D00000 

(NP_0000000000000000000D00000~POS POS) (ADJP (QP $ CD CD) -NONE- JJ)) 

NN_000000C0000000000A0000A00)) 

Description : Noun phrase 
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State 7    : (NP_00000000000A00000A0000B00~POS 

(NP_000000D0000A00000A0000B00~POS 

(NP_0000CDC0000A00000A0000A00~POS 

(NP_0000B000000A0000000000000~POS DT NN_0000B000000A0000000D00000 

(NP_0000000000000000000D00000~POS POS) (ADJP (QP $ CD CD) -NONE- JJ)) 

NN_000000C0000000000A0000A00))) 

Description : Noun phrase 

 

 

 

Parse failed - could not create a valid parent for 

NP_00000000000A0000000000000~POS 

 

Desired parse : (S1 (S (NP NN) , (NP NNP NNP NNP) (VP VBD (S (NP -NONE-) (VP 

TO (VP VB (NP (NP DT NNP NN NN NNS) (PP IN (NP (NP NNP POS) NNP NNP NNP))) 

(PP IN (NP (QP RB $ CD CD) -NONE-)))))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (WHADJP $ CD CD) 

Description : Wh-adjective phrase 

 

State 2    : (S -NONE-) 

Description : Simple declarative clause 

 

State 3    : (S (WHADJP $ CD CD) (S -NONE-)) 

Description : Simple declarative clause 

 

State 4    : (ADVP RB) 

Description : Adverb phrase 

 

State 5    : (SBAR (ADVP RB) (S (WHADJP $ CD CD) (S -NONE-))) 

Description : Clause introduced by sub-ordinating conjunction 

 

State 6    : (UCP IN (SBAR (ADVP RB) (S (WHADJP $ CD CD) (S -

NONE-)))) 

Description : Unlike coordinated phrase 
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State 7    : (NP_0000000000AA00D0000000000~POS 

NNP_00000000000A0000000000000 POS NNP_0000000000A00000000000000 

NNP_0000000000A00000000000000 NNP_0000000000A00000000000000) 

Description : Noun phrase 

 

State 8    : (NP_0000000000DA0000000000000~POS 

(NP_0000000000AA00D0000000000~POS NNP_00000000000A0000000000000 

POS NNP_0000000000A00000000000000 NNP_0000000000A00000000000000 

NNP_0000000000A00000000000000) (UCP IN (SBAR (ADVP RB) (S (WHADJP $ CD 

CD) (S -NONE-))))) 

Description : Noun phrase 

 

State 9    : (NP_00000000000A0000000000000~POS 

(NP_0000000000DA0000000000000~POS 

(NP_0000000000AA00D0000000000~POS NNP_00000000000A0000000000000 

POS NNP_0000000000A00000000000000 NNP_0000000000A00000000000000 

NNP_0000000000A00000000000000) (UCP IN (SBAR (ADVP RB) (S (WHADJP $ CD 

CD) (S -NONE-)))))) 

Description : Noun phrase 

 

 

 

Parse failed - could not create a valid parent for 

NP_00000AA000000000000000000~NN 

 

 

Desired parse : (S1 (S CC (NP JJ NNS) (VP VBP (SBAR IN (S (NP (NP NNS POS) 

NNS) (VP AUX (VP JJ (NP -NONE-) (PP IN (NP (NP NN) (PP IN (NP (NP NNS) (PP IN 

(NP DT JJ NN))))))))))) .)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (NP_00000BA0000000000D0C00000~NN DT JJ 

NN_00000BA0000000000D0C00000) 

Description : Noun phrase 
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State 2    : (NP_00000BA000000000000000000~NN 

(NP_00000BA0000000000D0C00000~NN DT JJ 

NN_00000BA0000000000D0C00000)) 

Description : Noun phrase 

 

State 3    : (NP_00000AA000000000000000000~NN 

(NP_00000BA000000000000000000~NN (NP_00000BA0000000000D0C00000~NN 

DT JJ NN_00000BA0000000000D0C00000))) 

Description : Noun phrase 

 

 

 

Parse failed - could not create a valid parent for S 

 

Desired parse : (S1 (S (PP IN (PP IN (NP (NP (NP DT NN POS) NN NN) (PP TO (NP 

JJ NNS))))) , (NP DT NN) (VP VBD : `` (S (NP JJS NNS) (VP VBP (PP IN (NP PRP$ 

NNS)) (PP IN (NP (NP DT NN) (PP IN (NP (NP (ADJP JJ CC JJ) NNS) (ADJP JJ)))))))) 

.)) 

 

wsj_Concord-II's attempt .... 

 

State 1    : (ADJP JJ) 

Description : Adjective phrase 

 

State 2    : (NP_00000000000000000B0000000~NNS JJ CC JJ 

NNS_000000B0000000000A0000000) 

Description : Noun phrase 

 

State 3    : (PP_00000000000000000A0000000 IN 

(NP_00000000000000000B0000000~NNS JJ CC JJ 

NNS_000000B0000000000A0000000)) 

Description : Prepositional phrase 

 

State 4    : (NP_00000000000000000000A0000~NN DT 

NN_00000000000000000000A0000) 

Description : Noun phrase 
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State 5    : (NP_00000000000000000A00A0000~NN 

(NP_00000000000000000000A0000~NN DT NN_00000000000000000000A0000) 

(PP_00000000000000000A0000000 IN (NP_00000000000000000B0000000~NNS 

JJ CC JJ NNS_000000B0000000000A0000000))) 

Description : Noun phrase 

 

State 6    : (NP_00000000000000000A00A0000~NN 

(NP_00000000000000000A00A0000~NN (NP_00000000000000000000A0000~NN 

DT NN_00000000000000000000A0000) (PP_00000000000000000A0000000 IN 

(NP_00000000000000000B0000000~NNS JJ CC JJ 

NNS_000000B0000000000A0000000))) (ADJP JJ)) 

Description : Noun phrase 

 

State 7    : (PP_00000000000000000A00A0000 IN 

(NP_00000000000000000A00A0000~NN (NP_00000000000000000A00A0000~NN 

(NP_00000000000000000000A0000~NN DT NN_00000000000000000000A0000) 

(PP_00000000000000000A0000000 IN (NP_00000000000000000B0000000~NNS 

JJ CC JJ NNS_000000B0000000000A0000000))) (ADJP JJ))) 

Description : Prepositional phrase 

 

State 8    : (NP_000B000000A000C00C0000000~NNS PRP$ 

NNS_000B000000A000C00C0000000) 

Description : Noun phrase 

 

State 9    : (PP_000B000000A000C00C0000000 IN 

(NP_000B000000A000C00C0000000~NNS PRP$ 

NNS_000B000000A000C00C0000000)) 

Description : Prepositional phrase 

 

State 10    : (VP VBP (PP_000B000000A000C00C0000000 IN 

(NP_000B000000A000C00C0000000~NNS PRP$ 

NNS_000B000000A000C00C0000000))) 

Description : Verb phrase 

 

State 11    : (NP_00000000000000A0000000000~NNS JJS 

NNS_00000000000000A0000000000) 

Description : Noun phrase 
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State 12    : (S ``) 

Description : Simple declarative clause 
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Appendix G:  A Sample of Matching Parses from the 

WSJ Corpus Test Set (Using Syntactic 

Information Only) 
 

 

JJ NNS IN DT NN IN NN : 

Desired parse : (S1 (NP (NP (NP JJ NNS) (PP IN (NP (NP DT NN) (PP IN (NP NN))))) 

:)) 

Actual parse : (S1 (NP (NP (NP JJ NNS) (PP IN (NP (NP DT NN) (PP IN (NP NN))))) 

:)) 

 

DT NN IN DT NNPS IN DT NNP AUX IN JJ NN . 

Desired parse : (S1 (S (NP (NP DT NN) (PP IN (NP (NP DT NNPS) (PP IN (NP DT 

NNP))))) (VP AUX (PP IN (NP JJ NN))) .)) 

Actual parse : (S1 (S (NP (NP DT NN) (PP IN (NP (NP DT NNPS) (PP IN (NP DT 

NNP))))) (VP AUX (PP IN (NP JJ NN))) .)) 

