3,685 research outputs found

    Optimization in computational systems biology

    Get PDF
    Optimization aims to make a system or design as effective or functional as possible. Mathematical optimization methods are widely used in engineering, economics and science. This commentary is focused on applications of mathematical optimization in computational systems biology. Examples are given where optimization methods are used for topics ranging from model building and optimal experimental design to metabolic engineering and synthetic biology. Finally, several perspectives for future research are outlined

    Optimization Algorithms for Computational Systems Biology

    Get PDF
    Computational systems biology aims at integrating biology and computational methods to gain a better understating of biological phenomena. It often requires the assistance of global optimization to adequately tune its tools. This review presents three powerful methodologies for global optimization that fit the requirements of most of the computational systems biology applications, such as model tuning and biomarker identification. We include the multi-start approach for least squares methods, mostly applied for fitting experimental data. We illustrate Markov Chain Monte Carlo methods, which are stochastic techniques here applied for fitting experimental data when a model involves stochastic equations or simulations. Finally, we present Genetic Algorithms, heuristic nature-inspired methods that are applied in a broad range of optimization applications, including the ones in systems biology

    Qualitative modeling in computational systems biology

    Get PDF
    The human body is composed of a large collection of cells,\the building blocks of life". In each cell, complex networks of biochemical processes contribute in maintaining a healthy organism. Alterations in these biochemical processes can result in diseases. It is therefore of vital importance to know how these biochemical networks function. Simple reasoning is not su±cient to comprehend life's complexity. Mathematical models have to be used to integrate information from various sources for solving numerous biomedical research questions, the so-called systems biology approach, in which quantitative data are scarce and qualitative information is abundant. Traditional mathematical models require quantitative information. The lack in ac- curate and su±cient quantitative data has driven systems biologists towards alternative ways to describe and analyze biochemical networks. Their focus is primarily on the anal- ysis of a few very speci¯c biochemical networks for which accurate experimental data are available. However, quantitative information is not a strict requirement. The mutual interaction and relative contribution of the components determine the global system dy- namics; qualitative information is su±cient to analyze and predict the potential system behavior. In addition, mathematical models of biochemical networks contain nonlinear functions that describe the various physiological processes. System analysis and parame- ter estimation of nonlinear models is di±cult in practice, especially if little quantitative information is available. The main contribution of this thesis is to apply qualitative information to model and analyze nonlinear biochemical networks. Nonlinear functions are approximated with two or three linear functions, i.e., piecewise-a±ne (PWA) functions, which enables qualitative analysis of the system. This work shows that qualitative information is su±cient for the analysis of complex nonlinear biochemical networks. Moreover, this extra information can be used to put relative bounds on the parameter values which signi¯cantly improves the parameter estimation compared to standard nonlinear estimation algorithms. Also a PWA parameter estimation procedure is presented, which results in more accurate parameter estimates than conventional parameter estimation procedures. Besides qualitative analysis with PWA functions, graphical analysis of a speci¯c class of systems is improved for a certain less general class of systems to yield constraints on the parameters. As the applicability of graphical analysis is limited to a small class of systems, graphical analysis is less suitable for general use, as opposed to the qualitative analysis of PWA systems. The technological contribution of this thesis is tested on several biochemical networks that are involved in vascular aging. Vascular aging is the accumulation of changes respon- sible for the sequential alterations that accompany advancing age of the vascular system and the associated increase in the chance of vascular diseases. Three biochemical networks are selected from experimental data, i.e., remodeling of the extracellular matrix (ECM), the signal transduction pathway of Transforming Growth Factor-¯1 (TGF-¯1) and the unfolded protein response (UPR). The TGF-¯1 model is constructed by means of an extensive literature search and con- sists of many state equations. Model reduction (the quasi-steady-state approximation) reduces the model to a version with only two states, such that the procedure can be visual- ized. The nonlinearities in this reduced model are approximated with PWA functions and subsequently analyzed. Typical results show that oscillatory behavior can occur in the TGF-¯1 model for speci¯c sets of parameter values. These results meet the expectations of preliminary experimental results. Finally, a model of the UPR has been formulated and analyzed similarly. The qualitative analysis yields constraints on the parameter values. Model simulations with these parameter constraints agree with experimental results

    Reconstruction of biological networks by supervised machine learning approaches

    Full text link
    We review a recent trend in computational systems biology which aims at using pattern recognition algorithms to infer the structure of large-scale biological networks from heterogeneous genomic data. We present several strategies that have been proposed and that lead to different pattern recognition problems and algorithms. The strenght of these approaches is illustrated on the reconstruction of metabolic, protein-protein and regulatory networks of model organisms. In all cases, state-of-the-art performance is reported

    Spatio-temporal Dynamics of the Wnt/beta-catenin Signaling Pathway: A Computational Systems Biology Approach

    Get PDF
    The Wnt/β-catenin signaling pathway is involved in human neural progenitor cell differentiation. This dissertation employs the cyclic workflow of computational systems biology to investigate the pathway spatio-temporal dynamics during differentiation. Quantitative in vitro analyses show biphasic kinetics of the pathway proteins. A computational model is developed to investigate in silico these kinetics in correlation with cell cycle and self-induced signaling. We show the importance of stochastic approach and suggest further experiments, hence closing the computational systems biology loop

    Computational systems biology: integration of sequence, structure, network, and dynamics

    Get PDF
    A report of the 4nd International Conference on Computational Systems Biology, 9-11 September 2010, Suzhou, China

    Aging and computational systems biology

    Get PDF
    This is the peer reviewed version of the following article: Mooney, K. M., Morgan, A. E., & Mc Auley, M. T. (2016). Aging and computational systems biology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 8(2), 123-139, which has been published in final form at doi10.1002/wsbm.1328. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-ArchivingAging research is undergoing a paradigm shift, which has led to new and innovative methods of exploring this complex phenomenon. The systems biology approach endeavors to understand biological systems in a holistic manner, by taking account of intrinsic interactions, while also attempting to account for the impact of external inputs, such as diet. A key technique employed in systems biology is computational modeling, which involves mathematically describing and simulating the dynamics of biological systems. Although a large number of computational models have been developed in recent years, these models have focused on various discrete components of the aging process, and to date no model has succeeded in completely representing the full scope of aging. Combining existing models or developing new models may help to address this need and in so doing could help achieve an improved understanding of the intrinsic mechanisms which underpin aging

    Gene-network inference by message passing

    Full text link
    The inference of gene-regulatory processes from gene-expression data belongs to the major challenges of computational systems biology. Here we address the problem from a statistical-physics perspective and develop a message-passing algorithm which is able to infer sparse, directed and combinatorial regulatory mechanisms. Using the replica technique, the algorithmic performance can be characterized analytically for artificially generated data. The algorithm is applied to genome-wide expression data of baker's yeast under various environmental conditions. We find clear cases of combinatorial control, and enrichment in common functional annotations of regulated genes and their regulators.Comment: Proc. of International Workshop on Statistical-Mechanical Informatics 2007, Kyot
    • …
    corecore