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Abstract 14 

Aging research is undergoing a paradigm shift, which has led to new and innovative methods of 15 

exploring this complex phenomenon. The systems biology approach, endeavours to understand 16 

biological systems in a holistic manner, by taking account of intrinsic interactions, whilst also 17 

attempting to account for the impact of external inputs, such as diet. A key technique employed in 18 
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systems biology, is computational modeling, which involves mathematically describing and 19 

simulating the dynamics of biological systems. Although a large number of computational models 20 

have been developed in recent years, these models have focused on various discrete components of 21 

the aging process, and to date no model has succeeded in completely representing the full scope of 22 

aging. Combining existing models or developing new models may help to address this need and in so 23 

doing could help achieve an improved understanding of the intrinsic mechanisms which underpin 24 

aging.   25 

 26 

INTRODUCTION- AGING AND THE NEED FOR COMPUTATIONAL SYSTEMS BIOLOGY  27 

The world’s population is aging. Globally, the number of older people (aged 60 years or over) is 28 

expected to more than double, from 841 million people in 2013 to more than 2 billion in 20501. 29 

Those aged 80 years and over, the fastest growing group of older people, make up approximately 30 

14% of the global population, and it is projected by 2050 there will be more than three times the 31 

present number of this age group. To help put this demographic shift into perspective, it is worth 32 

noting, that the number of older people in the world’s population will exceed the number of 33 

younger people by 20471. An aging population poses many challenges for all sectors of society. 34 

Particularly as advancing age is associated with an increased risk of developing many disease states, 35 

such as cancer2, cardiovascular disease (CVD)3, Alzheimer’s disease (AD)4 and Parkinson’s disease5. 36 

Thus, there is a growing imperative to better understand the aging process and health-span. 37 

However, to date, there is no overall consensus as to what constitutes healthy-span6 or what the key 38 

mechanisms are that underpin human aging. This is partly due to the inherent complexity of aging, 39 

which effects every component of a living system, from the disruption of DNA integrity to the 40 

dysregulation of whole-body homeostatic mechanisms (Figure 1)7. Thus, aging is especially 41 

challenging to investigate. Consequently there are many approaches to study the complexities of 42 

this phenomenon, from studying single genes in isolation, to using simple organisms such as yeast, 43 

or employing epidemiological studies. Over the last decade and half, aging research has become 44 

increasingly affected by the systems biology paradigm, which eschews reductionism and treats the 45 

organism as a whole8, 9. By placing aging research firmly within a systems biology framework a 46 

means of dealing with its intrinsic complexity is provided. A key element of this approach is the 47 

juxtapositioning of computational modelling with experimental investigations10-12. These models 48 

both compliment and inform the experimental work by facilitating hypothesis testing, generating 49 

new insights, deepening biological understanding, making predictions, tracing chains of causation, 50 

integrating knowledge, and inspiring new experimental approaches13-15. Computational models 51 

developed to date to understand the aging process, have in the main represented several discrete 52 

mechanisms that are associated with aging. Examples include models of mitochondrial 53 

dysregulation16, telomere attrition17 and the disruption of protein turnover18. Despite this, there are 54 

relatively few examples whereby aging has been represented using a computational model in a 55 

holistic fashion. In this paper we will 1) use oxidative stress as a framework to discuss the 56 

interconnectivity of aging 2) briefly outline the two main theoretical approaches used to assemble 57 

computational models in systems biology 3) discuss recent models that have been used to represent 58 

various aspects of aging 4) suggest how these models could be further developed in the future to 59 

lead to a more holistic representation of aging. 60 



 61 

THE QUEST FOR A COMMON THREAD 62 

Many theories have been proposed to explain the aging process. From an evolutionary standpoint 63 

aging is generally regarded as a non-adaptive process which is a by-product of evolution (for a 64 

review of the main evolutionary theories see Gavrilov and Gavrilova (2002)19). If we assume that 65 

aging is a by-product of evolution, the question remains, how does this process unfold? Moreover, is 66 

there a common thread that regulates aging in all organisms? It is generally accepted that aging is 67 

not underpinned by one biological mechanism, rather it is the result of the interaction between an 68 

array of processes that act over a diverse range of spatial and temporal scales.  As a result of this 69 

consensus, it has been recognized that in order to gain a more complete understanding of the 70 

mechanics of aging, integration of multiple biological pathways need to be considered. However, 71 

despite this complexity, the free radical theory of aging is arguably the closest gerontology has come 72 

to a framework, which connects together the disparate aspects of the aging process. The free radical 73 

theory of aging proposes that damage to biological macromolecules by reactive oxygen species 74 

(ROS) accounts for aging20. Due to the role of the mitochondrial electron transport chain (ETC) in 75 

cellular respiration, mitochondria are central to this theory and are regarded as the main producers 76 

of ROS21. Together with other cellular organelles and macromolecules, mitochondria are vulnerable 77 

to the destructive capabilities of ROS. During aging mitochondrial DNA (mtDNA) accumulate 78 

deletions across a variety of somatic cell types22, 23. These deletions contribute to the overall decline 79 

in mitochondrial dysfunction24. Specifically, age-related mitochondrial changes include fusion and 80 

fission dysregulation25, impaired proteostasis26, diminished mitophagy27 and diminished ATP 81 

production28. This damage to mitochondria affects their integrity, exacerbating ROS emissions and 82 

driving the aging process. This assertion is backed up by experimental evidence, which has shown 83 

that mitochondrial emission rates of O2-. and H2O2 increase continuously with age at species-specific 84 