 

NNP : JJ NNS . 

Desired parse : (S1 (NP (NP NNP) : (NP JJ NNS) .)) 

Actual parse : (S1 (NP (NP NNP) : (NP JJ NNS) .)) 

 

DT NN AUX VBN IN -NONE- VBG DT NN POS NN RB . 

Desired parse : (S1 (S (NP DT NN) (VP AUX (VP VBN (PP IN (S (NP -NONE-) (VP 

VBG (NP (NP DT NN POS) NN) (ADVP RB)))))) .)) 

Actual parse : (S1 (S (NP DT NN) (VP AUX (VP VBN (PP IN (S (NP -NONE-) (VP VBG 

(NP (NP DT NN POS) NN) (ADVP RB)))))) .)) 

 

NN 

Desired parse : (S1 (NP NN)) 

Actual parse : (S1 (NP NN)) 

 

NNP NNP , DT JJ NN NN , VBZ NNS CC NNS . 

Desired parse : (S1 (S (NP (NP NNP NNP) , (NP DT JJ NN NN) ,) (VP VBZ (NP NNS 

CC NNS)) .)) 

Actual parse : (S1 (S (NP (NP NNP NNP) , (NP DT JJ NN NN) ,) (VP VBZ (NP NNS CC 

NNS)) .)) 
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IN NN , DT NN VBZ -NONE- TO VB JJ NNS . 

Desired parse : (S1 (S (PP IN (NP NN)) , (NP DT NN) (VP VBZ (S (NP -NONE-) (VP 

TO (VP VB (NP JJ NNS))))) .)) 

Actual parse : (S1 (S (PP IN (NP NN)) , (NP DT NN) (VP VBZ (S (NP -NONE-) (VP 

TO (VP VB (NP JJ NNS))))) .)) 

 

RB , DT NN AUX VBN -NONE- TO VB PRP$ JJ NNS . 

Desired parse : (S1 (S (ADVP RB) , (NP DT NN) (VP AUX (VP VBN (S (NP -NONE-) 

(VP TO (VP VB (NP PRP$ JJ NNS)))))) .)) 

Actual parse : (S1 (S (ADVP RB) , (NP DT NN) (VP AUX (VP VBN (S (NP -NONE-) 

(VP TO (VP VB (NP PRP$ JJ NNS)))))) .)) 

 

NN NN : CD NN . 

Desired parse : (S1 (NP (NP NN NN) : (NP CD NN) .)) 

Actual parse : (S1 (NP (NP NN NN) : (NP CD NN) .)) 

 

DT JJ NNS AUX VBN -NONE- TO VB DT NN . 

Desired parse : (S1 (S (NP DT JJ NNS) (VP AUX (VP VBN (S (NP -NONE-) (VP TO 

(VP VB (NP DT NN)))))) .)) 

Actual parse : (S1 (S (NP DT JJ NNS) (VP AUX (VP VBN (S (NP -NONE-) (VP TO (VP 

VB (NP DT NN)))))) .)) 

 

NN VBZ JJ NN NNS IN NNP NNP . 

Desired parse : (S1 (S (NP NN) (VP VBZ (NP (NP JJ NN NNS) (PP IN (NP NNP 

NNP)))) .)) 

Actual parse : (S1 (S (NP NN) (VP VBZ (NP (NP JJ NN NNS) (PP IN (NP NNP NNP)))) 

.)) 

 

DT NN IN DT NN AUX DT NN . 

Desired parse : (S1 (S (NP (NP DT NN) (PP IN (NP DT NN))) (VP AUX (NP DT NN)) 

.)) 

Actual parse : (S1 (S (NP (NP DT NN) (PP IN (NP DT NN))) (VP AUX (NP DT NN)) .)) 

 

`` PRP AUX VBG -NONE- TO AUX DT JJ NN . '' 

Desired parse : (S1 (S `` (NP PRP) (VP AUX (VP VBG (S (NP -NONE-) (VP TO (VP 

AUX (NP DT JJ NN)))))) . '')) 
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Actual parse : (S1 (S `` (NP PRP) (VP AUX (VP VBG (S (NP -NONE-) (VP TO (VP 

AUX (NP DT JJ NN)))))) . '')) 

 

NN AUX DT NN NN . 

Desired parse : (S1 (S (NP NN) (VP AUX (NP DT NN NN)) .)) 

Actual parse : (S1 (S (NP NN) (VP AUX (NP DT NN NN)) .)) 

 

CC DT NN NN CC NN NN IN DT NN VBD DT NN . 

Desired parse : (S1 (S CC (NP (NP DT NN NN CC NN NN) (PP IN (NP DT NN))) (VP 

VBD (NP DT NN)) .)) 

Actual parse : (S1 (S CC (NP (NP DT NN NN CC NN NN) (PP IN (NP DT NN))) (VP 

VBD (NP DT NN)) .)) 

 

DT JJ NN VBZ CD NNS . 

Desired parse : (S1 (S (NP DT JJ NN) (VP VBZ (NP CD NNS)) .)) 

Actual parse : (S1 (S (NP DT JJ NN) (VP VBZ (NP CD NNS)) .)) 

 

DT NNP NNP NNP NNP VBD CD NNS TO CD . 

Desired parse : (S1 (S (NP DT NNP NNP NNP NNP) (VP VBD (NP CD NNS) (PP TO 

(NP CD))) .)) 

Actual parse : (S1 (S (NP DT NNP NNP NNP NNP) (VP VBD (NP CD NNS) (PP TO (NP 

CD))) .)) 

 

IN NNP , JJ JJ NN NNP NNP VBD IN NNP , -NONE- VBG CD NNS IN NN . 

Desired parse : (S1 (S (PP IN (NP NNP)) , (NP JJ JJ NN NNP NNP) (VP VBD (PP IN 

(NP NNP)) , (S (NP -NONE-) (VP VBG (NP CD NNS) (PP IN (NP NN))))) .)) 

Actual parse : (S1 (S (PP IN (NP NNP)) , (NP JJ JJ NN NNP NNP) (VP VBD (PP IN 

(NP NNP)) , (S (NP -NONE-) (VP VBG (NP CD NNS) (PP IN (NP NN))))) .)) 

 

DT JJ NN AUX JJ , '' VBD -NONE- NNP NNP IN NNP . 

Desired parse : (S1 (SINV (S (NP DT JJ NN) (VP AUX (ADJP JJ))) , '' (VP VBD (S -

NONE-)) (NP (NP NNP NNP) (PP IN (NP NNP))) .)) 

Actual parse : (S1 (SINV (S (NP DT JJ NN) (VP AUX (ADJP JJ))) , '' (VP VBD (S -

NONE-)) (NP (NP NNP NNP) (PP IN (NP NNP))) .)) 

 

NNP NNP VBZ NNP NNP TO VB DT NN IN NNS . 
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Desired parse : (S1 (S (NP NNP NNP) (VP VBZ (S (NP NNP NNP) (VP TO (VP VB (NP 

DT NN) (PP IN (NP NNS)))))) .)) 

Actual parse : (S1 (S (NP NNP NNP) (VP VBZ (S (NP NNP NNP) (VP TO (VP VB (NP 

DT NN) (PP IN (NP NNS)))))) .)) 

 

DT NN POS NN AUX AUX VBG JJ NNS VB NN NNS . 

Desired parse : (S1 (S (NP (NP DT NN POS) NN) (VP AUX (VP AUX (VP VBG (S (NP 

JJ NNS) (VP VB (NP NN NNS)))))) .)) 

Actual parse : (S1 (S (NP (NP DT NN POS) NN) (VP AUX (VP AUX (VP VBG (S (NP JJ 

NNS) (VP VB (NP NN NNS)))))) .)) 

 

IN NNP CD , DT NN VBD DT NN . 

Desired parse : (S1 (S (PP IN (NP NNP CD)) , (NP DT NN) (VP VBD (NP DT NN)) .)) 

Actual parse : (S1 (S (PP IN (NP NNP CD)) , (NP DT NN) (VP VBD (NP DT NN)) .)) 

 

IN DT NN , NNP NNP VBZ DT NNPS . 

