1,218 research outputs found

    Research on conceptual modeling: Themes, topics, and introduction to the special issue

    Get PDF
    Conceptual modeling continues to evolve as researchers and practitioners reflect on the challenges of modeling and implementing data-intensive problems that appear in business and in science. These challenges of data modeling and representation are well-recognized in contemporary applications of big data, ontologies, and semantics, along with traditional efforts associated with methodologies, tools, and theory development. This introduction contains a review of some current research in conceptual modeling and identifies emerging themes. It also introduces the articles that comprise this special issue of papers from the 32nd International Conference on Conceptual Modeling (ER 2013).This article was supported, in part, by the J. Mack Robinson College of Business at the Georgia State University, the Marriott School of Management at Brigham Young University (EB-201313), and by the GEODAS-BI (TIN2012-37493-C03-03) project from the Spanish Ministry of Education and Competitivity

    Engage D2.2 Final Communication and Dissemination Report

    Get PDF
    This deliverable reports on the communication and dissemination activities carried out by the Engage consortium over the duration of the network. Planned activities have been adapted due to the Covid-19 pandemic, however a full programme of workshops and summer schools has been organised. Support has been given to the annual SESAR Innovation Days conference and there has been an Engage presence at many other events. The Engage website launched in the first month of the network. This was later joined by the Engage ‘knowledge hub’, known as the EngageWiki, which hosts ATM research and knowledge. The wiki provides a platform and consolidated repository with novel user functionality, as well as an additional channel for the dissemination of SESAR results. Engage has also supported and publicised numerous research outputs produced by PhD candidates and catalyst fund projects

    RDF graph summarization: principles, techniques and applications (tutorial)

    Get PDF
    International audienceThe explosion in the amount of the RDF on the Web has lead to the need to explore, query and understand such data sources. The task is challenging due to the complex and heterogeneous structure of RDF graphs which, unlike relational databases, do not come with a structure-dictating schema. Summarization has been applied to RDF data to facilitate these tasks. Its purpose is to extract concise and meaningful information from RDF knowledge bases, representing their content as faithfully as possible. There is no single concept of RDF summary, and not a single but many approaches to build such summaries; the summarization goal, and the main computational tools employed for summarizing graphs, are the main factors behind this diversity. This tutorial presents a structured analysis and comparison existing works in the area of RDF summarization; it is based upon a recent survey which we co-authored with colleagues [3]. We present the concepts at the core of each approach, outline their main technical aspects and implementation. We conclude by identifying the most pertinent summarization method for different usage scenarios, and discussing areas where future effort is needed

    The notion of specialization in the i*framework

    Get PDF
    This thesis provides a formal proposal for the specialization relationship in the i* framework that allows its use in a well-defined manner. I root my proposal over existing works in different areas that are interested in representing knowledge: knowledge representation from Artificial Intelligence and conceptual modeling and object-oriented programming languages from Software Development. Also, I use the results of a survey conducted in the i* community that provides some insights about what i* modelers expect from specialization. As a consequence of this twofold analysis, I identify three specialization operations: extension, refinement and redefinition. For each of them, I: - motivate its need and provide some rationale; - distinguish the several cases that can occur in each operation; - define the elements involved in each of these cases and the correctness conditions that must be fulfilled; - demonstrate by induction the fulfilment of the conditions identified for preserving satisfaction; - provide some illustrative examples in the context of an exemplar about travel agencies and travelers. The specialization relationship is offered by the i* framework through the is-a construct defined over actors (a subactor is-a superactor) since it was first released. Although the overall meaning of this construct is highly intuitive, its effects at the level of intentional elements and dependencies are not always clear, hampering seriously its appropriate use. In order to be able to reason about correctness and satisfaction, I define previously the conditions that must be preserved when a specialization takes place. In addition, I provide a methodology with well-defined steps that contextualize the formal aspects of this thesis in a development process. As a conclusion, this thesis is making possible the use of the specialization relationship in i* in a precise, non-ambiguous manner

    Supporting strategic decisions in fiber-to-the-home deployments: techno-economic modeling in a multi-actor setting

    Get PDF
    corecore