rates 29. In this paper we will use ROS as a conduit to emphasise the interconnected nature of the 85 

aging process and we will stress that no single factor is responsible for the aging process but rather a 86 

multitude of overlapping mechanisms. Moreover, it is imperative at this point, to emphasise that 87 

low levels of ROS have also been suggested to  improve host resistance to oxidative damage in a 88 

process termed mitohormesis30. Thus, although it is generally regarded that ROS cause cellular 89 

damage, their role within the aging process maybe much broader.    90 

 91 

 92 

 93 

 94 

 95 

Telomeres Attrition, Cellular Senescence and Oxidative Stress 96 

The free radical theory of aging converges with a multitude of other cellular processes, which have 97 

been implicated with aging, including the maintenance of telomere integrity31. Telomeres are 98 



repetitive TTAGGG sequences at the ends of chromosomes. Telomeres operate like a protective cap 99 

while telomerase, the enzyme responsible for maintaining telomere length, is largely absent from 100 

human somatic cells32. Consequently, each time a somatic cell divides, some of the telomere is lost. 101 

Hence, in humans, telomeres are shorter in older individuals. This was initially confirmed 102 

experimentally by the seminal work of Harley et al. (1990), who showed that both the quantity and 103 

length of telomeric DNA in human fibroblasts decrease during aging in vitro33. Moreover, the 104 

relationship between telomeres and cellular senescence was further cemented when telomerase-105 

negative normal human cells were transfected with the telomerase catalytic subunit34. As a result, 106 

these cells had elongated telomeres, divided vigorously and displayed reduced senescence, when 107 

compared to telomerase-negative control clones, which exhibited telomere shortening and 108 

senescence34. More recently, investigations using telomerase knock-out rodents and human studies 109 

with telomere maintenance disorders have shown that a reduction in telomere length is associated 110 

with functional decline in a wide variety of tissues35. This brings us to oxidative stress and telomere 111 

shorting; experimental studies have determined that telomerase is not the sole factor governing the 112 

rate of loss of telomeric DNA. It has been shown that mild oxidative stress, as demonstrated by the 113 

culturing of human fibroblasts under 40% oxygen partial pressure, resulted in an increase telomere 114 

shortening from 90 base pairs(bp) per population doubling under normoxia, to more than 500 bp 115 

per population doubling under hyperoxia36. Thus, further embedding the free radical theory and 116 

oxidative stress as the epicentre of the aging process.   117 

 118 

Caloric Restriction and Oxidative Stress  119 

Oxidative stress is one possible mechanism which might explain the effect of caloric restriction (CR) 120 

on longevity. However, it is important to again stress at this point that oxidative damage is likely to 121 

be one key mechanism among many deleterious processes that underlie aging37. For instance, it is 122 

suggested that the beneficial effects of CR are mediated via a reduction in the production of ROS36. 123 

CR is a dietary regime that involves reducing nutrient intake without inducing malnutrition (usually a 124 

20–40% reduction in calorie intake)38. CR has been demonstrated to extend lifespan in a diverse 125 

range of organisms39-41; although its effect on humans is yet to be fully established. What has been 126 

established is that CR positively effects mitochondrial function in a number of ways. Most notably, 127 

CR has been shown to reduce the emission of ROS. For example, CR dampens the release of ROS 128 

from complex I of mitochondria in cardiac tissue of rats42. Furthermore, it has also been found that 129 

CR lessens the accumulation of oxidative damage. This damage characterises aging, in many tissue 130 

types across a diverse array of species43.  131 

 132 

 133 

 134 

 135 

Sirtuins and Caloric Restriction 136 



Metabolically, the effects of CR on the mitochondria could be modulated by several important 137 

biochemical pathways which have been implicated with increased longevity. For instance, in yeast 138 

mother cells the NAD+ dependent class III of histone deacetylase enzymes (sirtuins) have been 139 

suggested to mediate the life-extending effects of CR44. In particular sirtuin 2 (Sir2) is implicated in 140 

the response to CR in yeast models45. Homologues of Sir2 have been shown to mediate some of the 141 

effects of CR in other organisms. For instance, it has been reported that an increase in Drosophila 142 

Sir2 extends life span, whereas a decrease in Sir2 blocks the life-span-extending effect of CR46, while 143 

similar findings have been reported in Caenorhabditis elegans47. Mammals possess 7 homologues of 144 

the Sir2 protein, which have been implicated in the regulation of a number of processes, from cell 145 

growth and apoptosis, to mitochondrial metabolism48. SIRT1, is the homologue of Sir2, a gene whose 146 

activity has also been shown to be modulated by CR49. For instance, it has been shown that 147 

expression of mammalian Sir2 (SIRT1) is induced in CR rats as well as in human cells that are treated 148 

with serum from these animals50. In certain cells this response could be induced by nitric oxide 149 

synthase (eNOS), which can activate the SIRT1 promoter51. This view is tentatively supported by 150 

recent findings from Shinmura et al. (2015), who showed that eNOS knock-out mice exhibited 151 

elevated blood pressure and left ventricular hypertrophy compared with wild-type mice, although 152 

they underwent CR52. Other sirtuins have also been implicated as mediators of the effects of CR52. 153 

For instance, mice lacking the mitochondrial deacetylase SIRT3 have been shown to suffer from 154 

increased levels of oxidative damage53. Specifically, this study showed that SIRT3 reduced cellular 155 