Desired parse : (S1 (S (PP IN (NP DT NN)) , (NP NNP NNP) (VP VBZ (NP DT NNPS)) 

.)) 

Actual parse : (S1 (S (PP IN (NP DT NN)) , (NP NNP NNP) (VP VBZ (NP DT NNPS)) 

.)) 

 

NNP NNP VBZ DT JJ NN . 

Desired parse : (S1 (S (NP NNP NNP) (VP VBZ (NP DT JJ NN)) .)) 

Actual parse : (S1 (S (NP NNP NNP) (VP VBZ (NP DT JJ NN)) .)) 

 

IN DT JJ NN , DT NN IN NN VBZ IN NN NN . 

Desired parse : (S1 (S (PP IN (NP DT JJ NN)) , (NP (NP DT NN) (PP IN (NP NN))) 

(VP VBZ (PP IN (NP NN NN))) .)) 

Actual parse : (S1 (S (PP IN (NP DT JJ NN)) , (NP (NP DT NN) (PP IN (NP NN))) (VP 

VBZ (PP IN (NP NN NN))) .)) 
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Appendix H:  A Sample of Matching Parses from the 

WSJ Corpus Test Set (Using Lexical 

Semantic and Syntactic Information) 
 

 

JJ NNS_00000AD000000000000000000 IN DT NN_00B00C0000A00000000000000 

IN NN_A0B00D0000000000000000000 : 

Desired parse : (S1 (NP (NP (NP JJ NNS) (PP IN (NP (NP DT NN) (PP IN (NP NN))))) 

:)) 

Actual parse : (S1 (NP (NP (NP JJ NNS) (PP IN (NP (NP DT NN) (PP IN (NP NN))))) 

:)) 

 

NNP_0000000000A00000000000000 NNS_00000000000000A0000000000 VBD DT 

NNS_000000AD00000000000000000 RB . 

Desired parse : (S1 (S (NP NNP NNS) (VP VBD (NP DT NNS) (ADVP RB)) .)) 

Actual parse : (S1 (S (NP NNP NNS) (VP VBD (NP DT NNS) (ADVP RB)) .)) 

 

NN 

Desired parse : (S1 (NP NN)) 

Actual parse : (S1 (NP NN)) 

 

NNP_00000000000000A0000000000 NNP_00000000000000A0000000000 , DT JJ 

NN_00C0000000A00000000000000 NN_00000000000000A0000000000 , VBZ 

NNS_00000000000000A0000000000 CC NNS_00000000000000A0000000000 . 

Desired parse : (S1 (S (NP (NP NNP NNP) , (NP DT JJ NN NN) ,) (VP VBZ (NP NNS 

CC NNS)) .)) 

Actual parse : (S1 (S (NP (NP NNP NNP) , (NP DT JJ NN NN) ,) (VP VBZ (NP NNS CC 

NNS)) .)) 

 

IN NN_D0C0000000000B0000000000A , DT NN_00A00000000000A00000000D0 

VBZ -NONE- TO VB JJ NNS_00B00000000A0000000000000 . 

Desired parse : (S1 (S (PP IN (NP NN)) , (NP DT NN) (VP VBZ (S (NP -NONE-) (VP 

TO (VP VB (NP JJ NNS))))) .)) 

Actual parse : (S1 (S (PP IN (NP NN)) , (NP DT NN) (VP VBZ (S (NP -NONE-) (VP 

TO (VP VB (NP JJ NNS))))) .)) 
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DT NN_000000A000000000000000000 RB MD VB 

NN_00000000000000000A0000000 NNS_000A00C0000000000A0000000 IN JJ 

NN_B000000000000000000000A00 NNS_000000B000000000000000A00 . 

Desired parse : (S1 (S (NP DT NN) (ADVP RB) (VP MD (VP VB (NP (NP NN NNS) (PP 

IN (NP JJ NN NNS))))) .)) 

Actual parse : (S1 (S (NP DT NN) (ADVP RB) (VP MD (VP VB (NP (NP NN NNS) (PP 

IN (NP JJ NN NNS))))) .)) 

 

PRP_A000000000000000000000000 AUX JJ . 

Desired parse : (S1 (S (NP PRP) (VP AUX (ADJP JJ)) .)) 

Actual parse : (S1 (S (NP PRP) (VP AUX (ADJP JJ)) .)) 

 

NNS_00A00000000000000D0000000 : NN_00CB00D000000000000A00000 CD 

NNS_C0000000000000000A0000000 . 

Desired parse : (S1 (NP (NP NNS) : (NP (NP NN) (NP CD NNS)) .)) 

Actual parse : (S1 (NP (NP NNS) : (NP (NP NN) (NP CD NNS)) .)) 

 

DT JJ NNS_000000A000000000000000000 AUX VBN -NONE- TO VB DT 

NN_B000000C00000D0000000000A . 

Desired parse : (S1 (S (NP DT JJ NNS) (VP AUX (VP VBN (S (NP -NONE-) (VP TO 

(VP VB (NP DT NN)))))) .)) 

Actual parse : (S1 (S (NP DT JJ NNS) (VP AUX (VP VBN (S (NP -NONE-) (VP TO (VP 

VB (NP DT NN)))))) .)) 

 

DT JJ NNS_B000000C0000000000000000A AUX AUX JJ -NONE- IN 

NNP_000000A000000000000000000 NNP_00000000000000A0000000000 POS 

NN_A000000000000000000000000 . 

Desired parse : (S1 (S (NP DT JJ NNS) (VP AUX (VP AUX (VP JJ (NP -NONE-) (PP IN 

(NP (NP NNP NNP POS) NN))))) .)) 

Actual parse : (S1 (S (NP DT JJ NNS) (VP AUX (VP AUX (VP JJ (NP -NONE-) (PP IN 

(NP (NP NNP NNP POS) NN))))) .)) 

 

NN_0000000000A00000000000000 AUX DT NN_B0A000D0000000C0000000000 

NN_0000000000B000A0000000000 . 

Desired parse : (S1 (S (NP NN) (VP AUX (NP DT NN NN)) .)) 

Actual parse : (S1 (S (NP NN) (VP AUX (NP DT NN NN)) .)) 
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JJ NNS_00A000000C000A00000000000 RB VBP CD 

NN_B00000A000000000000000000 IN DT NN_0000000A0000000000000000B . 

Desired parse : (S1 (S (NP JJ NNS) (ADVP RB) (VP VBP (NP (NP CD NN) (PP IN (NP 

DT NN)))) .)) 

Actual parse : (S1 (S (NP JJ NNS) (ADVP RB) (VP VBP (NP (NP CD NN) (PP IN (NP 

DT NN)))) .)) 

 

NNP_000000A000000000000000000 NNP_00000000000000A0000000000 AUX JJ 

NN_A0000B0000000000000000000 NN_00000000000000A0000000000 IN DT 

NNP_0000000000A00000000000000 NNP_0000000000A00000000000000 . 

Desired parse : (S1 (S (NP NNP NNP) (VP AUX (NP (NP JJ NN NN) (PP IN (NP DT 

NNP NNP)))) .)) 

Actual parse : (S1 (S (NP NNP NNP) (VP AUX (NP (NP JJ NN NN) (PP IN (NP DT NNP 

NNP)))) .)) 

 

NNP_000000A000000000000000000 NNP_00000000000000A0000000000 AUX DT 

JJ NN_00000000000000A0000000000 IN DT NNP_0000000000A00000000000000 

NNP_0000000000A00000000000000 NNP_0000000000A00000000000000 . 

Desired parse : (S1 (S (NP NNP NNP) (VP AUX (NP (NP DT JJ NN) (PP IN (NP DT 

NNP NNP NNP)))) .)) 

Actual parse : (S1 (S (NP NNP NNP) (VP AUX (NP (NP DT JJ NN) (PP IN (NP DT NNP 

NNP NNP)))) .)) 

 

PRP_00000000000000A0000000000 VBP DT NN_00B00AC000000000000000000 . 

Desired parse : (S1 (S (NP PRP) (VP VBP (NP DT NN)) .)) 

Actual parse : (S1 (S (NP PRP) (VP VBP (NP DT NN)) .)) 

 

PRP_00000000000000A0000000000 VBZ -NONE- DT JJ 

NN_00000000000000A0000000000 . 

Desired parse : (S1 (S (NP PRP) (VP VBZ (S (NP -NONE-) (NP DT JJ NN))) .)) 

Actual parse : (S1 (S (NP PRP) (VP VBZ (S (NP -NONE-) (NP DT JJ NN))) .)) 

 

`` PRP_00000000000000A0000000000 AUX JJ JJ 

NNS_00000000000000A0000000000 . 

Desired parse : (S1 (S `` (NP PRP) (VP AUX (NP JJ JJ NNS)) .)) 

Actual parse : (S1 (S `` (NP PRP) (VP AUX (NP JJ JJ NNS)) .)) 
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NNS_00000000000C0000000A00D00 IN NNS_00B00DA0000000000000B0000 AUX 

IN NN_A000000000000000000000C00 . 

Desired parse : (S1 (S (NP (NP NNS) (PP IN (NP NNS))) (VP AUX (PP IN (NP NN))) 

.)) 

Actual parse : (S1 (S (NP (NP NNS) (PP IN (NP NNS))) (VP AUX (PP IN (NP NN))) 

.)) 

 

JJ JJ NNS_00000000000000A0000000000 VBP JJ . 

Desired parse : (S1 (S (NP JJ JJ NNS) (VP VBP (ADJP JJ)) .)) 

Actual parse : (S1 (S (NP JJ JJ NNS) (VP VBP (ADJP JJ)) .)) 

 

NNP_000000A000000000000000000 NNP_00000000000000A0000000000 VBZ DT 

JJ NN_000B0A0000000000000000000 . 

Desired parse : (S1 (S (NP NNP NNP) (VP VBZ (NP DT JJ NN)) .)) 

Actual parse : (S1 (S (NP NNP NNP) (VP VBZ (NP DT JJ NN)) .)) 

 

DT JJ NN_B0000000000000A0000000000 AUX JJ . 

Desired parse : (S1 (S (NP DT JJ NN) (VP AUX (ADJP JJ)) .)) 

Actual parse : (S1 (S (NP DT JJ NN) (VP AUX (ADJP JJ)) .)) 

 

DT JJ VBG IN NN_D00B0A0000000000000000000 . 

Desired parse : (S1 (S (NP DT JJ) (VP VBG (PP IN (NP NN))) .)) 

Actual parse : (S1 (S (NP DT JJ) (VP VBG (PP IN (NP NN))) .)) 

 

JJ JJ JJ NN_A0D0000000B00000000000000 NNS_00A0000000000000000000000 

VBD IN JJ NN_00000B00000A0000000000000 . 

Desired parse : (S1 (S (NP JJ JJ JJ NN NNS) (VP VBD (PP IN (NP JJ NN))) .)) 

Actual parse : (S1 (S (NP JJ JJ JJ NN NNS) (VP VBD (PP IN (NP JJ NN))) .)) 

 

NNP_00000000000000A0000000000 NNP_00000000000000A0000000000 

NNP_00000000000000A0000000000 , CD , AUX VBN -NONE- DT JJ 

NN_B00A000000000000000000000 NN_00000000000000A0000000000 , IN 

NNS_A00B000000000000000000B00 IN NN_A0000B0000000000000000000 CC 

NN_00000B0000A00000000000000 NN_000000000000000000A000000 . 

Desired parse : (S1 (S (NP (NP NNP NNP NNP) , (NP CD) ,) (VP AUX (VP VBN (S 

(NP -NONE-) (NP (NP DT JJ NN NN) , (PP IN (NP (NP NNS) (PP IN (NP NN CC NN 

NN)))))))) .)) 
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Actual parse : (S1 (S (NP (NP NNP NNP NNP) , (NP CD) ,) (VP AUX (VP VBN (S (NP 

-NONE-) (NP (NP DT JJ NN NN) , (PP IN (NP (NP NNS) (PP IN (NP NN CC NN 

NN)))))))) .)) 

 

DT NN_A00C000000D00000000000000 AUX JJ . 

Desired parse : (S1 (S (NP DT NN) (VP AUX (ADJP JJ)) .)) 

Actual parse : (S1 (S (NP DT NN) (VP AUX (ADJP JJ)) .)) 

 

DT NN_B00B00A000000000000000000 VBZ NNP_000000000000000000000000A 

CD , CD . 

Desired parse : (S1 (S (NP DT NN) (VP VBZ (NP NNP CD , CD)) .)) 

Actual parse : (S1 (S (NP DT NN) (VP VBZ (NP NNP CD , CD)) .)) 
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Appendix I:  A Sample of Mismatching Parses from 

the WSJ Corpus Test Set (using 

Syntactic Information Only) 
 

DT NN VBD JJ NNS IN NN IN NNP CC NNP , -NONE- VBG IN DT NN IN NN NN IN DT 

JJ NN IN NNP MD AUX JJ TO CD NN , DT JJ NN VBD -NONE- -NONE- . 

Desired parse : (S1 (S (S (NP DT NN) (VP VBD (NP (NP JJ NNS) (PP IN (NP (NP NN) 

(PP IN (NP NNP CC NNP))))) , (S (NP -NONE-) (VP VBG (SBAR IN (S (NP (NP DT 

NN) (PP IN (NP (NP NN NN) (PP IN (NP DT JJ NN)))) (PP IN (NP NNP))) (VP MD (VP 

AUX (ADJP JJ (PP TO (NP CD NN))))))))))) , (NP DT JJ NN) (VP VBD (SBAR -NONE- 

(S -NONE-))) .)) 

Actual parse : (S1 (S (S (NP DT NN) (VP VBD (NP (NP JJ NNS) (PP IN (NP NN))) (PP 

IN (NP NNP CC NNP)))) , (NP -NONE-) (VP VBG (PP IN (NP (NP DT NN) (PP IN (NP 

(NP NN NN) (PP IN (NP (NP DT JJ NN) (PP IN (NP NNP)))))))) (VP MD (VP AUX (NP 

(NP JJ) (PP TO (NP CD NN) ,) (S (NP DT JJ NN) (VP VBD (SBAR -NONE- (S -NONE-

)))))))) .)) 

 

-NONE- VBN -NONE- IN DT NN IN NNP NNP , DT NN IN DT NN WP -NONE- VBD IN 

CD . 

Desired parse : (S1 (S (NP -NONE-) (VP VBN (NP -NONE-) (PP IN (NP (NP DT NN) 

(PP IN (NP (NP NNP NNP) , (NP (NP DT NN) (PP IN (NP DT NN)) (SBAR (WHNP WP) 

(S (NP -NONE-) (VP VBD (PP IN (NP CD))))))))))) .)) 

Actual parse : (S1 (S (NP -NONE-) (VP VBN (NP -NONE-) (PP IN (NP (NP DT NN) 

(PP IN (NP NNP NNP)))) , (NP (NP DT NN) (PP IN (NP (NP DT NN) (SBAR (WHNP 

WP) (S (NP -NONE-) (VP VBD (PP IN (NP CD)))))))) .))) 

 

: NNP NNP . 

Desired parse : (S1 (NP : NNP NNP .)) 

Actual parse : (S1 (SBAR (SBAR (S1 (PRN : (NP NNP NNP)))) .)) 

 

NNP NNP , DT NNP , NNP , NN , VBZ -NONE- NNS AUX JJ IN IN DT CD NN NN VBZ 

TO DT JJ NN NN CC TO JJ VBG NNS . 

Desired parse : (S1 (S (NP (NP NNP NNP) , (NP DT (NAC NNP , NNP ,) NN) ,) (VP 

VBZ (SBAR -NONE- (S (NP NNS) (VP AUX (ADJP JJ) (PP IN (SBAR IN (S (NP DT 

(ADJP CD NN) NN) (VP VBZ (PP (PP TO (NP DT JJ NN NN)) CC (PP TO (NP JJ VBG 

NNS))))))))))) .)) 
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Actual parse : (S1 (S (NP NNP NNP) , (NP (NP DT NNP) , (NP (NP NNP) , NN) ,) (VP 

VBZ (S (NP -NONE- NNS) (VP AUX (S (NP (NP JJ) (PP IN (PP IN (NP DT CD NN 

NN)))) (VP VBZ (VP TO (S (NP (NP DT JJ NN NN) CC (PP TO (NP JJ))) (VP VBG 

NNS)))))))) .)) 