ROS levels by deacetylating superoxide dismutase 2 (SOD2), a major mitochondrial antioxidant 156 

enzyme. This alteration promoted its antioxidative activity, thus emphasising the close coupling of 157 

many of the factors that have been implicated in aging and longevity.  158 

 159 

mTOR the Missing Metabolic Link?  160 

Another key pathway implicated in longevity is the pathway defined by the mammalian target of 161 

rapamycin (mTOR)54. mTOR is a serine/threonine protein kinase of the phosphatidylinositol-3-OH 162 

kinase (PI(3)K)-related family. mTOR comprises of two separate complexes, mTORC1 and mTORC2, 163 

which coordinate a variety of nutrient and hormonal cellular signals, which control a variety of 164 

cellular processes including cell growth, cell size, and metabolism55. The connection between mTOR 165 

and longevity was first identified over two decades ago, when it was found that knocking out Sch9, 166 

the homolog of the mTORC1 substrate S6K, augmented chronological lifespan56. Subsequently, a 167 

number of key studies using a variety of organisms have revealed that the mTOR is highly 168 

conserved57. For example, mutations in daf-15 a homolog of Raptor, a constituent of mTORC1, can 169 

extend the lifespan of C. elegans. The mutants adapted their metabolism to accumulate lipids, while 170 

there was also an increase in adult life span58. Moreover, it has been suggested that the effects of CR 171 

are coordinated by mTOR. For instance, CR has been shown to activate eukaryotic translation 172 

initiation factor 4E-binding protein 1 in Drosophila59. Activation of this translation protein provoked 173 

an increase in the translation of several molecules involved in the mitochondrial electron transport 174 

chain and an increase in lifespan. This lifespan increase could be due to a concomitant drop in 175 

oxidative stress. This assertion is supported by experimental evidence, which has shown that the 176 

inhibition of mTORC1 lowers mitochondrial membrane potential, O2 consumption and ATP levels60. 177 

In addition, mTOR has been shown to interact with other aspects mitochondrial function including 178 

biogenesis, apoptosis and mitochondrial hormesis61.  179 



 180 

Mitochondrial Function and Epigenetic Processes 181 

Given the key role mitochondrial metabolism plays in ROS generation, and its putative connection 182 

with CR, it is worth considering how both mitochondrial function and the emission of ROS interact 183 

with other important biochemical and genetic processes. The Krebs cycle occurs in the mitochondrial 184 

matrix and intermediates of this fundamental metabolic pathway are required for epigenetic 185 

processes. Epigenetic processes are those factors that influence gene expression without changing 186 

the actual nucleotide sequence of the DNA molecule62. One of the best characterised epigenetic 187 

processes is DNA methylation, a process key to the regulation of gene expression63. Methylated DNA 188 

have a covalently bonded methyl group at the carbon-5 position of a deoxycytidine. This is followed 189 

by a deoxyguanidine, to form tissue specific methyl patterns64. Advancing age has been associated 190 

with the disruption of these DNA methylation patterns which are key to the fidelity of gene 191 

expression65. Specifically, during aging, human DNA undergoes genome wide hypomethylation 192 

across a variety of different tissues66. Moreover, advancing age also results in regional increases in 193 

DNA methylation at the promoter regions of a multitude genes67. This alteration, which is referred to 194 

as site-specific hypermethylation has significant implications for health68. For example, cancers 195 

regularly display global hypomethylation and concomitant gene specific hypermethylation69, while it 196 

has also been observed that autoimmune diseases70 and CVD71 also manifest this phenomenon.  197 

 198 

We derive methyl groups from the B vitamin folate in our diet72, however deficiencies in the intake of 199 

this vitamin or other B vitamins can disrupt the methylation process. However, it has been recently 200 

acknowledged that intrinsic aging is also a contributing factor to age-related aberrant DNA 201 

methylation73. It has been found that with age changes occur to the activity of the enzymes that 202 

dynamically regulate DNA methylation patterns74. Of these enzymes, DNA methyltransferase 1 203 

(Dnmt1) is primarily responsible for maintaining genomic DNA methylation75. DNA methylation 204 

events are counterbalanced by active and passive demethylation76. Passive demethylation occurs 205 

during replication, while active methylation involves ten eleven translocation (TET) dioxygenases, 206 

which oxidize the methyl groups of cytosine and appear central to demethylation77. Intriguingly, the 207 

activity of the TET demethylation enzymes is dependent on fluctuations in α-ketoglutarate an 208 

important intermediate in the Krebs cycle78. Moreover, several enzymes involved in the Krebs cycle 209 

including, isocitrate dehydrogenase, fumarate hydratase and succinate dehydrogenase (SDH) are 210 

also known to modulate TET enzymes78. Adding further intrigue to the connection between 211 

methylation and metabolism, recent experimental evidence has shown that Dnmt1 activity is 212 

elevated in response to caloric (CR) in human fibroblast cell lines79. Importantly, it has also been 213 

suggested that the response of Dnmt1 to CR is mediated by SIRT1, which has been shown to 214 

modulate the activity of this key methylation enzyme80. Finally, there is also experimental evidence 215 

that age related changes to the DNA methylation landscape are at least in part impacted by 216 

increases in oxidative stress81. For example, it has been shown that DNA lesions, caused by oxidative 217 

stress, can disrupt the ability of DNA to function as a substrate for the DNMT182. Taken together, 218 

these findings suggest that both ROS emissions by the mitochondria and mitochondrial metabolism 219 

could be key players that mediate how DNA methylation changes unfold with age. 220 

 221 



Reasons for Adopting Mechanistic Computational Modelling for Aging Research 222 

From our discussion of the aging process, it is apparent that it is an inherently complex process.  223 