 

DT NNS VBP IN PRP MD VB CD NNS IN NNS VBP DT NN JJR . 

Desired parse : (S1 (S (NP DT NNS) (VP VBP (SBAR IN (S (NP PRP) (VP MD (VP VB 

(NP CD NNS) (SBAR IN (S (NP NNS) (VP VBP (NP DT NN JJR))))))))) .)) 

Actual parse : (S1 (S (NP DT NNS) (VP VBP (SBAR IN (S (NP PRP) (VP MD (VP VB 

(S (NP (NP CD NNS) (PP IN (NP NNS))) (VP VBP (NP DT NN JJR)))))))) .)) 

 

RB , NNP NNP RB AUX AUXG VBN , IN DT NN DT NN CC CD DT NN . 

Desired parse : (S1 (S (ADVP RB) , (NP NNP NNP) (ADVP RB) (VP AUX (VP AUXG 

(VP VBN , (PP IN (NP (NP (NP DT NN) (NP DT NN)) CC (NP (NP CD) (NP DT 

NN))))))) .)) 

Actual parse : (S1 (S (ADVP RB) , (NP NNP NNP) (VP RB (VP AUX (ADVP AUXG) (VP 

VBN , (PP IN (NP DT NN DT) NN) CC (NP CD DT NN)))) .)) 

 

NNP NNP , NN IN NN IN DT JJ NN NN NN , AUX AUX VBG IN NN NNS VBG NN IN DT 

NNP NN . 

Desired parse : (S1 (S (NP (NP NNP NNP) , (NP (NP NN) (PP IN (NP NN)) (PP IN (NP 

DT JJ NN NN NN))) ,) (VP AUX (VP AUX (VP VBG (PP IN (NP (NP NN NNS) (VP VBG 

(NP NN)))) (PP IN (NP DT NNP NN))))) .)) 

Actual parse : (S1 (NP (NP NNP NNP) (SBAR , (S (NP NN) (PP IN (NP NN)) (PP IN 

(NP DT JJ NN NN NN)) , (VP AUX (VP AUX (VP VBG (PP IN (S (NP NN NNS) (VP VBG 

(NP (NP NN) (PP IN (NP DT NNP NN))))))))) .)))) 

 

NNS IN DT CD NNS VBN -NONE- IN NNP POS VBD RB $ CD CD -NONE- TO DT NN 

IN $ CD CD -NONE- IN -NONE- VBG DT JJ NN . 

Desired parse : (S1 (S (NP (NP NNS) (PP IN (NP (NP DT CD NNS) (VP VBN (NP -

NONE-) (PP IN (NP NNP POS)))))) (VP VBD (NP (QP RB $ CD CD) -NONE-) (PP TO 

(NP (NP DT NN) (PP IN (NP (QP $ CD CD) -NONE-)))) (PP IN (S (NP -NONE-) (VP 

VBG (NP DT JJ NN))))) .)) 

Actual parse : (S1 (S (NP (NP NNS) (PP IN (NP DT CD NNS))) (VP VBN (NP (NP -

NONE-) (FRAG IN NNP)) (S POS (VP VBD)) (ADVP RB) (SBAR $ (S (NP (NP (NP -

NONE-) (PP IN (NP -NONE-))) (NP (NP (NP DT NN) (PP TO (NP -NONE-))) (SBAR 

(NP (NP CD) (NP CD) (PP IN)) (S (QP $ CD CD))))) (VP VBG (NP DT JJ NN))))) .)) 
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IN CD NNS , JJ NNS AUX VBN IN RB -NONE- TO VB DT VBG NNS IN NNS IN NN IN 

NNP JJ NNS . 

Desired parse : (S1 (S (PP IN (NP CD NNS)) , (NP JJ NNS) (VP AUX (VP VBN (PP IN 

(NP RB)) (S (NP -NONE-) (VP TO (VP VB (NP (NP DT VBG NNS) (PP IN (NP (NP 

NNS) (PP IN (NP NN)) (PP IN (NP NNP JJ NNS)))))))))) .)) 

Actual parse : (S1 (SBAR (SBAR (S (PP IN (NP CD NNS)) , (S (S (NP JJ NNS) (VP 

AUX (VP VBN (PP IN RB (NP -NONE-))))) (VP TO (VP VB (NP DT (UCP VBG NNS) (PP 

IN (NP (NP NNS) (PP IN (NP (NP NN) (PP IN (NP NNP JJ NNS)))))))))))) .)) 

 

NN NNS NNS RB VBD IN NNP POS NNS IN NNS VBD RB JJ . 

Desired parse : (S1 (S (NP NN NNS NNS) (ADVP RB) (VP VBD (PP IN (NP (NP NNP 

POS) NNS)) (SBAR IN (S (NP NNS) (VP VBD (ADJP RB JJ))))) .)) 

Actual parse : (S1 (S (NP NN NNS NNS) (ADVP RB) (VP VBD (SBAR IN (S (NP (NP 

(NP NNP POS) NNS) (PP IN (NP NNS))) (VP VBD RB (ADJP JJ))))) .)) 

 

RB , NNP MD RB AUX -NONE- TO VB TO DT NNP NNP NNP IN PRP MD VB CC VB JJ 

NNS . 

Desired parse : (S1 (S (ADVP RB) , (NP NNP) (VP MD (ADVP RB) (VP AUX (S (NP -

NONE-) (VP TO (VP VB (PP TO (NP DT NNP NNP NNP)) (SBAR IN (S (NP PRP) (VP 

MD (VP VB CC VB (NP JJ NNS)))))))))) .)) 

Actual parse : (S1 (S (ADVP RB) , (NP NNP) (VP MD (ADVP RB) (VP AUX (S (NP -

NONE-) (VP TO (VP VB (VP TO (S (NP (NP DT NNP NNP NNP) (PP IN (NP PRP))) (VP 

MD VB CC (VP VB (NP JJ NNS)))))))))) .)) 

 

NNS VBP -NONE- NNP NNP MD AUX JJR IN CD NNS RB IN DT NN . 

Desired parse : (S1 (S (NP NNS) (VP VBP (SBAR -NONE- (S (NP NNP NNP) (VP MD 

(VP AUX (ADJP (ADJP JJR) (PP IN (NP (NP CD NNS) (ADVP RB (PP IN (NP DT 

NN))))))))))) .)) 

Actual parse : (S1 (S (NP NNS) (VP VBP (SBAR -NONE- (S (NP NNP NNP) (VP MD 

(VP AUX (NP (NP JJR) (PP IN (NP (NP CD NNS) RB))) (PP IN (NP DT NN))))))) .)) 

 

IN JJ NNS IN NNP NNP , NN NNP NNP NNP IN NNP , NNP CC NNP VBD , `` PRP AUX 

RB VB NNS VBG '' IN DT NN IN NN NN . 

Desired parse : (S1 (S (PP IN (NP (NP JJ NNS) (PP IN (NP NNP NNP)))) , (NP (NP 

NN NNP NNP NNP) (PP IN (NP NNP , NNP CC NNP))) (VP VBD , `` (S (NP PRP) (VP 
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AUX RB (VP VB (S (NP NNS) (VP VBG '' (PP IN (NP (NP DT NN) (PP IN (NP NN 

NN)))))))))) .)) 

Actual parse : (S1 (S (PP IN (NP (NP JJ NNS) (PP IN (NP NNP))) (NP (NP NNP) , (NP 

NN NNP NNP NNP) IN (NP NNP))) , (NP NNP CC NNP) (VP VBD (S (NP , `` PRP) (VP 

AUX (ADVP RB) (VP VB (ADJP NNS VBG '' (PP IN (NP (NP DT NN) (PP IN (NP NN 

NN))))))))) .)) 

 

NNP NNP VBD PRP IN DT JJ NN -NONE- DT NN AUX VBN -NONE- . 

Desired parse : (S1 (S (NP NNP NNP) (VP VBD (NP PRP) (PP IN (NP (NP DT JJ NN) 

(SBAR (WHADVP -NONE-) (S (NP DT NN) (VP AUX (VP VBN (NP -NONE-)))))))) .)) 