Traditionally, aging has been investigated like many other aspects of biology in a reductionist 224 

manner.  However, investigating aging cannot be viewed as just one single aspect of biology. Thus, it 225 

is important to acknowledge and appreciate the biological uniqueness of aging and that aging needs 226 

to be studied in a holistic manner. Fortunately, there is an increasing appreciation in recent years 227 

that biological systems need to be studied within integrated frameworks, and that viewing complex 228 

biological systems through a reductionist lens in no longer an adequate experimental paradigm83. 229 

The aim of systems biology is to provide an integrated understanding of biological processes from 230 

the molecular through to the physiological84. Computational modelling is an ideal means of 231 

facilitating this paradigm shift and they are now increasingly used alongside more conventional 232 

biological approaches. The contributions such models can make to the understanding of aging are 233 

clear. 1) Computational models can represent the intrinsic complexity associated with aging. 2) 234 

Modelling can improve our understanding of the biology underpinning aging and help to generate 235 

new insights. 3) It can highlight gaps in current knowledge. 4) A model can help to develop clear, 236 

testable predictions about aging that are not always possible to do using conventional means. 5) A 237 

model may lead to counterintuitive explanations and unusual predictions about aging that would 238 

otherwise be unapparent if the system was not studied in an integrated manner. 6) Models can 239 

provide a quick way to analyse a biological system under a wide range of conditions, for example by 240 

examining the effects of an array of dietary components. 7) There are many conflicting ideas about 241 

aging and models can be used to test a particular hypothesis which may lead to counterintuitive 242 

explanations.  243 

 244 

APPROACHES TO MODELING AGING 245 

In order to appreciate what computational modeling is, and how it is used in systems biology, it is 246 

firstly necessary to give an overview of what it is. Computational modeling is an abstract process 247 

which uses mathematics to dynamically represent the components of a biological system and their 248 

interactions within a mathematical framework. A key aspect of this techniques is that it allows the 249 

simulation of a system’s dynamic behaviour. At the heart of computational modeling is mathematics, 250 

and there are a number of theoretical frameworks that can be used to construct a computational 251 

systems model85. The approach that is adopted is largely dependent on the nature of the system 252 

that is to be modelled86. Recently, Petri nets have been used to model a variety of process in 253 

biology87. These are a directed bipartite graph, with two types of nodes, called places and 254 

transitions, which are represented diagrammatically by circles and rectangles, respectively. Places 255 

and transitions are connected via arrows/arcs. Each circle or place contains a number of tokens, 256 

which is a kin to a discrete number of biochemical molecules, while the stoichiometry is indicated by 257 

the weight above the arrow/arc. Tokens can be both consumed and produced within the Petri net. A 258 

Petri net functions by input-output firing at the transitions within the network. The ‘firing’ of 259 

transitions is a kin to a biochemical reaction taking place. Biological systems can also be represented 260 

with a Bayesian network (BN)88. BNs are a type of probabilistic network graph, where each node 261 

within the graph represents a variable. Nodes can be discrete or continuous and are connected to a 262 

probability density function, which is dependent on the values of the inputs to the nodes. Agent-263 



based models have been increasingly used in aging research also89. This is a rule-based approach 264 

which is used to investigate biological systems using clusters of independent agents whose 265 

behaviour is underpinned by simple rules. These agents are capable of interacting with one another 266 

through space and time. However, by far the most commonly adopted theoretical approach to 267 

modelling in systems biology is a deterministic framework. However, more recent developments 268 

have witnessed the adoption of stochastic modelling. In the next sections we will introduce these 269 

two important approaches and will highlight some examples that have been used in recent aging 270 

research.   271 

 272 

Deterministic models versus Stochastic Models 273 

Deterministic models can be represented mathematically by ordinary differential equations (ODEs). 274 

ODEs are known as ordinary because they depend on one independent variable (time), and use the 275 

assumption that biological species exist in a well-mixed compartment, where concentrations can be 276 

viewed as continuous. These systems can be defined as follows  277 

 278 

 279 

 280 

 281 

x, and y are referred to as state variables, for example these could be the concentration of ROS in a 282 

cell, the length of a telomere or the concentration of mTORC1. Species concentration is generally 283 

denoted by the state variable enclosed within a square bracket. In the equations fx, fy, are the 284 

functions describing the molecular interactions. Systems of ODEs that are used to represent 285 

biological processes are generally too complex to solve analytically. Therefore, numerical integration 286 

is used to simulate their behaviour using a computer. Computational systems biology software tools 287 

come equipped with algorithms for doing this, which helps to facilitate the  modeling process for 288 

those less familiar with mathematics90. 289 

Continuous deterministic ODEs are based on the assumption that large numbers of molecules are 290 

involved in biological reactions and that the random interactions between these molecules has a 291 

negligible impact on the behaviour of the system. This makes continuous deterministic models 292 

unsuitable for representing process which are governed by stochasticity or randomness within cells. 293 

The main sources of stochastic variability at the cellular level are fluctuations in biochemical 294 

reactions, which drive a number of processes including gene expression, transduction signalling, and 295 

biochemical pathway signalling91. These reactions occur through random collisions and transient 296 

binding of various molecular species within the cell. This makes these reactions prone to significant 297 

noise. In order to deal with this noise stochastic reaction models attempt to represent the discrete 298 

random collisions between individual molecules. These type of models treat molecule interactions as 299 

random events. A stochastic model is usually underpinned by a propensity function, known as the 300 



a dt h c dt  =

Gillespie equation92. This equation explicitly gives the probability aμ of a reaction μ occurring in time 301 

interval (t, t + dt).     302 

 303 

 304 

The M reactions in the system are given an index value of μ (1 ≤ μ ≤ M) and hμ implies the number of 305 

possible combinations of reactant molecules involved in reaction μ. In essence each reaction within 306 

the system has a different probability of occurring. In practice the Gillespie algorithm or one of its 307 

variants92-94 is embedded within a computational modelling tool. Therefore, it is only necessary for 308 

the user to have a reasonable understanding of underlying theory of the Gillespie algorithm in order 309 

to build a stochastic model of a biological system. At this point it is important to acknowledge that in 310 

addition to these approaches, there are a number of other theoretical frameworks that can be 311 

employed to model biological systems. These include Petri nets, which are a graphical tool for the 312 

description and analysis of concurrent processes95, Bayesian networks, which are probabilistic 313 

graphical models96,  Boolean networks in which entities are either in an on or off state97,  systems of 314 

partial differential equations (PDEs), which are multivariable functions that deal with partial 315 

derivatives98 and agent based modelling, which is a rule-based, discrete-event and discrete-time 316 

approach that uses objects and rules to simulate interactions among the individual components of 317 

the model99.  318 

 319 

Modelling Tools and Model Exchange 320 

A variety of software tools are available for building models and the choice of software tool is 321 

dependent on the level of experience of the individual assembling the model. Certain tools are more 322 

suitable than others for novice model builders. ODEs can be coded manually by using a commercial 323 

software tool such as Matlab or Mathematica. Non-commercial software tools such as Copasi100 or 324 

CellDesigner101, which have graphical user interfaces, allow the user to build the model by creating a 325 

succession of kinetic reactions/a process diagram, which in the in the case of a deterministic model 326 

is then converted to a series of coupled ODEs. As discussed in the previous section the software tool 327 

then uses an algorithm to solve the ODEs and produce a deterministic output. Once a computational 328 

model has been assembled, it is important that it can be both easily accessed and updated by the 329 

community as a whole. To facilitate model portability a number of exchange frameworks have been 330 

developed102. These frameworks allow models to be shared and reused by researchers even if they 331 

do not use the same modeling software tool. At present, the leading exchange format is the systems 332 

biology markup language (SBML)103. This framework is supported by a broad range of modelling 333 

software tools (http://sbml.org/SBML_Software_Guide/SBML_Software_Summary). Models that 334 

have been encoded in this format can be archived in the BioModels database, a repository designed 335 

specifically for archiving models of biological systems104.   336 

 337 

 338 

 339 
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Computational Models of Mitochondrial Dynamics 340 

As outlined, oxidative stress and the emission of ROS by mitochondria is one of the fundamental 341 

cellular processes that impacts aging. Therefore, it is unsurprising that various aspects of 342 

mitochondrial dynamics have been modelled over the years (for a comprehensive review see Kowald 343 

and Klipp (2014)16). An early network model of mitochondrial dynamics that examined this was 344 

developed by Kowald and Kirkwood (1994). This model showed that during increased free radical 345 

production and/or inadequate protection from these free radicals, damage can occur to an 346 

otherwise stable translation system105. Another area of keen focus is mitochondrial fission and 347 

fusion. Briefly, fission and fusion events can be viewed as mitochondrial caretakers whose 348 

responsibility it is to control cellular ATP concentration, and to mitigate against the accumulation of 349 

damage to mitochondrial DNA (mtDNA). One of the earliest models that focused on these processes 350 

was the model developed  by Kowald et al. (2005). In this model stochastic simulation of 351 

mitochondrial replication, mutation and degradation showed a low mosaic pattern of oxidative 352 

phosphorylation (OXPHOS) impaired cells in old organisms106. More recently, Tam and colleagues 353 

(2013) used computational modelling to investigate the effects of mitochondrial fusion and fission 354 

dynamics on mutant mtDNA accumulation107. In this stochastic model, simulations indicated that the 355 

slowing down of mitochondrial fusion-fission results in higher variability in the mtDNA mutation 356 

burden among cells over time, and mtDNA mutations have a higher propensity to clonally expand 357 

due to an increase in stochasticity. The model was able to suggest that the protective ability of 358 

retrograde signalling (biochemical communication between mitochondria and nucleus) depends on 359 

the efficiency of fusion-fission process107. Another model which focuses on fusion-fission cycles is the 360 

model by Figge and colleagues (2012). This probalistic model demonstrated that cycles of fusion and 361 

fission and mitophagy are needed to maintain a high average quality of mitochondria, even under 362 

conditions in which random molecular damage is present108. Recent mitochondrial models have also 363 

focused on specific regions within the mitochondrial ETC. For instance, a model of superoxide 364 

production at complexes I and III of the ETC, was able to generate an improved mechanistic 365 

understanding of how ROS are generated by complex III. This model also described ROS production 366 

by antimycin A inhibited complex III. In order to validate the model, output from its simulations was 367 

matched to experimental data from rodents109. On a similar theme Markevich and Hoek (2015) used 368 

a computational model of mitochondrial bioenergetics to monitor superoxide production under 369 

different substrate conditions. Their model suggested that the semiquinone of Complex I should be 370 

included as an additional source of ROS110.  371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 



Telomere Models  379 

A number of models have explored telomere dynamics. Most recently, Bartholomäus and colleagues 380 

(2014) used a computational model to investigate telomere length under a variety of 381 

perturbations111. The model was used to explore telomeres during different conformational states, 382 

specifically t-loops, G-quadruplex structures and those being elongated by telomerase. This 383 

deterministic model was used to examine how different levels of telomerase impacted telomere 384 

length. Moreover, the authors used the model to explore the impact of adding different levels of a 385 