Actual parse : (S1 (S (NP NNP NNP) (VP VBD (NP PRP) (PP IN (NP DT JJ NN) (S (NP 

(NP -NONE-) (NP DT NN)) (VP AUX (VP VBN (NP -NONE-)))))) .)) 

 

NNP NNP RB AUX VBN NN IN NNP POS NN NN , WDT -NONE- VBZ RB $ CD CD -

NONE- IN NN CC NN NNS . 

Desired parse : (S1 (S (NP NNP NNP) (ADVP RB) (VP AUX (VP VBN (NP (NP NN) (PP 

IN (NP (NP (NP NNP POS) NN NN) , (SBAR (WHNP WDT) (S (NP -NONE-) (VP VBZ 

(NP (NP (QP RB $ CD CD) -NONE-) (PP IN (NP NN CC NN NNS))))))))))) .)) 

Actual parse : (S1 (S (NP NNP NNP) (ADVP RB) (VP AUX (VP VBN (NP (NP NN) (PP 

IN (NP NNP POS NN NN))) , (SBAR (WHNP WDT) (S (NP -NONE-) (VP VBZ (ADVP 

RB) (QP $ CD CD) -NONE-)) (PP IN (NP NN CC NN NNS))))) .)) 

 

DT JJ NN POS NN -NONE- TO VB NNP NNP IN $ CD CD -NONE- AUX VBN -NONE- IN 

DT NNP NN NN . 

Desired parse : (S1 (S (NP (NP DT JJ NN POS) NN (S (NP -NONE-) (VP TO (VP VB 

(NP NNP NNP) (PP IN (NP (QP $ CD CD) -NONE-)))))) (VP AUX (VP VBN (NP -NONE-

) (PP IN (NP DT NNP NN NN)))) .)) 

Actual parse : (S1 (SBAR (SBAR (S1 (NP (NP -NONE-) NN (S (NP DT JJ NN POS) 

(VP TO (VP VB (S (NP (NP NNP NNP IN) (QP $ CD CD) (NP -NONE-)) (VP AUX (VP 

VBN (NP -NONE-) (PP IN (NP DT NNP NN NN))))))))))) .)) 

 

NNP NNS AUX -NONE- TO VB RB NN , IN NNP NNP NNP NNP NNP IN NNP VBD : `` 

PRP MD AUX RB JJ -NONE- -NONE- TO VB NN . '' 

Desired parse : (S1 (S (NP NNP NNS) (VP AUX (S (NP -NONE-) (VP TO (VP VB (NP 

RB NN)))) , (SBAR IN (S (NP (NP NNP NNP NNP NNP NNP) (PP IN (NP NNP))) (VP 

VBD : `` (S (NP PRP) (VP MD (VP AUX (ADJP RB JJ (SBAR (WHNP -NONE-) (S (NP -

NONE-) (VP TO (VP VB (NP NN))))))))))))) . '')) 
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Actual parse : (S1 (NP NNP NNS (VP AUX (S (NP -NONE-) (VP TO (VP VB (NP RB 

NN) , (SBAR IN (S (NP (NP (NP NNP) (PP IN (NP (NP NNP) (VP VBD : `` PRP)))) 

(NP NNP NNP NNP NNP)) (VP MD (VP AUX RB (NP JJ) (S (NP (NP -NONE-) (NP -

NONE-)) (VP TO (VP VB (NP NN)))) .)))))))) '')) 

 

NNP NNP RB VBD IN DT NN IN DT NNP JJ NN NN , -NONE- VBG CD TO CD . 

Desired parse : (S1 (S (NP NNP NNP) (ADVP RB) (VP VBD (PP IN (NP (NP DT NN) 

(PP IN (NP DT NNP JJ NN NN)))) , (S (NP -NONE-) (VP VBG (NP CD) (PP TO (NP 

CD))))) .)) 

Actual parse : (S1 (S (NP NNP NNP) (ADVP RB) (VP VBD (PP IN (NP DT NN)) (PP IN 

(NP DT NNP JJ NN NN)) , (S (NP -NONE-) (VP VBG (NP CD) (PP TO (NP CD))))) .)) 

 

IN PRP AUX RB RB VBN -NONE- TO VB NNS IN DT NN DT NN , NN PRP VBD CD NNS 

IN JJ NNS . 

Desired parse : (S1 (S (SBAR IN (S (NP PRP) (VP AUX RB (ADVP RB) (VP VBN (S 

(NP -NONE-) (VP TO (VP VB (NP (NP NNS) (PP IN (NP DT NN))) (NP DT NN)))))))) , 

(NP NN) (NP PRP) (VP VBD (NP (NP CD NNS) (PP IN (NP JJ NNS)))) .)) 

Actual parse : (S1 (S (SBAR IN (S (NP PRP) (VP AUX (VP RB (ADVP RB) (VP VBN (S 

(NP -NONE-) (VP TO (VP VB (NP NNS) (PP IN (NP DT NN DT NN)))))))))) , (NP NN 

PRP) (VP VBD (NP CD NNS) (PP IN (NP JJ NNS))) .)) 
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Appendix J:  A Sample of Mismatching Parses from 

the WSJ Corpus Test Set (Using Lexical 

Semantic and Syntactic Information) 
 

RB , NNP_000000A000000000000000000 NNP_00000000000000A0000000000 RB 

AUX AUXG VBN , IN DT NN_C00000A000D0000000000000B DT 

NN_000000BC0000000000000000A CC CD DT NN_000000B00000000000000000A 

. 

Desired parse : (S1 (S (ADVP RB) , (NP NNP NNP) (ADVP RB) (VP AUX (VP AUXG 

(VP VBN , (PP IN (NP (NP (NP DT NN) (NP DT NN)) CC (NP (NP CD) (NP DT 

NN))))))) .)) 

Actual parse : (S1 (S (ADVP RB) , (NP NNP NNP) (ADVP RB) (VP AUX (VP (FRAG 

AUXG) (VP VBN , (PP IN (NP (NP DT NN DT NN CC) (NP CD DT NN)))))) .)) 

 

NNP_00000000000000A0000000000 NNP_00000000000000A0000000000 , 

NN_00000000000000A0000000000 IN NN_0000000000A00000000000000 IN DT 

JJ NN_000000000C000B000C00000A0 NN_00B000000BA00000000000000 

NN_0000000000B000A0000000000 , AUX AUX VBG IN 

NN_000000000C000B000C00000A0 NNS_00B000000BA00000000000000 VBG 

NN_00000000000000000000000A0 IN DT NNP_0000000000A00000000000000 

NN_00A00C00000000D0B00000000 . 

Desired parse : (S1 (S (NP (NP NNP NNP) , (NP (NP NN) (PP IN (NP NN)) (PP IN (NP 

DT JJ NN NN NN))) ,) (VP AUX (VP AUX (VP VBG (PP IN (NP (NP NN NNS) (VP VBG 

(NP NN)))) (PP IN (NP DT NNP NN))))) .)) 

Actual parse : (S1 (S (NP (NP NNP NNP) , (NP (NP NN) (PP IN (NP NN (PP IN (NP 

DT JJ NN NN)) NN))) ,) (VP AUX (VP AUX (VP VBG (SBAR IN (S (NP NN NNS) (VP 

VBG (NP (NP NN) (PP IN (NP DT NNP NN))))))))) .)) 

 

IN CD NNS_000000000000000000000000A , JJ 

NNS_0000000000B00CA00D0000000 AUX VBN IN RB -NONE- TO VB DT VBG 

NNS_00000000000000A0000000000 IN NNS_00000AC000000000000000000 IN 

NN_D00000A0000000000B0000000 IN NNP_00000000000A0000000000000 JJ 

NNS_000000000000000A0B00C0000 . 