G4-stabilising drug on the distribution of telomere lengths. Several older models can be found in the 386 

literature. Others of note include the model by Rodriguez-Brenes and Peskin (2010) who modelled 387 

telomere state on the basis of the biophysics of t-loop formation112. The model was able to predict 388 

the steady-state length distribution for telomerase positive cells, the time evolution of telomere 389 

length, and the life span of a cell line on the basis of the levels of telomeric repeat-binding factor 2; a 390 

protein that  protects telomeres from end-to-end fusion of chromosomes. The model was also able 391 

to predict the life span of a cell line based on telomerase levels. Stochastic models of telomere 392 

dynamics include the model by Portugal et al. (2008) which made the assumption that cell division is 393 

a stochastic phenomenon whose probability decreases linearly with telomere shortening113. Proctor 394 

and Kirkwood (2003) also used a model informed by probability to model cellular senescence as a 395 

result of telomere state17. From an oxidative stress perspective Trusina (2014) recently used a 396 

computational model to investigate the effect of genotoxic stress on telomere attrition114. Virtual 397 

populations of cells were compared and it was found that when ROS was distributed unequally 398 

among cells, telomere shortening increased longevity, while also reducing the DNA mutation rate.  399 

 400 

Computational Modelling of Metabolic Signalling  401 

In the first section of this paper we described the increasing attention there has been on certain 402 

metabolic pathways and how they may have a significant role to play in longevity. Most notably we 403 

identified those metabolic pathways that are defined by mTOR and by sirtuins. Several attempts 404 

have been made to computationally model various aspects of these pathways115. For example, Kriete 405 

et al. (2010) developed a computational model that included the mTOR pathway together with other 406 

pathways associated with intrinsic aging116. This rule based model is of note as it encapsulated many 407 

important aspects of aging, including mitochondrial biosynthesis, metabolic fluxes, mTOR as an 408 

energy sensor and NF-κB, to detect oxidative stress. Another model which successfully included 409 

oxidative stress is that developed by Smith and Shanley (2013)117. By building a model of insulin 410 

signalling in rodent adipocytes that included transcriptional feedback through the Forkhead box type 411 

O (FOXO) transcription factor, it was demonstrated that oxidative stress can have a significant effect 412 

on insulin signalling and aging. The model produced a range of findings including the combination of 413 

insulin and oxidative stress produced a lower degree of activation of insulin signalling than insulin 414 

alone. Antioxidant defences were upregulated in the presence of fasting and weak oxidative stress, 415 

whereas, stronger oxidative stress caused short term activation of insulin signalling. The model also 416 

demonstrated that if prolonged high insulin may negate the protective effects of moderate oxidative 417 

stress. The complex nature of this model is evident, but, combining it with other factors that can 418 

influence insulin signalling such as the mTOR pathway could add to our understanding of insulin 419 

signalling. 420 



Computational Models of DNA Methylation Dynamics and Aging 421 

In spite of increasing age related experimental data there is a paucity of computational models that 422 

have focused specifically on intrinsic aging and DNA methylation dynamics. However, methylation 423 

dynamics have been represented computationally within a number of disease states. For instance, 424 

Mc Govern et al. (2012) developed a dynamic multi-compartmental model of DNA methylation, 425 

which was used as a predictive tool for hematological malignancies118. The model centred on the 426 

activity of DNMTs. PDEs were used to represent methylation reactions and the model was able to 427 

predict the relative abundances of unmethylated, hemimethylated, fully methylated, and 428 

hydroxymethylated CpG dyads in the DNA of cells with fully functional Dnmt and Tet proteins. It 429 

would be worthwhile adapting this model to include oxidative stress, folate biochemistry and the 430 

effects of aging on the activity of the methylation enzymes. This model is also deterministic in 431 

nature. However, it has been recognised that DNA methylation dynamics are susceptible to inherent 432 

stochasticity119. Consequently a number of theoretical frameworks have been proposed for modeling 433 

the noise associated with DNA methylation dynamics. For example, reduced mathematical 434 

representations of methylation dynamics have been proposed by Riggs and Xiong (2004)120 and 435 

more recently by Jeltsch and Jurkowska (2014), in which DNA methylation at each genomic site is 436 

determined by the activity of Dnmts, demethylation enzymes, and the DNA replication rate121. An 437 

awareness of the stochastic nature of these mechanisms has important implications for the aging 438 

process, as experimental evidence indicates that the persistent nature of the human methylome 439 

results give rise to this noise122. Accordingly, it is imperative that computational models which seek 440 

to represent the dynamics of DNA methylation need to account for this inherent variability. One 441 

such recent model that has dealt with the intrinsic stochasticity associated with DNA methylation is 442 

the model developed by Przybilla et al. (2014), which simulated age-related changes of DNA 443 

methylation in stem cells. The findings of this model, which compared age-related changes of 444 

regulatory states in quiescent stem cells, with those observed in proliferating cells, suggest that 445 

epigenetic aging strongly affects stem cell heterogeneity and that homing at stem cell niches 446 

retarded epigenetic aging123.  447 

 448 

Cholesterol Metabolism and Aging 449 

The aging process results in the gradual decline of a biological system. This decline is associated with 450 

a broad range of pathological states. An example of this decline is the dysregulation of cholesterol 451 

metabolism which is inextricably linked to CVD. Therefore, a keen area of focus is how intrinsic aging 452 

impacts whole-body cholesterol metabolism124-127. Recently we developed a whole-body model that 453 

attempted to capture whole-body cholesterol metabolism. The model was used to examine how age 454 

related mechanistic changes to the intestinal absorption of cholesterol resulted in a rise in low-455 

density lipoprotein cholesterol (LDL-C), as increased levels are a risk factor for CVD. The model also 456 

revealed that an age related decrease in the hepatic clearance of LDL-C resulted in significant rise in 457 