Desired parse : (S1 (S (PP IN (NP CD NNS)) , (NP JJ NNS) (VP AUX (VP VBN (PP IN 

(NP RB)) (S (NP -NONE-) (VP TO (VP VB (NP (NP DT VBG NNS) (PP IN (NP (NP 

NNS) (PP IN (NP NN)) (PP IN (NP NNP JJ NNS)))))))))) .)) 
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Actual parse : (S1 (S (NP (PP IN (NP (NP CD NNS) , (NP JJ NNS) (VP AUX)))) (VP 

VBN (PP IN (PRN RB (S (NP -NONE-) (VP TO (VP VB (S (NP DT) (VP VBG (NP (NP 

NNS) (PP IN (NP (NP NNS) (PP IN (NP (NP (NP NN) (PP IN (NP NNP JJ 

NNS)))))))))))))))) .)) 

 

RB , NNP_0000000000A00000000000000 MD RB AUX -NONE- TO VB TO DT 

NNP_0000000000A00000000000000 NNP_0000000000A00000000000000 

NNP_0000000000A00000000000000 IN PRP_0000000000A00000000000000 MD 

VB CC VB JJ NNS_00A000B000000C000000000C0 . 

Desired parse : (S1 (S (ADVP RB) , (NP NNP) (VP MD (ADVP RB) (VP AUX (S (NP -

NONE-) (VP TO (VP VB (PP TO (NP DT NNP NNP NNP)) (SBAR IN (S (NP PRP) (VP 

MD (VP VB CC VB (NP JJ NNS)))))))))) .)) 

Actual parse : (S1 (S (ADVP RB) , (NP NNP) (VP MD (VP (ADVP RB) (VP AUX (S (NP 

-NONE-) (VP TO (VP VB (PP TO (NP (S (NP DT NNP NNP) (NP NNP)) (UCP IN (S (NP 

PRP) (VP MD (VP VB CC (VP VB (NP JJ NNS)))))))))))))) .)) 

 

NNS_00000000000000A0000000000 VBP -NONE- 

NNP_0000000000A00000000000000 NNP_0000000000A00000000000000 MD AUX 

JJR IN CD NNS_000000000000000000000000A RB IN DT 

NN_B000000B000000D00000A0000 . 

Desired parse : (S1 (S (NP NNS) (VP VBP (SBAR -NONE- (S (NP NNP NNP) (VP MD 

(VP AUX (ADJP (ADJP JJR) (PP IN (NP (NP CD NNS) (ADVP RB (PP IN (NP DT 

NN))))))))))) .)) 

Actual parse : (S1 (S (NP NNS) (VP VBP (SBAR (WHNP -NONE-) (S (NP NNP NNP) 

(ADVP MD) (VP AUX (PRN JJR (PP IN (NP CD NNS))) (INTJ (UCP RB) (PP IN (NP DT 

NN))))))) .)) 

 

IN JJ NNS_00000AB000000000000000000 IN NNP_00000000000A0000000000000 

NNP_00000000000A0000000000000 , NN_00000000000000A0000000000 

NNP_00000000000000A0000000000 NNP_00000000000000A0000000000 

NNP_00000000000000A0000000000 IN NNP_0000000000A00000000000000 , 

NNP_0000000000A00000000000000 CC NNP_0000000000A00000000000000 VBD 

, `` PRP_00000000000000A0000000000 AUX RB VB 

NNS_00000000000000000A0000000 VBG '' IN DT 

NN_000000BC0000000A000000000 IN NN_000000000000A0000B0000000 

NN_00000BA00000000000C000C00 . 



Appendix J – A Sample of Mismatching Parses from the WSJ Corpus Test Set (Using Lexical 

Semantic and Syntactic Information) 

 

 

  273 

Desired parse : (S1 (S (PP IN (NP (NP JJ NNS) (PP IN (NP NNP NNP)))) , (NP (NP 

NN NNP NNP NNP) (PP IN (NP NNP , NNP CC NNP))) (VP VBD , `` (S (NP PRP) (VP 

AUX RB (VP VB (S (NP NNS) (VP VBG '' (PP IN (NP (NP DT NN) (PP IN (NP NN 

NN)))))))))) .)) 

Actual parse : (S1 (SBAR (NP IN (PRN JJ (NP NNS) IN (NP (NP NNP NNP) , (NP NN 

(NP NNP NNP (NP NNP IN (NP NNP)))))) , (NP NNP) CC (S (NP NNP) (VP VBD , `` 

(S (NP PRP) (VP AUX (VP (ADVP RB) (VP VB (S (NP NNS) (VP VBG '' (PP IN (NP (NP 

DT NN) (PP IN (NP NN NN)))))))))))) .))) 

 

NNP_00000000000000A0000000000 NNP_00000000000000A0000000000 VBD 

PRP_00000000000000000A0000000 IN DT JJ NN_0000000000D0000000000000A -

NONE- DT NN_00C00000000000000A0000000 AUX VBN -NONE- . 

Desired parse : (S1 (S (NP NNP NNP) (VP VBD (NP PRP) (PP IN (NP (NP DT JJ NN) 

(SBAR (WHADVP -NONE-) (S (NP DT NN) (VP AUX (VP VBN (NP -NONE-)))))))) .)) 

Actual parse : (S1 (S (NP NNP NNP) (VP VBD (SBAR (WHNP (NP PRP) (PP IN (NP 

(ADJP DT JJ) NN) (WHADVP -NONE-))) (S (NP DT NN) (VP AUX (VP VBN (NP -

NONE-)))))) .)) 

 

NNP_0000000000A00000000000000 NNP_0000000000A00000000000000 RB AUX 

VBN NN_000B0A00000000000D0000000 IN NNP_0000000000A00000000000000 

POS NN_0000000000A00000000000000 NN_00000D0000C00000000AB0000 , 

WDT -NONE- VBZ RB $ CD CD -NONE- IN NN_000B0B0000D000000A0000000 CC 

NN_B000000000000000000000A00 NNS_000B0000000000000A0000000 . 

Desired parse : (S1 (S (NP NNP NNP) (ADVP RB) (VP AUX (VP VBN (NP (NP NN) (PP 

IN (NP (NP (NP NNP POS) NN NN) , (SBAR (WHNP WDT) (S (NP -NONE-) (VP VBZ 

(NP (NP (QP RB $ CD CD) -NONE-) (PP IN (NP NN CC NN NNS))))))))))) .)) 

Actual parse : (S1 (S (NP NNP NNP) (ADVP RB) (VP AUX (VP VBN NN (PP IN (NP 

(NP (NP NNP POS NN) NN) , (SBAR (WHNP WDT) (S (NP -NONE-) (VP VBZ (PRN RB 

(S (QP $ CD CD) -NONE- (PP IN (NP (NP NN) CC (NP NN NNS)))))))))))) .)) 

 

DT JJ NN_00000A00B0C00000000000000 POS NN_000000A000000000000000000 

-NONE- TO VB NNP_0000000000A00000000000000 

NNP_0000000000A00000000000000 IN $ CD CD -NONE- AUX VBN -NONE- IN DT 

NNP_00000000000A0000000000000 NN_A000000000000000000000000 

NN_0000000000A00000000000C00 . 
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Desired parse : (S1 (S (NP (NP DT JJ NN POS) NN (S (NP -NONE-) (VP TO (VP VB 

(NP NNP NNP) (PP IN (NP (QP $ CD CD) -NONE-)))))) (VP AUX (VP VBN (NP -NONE-

) (PP IN (NP DT NNP NN NN)))) .)) 

Actual parse : (S1 (SBAR (NP (NP DT JJ NN POS) NN) (S -NONE- (VP TO (VP VB 

(NP NNP NNP)))) (PRN IN (SBAR (NP -NONE-) (S (NP (NP $) (NP CD CD)) (VP AUX 

(VP VBN (S (NP -NONE-) (PP IN (NP DT NNP NN NN)))))))) .)) 

 

NNP_0000000000A00000000000000 NNP_000000A000000000000000000 RB VBD 

IN DT NN_000B0A00000000000D0000000 IN DT 

NNP_00000000000A0000000000000 JJ NN_00A000B000000000000000000 

NN_0000000000A00000000000C00 , -NONE- VBG CD TO CD . 

Desired parse : (S1 (S (NP NNP NNP) (ADVP RB) (VP VBD (PP IN (NP (NP DT NN) 

(PP IN (NP DT NNP JJ NN NN)))) , (S (NP -NONE-) (VP VBG (NP CD) (PP TO (NP 

CD))))) .)) 