LDL-C by 65 years of age. This model is coded in SBML and is archived in the BioModels database 458 

(http://www.ebi.ac.uk/biomodels-main/BIOMD0000000434). In theory this model should be 459 

straightforward to update and expand to include other important aspects of aging. As we have 460 

eluded to, the free radical theory of aging is a useful means of gluing together disparate aspects of 461 

the aging process. It is therefore possible to extend this model by framing it around the insidious rise 462 

http://www.ebi.ac.uk/biomodels-main/BIOMD0000000434


in ROS that occurs with age in endothelial, vascular smooth muscle, and adventitial cells. This rise in 463 

ROS is suggested to be the key driver in a signalling cascade that results in atherosclerosis. 464 

Atherosclerosis occurs when LDL molecules migrate into the artery wall at a site which is 465 

undermined by endothelial damage. The LDLs are then oxidised upon coming into contact with ROS. 466 

The oxidatively modified lipoproteins (oxLDL) are more atherogenic than the native LDL and lead to 467 

the recruitment of the macrophages to the site of the lesion. Monocytes pass into the intima before 468 

differentiating into macrophages. These molecules engulf oxidized LDL to form cholesterol-laden 469 

foam cells. This ultimately results in the formation of an atherosclerotic plaque which eventually 470 

ruptures and causes an artery to block128 (Figure 2). This can lead to a stroke or myocardial 471 

infarction129. Computational modeling offers a way of dealing with the different molecular, cellular 472 

and hemodynamic events associated with this process. 473 

 474 

Brain Aging and Pathology 475 

Recently, we also created a computational model which incorporated key brain regions that 476 

characterise AD and combined these with the homeostatic regulation of the stress hormone 477 

cortisol130. The aim of this model was to examine how increased levels of cortisol impinge on the 478 

integrity of the hippocampal region of the brain, which is the core pathological substrate for AD. The 479 

model was able to replicate the in vivo aging of the hippocampus. Moreover, both acute and chronic 480 

elevations in cortisol increased aging-associated hippocampal atrophy and concomitant loss in the 481 

activity of the hippocampus. This computational systems model could be updated to include a 482 

number of other processes. For instance, cortisol is synthesised from cholesterol and also acts is also 483 

involved in provoking the breakdown of lipids, and a wide variety of other metabolites131. Therefore, 484 

the model could be integrated with the cholesterol model discussed previously. Moreover, this 485 

model could be used as a framework for investigating vascular dementia (VAD). VAD is underpinned 486 

by a dysregulation in the supply of O2 following a stroke or small vessel deterioration, and oxidative 487 

stress is central to the processes that underpin the progression of VAD132. Oxygen deprivation results 488 

in mitochondrial dysregulation and the release of ROS133. This increase in oxidative stress damages 489 

blood vessels and neurons, resulting in a process which has been termed neurovascular 490 

uncoupling134, 135. Moreover, this burst of ROS can disrupt mitochondrial function and further induce 491 

hypoxia and oxidative stress136.  492 

A recent ODE model explored a number of the cellular processes associated with Parkinsons Disease 493 

(PD). Among the many cellular features of this model, the feedback interactions between damaged 494 

α-synuclein and ROS137 were explored. Simulation results showed, hat the Parkinsonian condition, 495 

with elevated oxidative stress and misfolded α-synuclein accumulation, can be induced in the model 496 

by intrinsic aging, together with exposure to toxins and genetic defects. Computational approaches 497 

could also be used to investigate other key aspects of brain aging. For instance, many individuals 498 

with Parkinson’s disease report problems with their respiratory, cardiovascular, and gastrointestinal 499 

systems138. There is also ample evidence of increased neuroinflammatioin Parkinsons individuals, 500 

due to oxidative stress, with reports of increased levels of cytokines, macrophages and microglia 501 

activation in brain tissues139,140.  A computational model could thus consider abnormalities in central 502 

autonomic nuclei, as to our knowledge, there have been no studies to determine whether 503 

abnormalities in central autonomic nuclei contributes to autonomic dysfunction or whether 504 



peripheral autonomic nuclei also show perturbed development and increased inflammation in PD. 505 

Autonomic dysfunction could be reflective of systemic autonomic pathology in PD, and that in fact 506 

PD is, in part, an autonomic disorder. It is therefore logical that integrated approaches are required 507 

to disentangle the pathological onset of this disease. A worthwhile approach that could address 508 

these questions would be to construct a computational systems model of these key processes. In 509 

Figure 3, we have used Systems Biology Graphical Notation (SBGN) to represent these processes, 510 

which could be modelled computationally.   511 

 512 

Other recent Models that have focused on Integrating Aspects of Aging   513 

To date, no model has been able to represent aging in its entirety. However, there have been a 514 

number of recent examples, whereby various components associated with aging have been 515 

integrated together within a mathematical framework, in an attempt to complete a more global 516 

view of how aging impacts a particular biological system. For example, Xue and colleagues (2007) 517 

demonstrated that aging is associated with the alteration of a few key brain network modules 518 

instead of many, and that the aging process preferentially affects regulatory nodes involved in 519 

network stability141. Multi-level aging based models have also been used to gain an insight into 520 

intracellular protein aggregate damage, during aging in Escherichia coli142. Moreover, multi-scale 521 

models have also had a mammalian focus, for example to examine collagen turnover and the 522 

adaptive nature of arterial tissue, in response to mechanical and chemical stimuli143. Furthermore, 523 

this type of modelling has also been utilised to examine disease pathophysiology, such as the muscle 524 

fibre arrangement and damage susceptibility in Duchenne muscular dystrophy144. 525 

 526 

 527 

FUTURE OPPORTUNITIES AND CHALLENGES   528 

As outlined, the intrinsic biological mechanisms which characterise the aging process are complex 529 

and their activities transcend scale and time. In addition, they involve the interplay of a broad range 530 

of molecular, biochemical and physiological processes. In the main, computational models have 531 

focused on these process at a cellular level. However, these models are not an adequate 532 

representation of whole body human aging. In the final section, we will explore the challenges and 533 

opportunities for the future integration of mechanistic models associated with the aging process.  534 

 535 

Embedding Existing Models into a Multi-Scale Holistic Framework of Aging 536 

A long term goal of aging research is to have whole-body mechanistic models of the aging process. It 537 

is important to note that there are currently no models of this nature in existence. However, in order 538 

to fully computationally represent aging from cell to tissue level, there are a number of outstanding 539 

challenges that remain. Rather than reinventing the wheel it is worth considering extending existing 540 

models. In this final section we will outline some of the challenges that exist in combining models 541 

and will propose a number of potential solutions. It is important to recognise that a number of these 542 



biological systems need to be further characterised before they can be successfully represented by a 543 

computational model. A solution to this problem could be to firstly work on aspects of the aging 544 

process that are reasonably well characterised, so that future models are founded upon well 545 

characterised biological mechanisms. Moreover, it is important that model building is coupled 546 

closely with wet-laboratory experimentation. Systems biology experiments that are designed with 547 

existing in silico models firmly embedded within their methodology would significantly improve both 548 

the model and extend our understanding of the underlying biology. Another significant issue relates 549 

to representing biological systems at different levels of scale. It is common place to represent 550 

biological systems using models which consist of a system of ODEs that can be analysed, whose 551 

dynamics can be solved using a computer. This deterministic approach neglects those reactions that 552 

occur at a much smaller scale and involve fluctuations in low molecular populations. Implementing 553 

models which combine both the deterministic and stochastic features of biological systems is 554 

challenging. However, recently there have been some examples of computational models that have 555 

succeeded in accounting for both these effects. For example, Singhania (2011)145 used a hybrid 556 

approach that combined differential equations and discrete Boolean networks to represent 557 

mammalian cell cycle regulation. This is particularly important from the perspective of the aging 558 

process as in order to truly represent it requires the integration of a variety of processes which 559 

traverse different biological and temporal scales. Assembling holistic models which represent the 560 

aging process is also hindered by the need to determine realistic values for the many parameters 561 

that are the essence of large complex models of biological systems. Due to the nature of the 562 

experiments it can be difficult to estimate these parameters from existing experimental data. It is 563 

important to recognise however that this is a persistent problem within systems biology generally. 564 

Thus, as previously eluded to it is necessary to align computational modelling within any future 565 

experimental methodology. In addition a broad range of statistical techniques have been applied to 566 

this area recently. For instance, Aitken et al. (2015) embedded an algorithm based on Bayesian 567 

inference within the computational systems biology software tool Dizzy146, 147. There are several 568 

other approaches in which statistical techniques can be used to estimate unknown parameters in 569 

systems biology148. Continuing developments in this area will no doubt increase in the utility of 570 

computational systems models, and this will be of benefit to those models which represent aging.  571 

 572 

 573 

Conclusion 574 

In this paper we have presented a broad overview of some of the processes associated with the 575 

biology of aging. We have also introduced a number of approaches that are currently used to 576 

computationally model biological systems and have described in detail a number of models that 577 

have been developed to represent a wide variety of discrete components of the aging process.  578 

Some of these models include the key role of ROS in the aging process, while others do not. From 579 

our perspective, it is hoped that by converging around ROS in coming years we will witness a more 580 

comprehensive view of aging that encapsulates the various different mechanisms and their 581 

interactions, whose dysregulation result in age associated disease.  582 

 583 
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 921 

 922 

Figure Legends 923 

FIGURE 1. An integrated overview of aging and some of its key players. This figure emphasises the 924 

extent of interplay between the different components that underpin intrinsic aging, and how age-925 

related changes to these components affect health-span and longevity. The integrated nature of this 926 

diagram highlights the complexities of ageing and why computational models are needed to help 927 



study its dynamics. IGF-1, insulin-like growth factor-1; ROS, reactive oxygen species; PARP, poly ADP 928 

ribose polymerase; mTOR, mammalian target of rapamycin. 929 

 930 

FIGURE 2. Integrating a computational model of cholesterol metabolism with a variety of other 931 

factors involved in the onset of CVD. Our extended model is framed around the insidious rise in ROS 932 

that occurs with age. This rise in ROS is a key driver which underpins a pathological cascade that 933 

ultimately results in CVD. 934 

 935 

FIGURE 3. An SBGN representation of the autonomic nervous system. The aim of this proposed 936 

model would be to simulate physiological responses associated with the autonomic nervous system 937 

such as heart rate, rate of movements in the gastrointestinal tract, or synthesis of B cells by the 938 

spleen.  These processes are regulated in part by neurotransmitters and cytokines. Dysregulation of 939 

these processes together with oxidative stress have been strongly implicated in the pathology which 940 

underpins Parkinson’s disease. NE, Norepinephrine; 5HT, serotonin; Ach, acetylcholine. 941 
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