Actual parse : (S1 (S (NP NNP NNP) (ADVP RB) (VP VBD (PP IN (NP (NP DT NN) (PP 

IN (ADJP DT NNP JJ NN) NN))) , (S (NP -NONE-) (VP (VP VBG (NP CD)) (PP TO 

CD)))) .)) 

 

NNP_000000A000000000000000000 : JJ NNS_B00000A00000000000000000C . 

Desired parse : (S1 (NP (NP NNP) : (NP JJ NNS) .)) 

Actual parse : (S1 (NP NNP : (S1 (NP JJ NNS) .))) 

 

PRP$ JJ NN_B0A0C000000000C0000000000 . 

Desired parse : (S1 (FRAG (NP PRP$ JJ NN) .)) 

Actual parse : (S1 (SBAR (NP (NP PRP$ JJ NN) .))) 

 

DT NN_00000000000000A0000000000 VBD -NONE- DT 

NNP_0000000000A00000000000000 NNS_C00D00A000000000000000000 IN 

NN_00000000000000000A0000000 CC NN_A00B000000000000000000000 CC JJ 

NNS_A00B0000000000000B0000000 . 

Desired parse : (S1 (S (NP DT NN) (VP VBD (SBAR -NONE- (S (NP DT NNP) (VP 

NNS (PP IN (NP (NP NN CC NN) CC (NP JJ NNS))))))) .)) 

Actual parse : (S1 (S (NP DT NN) (VP VBD (NP -NONE- (NP DT NNP NNS)) (PP IN 

(NP NN (NP CC NN) (NP CC JJ NNS)))) .)) 

 

IN CD , NNP_00000000000000A0000000000 RB VBD -NONE- RB AUXG VBD -

NONE- DT NN_A000000000000000000000B00 AUX JJ . 
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Desired parse : (S1 (S (PP IN (NP CD)) , (NP NNP) (ADVP RB) (VP VBD (S (NP -

NONE-) (VP (ADVP RB) AUXG (VP VBD (SBAR -NONE- (S (NP DT NN) (VP AUX 

(ADJP JJ)))))))) .)) 

Actual parse : (S1 (S IN (NP CD , NNP) (ADVP RB) (VP VBD (SBAR -NONE- (SBAR 

(ADVP RB) (S (ADVP AUXG) (VP VBD (SBAR -NONE- (S (NP DT NN) (VP AUX (ADJP 

JJ))))))))) .)) 

 

NNP_0000000000A00000000000000 NNP_0000000000A00000000000000 

NNP_0000000000A00000000000000 : $ CD CD -NONE- IN CD CD 

NN_00000000000000000000A0000 NN_0000000AC0000000000000000 

NN_0000000000C000000A0000000 NNS_000000A0000000000A0000000 JJ 

NNP_000000000000000000000000A CD , CD , VBN -NONE- IN CD TO VB CD 

NN_00000000000000000000A0000 . 

Desired parse : (S1 (NP (NP NNP NNP NNP) : (NP (NP (QP $ CD CD) -NONE-) (PP 

IN (NP (NP (QP CD CD) NN NN NN NNS) (ADJP JJ (NP NNP CD , CD)) , (VP VBN (NP 

-NONE-) (PP IN (NP CD)) (S (VP TO (VP VB (NP CD NN)))))))) .)) 

Actual parse : (S1 (S (NP (UCP NNP (NP NNP NNP) : (SBAR (QP $ CD CD) (S -

NONE-))) (PRN IN (INTJ (UCP CD , (NP (NP CD) , VBN (NP -NONE-)) (SBAR IN (S 

(NP CD) (VP TO (VP VB (NP (ADJP CD) NN)))))) (NP (NP JJ NNP) (UCP (QP CD CD 

NN) (NP NN NN NNS)))))) .)) 

 

JJ NNS_00000B0000A00000000000000 VBN -NONE- 

Desired parse : (S1 (NP (NP JJ NNS) (VP VBN (NP -NONE-)))) 

Actual parse : (S1 (NP JJ NNS VBN) -NONE-) 

 

NNS_00000000000000A0000000000 VBD IN DT JJ 

NN_A00000000000000000B000000 IN NN_000B0A00000000000D0000000 

NNS_000D0000000000000A000000B RB AUX JJ , 

NNP_000000A000000000000000000 NNP_00000000000000A0000000000 VBD -

NONE- -NONE- . 

Desired parse : (S1 (S (S (NP NNS) (VP VBD (SBAR IN (S (NP (NP DT JJ NN) (PP IN 

(NP NN NNS))) (ADVP RB) (VP AUX (ADJP JJ)))))) , (NP NNP NNP) (VP VBD (SBAR -

NONE- (S -NONE-))) .)) 

Actual parse : (S1 (S (NP NNS) (VP VBD (SBAR IN (S (NP (NP DT JJ NN) (PP IN (NP 

NN NNS))) (ADVP RB) (VP AUX (S (NP (NP (ADJP JJ)) , (NP NNP NNP)) (VP VBD 

(SBAR -NONE- (S -NONE-)))))))) .)) 
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DT NN_000000A0000000000000A0000 VBD CD TO CD . 

Desired parse : (S1 (S (NP DT NN) (VP VBD (NP CD) (PP TO (NP CD))) .)) 

Actual parse : (S1 (S (NP DT NN) (VP VBD (NP CD) (PP TO)) (S (NP CD) .))) 

 

IN DT JJ NN_000D000000000000000000A0B NNP_0000000000A00000000000000 

MD VB PRP$ NNS_00000000000000A0000000000 

NNS_D00A0000000C00000B0000000 -NONE- TO VB 

NNP_0000000000A00000000000000 JJ NNS_C0000000000000000A0000000 . 

Desired parse : (S1 (S (PP IN (NP DT JJ NN)) (NP NNP) (VP MD (VP VB (NP PRP$ 

NNS) (NP NNS) (S (NP -NONE-) (VP TO (VP VB (NP NNP JJ NNS)))))) .)) 

Actual parse : (S1 (SBAR (S1 (S (PP IN (NP DT JJ NN NNP (ADVP MD) (VP VB (S1 

(NP PRP$ NNS NNS) (S (NP -NONE-) (VP TO (VP VB (NP NNP JJ NNS)))))))))) .)) 

 

NNP_0000000000A00000000000000 NNP_0000000000A00000000000000 POS 

NN_00000000000000A0000000000 VBD IN CD JJ JJ 

NNS_00000000000000A0000000000 , VBG NNS_0000C00000B000A00000C0000 

IN DT VBN NNP_0000000000A00000000000000 

NNP_0000000000A00000000000000 NNP_0000000000A00000000000000 , MD 

AUX VBN -NONE- RB . 

Desired parse : (S1 (S (NP (NP NNP NNP POS) NN) (VP VBD (SBAR IN (S (NP (NP 

CD JJ JJ NNS) , (PP VBG (NP (NP NNS) (PP IN (NP DT VBN NNP NNP NNP)))) ,) (VP 

MD (VP AUX (VP VBN (NP -NONE-) (ADVP RB))))))) .)) 

Actual parse : (S1 (S (S (NP (NP NNP NNP POS) NN) (VP VBD (PP IN (NP CD JJ JJ 

NNS)) , (VP VBG (NP NNS) (SBAR IN (S (NP DT) (VP VBN (NP NNP NNP NNP))))))) , 

(VP MD (VP AUX (VP VBN (S (NP -NONE-) (ADVP RB))))) .)) 

 

CC PRP_0000000000A00000000000000 MD VB RP -NONE- VBG RBR , CC VBG DT 

NN_0000000000DB0000000A00C00 JJR . 

Desired parse : (S1 (S CC (NP PRP) (VP MD (VP VB (PRT RP) (S (NP -NONE-) (VP 

(VP VBG (ADVP RBR)) , CC (VP VBG (NP DT NN JJR)))))) .)) 

Actual parse : (S1 CC (S (NP PRP) (VP MD (VP VB (PRT RP (S (NP -NONE-) (VP VBG 

(PP RBR (S (NP ,) CC (NP VBG DT NN JJR))))))))) .)
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